Supporting Information

Radical-Mediated Vicinal Addition of Alkoxysulfonyl/Fluorosulfonyl and Trifluoromethyl Groups to Aryl Alkyl Alkynes

Xinrui Dong,^{†a} Wenhua Jiang,^{†a} Dexiang Hua,^a Xiaohui Wang,^a Liang Xu^{*b} & Xiaoxing Wu^{*a}

^a State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu
^b School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, Xinjiang
*Corresponding Authors: Liang Xu: xuliang4423@shzu.edu.cn; Xiaoxing Wu: wu_xiaoxing@cpu.edu.cn; [†]X.D. and W.J. contributed equally to this work.

Table of Contents

I.	General considerations	S2
II.	Synthesis and characterization of substrates	S3
III.	Screening of reaction conditions	S26
IV.	Synthesis and characterization of products	S28
V.	Additional substrates explored	S75
VI.	Single crystal X-ray data	S76
VII.	Mechanistic studies	S80
VIII.	Computational studies	S84
IX.	Copies of ¹ H, ¹³ C, ¹⁹ F NMR spectra	S128

I. General considerations

Reagents. Unless otherwise indicated, all reactions were carried out in screw-cap test tube under an argon atmosphere with dry solvents. THF was dried and purified by distillation from sodium/benzophenone. CH₃CN, MeOH, and CH₂Cl₂ were distilled from CaH₂. Acetone was dried and distilled from anhydrous K₂CO₃. bpyCu(CF₃)₃ was purchased from Shanghai Kecui Industrial Co., Ltd. and used as received. All other reagents were purchased from commercial sources and used as received.

Analytical methods. All new compounds were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR (where applicable), and HRMS. NMR spectra were record on a Bruker Advance 300, 400, 500, or 600 MHz spectrometer in CDCl₃. All ¹H NMR spectra are reported in ppm downfield from tetramethylsilane (0 ppm). All ¹³C NMR spectra are reported in ppm relative to residual CHCl₃ (77.0 ppm). All ¹⁹F NMR spectra are reported in ppm relative to a CFCl₃ external standard (0 ppm). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and brs (broad singlet). Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates (GF254) under UV light. Flash chromatography was performed on silica gel 60 (200-300 mesh). High resolution mass spectra (HRMS) were obtained on an Agilent 6540 Ultra-High-Definition (UHD) Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) spectrometer using the ESI technique.

II. Synthesis and characterization of substrates

1. Commercially-available alkynes

2. Synthesis and characterization of alkynes

2.1 Procedures and characterization of alkyne substrates

2.1.1 General procedure A

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with aryl halide (5.0 mmol, 1.0 equiv., if it is a solid), $PdCl_2(PPh_3)_2$ (70.2 mg, 2 mol%), and Cul (95.2 mg, 10 mol%), was evacuated and backfilled with argon. The aryl halide (5.0 mmol, 1.0 equiv., if it is a liquid), Et₃N (6 mL), and propyne (1.0 M in DMF, 6 mL, 6.0 mmol) were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (15 mL) and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with water (3 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The crude material was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

2.1.2 General procedure B

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with aryl halide (5.0 mmol, 1.0 equiv., if it is a solid), $PdCl_2(PPh_3)_2$ (70.2 mg, 2 mol%), 1,4-bis(diphenyl-phosphino)butane (dppb, 85.3 mg, 4 mol%), and but-2-ynoic acid (0.63 g, 7.5 mmol), was evacuated and backfilled with argon. The aryl halide (5.0 mmol, 1.0 equiv., if it is a liquid), DMSO (10 mL), and DBU (1.49 mL, 10.0 mmol) were added through the septum via syringe at room temperature. The reaction was stirred at 110 °C for 12 h. Saturated aqueous NH₄Cl (15 mL) and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with water (3 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The crude material was purified flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

2.1.3 General procedure C

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with $PdCl_2(PPh_3)_2$ (70.2 mg, 2 mol%) and CuI (95.2 mg, 10 mol%), was evacuated and backfilled with argon. lodobenzene (0.56 mL, 5.0 mmol, 1.0 equiv.), substituted alkyne (6.0 mmol), and Et₃N (10 mL) were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (15 mL) and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The crude material was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference
MeO	MeO 1a	A	J. Am. Chem. Soc. 2018 , 140, 6006.
Me	Me 1c	A	J. Am. Chem. Soc. 2018 , 140, 6006.
	1d	A	<i>Org. Lett.</i> 2018 , 20, 1576.
Ph	Ph 1e	A	J. Am. Chem. Soc. 2010 , 132, 4101.
AcO	AcO 1f	A	Chem. Com- mun. 2019 , 55, 9547.
TBSO	TBSO 1g	A	See details in below
Br	1h	В	Org. Biomol. Chem. 2012 , 10, 7483.
но	но 1і	A	Org. Lett. 2018 , 20, 1693.
TsHN	TsHN 1j	A	Org. Lett. 2017 , 19, 1962.

 Table S1.
 Synthesis of Starting Alkyl Arylalkynes

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference	
F	F 1k	A	J. Am. Chem. Soc. 2018, 140, 7267.	
CI		A	J. Am. Chem. Soc. 2018 , 140, 6006.	
Br	Br 1m	A	J. Am. Chem. Soc. 2018 , 140, 6006.	
	1n	A	See details in below	
F ₃ C	F ₃ C 10	A	<i>Org. Lett.</i> 2018 , 20, 1576.	
EtO ₂ C	EtO ₂ C 1p	A	Angew. Chem. Int. Ed. 2016 , 55, 5824.	
	0 1q	A	J. Am. Chem. Soc. 2004 , 126, 329.	
NC	NC 1r	A	J. Am. Chem. Soc. 2004 , 126, 329.	
		A	See details in below	

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference	
Br N N		В	See details in below	
Me	Me 1 w	A	<i>Catal. Commun.</i> 2020 , 133, 105835.	
MeO	MeO1x	A	Catal. Commun. 2020 , 133, 105835.	
MeO ₂ C	MeO ₂ C	A	See details in below	
OMe	OMe 1aa	A	<i>Catal. Commun.</i> 2020 , 133, 105835.	
Br	1ab	В	J. Am. Chem. Soc. 2018 , 140, 6006.	
S Br	s 1ac	В	See details in below	
⟨⊂, s	s 1ad	A	J. Am. Chem. Soc. 2004 , 126, 329.	
S	s 1ae	A	Org. Biomol. Chem. 2017 , 15, 5756.	
EtO ₂ C Br	EtO ₂ C 1af	В	See details in below	

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference	
-N _N	N 1ag	В	See details in below	
ОН	OH 1ai	С	J. Am. Chem. Soc. 2020 , 142, 7328.	
Br	Br 1aj	С	J. Am. Chem. Soc. 2020 , 142, 7328.	
	1ak	С	J. Org. Chem. 2012 , 77, 7092.	
	1al	С	Angew. Chem. Int. Ed. 2020 , 59, 14404.	
NC	NC 1aw	A	<i>Tetrahedron</i> 2010 , 66, 8654.	

2.2 Procedures and characterization of other alkyne substrates

2.2.1 Synthesis of 2-(4-(Prop-1-yn-1-yl)phenyl)propan-2-ol (1s).

To a solution of ethyl 4-(prop-1-yn-1-yl)benzoate (0.51 g, 2.7 mmol, 1.0 equiv.) in THF (8 mL) was added dropwise CH₃MgBr (2 M in THF, 3.1 mL, 6.2 mmol) at 0 °C. The reaction mixture was stirred at room temperature for 2 h and quenched with saturated aqueous NH₄Cl (15 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The com-

bined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The crude material was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford the title product (0.35 g, 75% yield).

2.2.2 Synthesis of 1-(But-2-yn-1-yloxy)-4-(prop-1-yn-1-yl)benzene (1v).

To a solution of 4-(prop-1-yn-1-yl)phenol (0.26 g, 2.0 mmol, 1.0 equiv.) in DMF (3 mL) was added K₂CO₃ (0.55 g, 4.0 mmol) and 1-bromobut-2-yne (0.32 g, 2.4 mmol) at room temperature. The reaction was stirred at room temperature overnight. Water (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the desired product (0.34 g, 91% yield).

2.2.3 Synthesis of 2-(Prop-1-yn-1-yl)phenol (1z).

2-(Prop-1-yn-1-yl)phenyl Acetate: Following the general procedure A with 2-iodophenyl acetate (1.31 g, 5.0 mmol, 1.0 equiv.), the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford the title product as colorless liquid (0.73 g, 84% yield).

2-(Prop-1-yn-1-yl)phenol (1z): To a solution of 2-(prop-1-yn-1-yl)phenyl acetate (0.35 g, 2.0 mmol, 1.0 equiv.) in THF (2.5 mL) and MeOH (2.5 mL) was added K_2CO_3 (0.55 g, 4.0 mmol) at room temperature. The reaction mixture was stirred at room temperature for 3 h. Water (10 mL) and EtOAc (15 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with brine, dried over Na_2SO_4 , and concentrated. The crude material was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford the title product (0.26 g, 98% yield). The ¹H NMR spectral data are identical to those previously reported.¹

2.2.4 Synthesis of ([1,1'-Biphenyl]-4-ylethynyl)trimethylsilane (1am).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with 4-iodo-1,1'-biphenyl (1.40 g, 5.0 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (70.2 mg, 2 mol%), and Cul (95.2 mg, 10 mol%), was evacuated and backfilled with argon. Ethynyltrimethylsilane (0.85 mL, 6.0 mmol), Et₃N (5 mL), and DMF (5 mL) were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h. Saturated aqueous NH₄Cl (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 15 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the desired product (1.03 g, 82% yield). The ¹H NMR spectral data are identical to those previously reported.²

2.2.5 Synthesis

(8*R*,9*S*,13*S*,14*S*)-13-Methyl-3-(prop-1-yn-1-yl)-6,7,8,9,11,12,13,14,15,16-de cahydro-17*H*-cyclopenta[a]phenanthren-17-one (1ar).

of

To a solution of estrone (1.35 g, 5.0 mmol, 1.0 equiv.) and Et_3N (1.39 mL, 10.0 mmol) in CH₂Cl₂ (25 mL) was added dropwise trifluoromethanesulfonic anhydride (1.01 mL, 6.0 mmol) under argon atmosphere at 0 °C. The reaction mixture was stirred at 0 °C for 1 h and quenched with saturated aqueous NaHCO₃ (20 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford estronyl triflate (1.88 g, 93% yield).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with estronyl triflate (1.61 g, 4.0 mmol, 1.0 equiv.), PPh₃ (42.0 mg, 4 mol%), PdCl₂(PPh₃)₂ (56.1 mg, 2 mol%), Cul (76.2 mg, 10 mol%), and tetrabutylammonium iodide (2.95 g, 8.0 mmol), was evacuated and backfilled with argon. Propyne (1.0 M in DMF, 4.8 mL, 4.8 mmol) and Et₃N (4.0 mL) were added through the septum via syringe at room temperature. The reaction was stirred at 90 °C for 12 h. Saturated aqueous NH₄Cl (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford the title product (0.64 g, 54% yield). The ¹H NMR spectral data are identical to those previously reported.³

2.2.6 Synthesis

of

(3R,4R)-1-(4-Fluorophenyl)-3-((S)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-(

4-(Prop-1-yn-1-yl)phenyl)azetidin-2-one (1as)

To a mixture of ezetimibe (0.82 g, 2.0 mmol, 1.0 equiv.) and K_2CO_3 (0.55 g, 4.0 mmol) in DMF (10 mL) was added 4-nitrophenyl trifluoromethanesulfonate (0.60 g, 2.2 mmol) at room temperature. The reaction mixture was stirred at room temperature for 3 h. Saturated aqueous NaHCO₃ (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 x 20 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford ezetimibe triflate (0.96 g, 89% yield). The ¹H NMR spectral data are identical to those previously reported.⁴

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with ezetimibe triflate (541.5 mg, 1.0 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (14.0 mg, 2 mol%), 1,4-bis(diphenyl-phosphino)butane (dppb, 17.1 mg, 4 mol%), and but-2-ynoic acid (126.1 mg, 1.5 mmol), was evacuated and backfilled with argon. DMSO (5 mL) was added through the septum via syringe at room temperature. The reaction mixture was stirred at 110 °C for 12 h. Saturated aqueous NH₄Cl (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 15 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford the title product (0.36 g, 84% yield).

S12

2.2.7 Synthesis of 4-Methyl-7-(prop-1-yn-1-yl)-2H-chromen-2-one (1at)

To a solution of 4-methylumbelliferone (0.88 g, 5.0 mmol, 1.0 equiv.) and Et₃N (0.83 mL, 6.0 mmol) in CH₂Cl₂ (20 mL) was added dropwise trifluoromethanesulfonic anhydride (0.93 mL, 5.5 mmol) under argon atmosphere at 0 °C. The reaction mixture was stirred at 0 °C for 3 h and quenched with saturated aqueous NaHCO₃ (10 mL). The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford 4-methylumbelliferone triflate (1.27 g, 83% yield).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with 4-methylumbelliferone triflate (0.61 g, 2.0 mmol, 1.0 equiv.), PdCl₂(PPh₃)₂ (28.1 mg, 2 mol%), and Cul (38.1 mg, 10 mol%), was evacuated and backfilled with argon. Propyne (1.0 M in DMF, 2.4 mL, 2.4 mmol) and Et₃N (2.0 mL) were added through the septum via syringe at room temperature. The reaction was stirred at 80 °C for 12 h. Saturated aqueous NH₄Cl (10 mL) and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The combined organic layers were washed with water (2 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford the title product (0.31g, 78% yield). The ¹H NMR spectral data are identical to those previously reported.⁵

2.2.8SynthesisofIsopropyl2-Methyl-2-(4-(4-(prop-1-yn-1-yl)benzoyl)phenoxy)propanoate (1au)

S13

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with fenofibrate (1.80 g, 5.0 mmol, 1.0 equiv.), $Pd(OAc)_2$ (56.1 mg, 5 mol%), XPhos (178.9 mg, 7.5 mol%), Cs_2CO_3 (1.95 g, 6.0 mmol), and but-2-ynoic acid (0.50 g, 6.0 mmol), was evacuated and backfilled with argon. THF (20 mL) was added through the septum via syringe at room temperature. The reaction was stirred at 80 °C for 24 h and saturated aqueous NH₄Cl (10 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 × 20 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford the title product (1.02 g, 56% yield).

3. Synthesis and characterization of allylsulfonates and allylsulfonyl fluoride

3.1 Synthesis of Allylsulfonyl Chloride

A mixture of sodium allylsulfonate (50.0 g, 0.35 mol) and phosphoryl chloride (100 mL) was refluxed for 4 h. The reaction mixture was cooled to room temperature and filtered through a short pad of silica gel. The filtrate was concentrated and purified by distillation to afford allylsulfonyl chloride as colorless liquid (40.2 g, 82% yield). The ¹H NMR spectral data are identical to those previously reported.⁶

3.2 Synthesis of Methyl Prop-2-ene-1-sulfonate (2a)

To a solution of MeOH (4.0 mL, 0.1 mol, 1.0 equiv.) and Et₃N (27.8 mL, 0.2 mol) in dry CH_2Cl_2 (200 mL) was added allylsulfonyl chloride (21.1 g, 0.15 mol) at 0 °C. The reaction was stirred at room temperature for 12 h and water (50 mL) was added. The two layers were separated and the aqueous layer was extracted with CH_2Cl_2 (3 × 100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (2 × 40 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product (7.1 g, 52% yield).

3.3 General procedure D: synthesis of alkyl allylsulfonates

To a solution of alcohol (5.0 mmol, 1.0 equiv.) and Et₃N (1.39 mL, 10.0 mmol) in dry CH₂Cl₂ (10 mL) was added allylsulfonyl chloride (1.05 g, 7.5 mmol) at 0 °C. The reaction was stirred at room temperature for 4 h and water (10 mL) was added. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (3 × 10 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (2 × 5 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

Table S2. Synthesis of Alkyl Allylsulfonates

Alcohol	AllyIsulfonate	General procedure	Analytical reference	
но	0,0 S 0 2b	D	See details in below	

но	0,0 2c	D	Chem. Eur. J. 2010 , 16, 5969.
но	0,0 	D	See details in below
HONNYO		D	See details in below

0,0	Na ₂ CO ₃ (1.5 equiv.)	0,0
S_CI	CF ₃ CH ₂ OH, rt, 12 h	0 CF3

To a mixture of Na₂CO₃ (0.78 g, 7.5 mmol) in CF₃CH₂OH (3 mL) was added allylsulfonyl chloride (0.70 g, 5.0 mmol, 1.0 equiv.) at room temperature. The reaction was stirred at room temperature 12 h. Water (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layers were extracted with EtOAc (2 × 10 mL). The organic layers were washed with saturated aqueous NaHCO₃ (2 × 5 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford the title product (0.46 g, 45% yield).

3.5 Synthesis of Allylsulfonyl Fluoride (4)

To a solution of KHF₂ (15.6 g, 0.2 mol) in MeCN (75 mL) and H₂O (75 mL) was added dropwise allylsulfonyl chloride (14.1 g, 0.1 mol, 1.0 equiv.) at room temperature. The reaction was stirred at room temperature for 24 h and CH₂Cl₂ (75 mL) was added. The two layers were separated and the aqueous layer was extracted with CH₂Cl₂ (2 × 100 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (3 × 30 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by distillation to afford allylsulfonyl fluoride **4** as colorless liquid (9.8 g, 79% yield).

3.6 Synthesis of (Allylsulfonyl)benzene

To a solution of sodium benzenesulfinate (1.64 g, 10.0 mmol, 1 equiv.) in DMSO (18 mL) was added allyl bromide (0.95 mL, 11.0 mmol) at room temperature. The reaction mixture was stirred at room temperature for 12 h. Water (10 mL) and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 20 mL). The organic layers were washed with water (3 × 10 mL) and brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford the title product (1.50 g, 82% yield). The ¹H NMR spectral data are identical to those previously reported.⁷

4. Characterization of substrates

tert-ButyIdimethyI(4-(prop-1-yn-1-yl)phenoxy)silane (1g)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford **1g** as colorless oil (1.14 g, 92% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.28 (d, 2H, *J* = 8.7 Hz), 6.76 (d, 2H, *J* = 8.7 Hz), 2.04 (s, 3H), 0.99 (s, 9H), 0.20 (s, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 155.2, 132.7, 120.0, 116.8, 84.2, 79.4, 25.6, 18.2, 4.3, -4.5.

HRMS (ESI) calcd for C₁₅H₂₃OSi⁺ [M+H]⁺ 247.1513, found 247.1511.

//

1-lodo-4-(prop-1-yn-1-yl)benzene (1n)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford **1n** as a white solid (0.80 g, 66% yield).

m.p. 36.7–37.8 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.61 (d, 2H, *J* = 8.5 Hz), 7.11 (d, 2H, *J* = 8.5 Hz), 2.03 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 137.3, 133.1, 123.5, 93.1, 87.4, 78.9, 4.4. HRMS (EI) calcd for C₉H₇I⁺ [M]⁺ 241.9587, found 241.9586.

2-(4-(Prop-1-yn-1-yl)phenyl)propan-2-ol (1s)

m.p. 64.0-65.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 (d, 2H, *J* = 8.7 Hz), 7.36 (d, 2H, *J* = 8.7 Hz), 2.05 (s, 3H), 1.71 (s, 1H), 1.57 (s, 6H).

¹³**C NMR** (75 MHz, CDCl₃) δ 148.4, 131.2, 124.3, 122.2, 85.5, 79.5, 72.3, 31.5, 4.3.

HRMS (ESI) calcd for C₁₂H₁₄NaO⁺ [M+Na]⁺ 197.0937, found 197.0934.

(4-(Prop-1-yn-1-yl)phenyl)(pyrrolidin-1-yl)methanone (1t)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **1t** as a white solid (0.91 g, 85% yield).

m.p. 139.2–140.8 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.45 (d, 2H, *J* = 8.5 Hz), 7.40 (d, 2H, *J* = 8.5 Hz), 3.64 (t, 2H, *J* = 6.7 Hz), 3.42 (t, 2H, *J* = 6.7 Hz), 2.06 (s, 3H), 2.00-1.83 (m, 4H).

¹³**C NMR** (75 MHz, CDCl₃) δ 168.9, 135.8, 131.1, 126.9, 125.5, 87.4, 79.1, 49.4, 46.1, 26.2, 24.2, 4.2.

HRMS (ESI) calcd for C₁₄H₁₆NO⁺ [M+H]⁺ 214.1226, found 214.1231.

1-(4-(Prop-1-yn-1-yl)phenyl)-1H-pyrazole (1u)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (4:1 petroleum ether/EtOAc) to afford **1u** as a white solid (0.75 g, 82% yield).

m.p. 80.2–81.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.90 (d, 1H, *J* = 2.5 Hz), 7.72 (d, 1H, *J* = 1.5 Hz), 7.62 (d, 2H, *J* = 8.7 Hz), 7.46 (d, 2H, *J* = 8.7 Hz), 6.46 (dd, 1H, *J* = 2.5, 1.5 Hz), 2.06 (s, 3H).

¹³**C NMR** (75 MHz, CDCl₃) δ 141.1, 139.0, 132.5, 126.5, 122.0, 118.6, 107.7, 86.6, 78.9, 4.3.

HRMS (ESI) calcd for $C_{12}H_{11}N_2^+$ [M+H]⁺ 183.0917, found 183.0917.

1-(But-2-yn-1-yloxy)-4-(prop-1-yn-1-yl)benzene (1v)

m.p. 49.1–51.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.32 (d, 2H, *J* = 8.9 Hz), 6.87 (d, 2H, *J* = 8.9 Hz), 4.63 (q, 2H, *J* = 2.3 Hz), 2.03 (s, 3H), 1.86 (t, 3H, *J* = 2.3 Hz).

