Supporting Information

Radical-Mediated Vicinal Addition of Alkoxysulfonyl/Fluorosulfonyl and Trifluoromethyl Groups to

 Aryl Alkyl Alkynes

 Aryl Alkyl Alkynes}
Xinrui Dong, ${ }^{\text {ª }}$ Wenhua Jiang, ${ }^{\text {ª }}$ Dexiang Hua, ${ }^{a}$ Xiaohui Wang, ${ }^{a}$ Liang $X u^{* b}$ \& Xiaoxing Wu*a
${ }^{\text {a }}$ State Key Laboratory of Natural Medicines and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, Jiangsu
${ }^{\mathrm{b}}$ School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi 832003, Xinjiang
*Corresponding Authors: Liang Xu: xuliang4423@shzu.edu.cn; Xiaoxing Wu: wu_xiaoxing@cpu.edu.cn; ${ }^{\dagger}$ X.D. and W.J. contributed equally to this work.
Table of Contents
I. General considerations S2
II. Synthesis and characterization of substrates S3
III. Screening of reaction conditions S26
IV. Synthesis and characterization of products S28
V. Additional substrates explored S75
VI. Single crystal X-ray data S76
VII. Mechanistic studies S80
VIII. Computational studies S84
IX. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ NMR spectra S128

I. General considerations

Reagents. Unless otherwise indicated, all reactions were carried out in screw-cap test tube under an argon atmosphere with dry solvents. THF was dried and purified by distillation from sodium/benzophenone. $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{MeOH}$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2}. Acetone was dried and distilled from anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$. bpyCu($\left.\mathrm{CF}_{3}\right)_{3}$ was purchased from Shanghai Kecui Industrial Co., Ltd. and used as received. All other reagents were purchased from commercial sources and used as received.

Analytical methods. All new compounds were characterized by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR (where applicable), and HRMS. NMR spectra were record on a Bruker Advance 300, 400, 500, or 600 MHz spectrometer in CDCl_{3}. All ${ }^{1} \mathrm{H}$ NMR spectra are reported in ppm downfield from tetramethylsilane (0 ppm). All ${ }^{13} \mathrm{C}$ NMR spectra are reported in ppm relative to residual CHCl_{3} (77.0 ppm). All ${ }^{19} \mathrm{~F}$ NMR spectra are reported in ppm relative to a CFCl_{3} external standard (0 ppm). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), and brs (broad singlet). Reactions were monitored by thin-layer chromatography (TLC) carried out on commercial silica gel plates (GF254) under UV light. Flash chromatography was performed on silica gel 60 (200-300 mesh). High resolution mass spectra (HRMS) were obtained on an Agilent 6540 Ultra-High-Definition (UHD) Accu-rate-Mass Quadrupole Time-of-Flight (Q-TOF) spectrometer using the ESI technique and an Agilent 7250\&JEOL-JMS-T100LP AccuTOF spectrometer using the El technique.

II. Synthesis and characterization of substrates

1. Commercially-available alkynes

1b

1ah

2. Synthesis and characterization of alkynes

2.1 Procedures and characterization of alkyne substrates

2.1.1 General procedure A

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with aryl halide ($5.0 \mathrm{mmol}, 1.0$ equiv., if it is a solid), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (70.2 mg , $2 \mathrm{~mol} \%$), and Cul (95.2 mg , $10 \mathrm{~mol} \%$), was evacuated and backfilled with argon. The aryl halide ($5.0 \mathrm{mmol}, 1.0$ equiv., if it is a liquid), $E t_{3} \mathrm{~N}(6 \mathrm{~mL})$, and propyne (1.0 M in DMF, $6 \mathrm{~mL}, 6.0 \mathrm{mmol}$) were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times$ 10 mL) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude material was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

