Supporting Information

Ion Polarisation-Assisted Hydrogen-Bonded Ferroelectrics in

Liquid Crystalline Domain

Guohao Yuan, Yuko Kimura, Takayuki Kobayashi, Takashi Takeda, Norihisa Hoshino, and Tomoyuki Akutagawa*

Contents.

1. Experimental section

2. Thermal behaviors, DSC charts, gellation behavior, nanofiber on mica surface of molecule **1** (Figure S1).

- 3. TG charts of **1** and $M^{+}(1)\cdot X^{-}$ (Figure S2).
- 4. Vibrational IR spectra of molecule **1** and **M⁺•(1)•X⁻** (Figure S3).
- 3. Schematic of the hydrogen-bonding molecular assembly (Figure S4).
- 4. Molecular assembly structure and PXRD patterns of 1 (Figure S5).
- 5. Summary of phase transition behavior (Table S1).
- 6. PXRD patterns of M⁺•(1)•X[−] salts (Figure S6, S7).
- 7. Temperature-dependent $Z^{-}Z^{2}$ plots of $M^{+}(1) \cdot X^{-}$ salts (Figure S8).
- 8. K⁺ concentration-dependent $log(\sigma_{K+})-T^{-1}$ plots of $(K^+)_x \cdot (1) \cdot (SCN^-)_x$ salts (Figure S9).
- 9. Summary of σ_{ion} and E_a of (M⁺)•(1)•(X⁻) (Table S2).
- 10. POM images of $(3BC)_{1-x}(1)_x$ (Figure S10).
- 11. Temperature-dependent *P*–*E* hysteresis curves of **3BC** (Figure S11).
- 12. Temperature-dependent P-E hysteresis curves of Col_h phases for (**3BC**)_{0.8}(**1**)_{0.2} (Figure S12).

1. Experimental

General. The ¹H NMR spectra were recorded on a Bruker Avance 400 NMR spectrometer with the chemical shift (δ) in ppm relative to tetramethylsilane as a standard with $\delta = 0.00$ ppm. The mass spectra were recorded on a JMS-700 spectrometer (MS laboratory, Graduate School of Agriculture, Tohoku University). Thermogravimetric (TG) differential thermal analysis and differential scanning calorimetry (DSC) were conducted using a Rigaku Thermo plus TG8120 thermal analysis station and Mettler DSC1-T with an Al₂O₃ reference and a heating and cooling rate of 5 K min⁻¹ under nitrogen. Solid-state infrared (IR) spectra were measured on KBr pellets using a Thermo Fisher Scientific Nicolet 6700 spectrophotometer with a resolution of 5 cm⁻¹. Temperature-dependent powder X-ray diffraction (PXRD) profiles were obtained using a Rigaku Rint-Ultima diffractmeter with Cu Kα radiation with λ =1.54185 Å in the temperature range of 298–498 K. The temperature-dependent dielectric constants were measured by the two-probe AC impedance method from 1 kHz to 1 MHz (Hewlett-Packard, HP4194A) using the temperature controller of a Linkam LTS-E350 system. The cast film was fabricated on an ITO glass (SZ-A311P6N) and sandwiched using another ITO glass to form an electrode arrangement with an electrode area of 0.16 cm² and a gap ranging from 0.1 mm to 1.0 mm. The temperature was increased by 4 K min⁻¹ in the corresponding temperature range. The P-E curves were measured using a ferroelectric tester (Precision LC, Radient Technologies).