¹³**C NMR** (75 MHz, CDCl₃) δ 157.1, 132.6, 116.7, 114.6, 84.2, 83.9, 79.3, 73.7, 56.3, 4.2, 3.6.

HRMS (ESI) calcd for C₁₃H₁₃O⁺ [M+H]⁺ 185.0961, found 185.0963.

Methyl 3-(Prop-1-yn-1-yl)benzoate (1y)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **1y** as a white solid (0.72 g, 83% yield).

m.p. 27.9–30.1 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.07 (dd, 1H, *J* = 1.4, 1.4 Hz), 7.93 (ddd, 1H, *J* = 7.8, 1.4, 1.4 Hz), 7.56 (ddd, 1H, *J* = 7.7, 1.4, 1.4 Hz), 7.36 (dd, 1H, *J* = 7.8, 7.7 Hz), 3.91 (s, 3H), 2.06 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 166.4, 135.6, 132.5, 130.2, 128.4, 128.2, 124.4, 86.9, 78.7, 52.1, 4.2.

HRMS (ESI) calcd for $C_{11}H_{11}O_2^+$ [M+H]⁺ 175.0754, found 175.0755.

5-(Prop-1-yn-1-yl)benzo[b]thiophene (1ac)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **1ac** as colorless liquid (0.72 g, 84% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.85 (dd, 1H, *J* = 1.5, 0.6 Hz), 7.75 (d, 1H, *J* = 8.4 Hz), 7.40 (d, 1H, *J* = 5.6 Hz), 7.34 (dd, 1H, *J* = 8.4, 1.5 Hz), 7.24 (dd, 1H, *J* = 5.6, 0.6 Hz), 2.06 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 139.4, 138.8, 127.3, 127.0, 126.5, 123.4, 122.1, 119.8, 85.2, 79.9, 4.2.

HRMS (EI) calcd for $C_{11}H_7S^+$ [M]⁺ 172.0341, found 171.0336.

Ethyl 5-(Prop-1-yn-1-yl)furan-2-carboxylate (1af)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford **1af** as a white solid (0.56 g, 63% yield).

m.p. 31.8-32.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.12 (d, 1H, *J* = 3.5 Hz), 6.51 (d, 1H, *J* = 3.5 Hz), 4.36 (q, 2H, *J* = 7.1 Hz), 2.09 (s, 3H), 1.37 (t, 3H, *J* = 7.1 Hz).

¹³**C NMR** (75 MHz, CDCl₃) δ 158.0, 143.8, 140.5, 118.4, 115.0, 92.6, 69.6, 60.9, 14.2, 4.4.

HRMS (ESI) calcd for C₁₀H₁₀NaO₃⁺ [M+Na]⁺ 201.0522, found 201.0524.

Methyl-4-(prop-1-yn-1-yl)-1H-pyrazole (1ag)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **1ag** as colorless liquid (0.44 g, 73% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.50 (s, 1H), 7.40 (s, 1H), 3.85 (s, 3H), 2.00 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 141.4, 131.9, 103.6, 85.7, 70.3, 38.7, 4.0.

HRMS (ESI) calcd for $C_7H_9N_2^+$ [M+H]⁺ 121.0760, found 121.0762.

(3*R*,4*S*)-1-(4-Fluorophenyl)-3-((*S*)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-(4-(prop-1-yn-1-yl)phenyl)azetidin-2-one (1as)

m.p. 56.7–58.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.38 (d, 2H, *J* = 8.3 Hz), 7.33-7.16 (m, 6H), 7.07-6.88 (m, 4H), 4.76-4.68 (m, 1H), 4.60 (d, 1H, *J* = 2.4 Hz), 3.13-3.03 (m, 1H), 2.21 (brd, 1H, *J* = 3.2 Hz), 2.05 (s, 3H), 2.06-1.82 (m, 4H).

¹³**C NMR** (101 MHz, acetone- d_6) δ 167.8, 162.6 (d, J = 242.4 Hz), 159.9 (d, J = 240.6 Hz), 142.8 (d, J = 2.9 Hz), 138.8, 135.3 (d, J = 2.6 Hz), 132.8, 128.4 (d, J = 7.9 Hz), 127.1, 125.0, 119.1 (d, J = 7.9 Hz), 116.4 (d, J = 22.8 Hz), 115.5 (d, J = 21.3 Hz), 87.3, 79.9, 72.9, 61.3, 61.1, 37.6, 25.8, 4.0.

HRMS (ESI) calcd for $C_{27}H_{23}F_2KNO_2^+$ [M+K]⁺ 470.1328, found 470.1318.

Isopropyl 2-Methyl-2-(4-(4-(prop-1-yn-1-yl)benzoyl)phenoxy)propanoate (1au)

¹**H NMR** (300 MHz, CDCl₃) δ 7.74 (d, 2H, *J* = 8.8 Hz), 7.68 (d, 2H, *J* = 8.2 Hz), 7.47 (d, 2H, *J* = 8.2 Hz), 6.86 (d, 2H, *J* = 8.8 Hz), 5.09 (hept, 1H, *J* = 6.3 Hz), 2.09 (s, 3H), 1.66 (s, 6H), 1.20 (d, 6H, *J* = 6.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 194.5, 172.9, 159.4, 136.6, 131.8, 131.1, 130.3, 129.5, 127.9, 117.1, 89.0, 79.23, 79.20, 69.1, 25.2, 21.4, 4.3.

HRMS (ESI) calcd for $C_{23}H_{25}O_4^+$ [M+H]⁺ 365.1747, found 365.1739.

Methyl Prop-2-ene-1-sulfonate (2a)

¹**H NMR** (300 MHz, CDCl₃) δ 5.91 (ddt, 1H, *J* = 17.2, 9.8, 7.2 Hz), 5.55-5.49 (m,

1H), 5.48-5.43 (m, 1H), 3.92 (s, 3H), 3.86 (d, 2H, *J* = 7.2 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 124.4, 124.2, 56.2, 54.0.

HRMS (ESI) calcd for C₃H₅O₃S⁻ [M-CH₃]⁻ 120.9965, found 120.9964.

Butyl Prop-2-ene-1-sulfonate (2b)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **2b** as colorless liquid (0.64 g, 73% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 5.91 (ddt, 1H, *J* = 17.4, 10.3, 7.2 Hz), 5.51-5.42 (m, 2H), 4.25 (t, 2H, *J* = 6.5 Hz), 3.83 (d, 2H, *J* = 7.2 Hz), 1.78-1.67 (m, 2H), 1.50-1.38 (m, 2H), 0.95 (t, 3H, *J* = 7.4 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 124.5, 124.2, 70.5, 54.6, 31.0, 18.5, 13.3.

HRMS (ESI) calcd for $C_7H_{15}O_3S^+$ [M+H]⁺ 179.0736, found 179.0738.

2,2,2-Trifluoroethyl Prop-2-ene-1-sulfonate (2d)

¹**H NMR** (300 MHz, CDCl₃) δ 5.90 (ddt, 1H, *J* = 17.3, 10.2, 7.2 Hz), 5.60-5.47 (m, 2H), 4.52 (q, 2H, *J* = 7.9 Hz), 3.96 (d, 2H, *J* = 7.2 Hz).

¹³C NMR (75 MHz, CDCl₃) δ 125.7, 123.2, 121.8 (q, J = 275.8 Hz), 64.6 (q, J = 38.5 Hz), 55.7.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -74.0 (t, *J* = 7.9 Hz).

HRMS (EI) calcd for $C_5H_7F_3O_3S^+$ [M]⁺ 204.0063, found 204.0053.

((3r,5r,7r)-Adamantan-1-yl)methyl prop-2-ene-1-sulfonate (2e)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **2d** as a white solid (0.78 g, 57% yield).

m.p. 30.2–31.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 5.91 (ddt, 1H, *J* = 17.5, 10.3, 7.2 Hz), 5.50-5.41 (m, 2H), 3.83 (d, 2H, *J* = 7.2Hz), 3.79 (s, 2H), 2.06-1.97 (m, 3H), 1.80-1.58 (m, 6H), 1.59-1.53 (m, 6H).

¹³C NMR (75 MHz, CDCl₃) δ 124.5, 124.3, 79.9, 54.4, 38.6, 36.6, 33.5, 27.7. HRMS (ESI) calcd for C₁₄H₂₂NaO₃S⁺ [M+Na]⁺ 293.1182, found 293.1180.

2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)ethylprop-2-en e-1-sulfonate (2f) Following the general procedure D, the crude product was purified by flash chromatography on silica gel (1:2 petroleum ether/EtOAc) to afford **2f** as a white solid (0.67 g, 41% yield).

m.p. 131.0–132.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.64 (s, 1H), 5.81 (ddt, 1H, *J* = 17.3, 10.1, 7.2 Hz), 5.49-5.35 (m, 2H), 4.62 (s, 4H), 3.81 (d, 2H, *J* = 7.2 Hz), 3.61 (s, 3H), 3.42 (s, 3H).

¹³C NMR (75 MHz, CDCl₃) δ 155.2, 151.4, 149.1, 142.1, 124.9, 123.7, 106.2, 68.1, 54.9, 46.5, 29.7, 27.9.

HRMS (ESI) calcd for $C_{12}H_{16}N_4NaO_5S^+$ [M+Na]⁺ 351.0734, found 351.0733.

Prop-2-ene-1-sulfonyl fluoride (4)

¹**H NMR** (300 MHz, CDCl₃) δ 5.92 (ddt, 1H, *J* = 17.3, 10.2, 7.2 Hz), 5.65-5.55 (m, 2H), 4.13-4.04 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ 126.6, 122.0, 54.8 (d, *J* = 18.1 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 52.0.

HRMS (ESI) calcd for C₃H₆FO₂S⁺ [M+H]⁺ 125.0067, found 125.0059.

III. Screening of reaction conditions

Standard conditions: To a screw-cap test tube, which was equipped with a stir bar and charged with bpyCu(CF₃)₃ (102.4 mg, 0.24 mmol, 1.2 equiv.) and $(NH_4)_2S_2O_8$ (136.8 mg, 0.60 mmol, 3.0 equiv.), was evacuated and backfilled with argon. 1-Methoxy-4-(prop-1-yn-1-yl)benzene **1a** (29.2 mg, 0.20 mmol, 1.0 equiv.), methyl prop-2-ene-1-sulfonate **2a** (81.6 mg, 0.60 mmol, 3.0 equiv.), acetone (2 mL), CH₃CN (2 mL), and H₂O (80 µL) were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs (λ_{max} = 460 nm) irradiation for 4 h. (Trifluoromethoxy)benzene was added as an internal standard and the yields were determined by ¹⁹F NMR spectroscopy.

Table S3. Screening of Reaction Conditions

Entry	Conditions	¹⁹ F NMR yield (%)		Ratio of 3a/Z-3a	
		3a	Z-3a	bis-3a	
1	Standard conditions	77	6	15	13 : 1
2	acetone (4 mL) as solvent	55	6	26	9:1
3	acetone/H ₂ O (2 mL/2 mL) as solvent	7	ND	5	-
4	acetone/H ₂ O (3.2 mL/0.8 mL) as solvent	52	5	20	10: 1
5	acetone/H ₂ O (4 mL/80 uL) as solvent	68	5	23	14 : 1
6	CH ₃ CN (4 mL) as solvent	57	12	17	5 : 1
7	CH_3CN/H_2O (4 mL/80 uL) as solvent	69	6	10	12 : 1
8	THF/H ₂ O (4 mL/80 uL) as solvent	ND	ND	trace	-
9	CH ₂ Cl ₂ /H ₂ O (4 mL/80 uL) as solvent	43	5	19	9:1
10	EtOAc/H ₂ O (4 mL/80 uL) as solvent	29	ND	30	-
11	acetone/CH ₃ CN (2 mL/2 mL) as solvent	64	8	22	8 : 1
12	Na ₂ S ₂ O ₈ instead of (NH ₄) ₂ S ₂ O ₈	52	5	16	10 : 1
13	$K_2S_2O_8$ instead of (NH ₄) ₂ S ₂ O ₈	46	4	20	11:1
14	without (NH ₄) ₂ S ₂ O ₈	4	ND	24	-
15	365 nm instead of blue LED	64	5	13	13 : 1
16	254 nm instead of blue LED	40	4	10	10 : 1
17	performed in dark	ND	ND	ND	-
18	2 equiv. of 2a used instead	66	7	26	9:1
19	AcOH (4 equiv.)	61	7	24	9:1
20	TFA (4 equiv.)	63	5	12	13 : 1
21	CF ₃ SO ₃ H (4 equiv.)	18	ND	trace	-
22	KF (4 equiv.)	50	4	22	13 : 1
23	NaOAc (4 equiv.)	33	trace	22	-
24	Cs ₂ CO ₃ (4 equiv.)	31	trace	30	-
25	K ₃ PO ₄ (4 equiv.)	ND	ND	26	-
26	pyridine (4 equiv.)	4	ND	7	-
27	Et ₃ N (4 equiv.)	28	trace	26	-
28	FeCl ₃ (4 equiv.)	9	ND	4	-
29	AICl ₃ (4 equiv.)	10	trace	5	-

IV. Synthesis and characterization of products

4.1 General procedures for the synthesis of products

General procedure A: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne (0.20 mmol, 1.0 equiv., if it is a solid), bpyCu(CF₃)₃ (102.4 mg, 0.24 mmol, 1.2 equiv.), and $(NH_4)_2S_2O_8$ (136.8 mg, 0.60 mmol, 3.0 equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), alkyl allylsulfonate (0.60 mmol, 3 equiv.), acetone (2 mL), CH₃CN (2 mL), and H₂O (80 µL) were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs (λ_{max} = 460 nm) irradiation for 4 h. The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure B: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne (0.20 mmol, 1.0 equiv., if it is a solid), bpyCu(CF₃)₃ (128.0 mg, 0.30 mmol, 1.5 equiv.), and $(NH_4)_2S_2O_8$ (136.8 mg, 0.60 mmol, 3.0 equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), alkyl allylsulfonate (0.60 mmol, 3 equiv.), acetone (2 mL), CH₃CN (2 mL), and H₂O (80 µL) were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs (λ_{max} = 460 nm) irradiation for 8 h. The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure C: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne (0.20 mmol, 1.0 equiv., if it is a solid), bpyCu(CF₃)₃ (128.0 mg, 0.30 mmol, 1.5 equiv.), and $(NH_4)_2S_2O_8$ (136.8 mg, 0.60 mmol, 3.0 equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), allylsulfonyl fluoride (74.5 mg, 0.60 mmol, 3 equiv.), acetone (2 mL), CH₃CN (2 mL), and H₂O (80 µL) were added through

septum via syringe. The reaction mixture was stirred at room temperature under 365 nm (5 W) irradiation for 4 h. The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure D: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne (0.20 mmol, 1.0 equiv., if it is a solid), bpyCu(CF₃)₃ (128.0 mg, 0.30 mmol, 1.5 equiv.), and $(NH_4)_2S_2O_8$ (136.8 mg, 0.60 mmol, 3.0 equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), allylsulfonyl fluoride (99.3 mg, 0.80 mmol, 4 equiv.), acetone (2 mL), CH₃CN (2 mL), and H₂O (80 µL) were added through septum via syringe. The reaction mixture was stirred at room temperature under 365 nm (5 W) irradiation for 8 h. The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

4.2 Characterization of products

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether to 60:1 petroleum ether/EtOAc) to sequentially afford *bis*-3a (colorless liquid, 5.2 mg, 9% yield), 3a (white solid, 45.1 mg, 73% yield), and **Z-3a** (colorless liquid, 1.3 mg, 2% yield).

Methyl (*E*)-4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-ene-2-sulfonate (3a) m.p. 82.3–84.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.17 (d, 2H, *J* = 8.8 Hz), 6.92 (d, 2H, *J* = 8.8 Hz), 3.83 (s, 3H), 3.66 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 160.4, 142.3 (q, J = 2.4 Hz), 139.1 (q, J = 31.3 Hz), 130.4, 123.3 (q, J = 1.2 Hz), 122.4 (q, J = 278.7 Hz), 113.6, 56.1, 55.2, 16.8 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.1 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₄S⁺ [M+Na]⁺ 333.0379, found 333.0378.

Methyl (*Z*)-4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-ene-2-sulfonate (*Z*-3a)

¹**H NMR** (300 MHz, CDCl₃) δ 7.11 (d, 2H, *J* = 8.6 Hz), 6.97 (d, 2H, *J* = 8.6 Hz), 3.98 (s, 3H), 3.85 (s, 3H), 2.01 (q, 3H, *J* = 2.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 160.3, 141.5 (q, J = 2.6 Hz), 138.5 (q, J = 34.5 Hz), 129.6, 125.1 (q, J = 2.1 Hz), 120.8 (q, J = 276.0 Hz), 114.4, 56.6, 55.3, 19.9.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -56.4 (q, *J* = 2.1 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₄S⁺ [M+Na]⁺ 333.0379, found 333.0377.

(*E*)-1-(1,1,1,4,4,4-Hexafluoro-3-methylbut-2-en-2-yl)-4-methoxybenzene (*bis*-3a)

¹**H NMR** (300 MHz, CDCl₃) δ 7.08 (d, 2H, *J* = 8.9 Hz), 6.89 (d, 2 H, *J* = 8.9 Hz), 3.82 (s, 3H), 2.18 (q, 3H, *J* = 2.5 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 160.0, 136.0 (qq, *J* = 31.3, 3.2 Hz), 134.4 (qq, *J* = 29.2, 2.6 Hz), 130.2 (q, *J* = 1.8 Hz), 124.2 (q, *J* = 1.5 Hz), 123.0 (q, *J* = 276.6 Hz), 122.8 (q, *J* = 276.6 Hz), 113.5, 55.2, 14.3 (qq, *J* = 5.4, 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.0 (m), -61.2 (m).

HRMS (EI) calcd for $C_{12}H_{10}F_6O^+[M]^+$ 284.0630, found 284.0626.

Methyl (E)-4,4,4-Trifluoro-3-(p-tolyl)but-2-ene-2-sulfonate (3b)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3b** as a white solid (41.5 mg, 74% yield).

m.p. 66.1–67.8 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.46-7.37 (m, 3H), 7.26-7.21 (m, 2H), 3.65 (s, 3H), 2.46 (q, 3H, *J* = 2.4 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.4 (q, J = 2.4 Hz), 139.2 (q, J = 31.3 Hz), 131.4 (q, J = 1.2 Hz), 129.4, 128.8, 128.1, 122.3 (q, J = 278.7 Hz), 56.1, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₁H₁₁F₃NaO₃S⁺ [M+Na]⁺ 303.0273, found 303.0273.

Methyl (E)-4,4,4-Trifluoro-3-(p-tolyl)but-2-ene-2-sulfonate (3c)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3c** as a white solid (38.1mg, 65% yield).

m.p. 64.2–66.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.22 (d, 2H, *J* = 8.1 Hz), 7.12 (d, 2H, *J* = 8.1 Hz), 3.66 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.2 (q, *J* = 2.4 Hz), 139.5, 139.4 (q, *J* = 31.2 Hz), 128.8, 128.7, 128.4 (q, *J* = 1.2 Hz), 122.4 (q, *J* = 278.7 Hz), 56.1, 21.4, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₃S⁺ [M+Na]⁺ 317.0430, found 317.0429.

Methyl (*E*)-4,4,4-Trifluoro-3-(4-(tert-butyl)phenyl)but-2-ene-2-sulfonate (3d)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3d** as colorless oil (43.1mg, 64% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 (d, 2H, *J* = 8.4 Hz), 7.16 (d, 2H, *J* = 8.4 Hz), 3.61 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 152.5, 142.2 (q, J = 2.4 Hz), 139.3 (q, J = 31.3 Hz), 128.6, 128.3 (q, J = 1.2 Hz), 125.0, 122.4 (q, J = 278.7 Hz), 56.1, 34.7, 31.2, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₅H₁₉F₃NaO₃S⁺ [M+Na]⁺ 359.0899, found 359.0900.

Methyl (*E*)-4,4,4-Trifluoro-3-([1,1'-biphenyl]-4-yl)but-2-ene-2-sulfonate (3e)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3e** as a white solid (51.9 mg, 73% yield).

m.p. 110.1-111.8 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.67-7.59 (m, 4H), 7.50-7.34 (m, 3H), 7.31 (d, 2H, *J* = 8.2 Hz), 3.68 (s, 3H), 2.48 (q, 3H, *J* = 2.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 142.6 (q, J = 2.2 Hz), 142.2, 140.0, 139.0 (q, J = 31.2 Hz), 130.2, 129.3, 128.8, 127.8, 127.1, 126.7, 122.4 (q, J = 278.7 Hz), 56.1, 16.8 (q, J = 2.8 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ -58.7 (q, *J* = 2.3 Hz).

HRMS (ESI) calcd for C₁₇H₁₅F₃NaO₃S⁺ [M+Na]⁺ 379.0586, found 379.0579.

(*E*)-4-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)phenyl acetate (3f) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **3f** as a white solid (48.5 mg, 72% yield).

m.p. 63.4–65.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.26 (d, 2H, *J* = 8.6 Hz), 7.16 (d, 2H, *J* = 8.6 Hz), 3.63 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.9, 151.5, 143.2 (q, *J* = 2.3 Hz), 138.2 (q, *J* = 31.5 Hz), 130.2, 128.7 (q, *J* = 1.2 Hz), 122.2 (q, *J* = 278.7 Hz), 121.4, 56.1, 21.1, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.7 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₃H₁₃F₃NaO₅S⁺ [M+Na]⁺ 361.0328, found 361.0324.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-ene-2-sulfonate (3g)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3g** as colorless oil (49.1 mg, 60% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.10 (d, 2H, *J* = 8.5 Hz), 6.85 (d, 2H, *J* = 8.5 Hz), 3.62 (s, 3H), 2.43 (q, 3H, *J* = 2.4 Hz), 0.98 (s, 9H), 0.21 (s, 6H).