2.1.2 General procedure B

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with aryl halide ($5.0 \mathrm{mmol}, 1.0$ equiv., if it is a solid), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ($70.2 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-bis(diphenyl-phosphino)butane (dppb, $85.3 \mathrm{mg}, 4$ mol\%), and but-2-ynoic acid ($0.63 \mathrm{~g}, 7.5 \mathrm{mmol}$), was evacuated and backfilled with argon. The aryl halide ($5.0 \mathrm{mmol}, 1.0$ equiv., if it is a liquid), DMSO (10 mL), and DBU ($1.49 \mathrm{~mL}, 10.0 \mathrm{mmol}$) were added through the septum via syringe at room temperature. The reaction was stirred at $110{ }^{\circ} \mathrm{C}$ for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and $\mathrm{EtOAc}(20 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with water ($3 \times 10 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude material was purified flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

2.1.3 General procedure C

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70.2 \mathrm{mg}, 2 \mathrm{~mol} \%)$ and $\mathrm{Cul}(95.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, was evacuated and backfilled with argon. lodobenzene ($0.56 \mathrm{~mL}, 5.0 \mathrm{mmol}$, 1.0 equiv.), substituted alkyne (6.0 mmol), and $\mathrm{Et}_{3} \mathrm{~N}(10 \mathrm{~mL})$ were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude material was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

Table S1. Synthesis of Starting Alkyl Arylalkynes

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference
	1a	A	J. Am. Chem. Soc. 2018, 140, 6006.
	1c	A	J. Am. Chem. Soc. 2018, 140, 6006.
	 1d	A	Org. Lett. 2018, 20, 1576.
	 1 e	A	J. Am. Chem. Soc. 2010, 132, 4101.
		A	$\begin{gathered} \text { Chem. Com- } \\ \text { mun. } 2019,55 \text {, } \\ 9547 . \end{gathered}$
	$1 \mathrm{~g}$	A	See details in below
	 1h	B	Org. Biomol. Chem. 2012, 10, 7483.
	$1 i$	A	Org. Lett. 2018, 20, 1693.
	 1j	A	$\begin{gathered} \text { Org. Lett. } 2017, \\ 19,1962 . \end{gathered}$

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference
	 1k	A	J. Am. Chem. Soc. 2018, 140, 7267.
	11	A	J. Am. Chem. Soc. 2018, 140, 6006.
	 1m	A	J. Am. Chem. Soc. 2018, 140, 6006.
	 1n	A	See details in below
	10	A	Org. Lett. 2018, 20, 1576.
	 1p	A	Angew. Chem. Int. Ed. 2016, 55, 5824.
		A	J. Am. Chem. Soc. 2004, 126, 329.
	 $1 r$	A	J. Am. Chem. Soc. 2004, 126, 329.
	$1 \mathrm{t}$	A	See details in below

Aryl halide or alkyne	Alkyne product	General procedure	Analytical reference
		B	See details in below
	 1w	A	$\begin{gathered} \text { Catal. Commun. } \\ \text { 2020, } 133, \\ 105835 . \end{gathered}$
		A	Catal. Commun. 2020, 133, 105835.
	1y	A	See details in below
	 1aa	A	$\begin{gathered} \text { Catal. Commun. } \\ \text { 2020, } 133, \\ 105835 . \end{gathered}$
	 1ab	B	J. Am. Chem. Soc. 2018, 140, 6006.
	 1ac	B	See details in below
\mathbb{M}_{S}^{\prime}		A	J. Am. Chem. Soc. 2004, 126, 329.
	 1ae	A	Org. Biomol. Chem. 2017, 15, 5756.
		B	See details in below

| Aryl halide
 or alkyne | General
 procedure | Analytical
 reference |
| :---: | :---: | :---: | :---: |
| Alkyne product | See details in | |
| below | | |

2.2 Procedures and characterization of other alkyne substrates

2.2.1 Synthesis of 2-(4-(Prop-1-yn-1-yl)phenyl)propan-2-ol (1s).

To a solution of ethyl 4-(prop-1-yn-1-yl)benzoate ($0.51 \mathrm{~g}, 2.7 \mathrm{mmol}, 1.0$ equiv.) in THF (8 mL) was added dropwise $\mathrm{CH}_{3} \mathrm{MgBr}(2 \mathrm{M}$ in THF, $3.1 \mathrm{~mL}, 6.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 2 h and quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The com-
bined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude material was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford the title product ($0.35 \mathrm{~g}, 75 \%$ yield).