Preparations. 3BC was synthesized following a reported method.⁵⁵ Tetraamino-dibenzo[18]crown-6 was prepared according to a reported procedure.⁵⁶ Concentrated nitric acid (50 mL) was slowly dropped into dibenzo[18]crown-6 (5.0 g, 13.9 mmol) in CH₂Cl₂ (50 mL) at room temperature under stirring. Then, concentrated sulfuric acid (25 mL) was slowly dropped and stirred for four days. After filtration, the precipitate was washed with H₂O and dried in vacuum. Tetranitro-dibenzo[18]crown-6 (6.96 g, 12.9 mmol) was obtained with a yield of 93%. ¹H NMR in DMSO: $\delta = 3.85$ (m, 8H), 4.31 (m, 8H), and 7.74 (s, 4H). Then, 10% Pd/C (1.0 g) and hydrazine monohydrate (140 mL) were added to tetranitro-dibenzo[18]crown-6 (4.6 g, 8.52 mmol) in dry C₂H₅OH, which was refluxed for 4 h under N₂. The hot reaction solution was filtered through celite with hot C₂H₅OH, and the solution was heated again and slowly cooled to obtain platelet crystals. Tetraamino-dibenzo[18]crown-6 (2.02 g, 4.75 mmol) was obtained with a yield of 56%. ¹H NMR in CD₃OD: $\delta = 3.91$ (m, 8H), 4.08 (br, 8H), 6.48 (s, 4H).

Undecanoyl chloride (2.28 mL, 10.4 mmol) was slowly dropped into tetraamino-dibenzo[18]crown-6 in dry CH₃CN (80 mL) under N₂. Then, trimethylamine (2.56 mL, 18.4 mmol) was slowly dropped into the solution and stirred overnight. The white precipitate was collected by filtration, washed with CH₃OH, and dried in vacuum. Recrystallization from DMF provided 709 mg (0.648 mmol) of 1 with a yield of 27%. ¹H NMR: 400 MHz, CDCl₃, δ = 0.88 (9H, t), 1.21–1.43 (66H, m), 1.58–1.68 (6H, m), 3.38 (6H, dt), 6.40 (3H, t), 8.33 (3H, s). Anal. Calcd. for 3BC (C₅₁H₉₃N₃O₃): C, 76.92; H, 11.77; N, 5.28. Found: C, 76.82; H, 11.85; N, 5.30.

- R1) Y. Shishido, H. Anetai, T. Takeda, N. Hoshino, S. –i. Noro, T. Nakamura, T. Akutagawa, Molecular assembly and ferroelectric response of benzenecarboxamides bearing multiple –CONHC₁₄H₂₉ Chains. J. Phys. Chem. C. 118, 21204–21214 (2014).
- R2) Y. P. Li, H. R. Yang, Q. Zhao, W. C. Song, J. Han, X. H. Bu, Ratiometric and selective fluorescent sensor for Zn²⁺ as an "Off-On-Off" switch and logic gate. *Inorg. Chem.* **51**, 9642–9648 (2012).