¹³**C** NMR (101 MHz, CDCl₃) δ 156.8, 142.3 (q, *J* = 2.4 Hz), 139.0 (q, *J* = 31.3 Hz), 130.4, 123.9 (q, *J* = 1.2 Hz), 122.4 (q, *J* = 278.7 Hz), 119.7, 56.0, 25.6, 18.2, 16.7 (q, *J* = 2.8 Hz), -4.4.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.0 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₇H₂₅F₃NaO₄SSi⁺ [M+Na]⁺ 433.1087, found 433.1081.

Methyl (*E*)-4,4,4-Trifluoro-3-(4-phenoxyphenyl)but-2-ene-2-sulfonate (3h) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3h** as a white solid (48.3 mg, 65% yield).

m.p. 70.0–71.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.37 (t, 2H, *J* = 7.9 Hz), 7.18 (d, 2H, *J* = 8.5 Hz), 7.16 (t, 1H, *J* = 7.9 Hz), 7.06 (d, 2H, *J* = 7.9 Hz), 7.00 (d, 2H, *J* = 8.5 Hz), 3.70 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 158.7, 156.1, 142.7 (q, J = 2.3 Hz), 138.8 (q, J = 31.3 Hz), 130.5, 129.9, 125.5 (q, J = 1.1 Hz), 124.0, 122.4 (q, J = 278.7 Hz), 119.7, 117.6, 56.1, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.0 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₇H₁₅F₃NaO₄S⁺ [M+Na]⁺ 395.0535, found 395.0530.

Methyl (*E*)-4,4,4-Trifluoro-3-(4-hydroxyphenyl)but-2-ene-2-sulfonate (3i) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **3i** as a white solid (39.8 mg, 67% yield).

m.p. 134.8–136.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.12 (d, 2H, *J* = 8.7 Hz), 6.85 (d, 2H, *J* = 8.7 Hz), 5.20 (s, 1H), 3.67 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz).

¹³**C NMR** (101 MHz, CD₃OD) δ 159.8, 143.6 (q, J = 2.3 Hz), 140.4 (q, J = 31.1 Hz), 131.7, 124.1 (q, J = 277.8 Hz), 123.5, 115.9, 57.4, 17.0 (q, J = 2.7 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.1 (q, J = 2.4 Hz).

HRMS (ESI) calcd for C₁₁H₁₁F₃NaO₄S⁺ [M+Na]⁺ 319.0222, found 319.0219.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-((4-methylphenyl)sulfonamido)phenyl)but-2-ene-2-sulfonate (3j) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford **3j** as a white solid (57.4 mg, 64% yield).

m.p. 120.5–122.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.62 (d, 2H, *J* = 8.3 Hz), 7.23 (d, 2H, *J* = 8.3 Hz), 7.14-7.06 (m, 4H), 6.56 (brs, 1H), 3.61 (s, 3H), 2.42 (q, 3H, *J* = 2.4 Hz), 2.38 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 144.1, 143.0 (q, J = 2.3 Hz), 138.3 (q, J = 31.5 Hz), 137.9, 135.8, 130.0, 129.7, 128.0 (q, J = 1.2 Hz), 127.2, 122.2 (q, J = 278.7 Hz), 120.6, 56.1, 21.5, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₈H₁₈F₃NNaO₅S₂⁺ [M+Na]⁺ 472.0471, found 472.0468.

Methyl (E)-4,4,4-Trifluoro-3-(4-fluorophenyl)but-2-ene-2-sulfonate (3k)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3k** as a white solid (37.8 mg, 63% yield).

m.p. 65.3–66.1 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.26-7.19 (m, 2H), 7.15-7.07 (m, 2H), 3.69 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 163.3 (d, *J* = 249.8 Hz), 143.2 (q, *J* = 2.3 Hz), 138.3 (q, *J* = 31.5 Hz), 130.9 (d, *J* = 8.6 Hz), 127.2 (m), 122.2 (q, *J* = 278.7 Hz), 115.4 (d, *J* = 22.0 Hz), 56.1, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9 (q, *J* = 2.4 Hz), -110.9 (tt, *J* = 8.2, 5.2 Hz). **HRMS** (ESI) calcd for C₁₁H₁₀F₄NaO₃S⁺ [M+Na]⁺ 321.0179, found 321.0179.

Methyl (E)-4,4,4-Trifluoro-3-(4-chlorophenyl)but-2-ene-2-sulfonate (3I)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3I** as a white solid (47.7 mg, 76% yield).

m.p. 68.3–69.9 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.39 (d, 2H, *J* = 8.4 Hz), 7.17 (d, 2H, *J* = 8.4 Hz), 3.70 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 143.2 (q, *J* = 2.4 Hz), 138.1 (q, *J* = 31.5 Hz), 135.8, 130.2, 129.7 (q, *J* = 1.1 Hz), 128.5, 122.2 (q, *J* = 278.7 Hz), 56.1, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₁H₁₀CIF₃NaO₃S⁺ [M+Na]⁺ 336.9883, found 336.9886.

Methyl (E)-4,4,4-Trifluoro-3-(4-bromophenyl)but-2-ene-2-sulfonate (3m)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3m** as a white solid (51.5 mg, 72% yield).

m.p. 83.7–85.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.55 (d, 2H, *J* = 8.4 Hz), 7.11 (d, 2H, *J* = 8.4 Hz), 3.70 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.1 (q, *J* = 2.3 Hz), 138.1 (q, *J* = 31.5 Hz), 131.4, 130.5, 130.2 (q, *J* = 1.1 Hz), 124.0, 122.1 (q, *J* = 278.7 Hz), 56.2, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (EI) calcd for $C_{11}H_{10}BrF_3O_3S^+$ [M]⁺ 357.9481, found 357.9500.

Methyl (E)-4,4,4-Trifluoro-3-(4-iodophenyl)but-2-ene-2-sulfonate (3n)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3n** as a white solid (54.7 mg, 67% yield).

m.p. 106.5–108.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.75 (d, 2H, *J* = 8.4 Hz), 6.98 (d, 2H, *J* = 8.4 Hz), 3.70 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 143.1 (q, J = 2.3 Hz), 138.2 (q, J = 31.5 Hz), 137.3, 130.9 (q, J = 1.3 Hz), 130.5, 122.0 (q, J = 278.7 Hz), 95.8, 56.2, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₁H₁₀F₃INaO₃S⁺ [M+Na]⁺ 428.9240, found 428.9242.

Methyl

(E)-4,4,4-Trifluoro-3-(4-trifluoromethylphenyl)but-2-ene-2-sulfonate (30)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3o** as a white solid (40.6 mg, 58% yield).

m.p. 61.7-63.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.68 (d, 2H, *J* = 8.2 Hz), 7.37 (d, 2H, *J* = 8.2 Hz), 3.72 (s, 3H), 2.48 (q, 3H, *J* = 2.4 Hz). ¹³**C NMR** (101 MHz, CDCl₃) δ 143.5 (q, *J* = 2.4 Hz), 137.9 (q, *J* = 31.8 Hz), 135.1 (m), 131.5 (q, *J* = 32.8 Hz), 129.4, 125.2 (q, *J* = 3.8 Hz), 123.7 (q, *J* = 272.5 Hz), 122.1 (q, *J* = 278.7 Hz), 56.2, 16.7 (q, *J* = 2.8 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.4 Hz), -62.9.

HRMS (ESI) calcd for $C_{12}H_{10}F_6NaO_3S^+$ [M+Na]⁺ 371.0147, found 371.0138.

Ethyl (*E*)-4-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)benzoate (3p)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3p** as a white solid (44.4 mg, 63% yield).

m.p. 79.2–80.6 °C.

¹H NMR (300 MHz, CDCl₃) δ 8.09 (d, 2H, J = 8.3 Hz), 7.32 (d, 2H, J = 8.3 Hz),
4.39 (q, 2H, J = 7.2 Hz), 3.69 (s, 3H), 2.47 (q, 3H, J = 2.4 Hz), 1.40 (t, 3H, J = 7.2 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 165.8, 143.1 (q, J = 2.4 Hz), 138.4 (q, J = 31.2 Hz), 135.9 (q, J = 1.2 Hz), 131.4, 129.3, 128.9, 122.1 (q, J = 278.7 Hz), 61.2, 56.1, 16.7 (q, J = 2.8 Hz), 14.3.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₄H₁₅F₃NaO₅S⁺ [M+Na]⁺ 375.0484, found 375.0481.

Methyl (E)-4,4,4-Trifluoro-3-(4-formylphenyl)but-2-ene-2-sulfonate (3q)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3q** as a white solid (32.6 mg, 53% yield).

m.p. 94.5–95.9 °C.

¹H NMR (300 MHz, CDCl₃) δ 10.06 (s, 1H), 7.94 (d, 2H, *J* = 8.2 Hz), 7.42 (d, 2H, *J* = 8.2 Hz), 3.73 (s, 3H), 2.48 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 191.4, 143.4 (q, J = 2.3 Hz), 138.0 (q, J = 31.2 Hz), 137.4 (q, J = 1.2 Hz), 136.7, 129.6, 129.3, 122.0 (q, J = 278.7 Hz), 56.2, 16.6 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.5 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for $C_{12}H_{12}F_3O_4S^+$ [M+H]⁺ 309.0403, found 309.0402.

Methyl (*E*)-4,4,4-Trifluoro-3-(4-cyanophenyl)but-2-ene-2-sulfonate (3r)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3r** as colorless oil (31.6 mg, 52% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.71 (d, 2H, *J* = 8.4 Hz), 7.36 (d, 2H, *J* = 8.4 Hz), 3.75 (s, 3H), 2.48 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 143.9 (q, J = 2.4 Hz), 137.3 (q, J = 32.1 Hz), 136.1 (q, J = 1.1 Hz), 131.9, 129.7, 121.9 (q, J = 278.7 Hz), 118.0, 113.5, 56.3, 16.6 (q, J = 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.5 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₁F₃NO₃S⁺ [M+H]⁺ 306.0406, found 306.0407.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-(2-hydroxypropan-2-yl)phenyl)but-2-ene-2-sulfona te (3s)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford **3s** as a white solid (50.8 mg, 75% yield).

m.p. 78.0–79.5 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.53 (d, 2H, *J* = 8.4 Hz), 7.21 (d, 2H, *J* = 8.4 Hz), 3.65 (s, 3H), 2.45 (q, 3H, *J* = 2.4 Hz), 1.77 (brs, 1H), 1.60 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 150.5, 142.4 (q, J = 2.3 Hz), 139.2 (q, J = 31.2 Hz), 129.7 (q, J = 1.2 Hz), 128.7, 124.2, 122.3 (q, J = 278.7 Hz), 72.4, 56.1, 31.6, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for $C_{14}H_{17}F_3NaO_4S^+$ [M+Na]⁺ 361.0692, found 361.0689.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-(pyrrolidine-1-carbonyl)phenyl)but-2-ene-2- sulfonate (3t)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford **3t** as colorless oil (53.3 mg, 71% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.56 (d, 2H, J = 8.2 Hz), 7.27 (d, 2H, J = 8.2 Hz),
3.68 (s, 3H), 3.65 (t, 2H, J = 6.8 Hz), 3.43 (t, 2H, J = 6.8 Hz), 2.46 (q, 3H, J = 2.5 Hz), 2.01-1.92 (m, 2H), 1.92-1.83 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.7, 142.9 (q, J = 2.4 Hz), 138.5 (q, J = 31.5 Hz), 138.1, 132.8 (q, J = 1.2 Hz), 128.8, 126.9, 122.1 (q, J = 278.7 Hz), 56.2, 49.6, 46.2, 26.4, 24.4, 16.6 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₆H₁₉F₃NO₄S⁺ [M+H]⁺ 378.0981, found 378.0975.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-(1H-pyrazol-1-yl)phenyl)but-2-ene-2-sulfonate (3u) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3u** as a white solid (48.3 mg, 70% yield).

m.p. 101.5–103.7 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.98 (dd, 1H, *J* = 2.5, 0.5 Hz), 7.77 (d, 2H, *J* = 8.7 Hz), 7.74 (dd, 1H, *J* = 1.9, 0.5 Hz), 7.34 (d, 2H, *J* = 8.7 Hz), 6.49 (dd, 1H, *J* = 2.5, 1.9 Hz), 3.70 (s, 3H), 2.47 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 143.1 (q, J = 2.4 Hz), 141.5, 140.8, 138.3 (q, J = 31.6 Hz), 130.2, 129.1 (q, J = 1.2 Hz), 126.7, 122.2 (q, J = 278.7 Hz), 118.4, 108.1, 56.2, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₄H₁₃F₃N₂NaO₃S⁺ [M+Na]⁺ 369.0491, found 369.0487.

Methyl

(E)-4,4,4-Trifluoro-3-(4-(but-2-yn-1-yloxy)phenyl)but-2-ene-2-sulfonate

(3v)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford 3v as colorless oil (36.8 mg, 53% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.17 (d, 2H, *J* = 8.7 Hz), 6.98 (d, 2H, *J* = 8.7 Hz), 4.67 (q, 2H, *J* = 2.4 Hz), 3.65 (s, 3H), 2.44 (q, 3H, *J* = 2.5 Hz), 1.87 (t, 3H, *J* = 2.4 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 158.7, 142.4 (q, *J* = 2.4 Hz), 138.9 (q, *J* = 31.3 Hz), 130.3, 123.8 (q, *J* = 1.2 Hz), 122.4 (q, *J* = 278.7 Hz), 114.4, 84.1, 73.6, 56.5, 56.1, 16.7 (q, *J* = 2.8 Hz), 3.6.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.0 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₅H₁₅F₃NaO₄S⁺ [M+Na]⁺ 371.0535, found 371.0531.

Methyl (E)-4,4,4-Trifluoro-3-(m-tolyl)but-2-ene-2-sulfonate (3w)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3w** as a white solid (38.2 mg, 65% yield).

m.p. 58.3–59.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.33-7.21 (m, 2H), 7.06-7.00 (m, 2H), 3.65 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz), 2.38 (s, 3H).

¹³**C** NMR (101 MHz, CDCl₃) δ 142.1 (q, J = 2.4 Hz), 139.4 (q, J = 31.2 Hz), 137.8, 131.3 (q, J = 1.2 Hz), 130.2, 129.3, 127.9, 125.9, 122.4 (q, J = 278.7 Hz), 56.0, 21.4, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₃S⁺ [M+Na]⁺ 317.0430, found 317.0428.

Methyl (*E*)-4,4,4-Trifluoro-3-(3-methoxyphenyl)but-2-ene-2-sulfonate (3x) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3x** as a white solid (42.9 mg, 69% yield).

m.p. 50.2–51.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.32 (dd, 1H, *J* = 8.4, 7.6 Hz), 6.96 (ddd, 1H, *J* = 8.4, 2.5, 0.8 Hz), 6.82 (d, 1H, *J* = 7.6 Hz), 6.79-6.75 (m, 1H), 3.82 (s, 3H), 3.67 (s, 3H), 2.45 (q, 3H, *J* = 2.5 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 159.1, 142.4 (q, *J* = 2.2 Hz), 138.9 (q, *J* = 31.5 Hz), 132.5 (q, *J* = 1.2 Hz), 129.2, 122.3 (q, *J* = 278.7 Hz), 121.1, 114.80, 114.78, 56.1, 55.3, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₄S⁺ [M+Na]⁺ 333.0379, found 333.0378.

Methyl (*E*)-3-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)benzoate (3y)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **3y** as a white solid (47.1 mg, 70% yield).

m.p. 52.2–53.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 8.11 (d, 1H, *J* = 7.5 Hz), 7.92 (s, 1H), 7.50 (dd, 1H, *J* = 7.9, 7.5 Hz), 7.43 (d, 1H, *J* = 7.9 Hz), 3.92 (s, 3H), 3.69 (s, 3H), 2.47 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 143.3 (q, J = 2.4 Hz), 138.3 (q, J = 31.5 Hz), 133.3, 131.7 (q, J = 1.2 Hz), 130.5, 130.2, 129.9, 128.3, 122.2 (q, J = 278.7 Hz), 56.1, 52.3, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.7 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₃H₁₃F₃NaO₅S⁺ [M+Na]⁺ 361.0328, found 361.0326.

Methyl (E)-4,4,4-Trifluoro-3-(2-hydroxyphenyl)but-2-ene-2-sulfonate (3z) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **3z** as colorless oil (40.5 mg, 68% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.30 (ddd, 1H, *J* = 8.2, 8.0, 1.6 Hz), 7.11 (dd, 1H, *J* = 7.6, 1.6 Hz), 6.98 (ddd, 1H, *J* = 8.0, 7.6, 0.8 Hz), 6.81 (dd, 1H, *J* = 8.2, 0.8 Hz), 5.17 (brs, 1H), 3.73 (s, 3H), 2.46 (q, 3H, *J* = 2.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 153.0, 142.9 (q, J = 2.4 Hz), 137.2 (q, J = 32.7 Hz), 131.1, 130.5, 122.2 (q, J = 278.7 Hz), 120.5, 119.2 (q, J = 2.3 Hz), 115.5, 56.7, 16.6 (q, J = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.9 (q, *J* = 2.3 Hz).

HRMS (ESI) calcd for C₁₁H₁₁F₃NaO₄S⁺ [M+Na]⁺ 319.0222, found 319.0220.

Methyl (*E*)-4,4,4-Trifluoro-3-(2-methoxyphenyl)but-2-ene-2-sulfonate (3aa)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3aa** as colorless oil (26.5 mg, 43% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.41 (ddd, 1H, *J* = 8.3, 7.5, 1.7 Hz), 7.13 (dd, 1H, *J* = 7.5, 1.7 Hz), 6.99 (ddd, 1H, *J* = 8.3, 7.5, 0.9 Hz), 6.93 (dd, 1H, *J* = 8.3, 0.9 Hz), 3.83 (s, 3H), 3.69 (s, 3H), 2.44 (q, 3H, *J* = 2.4 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 156.9, 142.2 (q, J = 2.4 Hz), 137.6 (q, J = 32.1 Hz), 131.1, 130.5, 122.1 (q, J = 278.7 Hz), 120.9 (q, J = 1.1 Hz), 120.3, 110.4, 56.4, 55.6, 16.5 (q, J = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -60.2 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₄S⁺ [M+Na]⁺ 333.0379, found 333.0378.

Methyl (E)-4,4,4-Trifluoro-3-(naphthalen-2-yl)but-2-ene-2-sulfonate (3ab)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3ab** as a white solid (35.6 mg, 54% yield).

m.p. 90.2–91.7 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.92-7.83 (m, 3H), 7.74 (d, 1H, *J* = 1.4 Hz), 7.58-7.49 (m, 2H), 7.31 (dd, 1H, *J* = 8.6, 1.4 Hz), 3.62 (s, 3H), 2.51 (q, 3H, *J* = 2.4 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 142.8 (q, J = 2.4 Hz), 139.2 (q, J = 31.5 Hz), 133.3, 132.5, 128.80 (q, J = 1.2 Hz), 128.76, 128.3, 127.8, 127.1, 126.7, 125.8, 122.5 (q, J = 278.7 Hz), 56.1, 16.8 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₅H₁₃F₃NaO₃S⁺ [M+Na]⁺ 353.0430, found 353.0429.

Methyl (*E*)-4,4,4-Trifluoro-3-(benzo[b]thiophen-5-yl)but-2-ene-2-sulfonate (3ac)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3ac** as a white solid (38.9 mg, 58% yield).

m.p. 101.2–102.9 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.91 (d, 1H, J = 8.4 Hz), 7.71 (d, 1H, J = 1.1 Hz),
7.51 (d, 1H, J = 5.4 Hz), 7.36 (d, 1H, J = 5.4 Hz), 7.19 (dd, 1H, J = 8.4, 1.1 Hz),
3.64 (s, 3H), 2.49 (q, 3H, J = 2.4 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.7 (q, *J* = 2.4 Hz), 140.7, 139.2 (q, *J* = 31.5 Hz), 139.1, 127.6, 127.3 (q, *J* = 1.2 Hz), 124.4, 124.2, 123.9, 122.4 (q, *J* = 278.7 Hz), 122.2, 56.1, 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.7 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₃H₁₁F₃NaO₃S₂⁺ [M+Na]⁺ 358.9994, found 358.9993.

Methyl (Z)-4,4,4-Trifluoro-3-(thiophen-2-yl)but-2-ene-2-sulfonate (3ad)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3ad** as a colorless oil (30.2 mg, 53% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.53 (dd, 1H, *J* = 5.0, 1.2 Hz), 7.12 (dd, 1H, *J* = 3.7, 1.2 Hz), 7.07 (dd, 1H, *J* = 5.0, 3.7 Hz), 3.74 (s, 3H), 2.46 (q, 3H, *J* = 2.5 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.7 (q, J = 2.1 Hz), 132.5 (q, J = 32.7 Hz), 131.3, 129.8 (q, J = 1.2 Hz), 129.1, 126.8, 121.7 (q, J = 278.7 Hz), 56.5, 17.2 (q, J = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.8 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for $C_9H_9F_3NaO_3S_2^+$ [M+Na]⁺ 308.9837, found 308.9837.