2.2.2 Synthesis of 1-(But-2-yn-1-yloxy)-4-(prop-1-yn-1-yl)benzene (1v).

To a solution of 4-(prop-1-yn-1-yl)phenol ($0.26 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv.) in DMF $(3 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.55 \mathrm{~g}, 4.0 \mathrm{mmol})$ and 1-bromobut-2-yne (0.32 g , 2.4 mmol) at room temperature. The reaction was stirred at room temperature overnight. Water (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 15 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the desired product (0.34 g , 91\% yield).

2.2.3 Synthesis of 2-(Prop-1-yn-1-yl)phenol (1z).

2-(Prop-1-yn-1-yl)phenyl Acetate: Following the general procedure A with 2-iodophenyl acetate ($1.31 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.), the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford the title product as colorless liquid ($0.73 \mathrm{~g}, 84 \%$ yield).

2-(Prop-1-yn-1-yl)phenol (1z): To a solution of 2-(prop-1-yn-1-yl)phenyl acetate ($0.35 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv.) in THF (2.5 mL) and $\mathrm{MeOH}(2.5 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(0.55 \mathrm{~g}, 4.0 \mathrm{mmol})$ at room temperature. The reaction mixture
was stirred at room temperature for 3 h . Water (10 mL) and EtOAc (15 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The crude material was purified by flash chromatography on silica gel ($5: 1$ petroleum ether/EtOAc) to afford the title product ($0.26 \mathrm{~g}, 98 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{1}$

2.2.4 Synthesis of ([1,1'-Biphenyl]-4-ylethynyl)trimethylsilane (1am).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with 4-iodo-1,1'-biphenyl ($1.40 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(70.2 \mathrm{mg}, 2 \mathrm{~mol} \%)$, and $\mathrm{Cul}(95.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, was evacuated and backfilled with argon. Ethynyltrimethylsilane ($0.85 \mathrm{~mL}, 6.0 \mathrm{mmol}$), $\mathrm{Et}_{3} \mathrm{~N}(5$ mL), and DMF (5 mL) were added through the septum via syringe at room temperature. The reaction was stirred at room temperature for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(15 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 15 \mathrm{~mL}$). The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether) to afford the desired product (1.03 g , 82% yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{2}$

2.2.5 Synthesis

of
(8R,9S,13S,14S)-13-Methyl-3-(prop-1-yn-1-yl)-6,7,8,9,11,12,13,14,15,16-de cahydro-17H-cyclopenta[a]phenanthren-17-one (1ar).

To a solution of estrone ($1.35 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(1.39 \mathrm{~mL}, 10.0$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added dropwise trifluoromethanesulfonic anhydride ($1.01 \mathrm{~mL}, 6.0 \mathrm{mmol}$) under argon atmosphere at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford estronyl triflate ($1.88 \mathrm{~g}, 93 \%$ yield).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with estronyl triflate ($1.61 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PPh}_{3}(42.0 \mathrm{mg}$, $4 \mathrm{~mol} \%), \mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(56.1 \mathrm{mg}, 2 \mathrm{~mol} \%), \mathrm{Cul}(76.2 \mathrm{mg}, 10 \mathrm{~mol} \%)$, and tetrabutylammonium iodide ($2.95 \mathrm{~g}, 8.0 \mathrm{mmol}$), was evacuated and backfilled with argon. Propyne (1.0 M in DMF, $4.8 \mathrm{~mL}, 4.8 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(4.0 \mathrm{~mL})$ were added through the septum via syringe at room temperature. The reaction was stirred at $90^{\circ} \mathrm{C}$ for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The combined organic layers were washed with water ($2 \times 10 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford the title product ($0.64 \mathrm{~g}, 54 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{3}$

2.2.6 Synthesis

4-(Prop-1-yn-1-yl)phenyl)azetidin-2-one (1as)

To a mixture of ezetimibe ($0.82 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.55 \mathrm{~g}, 4.0$ mmol) in DMF (10 mL) was added 4-nitrophenyl trifluoromethanesulfonate $(0.60 \mathrm{~g}, 2.2 \mathrm{mmol})$ at room temperature. The reaction mixture was stirred at room temperature for 3 h . Saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and EtOAc (15 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water ($2 \times 10 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford ezetimibe triflate ($0.96 \mathrm{~g}, 89 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{4}$