Tetraamino-dibenzo[18]crown-6 was prepared according to a reported procedure. Concentrated nitric acid (50 mL) was slowly dropped into dibenzo[18]crown-6 (5.0 g, 13.9 mmol) in CH₂Cl₂ (50 mL) at room temperature under stirring. Then, concentrated sulfuric acid (25 mL) was slowly dropped and stirred for four days. After filtration, the precipitate was washed with H₂O and dried in vacuum. Tetranitro-dibenzo[18]crown-6 (6.96 g, 12.9 mmol) was obtained with a yield of 93%. ¹H NMR in DMSO: $\delta = 3.85$ (m, 8H), 4.31 (m, 8H), and 7.74 (s, 4H). Then, 10% Pd/C (1.0 g) and hydrazine monohydrate (140 mL) were added to tetranitro-dibenzo[18]crown-6 (4.6 g, 8.52 mmol) in dry C_2H_5OH . which was refluxed for 4 h under N₂. The hot reaction solution was filtered through celite with hot C₂H₅OH, and the solution was heated again and slowly cooled to obtain platelet crystals. Tetraaminodibenzo[18]crown-6 (2.02 g, 4.75 mmol) was obtained with a yield of 56%. ¹H NMR in CD₃OD: δ = 3.91 (m, 8H), 4.08 (br, 8H), 6.48 (s, 4H). Undecanoyl chloride (2.28 mL, 10.4 mmol) was slowly dropped into tetraamino-dibenzo[18]crown-6 in dry CH₃CN (80 mL) under N₂. Then, trimethylamine (2.56 mL, 18.4 mmol) was slowly dropped into the solution and stirred overnight. The white precipitate was collected by filtration, washed with CH₃OH, and dried in vacuum. Recrystallization from DMF provided 709 mg (0.648 mmol) of **1** with a yield of 27%. ¹H NMR: 400 MHz, CDCl₃, δ = 0.88 (9H, t), 1.21-1.43 (66H, m), 1.58-1.68 (6H, m), 3.38 (6H, dt), 6.40 (3H, t), 8.33 (3H, s). Anal. Calcd. for C₅₁H₉₃N₃O₃: C, 76.92; H, 11.77; N, 5.28. Found: C, 76.82; H, 11.85; N, 5.30. The ion-capturing $M^{+}(1) \cdot X^{-}$ salts were obtained by simply mixing 1 in toluene and the corresponding $M^{+}X^{-}$ salts in CH₃OH, followed by solvent removal under vacuum. Seven kinds of ion-doped salts, K⁺•(1)•Br⁻, K⁺•(1)•I⁻, K⁺•(1)•PF₆⁻, K⁺•(1)•AcO⁻, K⁺•(1)•SCN⁻, Na⁺•(1)•PF₆⁻, and Cs⁺•(1)•(CO₃²⁻)_{0.5}, were obtained and their mixing states were evaluated by PXRD analysis. Mixed crystals, $(3BC)_{0.9}(1)_{0.1}$, $(3BC)_{0.8}(1)_{0.2}$, and (**3BC**)_{0.7}(**1**)_{0.3} were obtained by simply mixing in hot toluene, removing the solvent under vacuum, Three kinds of ion-doped mixed crystals. $(3BC)_{0.9}[(Na^+)_{0.05} \cdot (1)_{0.1} \cdot (PF_6)_{0.05}],$ and drying. $(3BC)_{0.9}[(K^+)_{0.05} \cdot (1)_{0.1} \cdot (PF_6)_{0.05}]$, and $(3BC)_{0.9}[(Cs^+)_{0.05} \cdot (1)_{0.1} \cdot (CO_3^{2-})_{0.025}]$, were obtained by mixing 3BC and **1** in a ratio of 9:1 in toluene and the corresponding M⁺X⁻ in CH₃OH, followed by solvent removal under vacuum and drying.

Figure S1. Thermal properties and molecular assembly structures of **1**. a) DSC profiles of **1** (black) and **3BC** (red), where S1, S2, and M denote solid 1, solid 2, and the Col_h liquid crystal phase, respectively. b) POM images of Col_h phase of **1** at 503 K. c) Formation of transparent organogel of **1** in toluene. d) Nanofiber network structure of **1** on a mica surface fabricated by spin-coating at a rotation speed of 2,000 rpm.

Figure S2. Thermal stability of molecule 1 and $M^{+\bullet}(1)\bullet X^{-}$ salts. a) TG diagrams of molecule 1, $K^{+\bullet}(1)\bullet AcO^{-}$, $K^{+\bullet}(1)\bullet SCN^{-}$, $K^{+\bullet}(1)\bullet Br^{-}$ and $K^{+\bullet}(1)\bullet AcO^{-}$. b) TG diagrams of $K^{+\bullet}(1)\bullet I^{-}$, $K^{+\bullet}(1)\bullet PF_{6}^{-}$, $Cs^{+\bullet}(1)\bullet CO_{3}^{-}$ and $Na^{+\bullet}(1)\bullet PF_{6}^{-}$.

Wavenumber / cm⁻¹

Figure S3. Vibrational IR spectra of molecule 1 and $M^{+}(1)\bullet X^{-}$ salts on KBr pellets. i) molecule 1, ii) $K^{+}(1)\bullet PF_{6}^{-}$, iii) $K^{+}(1)\bullet I^{-}$, iv) $K^{+}(1)\bullet SCN^{-}$, v) $K^{+}(1)\bullet AcO^{-}$, vi) $K^{+}(1)\bullet Br^{-}$, vii) $Na^{+}(1)\bullet PF_{6}^{-}$, and viii) $Cs^{+}(1)\bullet CO_{3}^{-}$.