Methyl (E)-4,4,4-Trifluoro-3-(thiophen-3-yl)but-2-ene-2-sulfonate (3ae)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford **3ae** as a white solid (33.7 mg, 59% yield).

m.p. 53.1–54.3 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.40-7.36 (m, 2H), 7.04-7.00 (m, 1H), 3.68 (s, 3H), 2.44 (q, 3H, *J* = 2.5 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.4 (q, *J* = 2.4 Hz), 134.5 (q, *J* = 32.1 Hz), 130.0 (q, *J* = 1.2 Hz), 127.9, 127.4, 125.6, 122.1 (q, *J* = 278.7 Hz), 56.2, 16.9 (q, *J* = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.6 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for $C_9H_9F_3NaO_3S_2^+$ [M+Na]⁺ 308.9837, found 308.9838.

Ethyl (*E*)-5-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)furan-2carboxylate (3af)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford **3af** as a white solid (48.8 mg, 71% yield).

m.p. 36.9–38.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.21 (d, 1H, *J* = 3.6 Hz), 6.66 (d, 1H, *J* = 3.6 Hz), 4.36 (q, 2H, *J* = 7.2 Hz), 3.90 (s, 3H), 2.47 (q, 3H, *J* = 2.4 Hz), 1.37 (t, 3H, *J* = 7.2 Hz). ¹³**C NMR** (101 MHz, CDCl₃) δ 158.2, 148.2 (q, *J* = 2.0 Hz), 146.0, 144.7 (q, *J* = 1.5 Hz), 127.9 (q, *J* = 34.1 Hz), 121.4 (q, *J* = 278.7 Hz), 118.5, 115.6, 61.3, 57.5, 16.9 (q, *J* = 2.5 Hz), 14.2.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.7 (q, *J* = 2.4 Hz).

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₆S⁺ [M+Na]⁺ 365.0277, found 365.0273.

Methyl

(E)-4,4,4-Trifluoro-3-(1-methyl-1H-pyrazol-4-yl)but-2-ene-2-sulfonate

(3ag)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford **3ag** as a white solid (35.2 mg, 62% yield).

m.p. 173.1 °C (dec.)

¹**H NMR** (300 MHz, CDCl₃) δ 7.54 (s, 1H), 7.50 (s, 1H), 3.93 (s, 3H), 3.70 (s, 3H), 2.41 (q, 3H, *J* = 2.6 Hz); (300 MHz, CD₃OD) δ 8.32 (s, 2H), 4.14 (s, 6H), 2.40 (q, 3H, *J* = 2.7 Hz).

¹³**C NMR** (101 MHz, CD₃OD) δ 157.7 (q, *J* = 2.4 Hz), 139.2, 124.3 (q, *J* = 276.1 Hz), 118.8 (q, *J* = 32.2 Hz), 115.6 (q, *J* = 1.8 Hz), 37.1, 17.9 (q, *J* = 2.7 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -60.1 (q, *J* = 2.6 Hz).

HRMS (ESI) calcd for C₉H₁₂F₃N₂O₃S⁺ [M+H]⁺ 285.0515, found 285.0512.

Methyl (E)-1,1,1-Trifluoro-2-phenylpent-2-ene-3-sulfonate (3ah)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3ah** as a white solid (40.8 mg, 69% yield).

m.p. 60.1–62.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.45-7.37 (m, 3H), 7.29-7.22 (m, 2H), 3.56 (s, 3H), 2.85 (qq, 2H, *J* = 7.3, 1.7 Hz), 1.37 (t, 3H, *J* = 7.3 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 149.0 (q, J = 2.5 Hz), 138.7 (q, J = 31.2 Hz), 131.6 (q, J = 1.2 Hz), 129.4, 128.9, 128.0, 122.5 (q, J = 278.7 Hz), 55.7, 24.5 (q, J = 2.6 Hz), 14.2.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.2.

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₃S⁺ [M+Na]⁺ 317.0430, found 317.0428.

Methyl (*E*)-1,1,1-Trifluoro-5-hydroxy-2-phenylpent-2-ene-3-sulfonate (3ai) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford **3ai** as a white solid (43.4 mg, 70% yield).

m.p. 67.2–70.1 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.47-7.38 (m, 3H), 7.30-7.24 (m, 2H), 4.01 (dt, 2H, *J* = 6.7, 6.3 Hz), 3.57 (s, 3H), 3.13 (tq, 2H, *J* = 6.7, 1.7 Hz), 1.89 (t, 1H, *J* = 6.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 144.2 (q, J = 2.2 Hz), 140.9 (q, J = 31.3 Hz),
131.4 (q, J = 1.2 Hz), 129.5, 128.9, 128.0, 122.3 (q, J = 278.7 Hz), 61.4 (q, J = 1.5 Hz), 56.0, 33.9 (q, J = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.3.

HRMS (ESI) calcd for C₁₂H₁₃F₃NaO₄S⁺ [M+Na]⁺ 333.0379, found 333.0377.

Methyl (*E*)-5-Bromo-1,1,1-trifluoro-2-phenylpent-2-ene-3-sulfonate (3aj) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **3aj** as a white solid (47.6 mg, 64% yield).

m.p. 69.1–70.8 °C.

¹**H NMR** (300 MHz, CDCl₃) (major *E*-isomer) δ 7.47-7.39 (m, 3H), 7.29-7.22 (m, 2H), 3.66 (t, 2H, *J* = 8.0 Hz), 3.58 (s, 3H), 3.36 (tq, 2H, *J* = 8.0, 1.3 Hz); (minor *Z*-isomer) δ 7.52-7.45 (m, 3H), 7.29-7.22 (m, 2H), 4.04 (s, 3H), 3.45 (t, 2H, *J* = 7.5 Hz), 2.87 (tq, 2H, *J* = 7.9, 1.1 Hz).

¹³**C NMR** (101 MHz, CDCl₃) (major *E*-isomer) δ 144.0 (q, *J* = 2.2 Hz), 141.6 (q, *J* = 31.6 Hz), 131.0 (q, *J* = 1.1 Hz), 129.75, 128.7, 128.1, 122.1 (q, *J* = 278.7 Hz), 56.1, 33.9 (q, *J* = 2.6 Hz), 28.0 (q, *J* = 1.8 Hz); (minor *Z*-isomer) δ 129.79, 129.1, 128.0, 56.8, 35.9, (some carbon peaks were missed due to the small amount.).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -56.9 (minor *Z*-isomer), -58.3 (major *E*-isomer). **HRMS** (ESI) calcd for C₁₂H₁₂BrF₃NaO₃S⁺ [M+Na]⁺ 394.9535, found 394.9535.

Methyl 1,1,1-Trifluoro-4-methyl-2-phenylpent-2-ene-3-sulfonate (3ak)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3ak** as a 1:1 *E/Z* mixture as colorless oil (37.8 mg, 61% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.47-7.43 (m, 0.5 × 3H), 7.42-7.38 (m, 0.5 × 3H), 7.26-7.23 (m, 0.5 × 2H), 7.20-7.16 (m, 0.5 × 2H), 3.99 (s, 0.5 × 3H), 3.51 (hept, 0.5 × 1H, *J* = 8.7 Hz), 3.47 (s, 0.5 × 3H), 2.74 (hept, 0.5 × 1H, *J* = 8.7 Hz), 1.47

(d, $0.5 \times 6H$, J = 8.7 Hz), 1.21 (d, $0.5 \times 6H$, J = 8.7 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.5 (q, J = 2.2 Hz), 151.0 (q, J = 2.6 Hz), 138.3 (q, J = 31.0 Hz), 138.0 (q, J = 33.8 Hz), 133.5 (q, J = 1.9 Hz), 131.9 (q, J = 1.4 Hz), 129.3, 129.2, 129.0, 128.9, 127.9 (two peaks overlay), 122.5 (q, J = 278.7 Hz), 120.9 (q, J = 276.2 Hz), 55.9, 55.1, 33.7, 31.5 (q, J = 2.8 Hz), 20.4, 19.9.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -57.2, -57.4.

HRMS (ESI) calcd for C₁₃H₁₅F₃NaO₃S⁺ [M+Na]⁺ 331.0586, found 331.0585.

Methyl (*Z*)-1,1,1-Trifluoro-4,4-dimethyl-2-phenylpent-2-ene-3-sulfonate (3al)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **3al** as a white solid (16.8 mg, 26% yield).

m.p. 63.8–64.5 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.50-7.35 (m, 3H), 7.28-7.22 (m, 2H), 3.99 (s, 3H), 1.15 (s, 9H).

¹³**C NMR** (101 MHz, CDCl₃) δ 154.6 (q, *J* = 2.3 Hz), 138.7 (q, *J* = 32.3 Hz), 133.3 (q, *J* = 1.8 Hz), 131.3 129.9, 127.9, 121.2 (q, *J* = 277.2 Hz), 56.2, 40.3, 31.8.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9.

HRMS (ESI) calcd for C₁₄H₂₁F₃NO₃S⁺ [M+NH₄]⁺ 340.1189, found 340.1193.

Methyl

(*Z*)-3,3,3-Trifluoro-2-([1,1'-biphenyl]-4-yl)-1-(trimethylsilyl)prop-1-ene-1-Sulfonate (3am)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3am** as a white solid (48.7 mg, 59% yield).

m.p. 78.1–79.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.69-7.60 (m, 4H), 7.52-7.37 (m, 3H), 7.34 (d, 2H, *J* = 8.4 Hz), 3.98 (s, 3H), -0.01 (s, 9H).

¹³**C** NMR (101 MHz, CDCl₃) δ 150.2 (q, *J* = 1.8 Hz), 148.9 (q, *J* = 32.9 Hz), 143.3, 139.6, 132.3 (q, *J* = 1.5 Hz), 131.3, 129.0, 128.1, 127.1, 126.9, 120.4 (q, *J* = 279.6 Hz), 55.7, 0.9.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.2.

HRMS (ESI) calcd for C₁₉H₂₁F₃NaO₃SSi⁺ [M+Na]⁺ 437.0825, found 437.0811.

Butyl (*E*)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3an)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3an** the title compound as colorless oil (40.8 mg, 63% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.44-7.36 (m, 3H), 7.27-7.20 (m, 2H), 3.97 (t, 2H, *J* = 6.6 Hz), 2.45 (q, 3H, *J* = 2.5 Hz), 1.63-1.52 (m, 2H), 1.40-1.26 (m, 2H), 0.90 (t, 3H, *J* = 6.6 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.0 (q, *J* = 2.5 Hz), 138.7 (q, *J* = 31.3 Hz), 131.5, 129.3, 128.9, 128.0, 122.4 (q, *J* = 278.7 Hz), 70.8, 30.9, 18.6, 16.6 (q, *J* = 2.8 Hz), 13.4.

¹⁹F NMR (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₄H₁₇F₃NaO₃S⁺ [M+Na]⁺ 345.0743, found 345.0741.

Isopropyl (E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3ao)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3ao** as a white solid (39.5 mg, 64% yield).

m.p. 37.1–38.3 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.44-7.36 (m, 3H), 7.25-7.20 (m, 2H), 4.76 (hept, 1H, *J* = 6.3 Hz), 2.45 (q, 3H, *J* = 2.5 Hz), 1.31 (d, 6H, *J* = 6.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.7 (q, J = 2.5 Hz), 138.2 (q, J = 31.2 Hz), 131.6 (q, J = 1.2 Hz), 129.2, 129.0, 128.0, 122.5 (q, J = 278.7 Hz), 78.2, 22.8, 16.6 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₃H₁₅F₃NaO₃S⁺ [M+Na]⁺ 331.0586, found 331.0586.

2,2,2-Trifluoroethyl (*E*)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3ap)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3ap** as colorless oil (42.3 mg, 61% yield).

¹H NMR (300 MHz, CDCl₃) δ 7.48-7.39 (m, 3H), 7.25-7.20 (m, 2H), 4.20 (q, 2H, *J* = 7.9 Hz), 2.49 (q, 3H, *J* = 2.5 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.5 (q, *J* = 2.2 Hz), 140.3 (q, *J* = 31.5 Hz), 131.0, 129.7, 128.8, 128.3, 122.2 (q, *J* = 278.7 Hz), 121.7 (q, *J* = 278.7 Hz), 64.4 (q, *J* = 38.4 Hz), 16.5 (q, *J* = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.1 (q, *J* = 2.4 Hz), -73.8 (t, *J* = 7.9 Hz). **HRMS** (ESI) calcd for C₁₂H₁₀F₆NaO₃S⁺ [M+Na]⁺ 371.0147, found 371.0141.

((3r,5r,7r)-Adamantan-1-yl)methyl (*E*)-4,4,4-Trifluoro-3-phenylbut-2-ene-1-Sulfonate (3aq)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **3aq** as colorless oil (54.8 mg, 66% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.44-7.36 (m, 3H), 7.25-7.20 (m, 2H), 3.54 (s, 2H), 2.44 (q, 3H, *J* = 2.5 Hz), 2.02-1.94 (m, 3H), 1.77-1.66 (m, 3H), 1.66-1.57 (m, 3H), 1.50-1.44 (m, 6H).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.9 (q, *J* = 2.5 Hz), 138.7 (q, *J* = 31.3 Hz), 131.5 (q, *J* = 1.2 Hz), 129.3, 128.9, 128.0, 122.5 (q, *J* = 278.7 Hz), 80.1, 38.6, 36.6, 33.4, 27.7, 16.7 (q, *J* = 2.8 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ -55.7 (q, J = 2.1 Hz, minor Z-isomer), -58.8 (q, J = 2.5 Hz, major *E*-isomer).

HRMS (ESI) calcd for $C_{21}H_{25}F_3NaO_3S^+$ [M+Na]⁺ 437.1369, found 437.1362.

Methyl

(*E*)-4,4,4-Trifluoro-3-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14, 15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)but-2-ene-2-sulfo nate (3ar) Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **3ar** as a white solid (59.5 mg, 65% yield).

m.p. 162.0–163.8 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.31 (d, 1H, *J* = 8.1 Hz), 7.00 (d, 1H, *J* = 8.1 Hz), 6.96 (s, 1H), 3.69 (s, 3H), 2.98-2.88 (m, 2H), 2.58-2.25 (m, 3H), 2.44 (q, 3H, *J* = 2.4 Hz), 2.24-1.92 (m, 4H), 1.74-1.39 (m, 6H), 0.92 (s, 3H).

¹³C NMR (125 MHz, CDCl₃) δ 220.6, 141.9, 141.1, 139.4 (q, J = 31.3 Hz), 136.3, 129.3, 128.7, 126.1, 124.9, 122.4 (q, J = 278.7 Hz), 56.1, 50.5, 47.9, 44.3, 37.7, 35.8, 31.5, 29.1, 26.3, 25.4, 21.5, 16.7 (q, J = 2.7 Hz), 13.8.
¹⁹F NMR (282 MHz, CDCl₃) δ -58.8.

HRMS (ESI) calcd for C₂₃H₂₇F₃NaO₄S⁺ [M+Na]⁺ 479.1474, found 479.1474.

Methyl

```
(E)-4,4,4-Trifluoro-3-(4-((2R,3R)-1-(4-fluorophenyl)-3-((S)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-oxoazetidin-2-yl)phenyl)but-2-ene-2-sulfonate (3as)
```

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford **3as** as a brown solid (68.9 mg, 58% yield).

m.p. 136.5–138.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.37-7.19 (m, 8 H), 7.02 (t, 2H, *J* = 8.7 Hz), 6.94 (t, 2H, *J* = 8.7 Hz), 4.75-4.68 (m, 1H), 4.65 (d, 1H, *J* = 2.1 Hz), 3.65 (s, 3H),

3.20-3.11 (m, 1H), 2.45 (q, 3H, *J* = 2.5 Hz), 2.21 (d, 1H, *J* = 3.4 Hz), 2.09-1.86 (m, 4H).

¹³**C NMR** (101 MHz, acetone-*d*₆) δ 167.8, 162.6 (d, *J* = 242.3 Hz), 159.0 (d, *J* = 241.8 Hz), 144.2 (q, *J* = 2.5 Hz), 142.9 (d, *J* = 3.0 Hz), 140.7, 138.8 (q, *J* = 31.2 Hz), 135.4 (d, *J* = 2.7 Hz), 132.6 (q, *J* = 1.1 Hz), 130.7, 128.5 (d, *J* = 8.0 Hz), 126.8, 123.5 (q, *J* = 277.8 Hz), 119.2 (d, *J* = 8.0 Hz), 116.4 (d, *J* = 23.0 Hz), 115.5 (d, *J* = 21.4 Hz), 72.7, 61.2, 61.1, 57.7, 37.6, 25.7, 16.9 (q, *J* = 2.9 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.8 (q, *J* = 2.5 Hz), -114.8 (m), -117.8 (m). **HRMS** (ESI) calcd for C₂₉H₂₆F₅NNaO₅S⁺ [M+Na]⁺ 618.1344, found 618.1341.

Methyl

(*E*)-4,4,4-Trifluoro-3-(4-methyl-2-oxo-2H-chromen-7-yl)but-2-ene-2-sulfon ate (3at)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford **3at** as a white solid (53.7 mg, 74% yield).

m.p. 142.7-143.8 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (d, 1H, *J* = 8.1 Hz), 7.22-7.17 (m, 2H), 6.36 (d, 1H, *J* = 1.6 Hz), 3.77 (s, 3H), 2.49 (q, 3H, *J* = 2.5 Hz), 2.46 (d, 3H, *J* = 1.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 160.1, 152.8, 151.8, 143.6 (q, J = 2.1 Hz), 137.4 (q, J = 31.9 Hz), 134.8, 124.9, 124.5, 122.0 (q, J = 278.5 Hz), 120.6, 117.4, 116.1, 56.4, 18.5, 16.7 (q, J = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for $C_{15}H_{14}F_3O_5S^+$ [M+H]⁺ 363.0509, found 363.0502.

Isopropyl

(*E*)-2-Methyl-2-(4-(4-(1,1,1-trifluoro-3-(methoxysulfonyl)but-2-en-2-yl) benzoyl)phenoxy)propanoate (3au)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **3au** as a white solid (66.5 mg, 63% yield).

m.p. 60.2–61.7 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.79 (d, 2H, J = 8.5 Hz), 7.76 (d, 2H, J = 8.8 Hz), 7.35 (d, 2H, J = 8.5 Hz), 6.87 (d, 2H, J = 8.8 Hz), 5.09 (hept, 1H, J = 6.2 Hz), 3.72 (s, 3H), 2.48 (q, 3H, J = 2.4 Hz), 1.67 (s, 6H), 1.20 (d, 6H, J = 6.2 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 194.5, 173.0, 159.7, 134.0 (q, J = 2.2 Hz), 138.7, 138.3 (q, J = 31.6 Hz), 134.9 (q, J = 1.1 Hz), 132.0, 130.0, 129.4, 128.8, 122.1 (q, J = 278.9 Hz), 117.1, 79.3, 69.3, 56.2, 25.3, 21.5, 16.6 (q, J = 2.9 Hz). ¹⁹F NMR (282 MHz, CDCl₃) δ -58.5 (q, J = 2.4 Hz).

HRMS (ESI) calcd for $C_{25}H_{28}F_3O_7S^+$ [M+H]⁺ 529.1502, found 529.1498.

2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)ethyl (*E*)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3av)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (20:1 CH₂Cl₂/MeOH) to afford **3av** as colorless liquid (55.7 mg, 59% yield).

¹**H NMR** (300 MHz, CDCl₃) (major *E*-isomer) δ 7.50 (s, 1H), 7.43-7.36 (m 3H), 7.21-7.15 (m, 2H), 4.44 (t, 2H, *J* = 4.6 Hz), 4.32 (t, 2H, *J* = 4.6 Hz), 3.60 (s, 3H),

3.41 (s, 3H), 2.31 (q, 3H, *J* = 2.5 Hz); (minor *Z*-isomer) 7.68 (s, 1H), 7.47-7.39 (m, 3H), 7.15-7.11 (m, 2H), 4.71 (t, 2H, *J* = 4.4 Hz), 4.67 (t, 2H, *J* = 4.4 Hz), 3.60 (s, 3H), 3.42 (s, 3H), 1.88 (q, 3H, *J* = 2.0 Hz).

¹³**C NMR** (101 MHz, CDCl₃) (major *E*-isomer) δ 155.2, 151.5, 149.2, 142.11, 142.2 (q, *J* = 2.4 Hz), 139.6 (q, *J* = 31.5 Hz), 131.1 (q, *J* = 1.1 Hz), 129.46, 128.7, 128.1, 122.1 (q, *J* = 278.7 Hz), 106.2, 68.2, 46.3, 29.8, 27.91, 16.4 (q, *J* = 2.7 Hz); (minor *Z*-isomer) δ 155.3, 151.4, 149.3, 142.2, 142.13 (q, *J* = 2.1 Hz), 129.52, 129.0, 127.8, 106.3, 68.6, 46.4, 27.94, 19.6 (some carbon peaks were missed due to the low amount.).

¹⁹F NMR (282 MHz, CDCl₃) δ -56.1 (q, J = 2.0 Hz, minor Z-isomer), -59.0 (q, J = 2.5 Hz, major *E*-isomer).

HRMS (ESI) calcd for C₁₉H₁₉F₃N₄NaO₅S⁺ [M+Na]⁺ 495.0920, found 495.0920.

(E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonyl Fluoride (5a)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5a** as colorless liquid (32.5 mg, 61% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.52-7.40 (m, 3H), 7.28-7.22 (m, 2H), 2.55 (q, 3H, *J* = 2.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 142.0 (qd, J = 32.1, 2.6 Hz), 141.3 (dq, J = 23.8, 2.3 Hz), 130.3 (q, J = 1.1 Hz), 130.1, 128.7, 128.5, 121.9 (qd, J = 278.5, 4.7 Hz), 16.6 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.9, -59.3.

HRMS (EI) calcd for $C_{10}H_8F_4O_2S^+$ [M]⁺ 268.0181, found 268.0187.