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with ezetimibe triflate ($541.5 \mathrm{mg}, 1.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(14.0 \mathrm{mg}, 2 \mathrm{~mol} \%$), 1,4-bis(diphenyl-phosphino)butane (dppb, $17.1 \mathrm{mg}, 4 \mathrm{~mol} \%$), and but-2-ynoic acid ($126.1 \mathrm{mg}, 1.5 \mathrm{mmol}$), was evacuated and backfilled with argon. DMSO (5 mL) was added through the septum via syringe at room temperature. The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 12 h. Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{EtOAc}(15 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc (3 \times $15 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford the title product ($0.36 \mathrm{~g}, 84 \%$ yield).

2.2.7 Synthesis of 4-Methyl-7-(prop-1-yn-1-yl)-2H-chromen-2-one (1at)

1) $\mathrm{Tf}_{2} \mathrm{O}$ (1.1 equiv.), $E t_{3} \mathrm{~N}$ (1.2 equiv.)

DCM, $0^{\circ} \mathrm{C}, 3 \mathrm{~h}$
2) Propyne (1.2 equiv.)
$\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ (2 mol\%)
Cul ($10 \mathrm{~mol} \%$)
DMF/Et ${ }_{3} \mathrm{~N}(1: 1), 80^{\circ} \mathrm{C}, 12 \mathrm{~h}$

To a solution of 4-methylumbelliferone ($0.88 \mathrm{~g}, 5.0 \mathrm{mmol}$, 1.0 equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.83 \mathrm{~mL}, 6.0 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ was added dropwise trifluoromethanesulfonic anhydride ($0.93 \mathrm{~mL}, 5.5 \mathrm{mmol}$) under argon atmosphere at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (30:1 petroleum ether/EtOAc) to afford 4-methylumbelliferone triflate ($1.27 \mathrm{~g}, 83 \%$ yield).

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with 4-methylumbelliferone triflate ($0.61 \mathrm{~g}, 2.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(28.1 \mathrm{mg}, 2 \mathrm{~mol} \%)$, and $\mathrm{Cul}(38.1 \mathrm{mg}, 10 \mathrm{~mol} \%)$, was evacuated and backfilled with argon. Propyne (1.0 M in DMF, $2.4 \mathrm{~mL}, 2.4 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ $(2.0 \mathrm{~mL})$ were added through the septum via syringe at room temperature. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 12 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and EtOAc (20 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 20 \mathrm{~mL})$. The combined organic layers were washed with water $(2 \times 10 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford the title product $\left(0.31 \mathrm{~g}, 78 \%\right.$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{5}$

An oven-dried round bottom flask, which was equipped with a magnetic stir bar and charged with fenofibrate ($1.80 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Pd}(\mathrm{OAc})_{2}(56.1 \mathrm{mg}$, $5 \mathrm{~mol} \%)$, XPhos ($178.9 \mathrm{mg}, 7.5 \mathrm{~mol} \%$), $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.95 \mathrm{~g}, 6.0 \mathrm{mmol})$, and but-2-ynoic acid ($0.50 \mathrm{~g}, 6.0 \mathrm{mmol}$), was evacuated and backfilled with argon. THF (20 mL) was added through the septum via syringe at room temperature. The reaction was stirred at $80^{\circ} \mathrm{C}$ for 24 h and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL) was added. The two layers were separated and the aqueous layer was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford the title product ($1.02 \mathrm{~g}, 56 \%$ yield).