Figure S4. Schematic of the molecular assembly structure of **1**. The maximum molecular length is ~4 nm assuming an all-*trans* conformation of the $-C_{10}H_{21}$ chains (left), which further assembled through =O•••N-H- hydrogen-bonding interaction to form an ionic channel (right). Parts of $-NHCOC_{10}H_{21}$ chains were omitted for clarity.

Figure S5. Molecular assembly structure of **1**. a) Temperature-dependent PXRD profiles of S1 (T = 298 and 343 K), S2 (T = 443 K), and Col_h (T = 493 K) phases. b) Schematic model and d_{100} spacing of Col_h phase with an ionic channel structure.

Compounds	Transition ^{<i>a</i>}	Transition T^{b} , K	ΔH , kJ mol ⁻¹	Mixing ^c	
1	S1-S2	382	10.1	_	
	S2–Col _h	473	14.1		
	Col _h -I.L.	Dec.	-		
$K^+ \bullet (1) \bullet Br^-$	S1-S2	394	3.05	Non.	
	S2–Col _h	448	4.13		
	Col _h -I.L.	Dec.	-		
$\mathrm{K}^{\scriptscriptstyle +} {\scriptstyle \bullet}(1) {\scriptstyle \bullet} \mathrm{I}^{\scriptscriptstyle -}$	S-Col _h	328	24.4	Mix.	
	Col _h –I.L.	478	43.6		
$K^{+} \bullet (1) \bullet PF_6^-$	S-Col _h	334	17.3		
	Col _h –I.L.	Dec.	_		
$K^+ \bullet (1) \bullet AcO^-$	S1–S2	354	3.39	Mix.	
	S2–Col _h	437	7.68		
	Col _h –I.L.	> 468	1.25		
K+•(1)•SCN-	S-Col _h	350	1.28	Mix.	
	Col _h –I.L.	483	48.8		
$Na^+ \bullet (1) \bullet PF_6^-$	S1–S2	340	0.92	Mix.	
	S2–Col _h	388	4.36		
	Col _h – I.L.	472	16.0		

Table S1. Phase transition behaviors of **1** and $M^{+}(1) \cdot X^{-}$ salts.

$Cs^{+} \bullet (1) \bullet (CO_3^{2^-})_{0.5}$	S1–S2	362	5.25	Mix.
	S2–Col _h	380	0.81	
	Col _h –I.L.	453	2.28	

^{*a*} S1, S2, Col_h, and I.L. denote low-temperature solid, high-temperature solid, discotic hexagonal columnar, and isotopic liquid phases, respectively. ^{*b*} Determined by DSC profiles, and Dec. indicates decomposition without melting behavior. ^{*c*} Mixing state of M^+X^- into **1**. Mix. and Non. denote uniformly mixed and phase-separated states, respectively.

Figure S6. PXRD patterns of Col_h phase of molecular 1, $K^{+}(1) \cdot SCN^{-}$, $K^{+}(1) \cdot AcO^{-}$, $K^{+}(1) \cdot I^{-}$ and $K^{+}(1) \cdot PF_{6}^{-}$ at 443 K and corresponding salts.

Figure S7. PXRD patterns of $Na^+(1) \cdot PF_6^-$, $K^+(1) \cdot Br^-$ and $Cs^+(1) \cdot (CO_3^{2-})_2$ at 300K and corresponding salts.

Figure S8. Temperature-dependent Z'-Z' plots of molecule 1 and $M^{+}(1) \cdot X^{-}$ salts. i) molecule 1, ii) $K^{+}(1) \cdot Br^{-}$, iii) $K^{+}(1) \cdot I^{-}$, iv) $K^{+}(1) \cdot PF_{6}^{-}$, v) $K^{+}(1) \cdot AcO^{-}$, vi) $K^{+}(1) \cdot SCN^{-}$, vii) $Na^{+}(1) \cdot PF_{6}^{-}$, and viii) $Cs^{+}(1) \cdot CO_{3}^{-}$.

Figure S9. K⁺ concentration-dependent $\log(\sigma_{K+})-T^{-1}$ plots of $(K^+)_x \cdot (1) \cdot (SCN^-)_x$ salts with x = 0, 0.3, 0.5, 0.8, and 1.0.