(*E*)-3-(4-(*tert*-Butyl)phenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5b)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5b** as colorless liquid (37.8 mg, 58% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.43 (d, 2H, *J* = 8.5 Hz), 7.16 (d, 2H, *J* = 8.5 Hz), 2.53 (q, 3H, *J* = 2.4 Hz), 1.33 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 153.4, 142.2 (qd, J = 32.2, 2.7 Hz), 141.0 (dq, J = 23.7, 2.2 Hz), 128.5, 127.3 (q, J = 1.1 Hz), 125.4, 122.0 (qd, J = 278.3, 4.6 Hz), 34.8, 31.1, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.6, -59.4.

HRMS (EI) calcd for $C_{14}H_{16}F_4O_2S^+$ [M]⁺ 324.0802, found 324.0796.

(*E*)-3-([1,1'-Biphenyl]-4-yl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5c)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5c** as a white solid (44.3 mg, 64% yield).

m.p. 145.1–146.6 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.70-7.58 (m, 4H), 7.50-7.35 (m, 3H), 7.32 (d, 2H, *J* = 8.1 Hz), 2.57 (q, 3H, *J* = 2.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 143.1, 141.9 (qd, J = 32.4, 2.5 Hz), 141.4 (dq, J = 24.0, 2.2 Hz), 139.9, 129.3, 129.1 (q, J = 1.1 Hz), 128.9, 128.0, 127.2, 127.1, 122.0 (qd, J = 278.6, 4.7 Hz), 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.9, -59.3.

HRMS (EI) calcd for C₁₆H₁₂F₄O₂S⁺ [M]⁺ 344.0489, found 344.0491.

(*E*)-4-(1,1,1-Trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)phenyl Acetate (5d) Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford 5d as a white solid (39.2 mg, 60% yield).

m.p. 60.1–60.9 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.27 (d, 2H, *J* = 8.8 Hz), 7.20 (d, 2H, *J* = 8.8 Hz), 2.54 (q, 3H, *J* = 2.2 Hz), 2.31 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.7, 152.1, 141.8 (dq, *J* = 24.1, 2.2 Hz), 141.2 (qd, *J* = 32.4, 2.5 Hz), 130.1, 127.5 (q, *J* = 1.1 Hz), 121.8 (qd, *J* = 278.8, 4.6 Hz), 121.7, 21.1, 16.7 (q, *J* = 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.9, -59.3 (q, *J* = 2.2 Hz).

HRMS (ESI) calcd for $C_{12}H_{11}F_4O_4S^+$ [M+H]⁺ 327.0309, found 327.0306.

(*E*)-4,4,4-Trifluoro-3-(4-((4-methylphenyl)sulfonamido)phenyl)but-2-ene-2 -sulfonyl Fluoride (5e)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (20:1 petroleum ether/EtOAc) to afford **5e** as a white solid (48.3 mg, 55% yield).

m.p. 105.7–107.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.61 (d, 2H, *J* = 8.3 Hz), 7.23 (d, 2H, *J* = 8.3 Hz), 7.12 (s, 4H), 6.62 (brs, 1H), 2.52 (q, 3H, *J* = 2.1 Hz), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 144.3, 141.6 (dq, *J* = 23.8, 2.2 Hz), 141.2 (qd, *J* = 32.6, 2.5 Hz), 138.7, 135.5, 129.9, 129.7, 127.1, 126.6 (q, *J* = 1.1 Hz), 121.7 (qd, *J* = 278.5, 4.8 Hz), 120.6, 21.5, 16.6 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.9, -59.4.

HRMS (ESI) calcd for $C_{17}H_{16}F_4NO_4S_2^+$ [M+H]⁺ 438.0451, found 438.0447.

(*E*)-3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5f) Following the general procedure C, the crude product was purified by flash

chromatography on silica gel (petroleum ether) to afford **5f** as a white solid (34.5 mg, 57% yield).

m.p. 35.7–36.5 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.42 (d, 2H, *J* = 8.5 Hz), 7.18 (d, 2H, *J* = 8.5 Hz), 2.55 (q, 3H, *J* = 2.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.0 (dq, *J* = 24.1, 2.3 Hz), 140.9 (qd, *J* = 32.5, 2.5 Hz), 136.6, 130.1, 128.9, 128.6 (q, *J* = 1.4 Hz), 121.7 (qd, *J* = 278.9, 4.7 Hz), 16.6 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.0, -59.4.

HRMS (EI) calcd for C₁₀H₇ClF₄O₂S⁺ [M]⁺ 301.9786, found 301.9787.

(*E*)-3-(4-Bromophenyl)-4,4,4-Trifluorobut-2-ene-2-sulfonyl Fluoride (5g) Following the general procedure C, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford **5g** as a white solid (42.3 mg, 61% yield). **m.p.** 39.1–40.3 °C. ¹**H NMR** (300 MHz, CDCl₃) δ 7.58 (d, 2H, *J* = 8.5 Hz), 7.12 (d, 2H, *J* = 8.5 Hz), 2.54 (q, 3H, *J* = 2.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 141.9 (dq, *J* = 24.1, 2.4 Hz), 140.9 (qd, *J* = 32.7, 2.6 Hz), 131.9, 130.3, 129.1 (q, *J* = 1.1 Hz), 124.9, 121.6 (qd, *J* = 278.5, 4.4 Hz), 16.7 (q, *J* = 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.0, -59.3.

HRMS (EI) calcd for C₁₀H₇BrF₄O₂S⁺ [M]⁺ 345.9286, found 345.9289.

(*E*)-3-(4-(1*H*-Pyrazol-1-yl)phenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5h)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5h** as a white solid (36.0 mg, 54% yield).

m.p. 70.2–71.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.98 (d, 1H, *J* = 2.5 Hz), 7.80 (d, 2H, *J* = 8.7 Hz), 7.75 (d, 1H, *J* = 1.4 Hz), 7.34 (d, 2H, *J* = 8.7 Hz), 6.50 (dd, 1H, *J* = 2.5, 1.4 Hz), 2.57 (q, 3H, *J* = 2.2 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 141.8 (dq, J = 24.0, 2.5 Hz), 141.7, 141.3, 141.2 (qd, J = 32.1, 2.6 Hz), 130.1, 127.9 (q, J = 1.4 Hz), 126.7, 121.8 (qd, J = 279.4, 4.5 Hz), 118.7, 108.2, 16.7 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.0, -59.3.

HRMS (ESI) calcd for $C_{13}H_{11}F_4N_2O_2S^+$ [M+H]⁺ 335.0472, found 335.0461.

Ethyl (E)-4-(1,1,1-Trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)benzoate (5i)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5i** as colorless oil (36.8 mg, 54% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 8.12 (d, 2H, *J* = 8.4 Hz), 7.33 (d, 2H, *J* = 8.4 Hz), 4.40 (q, 2H, *J* = 7.1 Hz), 2.57 (q, 3H, *J* = 2.3 Hz), 1.40 (t, 3 H, *J* = 7.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 165.6, 141.8 (dq, J = 24.6, 2.5 Hz), 141.2 (qd, J = 32.5, 2.5 Hz), 134.6 (q, J = 1.1 Hz), 132.1, 129.6, 128.8, 121.7 (qd, J = 278.8, 4.5 Hz), 61.3, 16.7 (q, J = 2.7 Hz), 14.3.

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.3, -59.1.

HRMS (ESI) calcd for $C_{13}H_{13}F_4O_4S^+$ [M+H]⁺ 341.0465, found 341.0459.

(E)-3-(3-Cyanophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5j)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5j** as colorless liquid (29.8 mg, 51% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.78 (d, 1H, *J* = 7.8 Hz), 7.59 (t, 1H, *J* = 7.8 Hz), 7.56 (s, 1H), 7.49 (d, 1 H, *J* = 7.8 Hz), 2.58 (q, 3H, *J* = 2.7 Hz).

¹³C NMR (101 MHz, CDCl₃) δ142.9 (dq, J = 24.7, 2.2 Hz), 139.5 (qd, J = 32.9, 2.5 Hz), 133.6, 133.0, 132.1, 131.6 (q, J = 1.1 Hz), 129.5, 121.4 (qd, J = 279.3, 4.4 Hz), 117.6, 113.2, 16.6 (q, J = 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.4, -59.1.

HRMS (EI) calcd for C₁₁H₇F₄NO₂S⁺ [M]⁺ 293.0128, found 293.0128.

(E)-4,4,4-Trifluoro-3-(2-methoxyphenyl)but-2-ene-2-sulfonyl Fluoride (5k)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5k** as colorless liquid (26.2 mg, 44% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.44 (ddd, 1H, *J* = 8.4, 7.5, 1.8 Hz), 7.12 (dd, 1H, *J* = 7.8, 1.8 Hz), 7.00 (ddd, 1H, *J* = 7.8, 7.5, 1.0 Hz), 6.94 (dd, 1H, *J* = 8.4, 1.0 Hz), 3.84 (s, 3H), 2.53 (q, 3H, *J* = 2.1 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 157.1, 141.2 (dq, J = 24.1, 2.5 Hz), 140.3 (qd, J = 33.3, 2.7 Hz), 131.9, 129.9, 121.7 (qd, J = 279.5, 4.5 Hz), 120.4, 119.8 (q, J = 1.1 Hz), 110.8, 55.7, 16.5 (q, J = 2.6 Hz).

¹⁹**F NMR** (282 MHz, CDCl3) δ 56.8, -60.5.

HRMS (ESI) calcd for C₁₁H₁₀F₄NaO₃S⁺ [M+Na]⁺ 321.0179, found 321.0175.

(*E*)-3-(Benzo[*b*]thiophen-5-yl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5I)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5I** as a white solid (34.6 mg, 53% yield).

m.p. 68.1–69.7 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.97 (d, 1H, *J* = 8.3 Hz), 7.74 (d,1H, *J* = 1.1 Hz), 7.56 (d, 1H, *J* = 5.4 Hz), 7.40 (d, 1H, *J* = 5.4 Hz), 7.22 (dd, 1H, *J* = 8.3, 1.1 Hz), 2.61 (q, 3H, *J* = 2.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 142.1 (qd, *J* = 32.1, 2.6 Hz), 141.6 (dq, *J* = 23.6, 2.2 Hz), 141.4, 139.3, 128.0, 126.3 (q, *J* = 1.1 Hz), 124.1, 123.9, 122.7, 120.0 (qd, *J* = 278.5, 4.7 Hz), 16.7 (q, *J* = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.7, -59.3.

HRMS (ESI) calcd for C₁₂H₈F₄NaO₂S₂⁺ [M+Na]⁺ 346.9794, found 346.9789.

(*E*)-4,4,4-T

rifluoro-3-(thiophen-3-yl)but-2-ene-2-sulfonyl Fluoride (5m)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford **5m** as colorless liquid (26.8 mg, 49% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.45-7.40 (m, 2H), 7.06-7.01 (m, 1H), 2.53 (qd, 3H, *J* = 2.4, 1.2 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 142.1 (dq, J = 24.2, 2.3 Hz), 137.4 (qd, J = 33.1, 2.6 Hz), 129.0 (q, J = 1.2 Hz), 128.2, 127.6, 126.5, 121.6 (qd, J = 278.6, 4.7 Hz), 16.8 (q, J = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 56.7, -60.1.

HRMS (EI) calcd for $C_8H_6F_4O_2S_2^+$ [M]⁺ 273.9740, found 273.9742.

(E)-1,1,1-Trifluoro-2-phenylhept-2-ene-3-sulfonyl Fluoride (5n)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **5n** as colorless liquid (34.3 mg, 55% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.52-7.39 (m, 3H), 7.28-7.22 (m, 2H), 2.90-2.80 (m, 2H), 1.82-1.69 (m, 2H), 1.49 (tq, 2H, *J* = 7.3, 7.3 Hz), 0.99 (t, 3H, *J* = 7.3 Hz).

¹³C NMR (101 MHz, CDCl₃) δ146.8 (dq, J = 19.0, 2.3 Hz), 141.7 (qd, J = 32.2, 1.4 Hz), 130.5 (q, J = 1.1 Hz), 130.0, 128.8, 128.4, 122.2 (qd, J = 279.1, 4.4 Hz), 31.5, 30.8 (q, J = 2.2 Hz), 22.7, 13.5.

¹⁹**F NMR** (282 MHz, CDCl₃) δ 62.5, -58.7.

HRMS (EI) calcd for $C_{13}H_{14}F_4O_2S^+$ [M]⁺ 310.0645, found 310.0648.

(*Z*)-1,1,1-Trifluoro-4,4-dimethyl-2-phenylpent-2-ene-3-sulfonyl Fluoride (50)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **50** as a white solid (19.9 mg, 32% yield).

m.p. 76.8–77.9 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.54-7.39 (m, 3H), 7.32-7.25 (m, 2H), 1.17 (d, 9H, *J* = 0.6 Hz).

¹³C NMR (101 MHz, CDCl₃) δ152.9 (dq, J = 14.1, 2.1 Hz), 141.5 (q, J = 33.2 Hz), 132.2 (q, J = 3.2 Hz), 131.1, 130.5, 128.3, 121.0 (q, J = 277.7 Hz), 40.6, 31.8 (d, J = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 69.4 (q, *J* = 19.8 Hz), -59.3 (d, *J* = 19.8 Hz). **HRMS** (ESI) calcd for C₁₃H₁₅F₄O₂S⁺ [M+H]⁺ 311.0723, found 311.0733.

(*E*)-4,4,4-Trifluoro-3-((8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14, 15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)but-2-ene-2-sulfo nyl Fluoride (5p)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **5p** as a white solid (54.4 mg, 61% yield).

m.p. 45.8-47.0 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, 1H, *J* = 8.2 Hz), 7.01 (d,1H, *J* = 8.2 Hz),

6.96 (s, 1H), 3.00-2.86 (m, 2H), 2.58-2.25 (m, 3H), 2.53 (q, 3H, *J* = 2.4 Hz), 2.24-1.98 (m, 4H), 1.74-1.41 (m, 6H), 0.93 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 220.7, 142.2 (qd, J = 35.2, 2.5 Hz), 142.0, 140.8 (dq, J = 24.9, 2.6 Hz), 136.8, 129.1, 127.6, 126.0, 125.4, 121.9 (qd, J = 279.0, 4.7 Hz), 50.5, 47.9, 44.3, 37.7, 35.8, 31.5, 29.1, 26.2, 25.4, 21.5, 16.6 (q, J = 2.6 Hz), 13.8.

¹⁹**F NMR** (282 MHz, CDCl₃) δ 57.6, -59.4.

HRMS (ESI) calcd for $C_{22}H_{25}F_4O_3S^+$ [M+H]⁺ 445.1455, found 445.1453.

(*E*)-4,4,4-Trifluoro-3-(4-methyl-2-oxo-2H-chromen-7-yl)but-2-ene-2-sulfon yl Fluoride (5q)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (20:1 petroleum ether/EtOAc) to afford **5q** as a white solid (46.9 mg, 67% yield).

m.p. 141.6-143.2 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.67 (d, 1H, *J* = 8.2 Hz), 7.24 (d, 1H, *J* = 1.5 Hz), 7.18 (dd, 1H, *J* = 8.2, 1.5 Hz), 6.38 (q, 1H, *J* = 1.2 Hz), 2.59 (q, 3H, *J* = 2.4 Hz), 2.47 (d, 3H, *J* = 1.2 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 159.9, 153.0, 151.6, 142.4 (dq, J = 24.5, 2.5 Hz),
140.1 (qd, J = 32.8, 2.6 Hz), 133.4 (q, J = 1.4 Hz), 124.9, 124.5, 121.5 (qd, J = 279.3, 4.4 Hz), 121.3, 117.5, 116.5, 18.5, 16.7 (q, J = 2.5 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.4, -59.0.

HRMS (ESI) calcd for $C_{14}H_{11}F_4O_4S^+$ [M+H]⁺ 351.0309, found 351.0299.

Isopropyl

(*E*)-2-Methyl-2-(4-(4-(1,1,1-trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)benzoy l)phenoxy)propanoate (5r)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford **5r** as a white solid (53.5 mg, 52% yield).

m.p. 60.1-61.4 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.80 (d, 2H, *J* = 8.3 Hz), 7.76 (d, 2H, *J* = 8.9 Hz), 7.36 (d, 2H, *J* = 8.3 Hz), 6.88 (d, 2H, *J* = 8.9 Hz), 5.09 (hept, 1H, *J* = 6.3 Hz), 2.58 (q, 3H, *J* = 2.3 Hz), 1.67 (s, 6H), 1.20 (d, 6H, *J* = 6.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 194.4, 173.0, 159.9, 141.8 (dq, *J* = 24.2, 2.4 Hz), 141.2 (qd, *J* = 32.8, 2.6 Hz), 139.5, 133.6, 132.1, 129.9, 129.6, 128.7, 121.7 (qd, *J* = 279.3, 4.1 Hz), 117.2, 79.4, 69.3, 25.3, 21.5, 16.7 (q, *J* = 2.5 Hz). ¹⁹**F NMR** (282 MHz, CDCl₃) δ 58.2, -59.0.

HRMS (ESI) calcd for $C_{24}H_{25}F_4O_6S^+$ [M+H]⁺ 517.1302, found 517.1295.

Synthesis

of

(*E*)-4-((4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-en-2-yl)sulfonyl)morphol ine (6)

A mixture of **3a** (62.1 mg, 0.2 mmol, 1.0 equiv.) and TBAI (88.7 mg, 0.24 mmol) in acetone (1 mL) was heated to reflux for 4 h. The solvent was evaporated to afford crude sulfonic acid. Then PPh₃ (104.9 mg, 0.4 mmol), anhydrous CH₂Cl₂ (1 mL), and SOCl₂ (21.8 μ L, 0.3 mmol) was added at 0 °C. The mixture was stirred at this temperature for 2 h. To the mixture were added Et₃N (83.0 μ L, 0.6 mmol) and morpholine (26.1 μ L). The reaction mixture was stirred at room

temperature for 3 h. EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2×8 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford **6** (49.9 mg, 68% yield) as a pale-yellow solid.

m.p. 135.4–137.0 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.14 (d, 2H, *J* = 8.7 Hz), 6.92 (d, 2H, *J* = 8.7 Hz), 3.82 (s, 3H), 3.65-3.57 (m, 4H), 3.08-2.99 (m, 4H), 2.36 (q, 3H, *J* = 2.5 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 160.0, 144.9 (q, *J* = 2.2 Hz), 137.1 (q, *J* = 30.8 Hz), 130.5, 123.8 (q, *J* = 1.1 Hz), 122.7 (q, *J* = 278.9 Hz), 113.4, 66.6, 55.1, 45.3, 16.9 (q, *J* = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.6 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₅H₁₉F₃NO₄S⁺ [M+H]⁺ 366.0981, found 366.0982.

Synthesis

(*E*)-1-((3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-en-2-yl)sulfonyl)-1*H*-imidaz ole (7)

A mixture of **5f** (60.4 mg, 0.2 mmol, 1.0 equiv.), imidazole (20.4 mg, 0.3 mmol), and Cs_2CO_3 (130.3 mg, 0.4 mmol) in CH₃CN (1 mL) was stirred at room temperature for 1 h. EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 8 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **7** (33.5 mg, 48% yield) as a white solid.

of

m.p. 64.3–66.5 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.60-7.58 (m, 1H), 7.42 (d, 2H, *J* = 8.6 Hz), 7.14-7.12 (m, 1H), 7.09 (d, 2H, *J* = 8.6 Hz), 7.06 (dd, 1H, *J* = 1.5, 1.4 Hz), 2.34 (q, 3H, *J* = 2.3 Hz).

¹³**C NMR** (101 MHz, CDCl₃) δ 145.1 (q, J = 2.2 Hz), 139.8 (q, J = 32.2 Hz), 137.1, 136.4, 131.5, 130.1, 128.8, 128.3 (J = 1.2 Hz), 121.7 (q, J = 279.1 Hz), 117.5, 16.1 (q, J = 2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.2 (d, *J* = 2.3 Hz).

HRMS (ESI) calcd for C₁₃H₁₁ClF₃N₂O₂S⁺ [M+H]⁺ 351.0176, found 351.0174.

Synthesis of (E)-3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl azide (8)

A mixture of **5f** (60.4 mg, 0.2 mmol, 1.0 equiv.), TMSN₃ (40 μ L, 0.3 mmol), and DBU (6.0 μ L, 0.04 mmol) in CH₃CN (1 mL) was stirred at room temperature for 45 min. EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 8 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford **8** (46.0 mg, 71% yield) as a white solid.

m.p. 61.5–62.7 °C.

¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, 2H, J = 8.5 Hz), 7.19 (d, 2H, J = 8.5 Hz),
2.51 (q, 3H, J = 2.4 Hz).

¹³**C** NMR (101 MHz, CDCl₃) δ 146.0 (q, J = 2.2 Hz), 138.7 (q, J = 32.2 Hz), 136.3, 130.3, 128.9 (q, J = 1.4 Hz), 128.8, 122.0 (q, J = 279.1 Hz), 16.8 (q, J =

2.8 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.1 (q, J = 2.4 Hz). HRMS (ESI) calcd for C₁₀H₈ClF₃NO₂S⁺ [M-N₂+H]⁺ 297.9911, found 297.9907.

SynthesisofPhenyl(*E*)-3-(4-chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonate (9)

A mixture of **3f** (60.4 mg, 0.2 mmol, 1.0 equiv.), phenol (20.7 mg, 0.22 mmol), and Cs_2CO_3 (130.3 mg, 0.4 mmol) in CH₃CN (1 mL) was stirred at room temperature for 3 h. EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 × 8 mL). The combined organic layers were washed with brine, dried over Na₂SO₄, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford **9** (62.5 mg, 83% yield) as a white solid. **m.p.** 82.4–84.1 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.47-7.34 (m, 3H), 7.23 (d, 2H, *J* = 8.6 Hz), 7.12-7.05 (m, 2H), 6.73 (d, 2H, *J* = 8.6 Hz), 2.59 (q, 3H, *J* = 2.5 Hz).