3. Synthesis and characterization of allylsulfonates and allylsulfonyl fluoride

3.1 Synthesis of Allylsulfonyl Chloride

A mixture of sodium allylsulfonate ($50.0 \mathrm{~g}, 0.35 \mathrm{~mol}$) and phosphoryl chloride $(100 \mathrm{~mL})$ was refluxed for 4 h . The reaction mixture was cooled to room temperature and filtered through a short pad of silica gel. The filtrate was concentrated and purified by distillation to afford allylsulfonyl chloride as colorless liquid ($40.2 \mathrm{~g}, 82 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{6}$

3.2 Synthesis of Methyl Prop-2-ene-1-sulfonate (2a)

$$
\mathrm{Et}_{3} \mathrm{~N} \text { (2 equiv.) }
$$

To a solution of MeOH ($4.0 \mathrm{~mL}, 0.1 \mathrm{~mol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}(27.8 \mathrm{~mL}, 0.2 \mathrm{~mol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$ was added allylsulfonyl chloride ($21.1 \mathrm{~g}, 0.15 \mathrm{~mol}$) at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 12 h and water (50 mL) was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 40 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product ($7.1 \mathrm{~g}, 52 \%$ yield).

3.3 General procedure D: synthesis of alkyl allylsulfonates

To a solution of alcohol ($5.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Et}_{3} \mathrm{~N}$ ($1.39 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added allylsulfonyl chloride ($1.05 \mathrm{~g}, 7.5 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 4 h and water (10 mL) was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

Table S2. Synthesis of Alkyl Allylsulfonates

Alcohol	Allylsulfonate	General procedure	Analytical reference
	2 Db	See details in below	

(20)

3.4 Synthesis of 2,2,2-Trifluoroethyl Prop-2-ene-1-sulfonate (2d)

To a mixture of $\mathrm{Na}_{2} \mathrm{CO}_{3}(0.78 \mathrm{~g}, 7.5 \mathrm{mmol})$ in $\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{OH}(3 \mathrm{~mL})$ was added allylsulfonyl chloride ($0.70 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv.) at room temperature. The reaction was stirred at room temperature 12 h . Water (10 mL) and EtOAc (15 mL) were added. The two layers were separated and the aqueous layers were extracted with EtOAc $(2 \times 10 \mathrm{~mL})$. The organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \times 5 \mathrm{~mL})$ and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford the title product ($0.46 \mathrm{~g}, 45 \%$ yield).

3.5 Synthesis of Allylsulfonyl Fluoride (4)

To a solution of $\mathrm{KHF}_{2}(15.6 \mathrm{~g}, 0.2 \mathrm{~mol})$ in $\mathrm{MeCN}(75 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(75 \mathrm{~mL})$ was added dropwise allylsulfonyl chloride ($14.1 \mathrm{~g}, 0.1 \mathrm{~mol}, 1.0$ equiv.) at room temperature. The reaction was stirred at room temperature for 24 h and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 100 \mathrm{~mL})$. The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and brine, dried
over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by distillation to afford allylsulfonyl fluoride 4 as colorless liquid ($9.8 \mathrm{~g}, 79 \%$ yield).

3.6 Synthesis of (Allylsulfonyl)benzene

To a solution of sodium benzenesulfinate ($1.64 \mathrm{~g}, 10.0 \mathrm{mmol}, 1$ equiv.) in DMSO (18 mL) was added allyl bromide ($0.95 \mathrm{~mL}, 11.0 \mathrm{mmol}$) at room temperature. The reaction mixture was stirred at room temperature for 12 h . Water $(10 \mathrm{~mL})$ and EtOAc $(20 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 20 \mathrm{~mL}$). The organic layers were washed with water ($3 \times 10 \mathrm{~mL}$) and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford the title product ($1.50 \mathrm{~g}, 82 \%$ yield). The ${ }^{1} \mathrm{H}$ NMR spectral data are identical to those previously reported. ${ }^{7}$

4. Characterization of substrates

tert-Butyldimethyl(4-(prop-1-yn-1-yl)phenoxy)silane (1g)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford 1 g as colorless oil ($1.14 \mathrm{~g}, 92 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$, 2.04 (s, 3H), 0.99 (s, 9H), 0.20 (s, 6H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.2,132.7,120.0,116.8,84.2,79.4,25.6,18.2$, 4.3, -4.5.

HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{OSi}^{+}[\mathrm{M}+\mathrm{H}]^{+}$247.1513, found 247.1511.