Compound			Т, К			$E_{\rm a},{ m eV}$		
	$\sigma_{ m ion},{ m S}{ m cm}^{-1}$							
1	490	480	470	460	450	1.07		
	8.2×10 ⁻¹¹	5.0×10 ⁻¹¹	2.5×10 ⁻¹¹	1.6×10 ⁻¹¹	1.6×10 ⁻¹¹			
$K^+ \bullet (1) \bullet Br^-$	490	480	470	460	350	0.44~0.63		
	2.3×10 ⁻⁸	2.1×10^{-8}	1.4×10^{-8}	9.7×10 ⁻⁹	6.3×10 ⁻⁹			
$K^{+} \cdot (1) \cdot AcO^{-}$	469	459	449	439	429	0.13~2.15		
	1.7×10^{-6}	7.3×10 ⁻⁷	2.0×10^{-7}	5.2×10 ⁻⁸	1.7×10 ⁻⁸			
$K^+ \bullet (1) \bullet I^-$	486 ^{<i>a</i>}	466	456	446	436	0.54~2.17		
	1.5×10 ⁻⁵	5.0×10 ⁻⁶	3.2×10 ⁻⁷	1.2×10^{-7}	5.2×10 ⁻⁸			
$K^{+\bullet}(1)\bullet PF_6^-$	487	477	467	457	447	0.37~1.26		
	6.1×10 ⁻⁶	3.4×10 ⁻⁶	1.7×10^{-6}	8.6×10 ⁻⁶	4.2×10 ⁻⁷			
$Na^+ \cdot (1) \cdot PF_6^-$	489 ^{<i>a</i>}	479 ^a	469	459	449	1.40		
	1.7×10^{-5}	1.6×10 ⁻⁵	7.8×10^{-6}	3.6×10 ⁻⁶	1.6×10 ⁻⁶			
$Cs^{+} \bullet (1) \bullet (CO_3^{2-})_{0.5}$	487 ^{<i>a</i>}	477 ^a	467 ^a	457	447	1.70		
	5.9×10 ⁻⁷	6.1×10^{-7}	2.0×10^{-7}	7.3×10 ⁻⁸	2.9×10 ⁻⁸			
$K^+ \bullet (1) \bullet SCN^-$	480	470	460	450	440	1.64		
	1.5×10^{-6}	1.9×10^{-7}	8.6×10 ⁻⁸	2.9×10 ⁻⁸	1.1×10^{-8}			
$(K^+)_{0.8} \bullet (1) \bullet (SCN^-)_{0.8}$	470	460	450	440	430	0.82~1.90		
	1.0×10^{-6}	7.0×10^{-7}	2.1×10^{-7}	4.8×10^{-8}	1.7×10^{-8}			
$(K^+)_{0.5} \bullet (1) \bullet (SCN^-)_{0.5}$	469	459	449	439	329	1.60		
	5.0×10^{-6}	9.2×10 ⁻⁷	3.7×10 ⁻⁷	1.4×10^{-7}	5.4×10^{-7}			
$(K^+)_{0.3} \bullet (1) \bullet (SCN^-)_{0.3}$	490 ^{<i>a</i>}	480	470	460	450	1.59		
	1.9×10^{-6}	5.7×10 ⁻⁷	2.2×10^{-7}	9.5×10 ⁻⁸	4.4×10^{-8}			

Table S2. Ionic conductivities (σ_{ion} , S cm⁻¹) and activation energies (E_a , eV) of (M⁺)•(1)•(X⁻) salts.

^{*a*} Ionic conductivity in the I.L. phase.

Figure S10. POM Images of a) (3BC)_{0.8}(1)_{0.2} and b) (3BC)_{0.7}(1)_{0.3}

Figure S11. Temperature-dependent *P*–*E* hysteresis curves of **3BC**.

Figure S12. Temperature-dependent P-E hysteresis curves of Col_h phases for mixed crystals (**3BC**)_{0.8}(**1**)_{0.2}.