¹³C NMR (101 MHz, CDCl₃) δ 148.7, 142.2 (q, J = 2.2 Hz), 139.8 (q, J = 31.7 Hz), 135.5, 130.0, 129.8, 129.4 (q, J = 1.1 Hz), 128.2, 127.7, 122.2, 122.0 (q, J = 279.0 Hz), 17.0 (q, J = 2.9 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -59.1 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₆H₁₂CIF₃NaO₃S⁺ [M+Na]⁺ 399.0040, found 399.0038.

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (100:1 to 50:1 petroleum ether/EtOAc) to afford **S1** (25.5 mg, 37%) and **S2** (24.5 mg, 39% yield) as white solids.

Methyl (*E*)-3,3,3-Trifluoro-2-([1,1'-biphenyl]-4-yl)prop-1-ene-1-sulfonate (S1)

m.p. 117.9–119.3 °C.

¹**H NMR** (300 MHz, CDCl₃) δ 7.69 (d, 2H, *J* = 8.5 Hz), 7.62 (d, 2H, *J* = 6.9 Hz), 7.51-7.35 (m, 4H), 3.39 (t, 1H, *J* = 7.2 Hz), 7.07 (q, 1H, *J* = 1.3 Hz), 3.79 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.4, 143.3 (q, *J* = 32.0 Hz), 139.8, 129.3, 129.2 (q, *J* = 5.4 Hz), 128.9, 128.0, 127.2, 127.1, 126.7, 121.6 (q, *J* = 276.6 Hz), 56.7.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -67.2.

HRMS (ESI) calcd for C₁₆H₁₃F₃NaO₃S⁺ [M+Na]⁺ 365.0430, found 365.0423.

(*E*)-4-(1,1,1,4,4,4-Hexafluoro-3-methylbut-2-en-2-yl)-1,1'-biphenyl (S2)

¹**H NMR** (300 MHz, CDCl₃) δ 7.65 (d, 2H, *J* = 8.3 Hz), 7.61 (d, 2H, *J* = 8.0 Hz),

7.46 (t, 2H, *J* = 7.5 Hz), 7.42-7.34 (m, 3H), 6.52 (qq, 1H, *J* = 7.3, 1.4 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -57.9 (dq, J = 7.3, 1.4 Hz), -68.1.

The ¹H NMR and ¹⁹F NMR spectral data correspond well to those previously reported.^{15a}

(E)-(1,1,1-Trifluoro-3-(phenylsulfonyl)but-2-en-2-yl)benzene (S3)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford **S3** as a white solid (20.4 mg, 31% yield).

¹**H NMR** (300 MHz, CDCl₃) δ 7.50 (tt, 1H, *J* = 7.2, 1.6 Hz), 7.41-7.27 (m, 5 H), 7.20 (dd, 2H, *J* = 7.8, 7.2 Hz), 6.94 (d, 2H, *J* = 7.8 Hz), 2.50 (q, 3H, *J* = 2.5 Hz). ¹³**C NMR** (101 MHz, CDCl₃) δ 148.3 (q, *J* = 2.3 Hz), 139.5, 138.4 (q, *J* = 31.5 Hz), 133.3, 130.6 (q, *J* = 1.3 Hz), 129.8, 128.9, 128.8, 127.8, 127.6, 122.4 (q, *J* = 278.2 Hz), 15.9 (q, *J* = 2.7 Hz).

¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.9 (q, *J* = 2.5 Hz).

HRMS (ESI) calcd for C₁₆H₁₃F₃NaO₂S⁺ [M+Na]⁺ 349.0481, found 349.0480.

VI. Single Crystal X-Ray Data

Structure of 3a

CDCC	2083910
Identification code	3a
Empirical formula	$C_{12}H_{13}F_{3}O_{4}S$
Formula weight	310.28
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ₁
a/Å	10.086(2)
b/Å	5.508(2)
c/Å	12.766(3)
α/°	90
β/°	108.14(3)
γ/°	90
Volume/Å ³	674.0(3)
Z	2
ρ _{calc} g/cm ³	1.529
µ/mm ⁻¹	0.286
F (000)	320.0
Crystal size/mm ³	0.13 × 0.12 × 0.10
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	4.25 to 55.036
Index ranges	-13 ≤ h ≤ 13, -4 ≤ k ≤ 7, -16 ≤ l ≤ 15
Reflections collected	5559
Independent reflections	2333 [R_{int} = 0.0450, R_{sigma} = 0.0529]
Data/restraints/parameters	2333/1/185
Goodness-of-fit on F ²	1.038
Final R indexes [I>=2σ (I)]	R ₁ = 0.0576, wR ₂ = 0.1507
Final R indexes [all data]	R ₁ = 0.0709, wR ₂ = 0.1614
Largest diff. peak/hole / e Å ⁻³	0.81/-0.27

S76

Structure of 3al

CDCC Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å α/° β/° γ/° Volume/Å³ Ζ Density (calculated) Absorption coefficient F (000) Crystal size/mm³ 2O range for data collection/° Index ranges **Reflections collected** Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma (I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å-3

2083911 3al C₁₄H₁₇F₃O₃S 322.33 170.00(10) K monoclinic P 1 21/c 1 6.8048(3) 12.4774(5) 17.3856(6) 90 93.185(3) 90 1473.87(10) 4 1.453 Mg/m³ 0.259 mm⁻¹ 672 0.38 × 0.32 × 0.26 3.265 to 27.484 -8<=h<=8, -16<=k<=16, -22<=l<=22 25409 3377 [R(int) = 0.0533] 3377/0/194 1.041 R1 = 0.0347, wR2 = 0.0899 R1 = 0.0401, wR2 = 0.0935

0.337 and -0.486 e Å⁻³

Structure of 3am

CDCC

Identification code Empirical formula Formula weight Temperature/K Crystal system Space group a/Å b/Å c/Å α/° β/° γ/° Volume/Å³ Ζ $\rho_{calc}g/cm^3$ µ/mm⁻¹ F (000) Crystal size/mm³ Radiation 2O range for data collection/° Index ranges **Reflections collected** Independent reflections Data/restraints/parameters Goodness-of-fit on F² Final R indexes $[I \ge 2\sigma (I)]$ Final R indexes [all data] Largest diff. peak/hole / e Å-3

2083912

3am $C_{19}H_{21}F_{3}O_{3}SSi$ 414.51 193.0 monoclinic P2₁/c 7.4060(3) 15.9894(6) 34.9562(12) 90 94.362(3) 90 4127.4(3) 8 1.334 1.519 1728.0 0.05 × 0.01 × 0.01 GaK α (λ = 1.34139) 6.526 to 110.184 $-9 \le h \le 8$, $-19 \le k \le 19$, $-40 \le l \le 42$ 46817 7828 [R_{int} = 0.0959, R_{sigma} = 0.0793] 7828/0/495 1.025 R₁ = 0.0718, wR₂ = 0.1544 R₁ = 0.1485, wR₂ = 0.1955 0.27/-0.54

Structure of 50

2083913

CDCC Identification code 50 **Empirical formula** $C_{13}H_{14}F_4O_2S$ 310.30 Formula weight Temperature/K 273.15 Crystal system monoclinic Pc Space group a/Å 11.1315(7) b/Å 8.3917(5) c/Å 15.5384(10) α/° 90 β/° 109.425(3) γ/° 90 Volume/Å³ 1368.85(15) Ζ 4 $\rho_{calc}g/cm^3$ 1.506 µ/mm⁻¹ 2.556 F (000) 640.0 Crystal size/mm³ 0.11×0.10×0.09 Radiation MoK α (λ = 1.54178) 2O range for data collection/° 4.25 to 55.036 $-13 \le h \le 12, -9 \le k \le 10, -16 \le l \le 18$ Index ranges **Reflections collected** 8209 Independent reflections 3662 [R_{int} = 0.0193, R_{sigma} = 0.0321] Data/restraints/parameters 3662/3/367 Goodness-of-fit on F² 1.068 Final R indexes $[I \ge 2\sigma (I)]$ $R_1 = 0.0246$, $wR_2 = 0.0623$ Final R indexes [all data] R₁ = 0.0249, wR₂ = 0.0625 Largest diff. peak/hole / e Å-3 0.21/-0.24

VII. Mechanistic studies

(1) Standard reaction in the presence of 1.5 equiv. of TEMPO

(2) Standard reaction in the presence of 4 equiv. of TEMPO

(3) Standard reaction in the presence of 1.5 equiv. of TEMPO

S82

(4) Standard reaction in the presence of 4 equiv. of TEMPO

VIII. Computational studies

8.1 Computational details

All calculations were carried out by using the Gaussian 09 suite of computational programs.⁸ The obtained transition states were fully optimized at the DFT level using the M06-L functional,⁹ which has been found reliable in completing the thermochemistry calculations of transition-metal-containing systems.¹⁰ The standard 6-311G^{**} basis set¹¹ was applied for all atoms except the Cu atom, in which LANL2DZ ECP was used.¹² Frequencies were analytically computed at the same level of theory to get the thermodynamic corrections and to confirm whether the structures are the corresponding transition states (only one imaginary frequency). Electronic energies were obtained from single-point calculations on the M06-L/LANL2DZ(Cu)-6-311G^{**} geometries using M06-L functional with the def2-TZVPP basis set for all atoms.¹³ The obtained Gibbs free energies in the gas phase were reported herein. All energies were reported in kcal/mol. Visualization was completed using VMD (Visual Molecular Dynamics)¹⁴ and CLYview software.¹⁵

Previous studies demonstrated that a trifluoromethyl radical and bpyCu(CF₃)² species were generated when bpyCu(CF₃)₃ was exposed to light.¹⁶ Moreover, the binding of sulfate to the copper species were found to lower the overall activation energy and accelerate the reaction rate. In view that hydrogen sulfate could be generated under our reaction conditions, we use bpyCu(CF₃)(OSO₃H) and trifluoromethyl radical, together with prop-1-yn-1-ylbenzene **1b** and methyl prop-2-ene-1-sulfonate **2a**, as the starting point in this calculation (Figure S1). The computational results are reported herein.

S84

Figure S1. Model catalysts and substrates.

8.2. Computational results and discussion

8.2.1 The potential energy surface leading to the major product

As shown in Figure S2, the alkoxysulfonyltrifluoromethylation process proceeded facilely through the addition of trifluoromethyl radical into the unsaturated double or triple bond. The activation energy of **TS1**, which corresponded to the addition of CF_3 • into allyl sulfonate, was calculated to be 9.2 kcal/mol. This was 0.8 kcal/mol lower than the energy of **TSA** that was formed from the addition of CF_3 • to alkynyl carbon. This disparity might originate from the steric effect of the methyl group on the alkyne and allow for the former process more feasible herein. Importantly, the resulting intermediates after the addition steps, **INT1** and **INTA**, were far more stable than the corresponding transition states **TS1** and **TSA** by > 30 kcal/mol. Such high backward energy rendered the addition processes irreversible.

Along the pathway of product formation, a secondary alkyl radical species **INT1** could be obtained *via* **TS1**. This transition state adopted a planar structure to accommodate the unpaired electron. Subsequently, sulfonyl radical **INT2** could be readily accessed *via* β -fragmentation by passing the energy barrier of **TS2** in 12.2 kcal/mol. Free sulfonyl radical **INT2**, together with 4,4,4-trifluoromethyl-1-butene, was found to be more stable than **INT1** by 3.0 kcal/mol. The addition of sulfonyl

radical **INT2** onto the carbon atom adjacent to methyl in alkyne required activation energy of 12.5 kcal/mol relative to **INT2**. Then, a linear allenyl radical intermediate **INT3** was obtained, which would recombine with the copper(II) species to form intermediate **INT4**_E. This intermediate was 37.9 kcal/mol more stabilized than the starting point. Eventually, the reductive elimination proceeded through **TS4**_E in energetic barrier of 12.3 kcal/mol to afford the Cu(I) species **INT5**_E coordinated to the double bond in product.

In conclusion, the formation of the product could be achieved *via* the sequential generation of sulfonyl radical, addition of sulfonyl radical into the triple bond, and the reductive elimination. Among these, the preference of the S-addition product was mainly determined by the energy difference between **TS1** and **TSA**, which would irreversibly lead to the corresponding product. The following steps could facilely proceed, because the activation energy barriers of the following transition states were all less than 13 kcal/mol.

Figure S2. The potential energy surface leading to the products.

8.2.2 Other competing reaction pathways

Theoretically, both *sp*-hybridized carbons on the alkynyl substrate were prone to be attacked by a radical species (**Figure S4**). Besides **TSA** and **TS3**, the transition states **TS1**' and **TS3**' were depicted by the addition of CF₃• and MeOSO₂• into the alkynyl carbon adjacent to the phenyl group, respectively. The latter cases were calculated to be more energy-demanding with 15.0 kcal/mol for **TS1**' and -12.4 kcal/mol for **TS3**', respectively.

Figure S4. Comparison of the radical addition steps.

Furthermore, the transition states of reductive elimination steps, which cor-

responded to the formation of E/Z isomers in this difunctionalization process, were shown in **Figure S5**. No matter the reactions were triggered by CF₃ radical or sulfonyl radical, the transition states leading to the formation of *E*-isomers were uniformly favored by approximately 1.5 kcal/mol. This was consistent with the experimental observation.

Figure S5. Comparison of the reductive elimination steps.

8.3. Cartesian coordinates

Alkyne

С	0.749193	1.207135	-0.000558
С	0.032248	-0.000210	-0.000987
С	0.749490	-1.207353	-0.000553
С	2.136429	-1.202745	0.000396
С	2.835822	0.000179	0.000904
С	2.136098	1.202932	0.000394
н	0.201512	2.143618	-0.000834
Н	0.202021	-2.143965	-0.000825
н	2.675699	-2.144732	0.000821
Н	3.920863	0.000338	0.001751
Н	2.675091	2.145079	0.000817
С	-1.388897	-0.000232	-0.001295

С	-2.598164	0.000415	-0.000915
С	-4.043428	0.000215	0.001224
Н	-4.440892	-0.424369	0.927931
Н	-4.443056	1.013570	-0.094173
н	-4.443982	-0.591554	-0.827149

CF₃ radical

С	0.000000	0.000000	0.335151
F	0.000000	1.256101	-0.074478
F	1.087815	-0.628050	-0.074478

Sulfonate

С	-3.287458	-0.365804	0.257941
н	-3.232097	-1.365186	0.679921
Н	-4.201581	0.189128	0.433979
С	-2.284177	0.151336	-0.441410
Н	-2.352376	1.158769	-0.845610
С	-1.013989	-0.575876	-0.709578
н	-1.033294	-1.606909	-0.352740
Н	-0.735206	-0.561050	-1.766434
S	0.358341	0.230062	0.136781
0	0.292230	-0.008985	1.562325
0	0.516825	1.577207	-0.370080
0	1.521824	-0.724376	-0.512408
С	2.853199	-0.409999	-0.078057
Н	3.500935	-1.117513	-0.591184
н	3.120648	0.610355	-0.362293
Н	2.947036	-0.537289	1.003791

С	1.132310	1.122751	0.501153
Н	1.138094	1.493178	-0.520117
н	1.626304	1.738076	1.244217
С	0.365458	0.078683	0.855991
Н	0.290449	-0.221317	1.897578
С	-0.376692	-0.745930	-0.128296
н	-0.128640	-0.508500	-1.164850
Н	-0.235682	-1.820729	0.022616
S	-2.163924	-0.540059	0.008021
0	-2.563107	-0.537321	1.400903
0	-2.821806	-1.409748	-0.941885
0	-2.201528	0.997674	-0.549660
С	-3.410610	1.713907	-0.259896
Н	-3.259260	2.711179	-0.666283
Н	-4.268096	1.244017	-0.748782
Н	-3.576537	1.767660	0.818262
С	3.274535	0.078547	-0.094070
F	3.853234	-0.375713	1.005296
F	2.928053	-0.933002	-0.880991
F	4.087343	0.902581	-0.739321

INT1

С	1.414553	0.552464	0.459545
Н	0.975444	1.222329	-0.285697
Н	1.574070	1.133482	1.372331
С	0.543892	-0.624127	0.706885
Н	0.576826	-1.119067	1.671149
С	-0.397214	-1.118103	-0.306046
Н	-0.141994	-0.828379	-1.328217
Н	-0.544850	-2.201119	-0.273031

S	-2.083143	-0.475599	-0.040215
0	-2.473082	-0.666708	1.341109
0	-2.956125	-0.893156	-1.115510
0	-1.679010	1.103790	-0.252166
С	-2.735069	2.029662	0.047334
Н	-2.312973	3.017560	-0.121837
Н	-3.586399	1.873807	-0.620047
Н	-3.049350	1.930642	1.089127
С	2.780434	0.147753	-0.046711
F	3.417713	-0.648681	0.829225
F	2.691122	-0.532077	-1.208322
F	3.565129	1.214427	-0.266885

TSA

С	-1.298391	0.553304	-0.132812
С	-1.833249	-0.239380	-1.165590
С	-2.086766	0.801084	1.006094
С	-3.111291	-0.763188	-1.057419
С	-3.364463	0.273247	1.102916
С	-3.882770	-0.509207	0.074087
Н	-1.226265	-0.438936	-2.042102
Н	-1.679015	1.409611	1.805924
Н	-3.509409	-1.376126	-1.859369
Н	-3.960947	0.471824	1.987284
Н	-4.883191	-0.920925	0.154496
С	0.005291	1.082962	-0.240639
С	1.193946	1.368821	-0.305569
С	2.224324	-0.718611	0.195229
F	3.121286	-0.999028	-0.751497
F	2.836998	-0.651988	1.375369

F	1.292184	-1.658200	0.222512
С	2.435248	2.105153	-0.486338
Н	3.050973	2.073738	0.416875
Н	3.031049	1.685390	-1.300727
Н	2.231303	3.153250	-0.719586
INTA			
С	-1.298772	0.040594	0.172608
С	-2.036328	1.220634	-0.144314
С	-2.017898	-1.187634	0.279892
С	-3.401116	1.161501	-0.333566
С	-3.382537	-1.217748	0.085436
С	-4.087779	-0.050694	-0.221766
Н	-1.503412	2.160961	-0.234321
Н	-1.470129	-2.093679	0.514533
Н	-3.944959	2.069753	-0.573024
Н	-3.911919	-2.161403	0.171820
Н	-5.161200	-0.085661	-0.372798
С	0.058382	0.077577	0.355285
С	1.327521	0.120612	0.645255
С	2.354410	-0.078058	-0.438051
F	3.158704	1.002100	-0.547637
F	3.162918	-1.122763	-0.153159
F	1.819863	-0.303239	-1.641726
С	1.905724	0.358339	2.014648
Н	2.523344	-0.490347	2.321115
Н	2.547537	1.243632	2.010887
н	1.117731	0.501117	2.751931

С	-0.916785	0.484406	-0.116949
С	-1.865875	1.342332	0.460639
С	-1.347145	-0.744728	-0.632972
С	-3.202847	0.978483	0.516702
С	-2.687478	-1.100496	-0.576495
С	-3.619936	-0.243896	-0.001636
н	-1.535721	2.294122	0.863156
н	-0.627427	-1.415732	-1.087311
н	-3.923205	1.652676	0.968702
н	-3.004714	-2.054587	-0.984662
н	-4.666278	-0.527273	0.043339
С	0.455500	0.911941	-0.183131
С	1.344371	1.760836	-0.273472
С	1.625199	-1.020182	0.187288
F	1.044390	-1.780150	1.110146
F	1.778799	-1.727408	-0.935208
F	2.823502	-0.636131	0.621397
С	2.578083	2.502904	-0.353916
Н	2.673414	3.210443	0.474806
Н	3.442013	1.830028	-0.316290
Η	2.643168	3.073911	-1.285095
TS2			
С	-1.857975	0.930356	-0.732457
н	-2.611090	1.670974	-1.030039
н	-1.474544	0.465403	-1.644726
С	-0.765147	1.558018	0.057339
н	-0.989407	1.822764	1.087905
С	0.522514	1.672696	-0.404879

S94

1.592031

-1.470419

Н

0.723344

Н	1.244295	2.249216	0.165574
S	1.562000	-0.410634	-0.099882
0	1.072803	-1.278559	-1.156606
0	1.561301	-0.815706	1.301203
0	3.127184	-0.057020	-0.550651
С	3.969348	0.445489	0.489466
Н	4.946779	0.581654	0.029639
Н	3.612609	1.409997	0.866019
Н	4.035922	-0.261625	1.318081
С	-2.585994	-0.128252	0.060136
F	-1.746921	-1.074097	0.506700
F	-3.196906	0.402110	1.139475
F	-3.530251	-0.730217	-0.678743

Side-product

С	0.445703	0.286203	-0.791061
Н	0.596685	1.368092	-0.825405
Н	0.236778	-0.049409	-1.813053
С	1.642680	-0.408332	-0.229444
Н	1.574329	-1.491916	-0.153498
С	2.744045	0.215601	0.168709
Н	2.838658	1.296385	0.110154
Н	3.594038	-0.326526	0.566912
С	-0.806632	0.028863	0.006466
F	-1.125342	-1.281275	0.027469
F	-0.680513	0.425167	1.283835
F	-1.860285	0.686036	-0.512763

INT2

S	0.579816	0.059769	-0.265679
		S95	

0	0.397425	1.442938	0.187213
0	1.654576	-0.791607	0.229495
0	-0.811297	-0.791804	0.073674
С	-2.028328	-0.037275	0.038315
Н	-2.806370	-0.746651	0.315069
Н	-1.995517	0.790914	0.748010
Н	-2.230841	0.346869	-0.965152

TS3

С	1.466237	0.779304	0.026551
С	1.952372	0.285014	1.255390
С	2.277325	0.665327	-1.122830
С	3.201020	-0.307638	1.321808
С	3.525879	0.074134	-1.040343
С	3.992843	-0.414712	0.179014
Н	1.321519	0.355537	2.134518
Н	1.905072	1.044131	-2.068935
Н	3.561420	-0.694091	2.269171
Н	4.141668	-0.008673	-1.929833
Н	4.971860	-0.878615	0.238411
С	0.187037	1.347119	-0.055995
С	-1.030585	1.588639	-0.098582
С	-2.166834	2.505137	-0.182248
Н	-2.807161	2.255194	-1.032410
Н	-2.781265	2.446650	0.719991
Н	-1.817443	3.532740	-0.300598
S	-2.157641	-0.454883	0.138314
0	-2.884784	-0.815292	-1.081439
0	-2.805956	-0.490763	1.442198
0	-0.866927	-1.485180	0.301630

S96

С	-0.271858	-1.915591	-0.926338
Н	0.693098	-2.341599	-0.650362
Н	-0.896129	-2.664978	-1.417710
н	-0.109678	-1.078694	-1.612950
TS3'			
С	-1.188853	0.528357	-0.214170
С	-2.123429	1.248450	0.546251
С	-1.597777	-0.640552	-0.866648
С	-3.436153	0.812575	0.640137
С	-2.915051	-1.066964	-0.768549
С	-3.837285	-0.346221	-0.017931
Н	-1.803194	2.150944	1.057284
Н	-0.884768	-1.208811	-1.453070
Н	-4.148478	1.379184	1.231146
Н	-3.221092	-1.971786	-1.283050
Н	-4.864938	-0.686416	0.056378
С	0.164249	1.033694	-0.301673
С	0.883300	2.059843	-0.281338
С	2.046581	2.906874	-0.302353
Н	2.061599	3.544453	-1.190952
Н	2.089869	3.554265	0.578142
Н	2.951175	2.285428	-0.310851
S	1.606236	-0.734850	-0.354316
0	2.899804	-0.171340	0.023412
0	1.489267	-1.631260	-1.495800
0	1.033679	-1.642286	0.917121
С	1.187315	-1.039523	2.202657
н	0.774627	-1.755217	2.911591
н	2.240357	-0.853361	2.425231

S97

Н	0.625690	-0.101188	2.271037
INT3			
C.	1 428385	0 649638	-0 116800
C C	2 029362	0 594980	1 169867
C	2 199871	0.240141	-1 237888
C	3 326664	0.145027	1 31///56
C	3 495963	-0 205891	-1 069549
C	4.070081	0.256320	0 202207
	4.070001	-0.230320	2 021002
	1.443971	0.094332	2.001992
	1.755000	0.265902	-2.220292
н	3.768241	0.099096	2.304750
Н	4.071098	-0.516699	-1.935628
Н	5.089384	-0.606237	0.325861
С	0.132346	1.107155	-0.267871
С	-1.162296	1.170782	-0.262518
С	-2.061752	2.323679	-0.580428
Н	-2.722575	2.075994	-1.415508
Н	-2.692830	2.566065	0.278772
н	-1.473688	3.201512	-0.844379
S	-2.116748	-0.313671	0.220821
0	-2.873811	-0.768663	-0.929946
0	-2.752822	-0.047654	1.488235
0	-0.938277	-1.384699	0.548775
С	-0.446517	-2.154926	-0.558871
н	0.424772	-2.683139	-0.174011
н	-1.203110	-2.862740	-0.900394
н	-0.144330	-1.513022	-1.391040

Cu	-0.390360	-0.368312	-0.529671
N	0.924849	1.228414	-0.680604
С	0.570585	2.464498	-1.037723
Н	-0.463767	2.581243	-1.346577
С	1.458125	3.530958	-0.987295
н	1.130103	4.520669	-1.280200
С	2.751412	3.296995	-0.542927
н	3.470258	4.107029	-0.483021
С	3.116748	2.013542	-0.161642
н	4.118515	1.817669	0.200551
С	2.174174	0.991261	-0.239796
Ν	1.405971	-1.259148	0.041346
С	2.442567	-0.402139	0.162296
С	3.672738	-0.831994	0.655397
Н	4.498340	-0.137016	0.746960
С	3.828620	-2.155473	1.038161
Н	4.779301	-2.501397	1.428984
С	2.753149	-3.023622	0.919020
Н	2.828022	-4.063752	1.211839
С	1.557864	-2.532577	0.412389
н	0.685396	-3.164050	0.292995
С	-1.671522	-1.881217	-0.769742
F	-1.157768	-3.150166	-0.826694
F	-2.570367	-1.920918	0.277170
F	-2.417301	-1.742675	-1.884115
0	-1.974770	0.941292	-0.564116
S	-2.087845	1.312940	0.910309
0	-2.229674	2.728025	1.135750
0	-1.016454	0.594325	1.624596
0	-3.502034	0.673565 ^{S99}	1.375502

Н	-3.470333	-0.266439	1.138875
---	-----------	-----------	----------

 $INT4_{E}$

Cu	0.482468	0.183517	-0.517239
Ν	1.455588	2.072432	0.482767
С	1.577219	3.298030	-0.022722
н	0.919464	3.538979	-0.853332
С	2.487663	4.233490	0.450475
Н	2.545407	5.216949	-0.000354
С	3.316946	3.865309	1.500433
н	4.048072	4.559374	1.900639
С	3.210500	2.586268	2.022819
Н	3.871394	2.273997	2.821147
С	2.266986	1.706122	1.486604
Ν	1.358133	-0.515883	1.233448
С	2.142863	0.309825	1.956251
С	2.830288	-0.162639	3.073848
н	3.434923	0.510681	3.666867
С	2.742086	-1.501111	3.421899
Н	3.279288	-1.875980	4.286314
С	1.974495	-2.348945	2.639736
Н	1.897758	-3.408671	2.848531
С	1.299650	-1.812846	1.553655
Н	0.719555	-2.441363	0.889483
С	-0.263448	0.665370	-2.306976
F	0.155312	-0.257920	-3.179979
F	-1.571134	0.855512	-2.534281
F	0.351161	1.835395	-2.613943
С	-1.390834	-0.093791	0.060025
С	-2.154105	0.971255 _{S100}	0.283726

С	-1.574224	-1.514718	0.263450
С	-1.891320	-2.023929	1.535547
С	-1.323129	-2.412654	-0.786199
С	-1.999862	-3.390231	1.733643
С	-1.434487	-3.778848	-0.579744
С	-1.773411	-4.271230	0.677890
Н	-2.055076	-1.334607	2.356820
Н	-1.010980	-2.031081	-1.752124
Н	-2.258765	-3.771352	2.715893
Н	-1.231905	-4.460629	-1.398105
Н	-1.848269	-5.341668	0.839199
0	2.328160	0.151416	-1.357006
S	2.806565	-1.282270	-1.490228
0	3.233674	-1.418744	-3.061093
0	1.684080	-2.204545	-1.362253
0	4.000354	-1.521798	-0.698100
н	4.087839	-0.981360	-3.161778
С	-1.811209	2.407855	0.066582
Н	-2.598410	2.914004	-0.495720
Н	-1.686953	2.934397	1.016972
Н	-0.884624	2.478306	-0.497658
S	-3.863305	0.785840	0.804289
0	-4.118300	1.746558	1.862248
0	-4.290046	-0.588042	0.960659
0	-4.512943	1.360345	-0.590535
С	-5.930313	1.173220	-0.704663
н	-6.458988	1.705708	0.090854
н	-6.199243	1.595414	-1.670245
н	-6.182286	0.110740	-0.677151

$\mathsf{TS4}_\mathsf{E}$

Cu	0.593315	0.115089	-0.516052
Ν	1.494126	2.101192	0.089448
С	1.667625	3.160412	-0.700027
Н	1.052955	3.191179	-1.596181
С	2.575848	4.173993	-0.428556
Н	2.678382	5.012250	-1.107117
С	3.345323	4.071260	0.722144
Н	4.072685	4.835604	0.973356
С	3.188975	2.961748	1.537393
Н	3.810058	2.843854	2.416394
С	2.255422	1.982998	1.189998
Ν	1.421382	-0.261427	1.371743
С	2.108391	0.731408	1.965569
С	2.690992	0.550875	3.219913
Н	3.213484	1.365062	3.706021
С	2.594854	-0.684322	3.842613
Н	3.044574	-0.839068	4.817466
С	1.934533	-1.717489	3.193950
Н	1.864143	-2.708054	3.626264
С	1.361260	-1.460683	1.956653
Н	0.862999	-2.237544	1.387640
С	-0.683142	0.039364	-2.259868
F	0.122850	-0.826854	-2.883226
F	-1.915383	-0.219858	-2.719489
F	-0.372494	1.286139	-2.676848
С	-1.354557	-0.093868	-0.332503
С	-2.151011	0.968431	-0.104357
С	-1.496293	-1.461478	0.160229
С	-1.805190	-1.641208 S102	1.521605

С	-1.258395	-2.592584	-0.631283
С	-1.936052	-2.912612	2.053339
С	-1.381469	-3.862828	-0.088596
С	-1.727723	-4.029470	1.248480
Н	-1.931822	-0.770353	2.158533
Н	-0.960502	-2.485595	-1.665516
Н	-2.190352	-3.031132	3.101285
Н	-1.191165	-4.727420	-0.714481
Н	-1.818603	-5.026602	1.666503
0	2.441098	-0.029335	-1.438646
S	2.877299	-1.466051	-1.303754
0	3.164032	-1.959438	-2.842572
0	1.745582	-2.301323	-0.898465
0	4.128918	-1.603478	-0.578927
Н	4.031002	-1.614742	-3.087171
С	-1.883566	2.394319	-0.455564
Н	-2.436514	2.700927	-1.347369
Н	-2.196512	3.049594	0.361505
Н	-0.820516	2.542123	-0.619361
S	-3.747000	0.729826	0.679618
0	-3.708899	1.270738	2.026579
0	-4.312164	-0.581247	0.443247
0	-4.548306	1.796483	-0.280355
С	-5.976863	1.681445	-0.217713
Н	-6.338828	1.875198	0.795707
Н	-6.356177	2.444368	-0.893856
Н	-6.299376	0.691728	-0.547589

INT5_E

Cu	0.442646	-0.417364	-0.269676
		S103	

Ν	2.411742	-0.011910	-1.025209
С	2.837583	-0.337484	-2.245707
Н	2.141834	-0.912492	-2.851032
С	4.089693	0.019419	-2.724677
Н	4.396741	-0.269854	-3.722421
С	4.926009	0.750577	-1.890153
Н	5.909973	1.058736	-2.226966
С	4.496209	1.070911	-0.611907
Н	5.144379	1.623503	0.056608
С	3.227332	0.663367	-0.196507
Ν	1.488656	0.375267	1.418379
С	2.708491	0.885133	1.170531
С	3.438076	1.539744	2.160386
Н	4.414987	1.954689	1.946187
С	2.896820	1.651072	3.432456
Н	3.447709	2.159518	4.216506
С	1.651540	1.095326	3.687685
н	1.199916	1.146019	4.670773
С	0.980771	0.465943	2.648174
н	0.006817	0.013661	2.792695
С	-1.597794	-0.968159	-2.218927
F	-2.163514	-2.116297	-1.856592
F	-2.393216	-0.402964	-3.159384
F	-0.436165	-1.272815	-2.840257
С	-1.431854	-0.027154	-1.039986
С	-0.621291	1.105924	-1.188430
С	-2.554639	-0.114029	-0.057925
С	-2.524328	-0.972731	1.038074
С	-3.683463	0.675797	-0.291269
С	-3.600702	-1.012962 _{S104}	1.914358

С	-4.761948	0.623591	0.583360
С	-4.718506	-0.215017	1.692221
Н	-1.651454	-1.589172	1.221949
Н	-3.708461	1.330889	-1.157619
Н	-3.560857	-1.675185	2.772588
Н	-5.636863	1.238679	0.396893
Н	-5.558068	-0.250805	2.378849
0	0.512101	-2.399472	-0.312504
S	0.519030	-3.232625	0.951877
0	-0.937325	-4.005864	0.885116
0	0.372300	-2.412070	2.144456
0	1.547414	-4.250576	0.912799
Н	-0.911418	-4.596653	0.122846
С	0.003703	1.611430	-2.457908
Н	-0.670083	2.345323	-2.914491
Н	0.950023	2.113468	-2.257599
Н	0.168813	0.815255	-3.178193
S	-0.684799	2.411832	0.053101
0	0.570559	3.130619	-0.030006
0	-1.175699	1.958541	1.336974
0	-1.846237	3.330097	-0.652748
С	-2.760601	3.992038	0.236806
Н	-2.245100	4.750268	0.830949
Н	-3.491020	4.469005	-0.413910
Н	-3.250532	3.269971	0.893613

INT4z

Cu	-0.092783	-0.116532	-0.535821
N	2.171186	-0.510493	-0.322480
С	3.127266	-0.366819 _{S105}	-1.237103

Н	2.837475	0.149101	-2.144204
С	4.425006	-0.830032	-1.051921
н	5.167446	-0.692556	-1.829115
С	4.734647	-1.467143	0.141382
Н	5.734629	-1.844264	0.327417
С	3.740747	-1.625539	1.094728
Н	3.961804	-2.134517	2.024500
С	2.459094	-1.138658	0.825722
Ν	0.123943	-0.865467	1.367740
С	1.335634	-1.304634	1.769497
С	1.485744	-1.924633	3.009838
Н	2.459286	-2.271551	3.330032
С	0.381643	-2.119016	3.823392
Н	0.492159	-2.609577	4.784384
С	-0.861827	-1.697526	3.379682
Н	-1.760354	-1.851844	3.963758
С	-0.943651	-1.077926	2.142636
Н	-1.896563	-0.765646	1.734144
С	-0.428568	0.454514	-2.417774
F	-1.392110	-0.345583	-2.903806
F	-0.761055	1.707953	-2.730941
F	0.706155	0.158003	-3.062766
С	-1.059105	1.523355	0.007808
С	-0.464331	2.707909	0.185631
С	-2.446234	1.250380	0.367903
С	-2.911656	1.634588	1.641184
С	-3.326602	0.580815	-0.492752
С	-4.219701	1.382069	2.023260
С	-4.637477	0.341596	-0.108712
С	-5.089232	0.738256 S106	1.145598

Н	-2.223060	2.115236	2.329791
Н	-2.973695	0.226176	-1.450835
Н	-4.561105	1.682543	3.008575
Н	-5.303285	-0.180227	-0.787129
Н	-6.111643	0.533901	1.446036
0	0.159491	-2.037569	-1.260214
S	-0.983675	-2.908276	-0.820691
0	-1.388229	-3.602727	-2.248977
0	-2.119150	-2.084579	-0.391993
0	-0.596480	-3.986933	0.074610
Н	-1.850311	-4.421414	-2.032971
С	-1.111424	3.996602	0.601160
Н	-0.835370	4.276505	1.622783
Н	-0.784991	4.813621	-0.045638
Н	-2.195808	3.908754	0.544997
S	1.282472	2.874622	-0.093002
0	1.679578	4.255586	0.096855
0	1.715414	2.168357	-1.283322
0	1.777077	2.020866	1.230790
С	3.188901	2.079475	1.468349
Н	3.509415	3.108564	1.650007
Н	3.360300	1.475588	2.358222
Н	3.745942	1.658064	0.624879
TS4z			
Cu	0.004920	0.099683	0.413285
Ν	2.169992	0.426841	0.698685
С	2.945285	-0.038014	1.678663
Н	2.456074	-0.668741	2.409604
С	4.302872	0.242678 S107	1.767307

Н	4.887022	-0.155524	2.588310
С	4.878739	1.031696	0.781452
Н	5.938297	1.263699	0.802823
С	4.075933	1.527987	-0.233492
Н	4.508089	2.147943	-1.008905
С	2.712539	1.221676	-0.238088
Ν	0.507816	1.331821	-1.206811
С	1.781526	1.773959	-1.245619
С	2.173252	2.757606	-2.153820
Н	3.192116	3.122446	-2.160568
С	1.240008	3.301380	-3.022093
Н	1.532583	4.075826	-3.722846
С	-0.072405	2.862953	-2.952894
Н	-0.846601	3.282962	-3.582908
С	-0.394267	1.884617	-2.023553
Н	-1.417285	1.557387	-1.881369
С	-0.863366	-1.207498	1.904962
F	-1.848200	-0.414284	2.307461
F	-1.228689	-2.473580	2.152151
F	0.200194	-0.968040	2.689285
С	-1.093068	-1.468661	-0.115752
С	-0.461656	-2.497092	-0.722023
С	-2.457942	-1.095223	-0.523514
С	-2.620886	-0.635339	-1.839075
С	-3.594306	-1.237590	0.279765
С	-3.870806	-0.280252	-2.321281
С	-4.844132	-0.887174	-0.209570
С	-4.988083	-0.393126	-1.501187
Н	-1.747620	-0.570287	-2.481399
Н	-3.508902	-1.630650 _{S108}	1.283459
н	-3.972962	0.082180	-3.339035
-------	-----------	-----------------------------	-----------
н	-5.714389	-1.000963	0.427882
н	-5.967437	-0.108084	-1.870384
0	-0.137102	1.834021	1.672433
S	-1.299537	2.614151	1.164354
0	-2.115664	2.895592	2.564951
0	-2.171634	1.768270	0.328819
0	-0.973424	3.916078	0.598803
н	-2.768643	3.577068	2.366989
С	-1.030753	-3.380672	-1.787184
н	-0.615314	-3.135123	-2.770451
н	-0.772470	-4.423181	-1.589477
н	-2.113409	-3.275119	-1.836468
S	1.234100	-2.874077	-0.357728
0	1.555346	-4.207151	-0.824012
0	1.589253	-2.481803	0.990889
0	1.892932	-1.793842	-1.412205
С	3.321222	-1.869784	-1.520481
н	3.631471	-2.856095	-1.874956
Н	3.598038	-1.109710	-2.248993
Н	3.795345	-1.649592	-0.558339
INT5z			
Cu	0.003177	-0.080173	-0.221748
Ν	1.958442	0.606125	-0.618651
С	2.279209	1.276883	-1.725716
Н	1.445585	1.634899	-2.320746
С	3.594858	1.519789	-2.096490
Н	3.810376	2.063090	-3.008479
С	4.609454	1.043690 _{S109}	-1.277312

Н	5.650518	1.206885	-1.534665
С	4.277663	0.333752	-0.133294
Н	5.056149	-0.079988	0.495496
С	2.933834	0.117197	0.165464
Ν	1.188613	-1.041657	1.318096
С	2.491279	-0.708702	1.309003
С	3.361484	-1.170103	2.295862
Н	4.404239	-0.877476	2.292354
С	2.878677	-2.018228	3.281028
Н	3.543097	-2.390870	4.053236
С	1.542755	-2.394749	3.254986
Н	1.131897	-3.078048	3.988054
С	0.735340	-1.876609	2.252480
Н	-0.313302	-2.152932	2.176217
С	-2.179075	1.188724	-1.582529
F	-3.032567	0.405168	-2.246700
F	-2.740484	2.415137	-1.506458
F	-1.077220	1.296651	-2.342085
С	-1.916359	0.627143	-0.190263
С	-1.131914	1.264902	0.787173
С	-2.931153	-0.375399	0.269790
С	-2.681952	-1.747013	0.245657
С	-4.154210	0.098935	0.752059
С	-3.646507	-2.633313	0.714953
С	-5.116188	-0.792385	1.209836
С	-4.861876	-2.160662	1.196589
Н	-1.742349	-2.126412	-0.144786
Н	-4.346032	1.168875	0.767287
Н	-3.439991	-3.698346	0.693156
Н	-6.063857	-0.416332 _{S110}	1.581132

Н	-5.612737	-2.855570	1.558145
0	-0.029141	-1.443167	-1.697410
S	0.788943	-2.675410	-1.426771
0	0.586408	-3.420519	-2.873240
0	0.192841	-3.536419	-0.406843
0	2.213757	-2.401569	-1.271499
Н	1.029921	-4.274369	-2.802731
С	-1.282702	0.944748	2.251870
Н	-0.338318	1.064770	2.781422
Н	-2.014689	1.620930	2.705694
Н	-1.639884	-0.075421	2.386994
S	-0.418394	2.904161	0.567634
0	-1.274313	3.848906	1.253274
0	0.033861	3.163941	-0.780746
0	0.908931	2.637510	1.502276
С	2.032762	3.478907	1.215528
Н	1.798852	4.528195	1.414358
Н	2.817895	3.145295	1.891730
Н	2.353720	3.359459	0.177553

INTB_E

Cu	0.227261	0.215916	-0.517686
Ν	1.573499	1.828618	0.597918
С	2.032057	2.979027	0.109520
Н	1.433191	3.438922	-0.672103
С	3.209543	3.578158	0.537887
Н	3.537361	4.513380	0.100120
С	3.950572	2.935735	1.519177
Н	4.885453	3.356000	1.873838
С	3.488490	1.732259 S111	2.028077

Н	4.072304	1.196946	2.766084
С	2.290170	1.203469	1.544164
Ν	0.823755	-0.692765	1.257140
С	1.777144	-0.102629	2.006890
С	2.275990	-0.730554	3.147865
Н	3.012435	-0.230953	3.763757
С	1.825888	-1.995627	3.489180
н	2.212604	-2.492623	4.372256
С	0.891770	-2.616904	2.675364
Н	0.533204	-3.618591	2.876943
С	0.418691	-1.928385	1.569095
Н	-0.280817	-2.388213	0.882413
С	-0.265739	0.883838	-2.328193
F	0.019662	-0.095265	-3.194852
F	-1.478548	1.352247	-2.653162
F	0.605591	1.897835	-2.542683
С	-1.684035	0.374936	-0.075942
С	-2.227512	1.569433	0.159832
С	-2.208684	-0.970961	0.069098
С	-2.781415	-1.388934	1.284043
С	-2.060849	-1.905578	-0.967030
С	-3.227211	-2.692451	1.436350
С	-2.507147	-3.208875	-0.805919
С	-3.090907	-3.606841	0.393599
Н	-2.873739	-0.677919	2.098385
Н	-1.562064	-1.611275	-1.884037
н	-3.676175	-2.999977	2.375274
Н	-2.377979	-3.920748	-1.613700
Н	-3.429025	-4.630038	0.520662
0	2.085596	-0.193316 S112	-1.229886

S	2.264188	-1.684242	-1.356045
0	2.838277	-1.771154	-2.885910
0	0.961989	-2.357254	-1.326570
0	3.293296	-2.227049	-0.484787
Н	3.269412	-2.630157	-2.969871
С	-1.533963	2.881815	-0.005242
Н	-2.079696	3.524619	-0.699716
Н	-1.462884	3.418304	0.947497
Н	-0.528649	2.729834	-0.385475
С	-3.655758	1.696458	0.630087
F	-3.717790	1.730510	1.987862
F	-4.466668	0.711287	0.228008
F	-4.208815	2.850460	0.206125

TSB_E

Cu	-0.279245	-0.160715	-0.456070
Ν	-1.713345	-1.824397	0.161416
С	-2.105573	-2.849307	-0.594002
н	-1.431604	-3.134384	-1.397518
С	-3.301834	-3.526931	-0.403615
н	-3.572347	-4.350872	-1.052871
С	-4.134065	-3.106852	0.624133
н	-5.083786	-3.598130	0.805886
С	-3.744638	-2.029932	1.404386
н	-4.399674	-1.662837	2.184227
С	-2.525190	-1.401160	1.144782
Ν	-1.074237	0.505296	1.362304
С	-2.096827	-0.195397	1.887701
С	-2.743829	0.238529	3.044812
Н	-3.544188	-0.346997 S113	3.478801

С	-2.356894	1.431018	3.636015
Н	-2.856203	1.781915	4.532714
С	-1.339741	2.172557	3.053586
Н	-1.027088	3.126672	3.459562
С	-0.726124	1.670418	1.915323
Н	0.049418	2.224339	1.399383
С	0.950814	-0.545435	-2.170921
F	0.421091	0.469629	-2.862702
F	2.204415	-0.680601	-2.633174
F	0.299254	-1.678277	-2.516542
С	1.658179	-0.418182	-0.246512
С	2.159484	-1.620368	0.101182
С	2.153932	0.914069	0.106148
С	2.467044	1.164380	1.454830
С	2.271231	1.964274	-0.813363
С	2.932173	2.406133	1.855970
С	2.728680	3.207709	-0.402808
С	3.066563	3.434200	0.926976
Н	2.335228	0.371699	2.183869
Н	1.994720	1.819670	-1.848648
Н	3.178750	2.574635	2.899198
Н	2.809835	4.008900	-1.128965
Н	3.419607	4.410826	1.241065
0	-2.039443	0.412630	-1.425846
S	-2.080297	1.907069	-1.356801
0	-2.316563	2.273113	-2.941160
0	-0.758968	2.437348	-0.982852
0	-3.213287	2.452862	-0.626630
Н	-2.621089	3.187917	-2.967351
С	1.510960	-2.938141 _{S114}	-0.175066

Н	2.005637	-3.466131	-0.996530
Н	1.582797	-3.583904	0.705195
Н	0.461106	-2.812236	-0.414108
С	3.485481	-1.766210	0.801098
F	3.332341	-1.886179	2.145979
F	4.350325	-0.769968	0.588695
F	4.099456	-2.900114	0.399177

INTCE

Cu	-0.143975	-0.445242	-0.256790
Ν	-2.024557	-1.280121	-0.017798
С	-2.426946	-2.334209	-0.730187
Н	-1.660727	-2.826131	-1.323841
С	-3.738700	-2.781310	-0.738486
н	-4.019845	-3.637605	-1.339100
С	-4.667865	-2.094081	0.031715
Н	-5.706498	-2.405849	0.052938
С	-4.257579	-0.989973	0.760720
н	-4.976768	-0.427276	1.341668
С	-2.922282	-0.591306	0.710493
Ν	-1.138432	0.944519	1.134783
С	-2.418984	0.622784	1.387587
С	-3.222656	1.421258	2.199085
Н	-4.248505	1.145238	2.407624
С	-2.697530	2.591187	2.726277
Н	-3.311489	3.231274	3.350727
С	-1.385826	2.934695	2.433533
н	-0.942533	3.849562	2.807122
С	-0.643275	2.075209	1.636051
Н	0.387664	2.299005 S115	1.377371

С	2.128492	-1.406591	-1.702890
F	2.528675	-0.478126	-2.564197
F	3.108717	-2.341348	-1.632636
F	1.054676	-2.021613	-2.250760
С	1.858266	-0.831847	-0.322497
С	1.253677	-1.658268	0.638050
С	2.690385	0.368196	-0.007082
С	2.323186	1.640466	-0.450086
С	3.883942	0.200042	0.699122
С	3.127507	2.734627	-0.156151
С	4.690126	1.296363	0.978952
С	4.310200	2.566344	0.557668
Н	1.402480	1.773997	-1.010688
Н	4.174294	-0.792362	1.031491
Н	2.823950	3.720457	-0.493312
Н	5.614750	1.157258	1.529375
н	4.937828	3.422705	0.782091
0	-0.433877	0.519682	-2.001769
S	-1.365892	1.697466	-1.989291
0	-1.478643	1.935218	-3.609882
0	-0.761164	2.900035	-1.422419
0	-2.701565	1.366456	-1.502354
Н	-1.945349	2.771250	-3.727330
С	0.947730	-3.123281	0.456218
Н	1.737569	-3.714847	0.932265
Н	0.007510	-3.388035	0.942347
Н	0.896583	-3.421208	-0.585426
С	1.289407	-1.301084	2.106668
F	1.405663	0.001986	2.380506
F	2.321932	-1.927452 S116	2.719442

F	0.166327	-1.729237	2.723666
INTBz			
Cu	0.031768	0.034177	-0.501967
Ν	2.299242	0.054669	-0.034087
С	3.301302	0.510909	-0.780527
н	3.016745	1.036112	-1.685050
С	4.637881	0.341414	-0.441856
н	5.417160	0.729705	-1.086805
С	4.938119	-0.329537	0.734755
н	5.967376	-0.476422	1.043975
С	3.899830	-0.821727	1.509667
н	4.118058	-1.358561	2.424048
С	2.583461	-0.622378	1.087496
Ν	0.200120	-0.930237	1.312608
С	1.426044	-1.174092	1.821888
С	1.571106	-1.958329	2.966433
н	2.555255	-2.153696	3.370946
С	0.453850	-2.510194	3.571384
н	0.563126	-3.129769	4.454903
С	-0.795351	-2.276847	3.017810
н	-1.696087	-2.709211	3.435004
С	-0.874835	-1.483241	1.884437
н	-1.820336	-1.307411	1.386992
С	-0.273575	0.817169	-2.308705
F	-1.034654	-0.050655	-2.993410
F	-0.804555	2.032054	-2.495103
F	0.945995	0.826007	-2.877800
С	-1.084905	1.498711	0.199620
С	-0.621968	2.712353	0.515190

S117

С	-2.422021	0.988947	0.477057
С	-2.949796	1.097496	1.778286
С	-3.181049	0.328440	-0.499207
С	-4.207532	0.595994	2.076920
С	-4.440131	-0.167949	-0.195503
С	-4.958827	-0.036240	1.088796
Н	-2.348518	1.564360	2.552870
Н	-2.768326	0.179321	-1.488659
Н	-4.599210	0.689155	3.084815
Н	-5.008914	-0.681355	-0.962848
Н	-5.938627	-0.438335	1.324641
0	0.675286	-1.673268	-1.416728
S	-0.342253	-2.771568	-1.268389
0	-0.455678	-3.275918	-2.822719
0	-1.643176	-2.213110	-0.886475
0	0.125451	-3.909124	-0.493142
Н	-0.771457	-4.186762	-2.790817
С	-1.464959	3.819961	1.084935
Н	-1.148042	4.084108	2.099961
Н	-1.361122	4.723446	0.479233
Н	-2.516099	3.541599	1.114560
С	0.822964	3.069495	0.336401
F	1.347395	2.632982	-0.824551
F	1.592448	2.553230	1.328788
F	1.022880	4.400368	0.367045

TSBz

Cu	0.045315	-0.075701	-0.452508
N	2.245998	-0.410134	-0.616918
С	3.089918	0.118663 S118	-1.501867

Н	2.635676	0.668384	-2.318459
С	4.469183	-0.000899	-1.400012
н	5.111763	0.447073	-2.148464
С	4.990885	-0.691201	-0.314866
Н	6.063067	-0.785839	-0.180332
С	4.119492	-1.270234	0.594099
Н	4.507629	-1.818751	1.443270
С	2.743826	-1.130205	0.401899
Ν	0.455763	-1.471425	1.069216
С	1.748607	-1.799116	1.266877
С	2.109696	-2.782932	2.187914
Н	3.150219	-3.047177	2.326879
С	1.123523	-3.453234	2.894515
Н	1.392114	-4.227464	3.605253
С	-0.205317	-3.140703	2.651230
Н	-1.012703	-3.663700	3.148902
С	-0.494187	-2.146059	1.727686
н	-1.514301	-1.885486	1.465178
С	-0.642812	1.532179	-1.702630
F	-1.727003	0.937538	-2.186913
F	-0.863268	2.857625	-1.748852
F	0.374753	1.305467	-2.560106
С	-0.706744	1.552556	0.383501
С	0.094189	2.435549	1.010119
С	-2.063848	1.230167	0.850924
С	-2.189081	0.562390	2.077867
С	-3.227950	1.596397	0.166645
С	-3.436961	0.242695	2.591101
С	-4.474167	1.275673	0.684510
С	-4.585893	0.588717 S119	1.888367

Н	-1.288229	0.304522	2.627157
н	-3.161876	2.137586	-0.767888
н	-3.511759	-0.278404	3.540313
н	-5.366721	1.563440	0.139354
Н	-5.563883	0.330084	2.280021
0	-0.228242	-1.551275	-1.918942
S	-1.501171	-2.253988	-1.583289
0	-2.307316	-2.134681	-3.011206
0	-2.267524	-1.475610	-0.592707
0	-1.374514	-3.675086	-1.299546
Н	-2.992499	-2.812819	-2.991181
С	-0.301996	3.195567	2.241078
Н	0.342931	2.932699	3.086743
Н	-0.180075	4.269609	2.077490
Н	-1.333414	2.997077	2.521697
С	1.506258	2.701047	0.591487
F	1.742562	2.470633	-0.707904
F	2.378039	1.928971	1.293291
F	1.865517	3.976469	0.829359

INTCz

Cu	-1.140966	0.044955	-0.914309
Ν	-0.146622	-1.739100	-1.182970
С	1.148931	-1.851690	-1.508107
н	1.603435	-0.976569	-1.956285
С	1.889461	-3.003958	-1.284776
н	2.939870	-3.027652	-1.549900
С	1.251937	-4.101931	-0.720267
Н	1.795378	-5.019898	-0.524576
С	-0.095920	-4.004534 _{S120}	-0.403467

Н	-0.612189	-4.842109	0.050650
С	-0.772792	-2.809174	-0.641490
Ν	-2.586063	-1.316819	-0.232232
С	-2.186790	-2.602414	-0.267418
С	-3.053281	-3.645031	0.058152
Н	-2.726662	-4.676569	-0.004606
С	-4.350823	-3.342794	0.447640
Н	-5.042096	-4.138295	0.704584
С	-4.748874	-2.012743	0.499191
Н	-5.750396	-1.736316	0.807062
С	-3.836142	-1.027200	0.143162
Н	-4.075021	0.033500	0.168887
С	2.162052	1.770748	-0.447229
F	1.456877	2.885941	-0.228783
F	3.427591	2.169111	-0.663523
F	1.704074	1.244462	-1.602977
С	2.063753	0.787750	0.709111
С	3.068003	-0.075230	0.989526
С	0.800171	0.764062	1.485281
С	0.209277	-0.486539	1.741749
С	0.146111	1.907839	1.962975
С	-0.986439	-0.589530	2.437221
С	-1.058781	1.800974	2.643696
С	-1.631514	0.558697	2.881526
Н	0.696238	-1.384286	1.374061
н	0.563900	2.888862	1.794083
Н	-1.428022	-1.567801	2.605268
Н	-1.567430	2.704915	2.957290
Н	-2.586943	0.488576	3.390527
0	-1.191292	1.940466 _{\$121}	-1.231384

S	-2.353691	2.757384	-0.709365
0	-1.614807	3.874217	0.256707
0	-3.170876	2.005156	0.233964
0	-3.010044	3.501371	-1.765186
н	-1.184926	4.502428	-0.336411
С	3.151483	-0.871350	2.256577
н	2.950400	-1.935083	2.099275
н	4.170220	-0.809360	2.651693
Н	2.461682	-0.496899	3.009769
С	4.254679	-0.329704	0.088462
F	3.973172	-0.245699	-1.223840
F	4.699883	-1.598000	0.278968
F	5.295906	0.474738	0.345481

Product_E

С	2.191406	-1.144598	0.235939
F	3.160198	-0.223237	0.206376
F	2.262122	-1.753425	1.438189
F	2.503134	-2.070646	-0.691845
С	0.820173	-0.538806	0.002657
С	-0.231993	-1.367532	-0.089135
С	0.759618	0.939643	-0.035904
С	1.315870	1.655611	-1.097356
С	0.146066	1.629072	1.010790
С	1.223071	3.038696	-1.128486
С	0.066679	3.016087	0.982649
С	0.596202	3.722188	-0.090551
н	1.796645	1.121779	-1.910896
Н	-0.271940	1.068291	1.840789
Н	1.638915	3.586614 S122	-1.967522

-0.410742	3.544947	1.801437
0.526194	4.804544	-0.118191
-0.249801	-2.846845	0.086666
-0.960564	-3.114857	0.874383
-0.597736	-3.341361	-0.822487
0.727659	-3.237274	0.356249
-1.860071	-0.710298	-0.511614
-2.648694	-1.826046	-0.982471
-1.784761	0.510597	-1.282409
-2.348331	-0.342333	1.010190
-3.216074	0.796542	1.130849
-4.173089	0.613010	0.636493
-3.373488	0.919944	2.200638
-2.742838	1.686829	0.709254
	-0.410742 0.526194 -0.249801 -0.960564 -0.597736 0.727659 -1.860071 -2.648694 -1.784761 -2.348331 -3.216074 -4.173089 -3.373488 -2.742838	-0.4107423.5449470.5261944.804544-0.249801-2.846845-0.960564-3.114857-0.597736-3.3413610.727659-3.237274-1.860071-0.710298-2.648694-1.826046-1.7847610.510597-2.348331-0.342333-3.2160740.796542-4.1730890.613010-3.3734880.919944-2.7428381.686829

Productz

С	0.015508	1.571367	-0.311600
F	0.924811	2.435879	0.181720
F	-0.032668	1.775313	-1.634530
F	-1.162117	1.934327	0.216270
С	0.414082	0.148036	0.013723
С	-0.433440	-0.887195	0.147423
С	1.881245	-0.082532	0.089994
С	2.661006	0.405879	1.141098
С	2.492821	-0.824677	-0.924303
С	4.024148	0.143639	1.179527
С	3.858882	-1.073544	-0.889812
С	4.626685	-0.592975	0.164472
н	2.195478	0.984047	1.931850
Н	1.886882	-1.198519 _{S123}	-1.744823

Н	4.619003	0.518807	2.005843
Н	4.322558	-1.644177	-1.687624
Н	5.693037	-0.790781	0.195940
С	-0.025994	-2.260519	0.569371
Н	-0.686567	-2.618295	1.363751
Н	-0.122954	-2.976866	-0.250315
н	1.001299	-2.270051	0.930114
S	-2.193243	-0.812127	-0.258237
0	-2.635084	-2.182588	-0.385338
0	-2.459291	0.138869	-1.313374
0	-2.749666	-0.229539	1.158857
С	-3.877425	0.658086	1.082714
н	-4.768452	0.125166	0.742280
Н	-4.025829	1.012330	2.100470
Н	-3.665592	1.495385	0.416366

 \mathbf{SP}_{E}

С	1.037142	0.005662	-0.000199
С	1.696227	-0.239874	-1.204619
С	1.696310	-0.238911	1.204397
С	2.987342	-0.750703	-1.203084
С	2.987438	-0.749772	1.203174
С	3.634767	-1.008853	0.000115
н	1.187251	-0.038742	-2.142318
н	1.187415	-0.036949	2.141976
н	3.488654	-0.947841	-2.145048
н	3.488806	-0.946167	2.145284
н	4.643545	-1.408519	0.000242
С	-0.342549	0.569514	-0.000277
С	-1.487147	-0.131004 _{S124}	-0.000043

С	-1.503821	-1.639902	0.000188
F	-0.320835	-2.250784	0.000275
F	-2.177849	-2.085340	1.084214
F	-2.177793	-2.085533	-1.083984
С	-0.307383	2.077381	-0.000178
F	-1.504284	2.681427	-0.001272
F	0.353077	2.530047	1.083703
F	0.355236	2.530329	-1.082519
С	-2.891755	0.413342	-0.000076
Н	-3.085462	1.029674	0.878108
Н	-3.085706	1.028979	-0.878677
Н	-3.611883	-0.403034	0.000308

SPz

С	-1.451244	-0.160848	-0.008836
С	-2.048414	-0.984515	0.948461
С	-2.255825	0.445633	-0.977337
С	-3.418472	-1.212614	0.927994
С	-3.623860	0.209477	-1.001351
С	-4.208766	-0.620581	-0.050439
Н	-1.429710	-1.440439	1.716027
Н	-1.802783	1.100396	-1.715643
Н	-3.868975	-1.852486	1.679724
Н	-4.235815	0.678048	-1.765095
Н	-5.278581	-0.800403	-0.069221
С	0.012103	0.087793	0.016703
С	0.911769	-0.900467	-0.145390
С	0.383949	1.545362	0.202970
С	2.410651	-0.674903	-0.095534
F	-0.618037	2.226433	0.786236

F	1.464500	1.725842	0.971234
F	0.617804	2.147140	-0.982469
F	2.846709	-0.550774	1.170500
F	2.814717	0.401145	-0.783141
F	3.070601	-1.727868	-0.620897
С	0.535088	-2.327837	-0.381661
н	0.915415	-2.968043	0.421180
н	-0.541296	-2.459894	-0.449945
н	0.993231	-2.693455	-1.30368

¹ M. W. Carson, M. W. Giese, M. J. Coghlan, Org. Lett. **2008**, 10, 2701.

² S. Fabig, A. Janiszewski, M. Floß, M. Kreuzahler, G. Haberhauer, J. Org. Chem. **2018**, 83, 7878.

³ S. Gao, H. Liu, Z. Wu, H. Yao, A. Lin, *Green Chem.* **2017**, *19*, 1861.

⁴ P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. **2010**, 132, 12150.

⁵ P. Prabhala, H. M. Savanur, R. G. Kalkhambkar, K. K. Laali, *Eur. J. Org. Chem.* **2019**, *10*, 2061.

⁶ Y. Xia, L. Wang, A. Studer, *Angew. Chem. Int. Ed.* **2018**, *57*, 12940.

⁷ P. K. Shyam, H.-Y. Jang, J. Org. Chem. **2017**, 82, 1761.

⁸ Gaussian, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.

Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.

Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.

⁹ Y. Zhao, D. G. Truhlar, J. Chem. Phys. **2006**, 125, 194101.

¹⁰ Y. Zhao, D. G. Truhlar, Acc. Chem. Res. **2008**, 41, 157.

¹¹ (a) W. J. Hehre, R. Ditchfield, J. A. Pople, *J. Chem. Phys.* **1972**, *56*, 2257; (b) P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta.* **1973**, *28*, 213.

¹² (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. **1985**, 82, 270; (b) W. R. Wadt, P. J. Hay, J. Chem. Phys.
1985, 82, 284; (c) P. J. Hay, W. R. Wadt, J. Chem. Phys. **1985**, 82, 299.

¹³ (a) F. Weigend, M.Häser, H. Patzelt, R. Ahlrichs, *Chem. Phys. Lett.* **1998**, *294*, 143; (b) F. Weigend, R. Ahlrichs, *Chem. Chem. Phys.* **2005**, *7*, 3297.

¹⁴ W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, **1996**, *14*, 33.

¹⁵ CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www. cylview. org).

¹⁶ (a) S. Guo, D. I. AbuSalim, S. P. Cook, *Angew. Chem. Int. Ed.* **2019**, *58*, 11704; (b) S. Guo, D. I. AbuSalim, S. P. Cook, *J. Am. Chem. Soc.* **2018**, *140*, 12378.

IX. Copies of NMR spectra

S173

0 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 C f1 (ppm)

10 0 -10 -20 -30 -40 -20 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -200 -210 11 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -10 -120 -120 -130 -140 -150 -160 -170 -186 -190 -200 -210 11 (ggw)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S193

S198

S200

S201

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

$$\int_{1}^{1} \int_{0}^{1} \int_{0$$

S208

S216

JWH2370546C-1.3.fid

60

50

40 30

20 10

, (

190 180 170 160 150 140 130 120 110 100 90 80 70 f1 (ppm)

00

WXH5204420.3.fid

cı (02N3

50 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -15 11 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