1-lodo-4-(prop-1-yn-1-yl)benzene (1n)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford $\mathbf{1 n}$ as a white solid ($0.80 \mathrm{~g}, 66 \%$ yield).
m.p. $36.7-37.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, 2.03 (s, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,133.1,123.5,93.1,87.4,78.9,4.4$.
HRMS (EI) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{I}^{+}[\mathrm{M}]^{+}$241.9587, found 241.9586.

2-(4-(Prop-1-yn-1-yl)phenyl)propan-2-ol (1s)
m.p. $64.0-65.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, 2.05 (s, 3H), 1.71 (s, 1H), 1.57 (s, 6H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.4,131.2,124.3,122.2,85.5,79.5,72.3,31.5$, 4.3.

HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$197.0937, found 197.0934.

(4-(Prop-1-yn-1-yl)phenyl)(pyrrolidin-1-yl)methanone (1t)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford 1t as a white solid ($0.91 \mathrm{~g}, 85 \%$ yield).
m.p. $139.2-140.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.40(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $3.64(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 3.42(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.83(\mathrm{~m}$, 4H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 168.9,135.8,131.1,126.9,125.5,87.4,79.1$, 49.4, 46.1, 26.2, 24.2, 4.2.

HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}^{+}[\mathrm{M}+\mathrm{H}]^{+}$214.1226, found 214.1231.

1-(4-(Prop-1-yn-1-yl)phenyl)-1H-pyrazole (1u)
Following the general procedure B, the crude product was purified by flash chromatography on silica gel ($4: 1$ petroleum ether/EtOAc) to afford $\mathbf{1 u}$ as a white solid ($0.75 \mathrm{~g}, 82 \%$ yield).
m.p. $80.2-81.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 7.72(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz})$, $7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.46(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.46(\mathrm{dd}, 1 \mathrm{H}, J=2.5,1.5 \mathrm{~Hz})$, 2.06 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.1,139.0,132.5,126.5,122.0,118.6,107.7$, 86.6, 78.9, 4.3.

HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$183.0917, found 183.0917 .

1-(But-2-yn-1-yloxy)-4-(prop-1-yn-1-yl)benzene (1v)
m.p. $49.1-51.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 6.87(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz})$, $4.63(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}), 2.03(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,132.6,116.7,114.6,84.2,83.9,79.3,73.7$, 56.3, 4.2, 3.6.

HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$185.0961, found 185.0963.

Methyl 3-(Prop-1-yn-1-yl)benzoate (1y)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford 1 y as a white solid ($0.72 \mathrm{~g}, 83 \%$ yield).
m.p. $27.9-30.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.4,1.4 \mathrm{~Hz}), 7.93$ (ddd, $1 \mathrm{H}, \mathrm{J}=$ $7.8,1.4,1.4 \mathrm{~Hz}$), 7.56 (ddd, $1 \mathrm{H}, J=7.7,1.4,1.4 \mathrm{~Hz}$), 7.36 (dd, $1 \mathrm{H}, J=7.8,7.7$ Hz), 3.91 (s, 3H), 2.06 (s, 3H).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.4,135.6,132.5,130.2,128.4,128.2,124.4$, 86.9, 78.7, 52.1, 4.2.

HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 175.0754$, found 175.0755 .

5-(Prop-1-yn-1-yl)benzo[b]thiophene (1ac)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford 1ac as colorless liquid ($0.72 \mathrm{~g}, 84 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85(\mathrm{dd}, 1 \mathrm{H}, J=1.5,0.6 \mathrm{~Hz}), 7.75(\mathrm{~d}, 1 \mathrm{H}, J=8.4$ $\mathrm{Hz}), 7.40(\mathrm{~d}, 1 \mathrm{H}, J=5.6 \mathrm{~Hz}), 7.34(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.5 \mathrm{~Hz}), 7.24(\mathrm{dd}, 1 \mathrm{H}, J=$ $5.6,0.6 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.4,138.8,127.3,127.0,126.5,123.4,122.1$, 119.8, 85.2, 79.9, 4.2.

HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~S}^{+}[\mathrm{M}]^{+}$172.0341, found 171.0336.

Ethyl 5-(Prop-1-yn-1-yl)furan-2-carboxylate (1af)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford 1af as a white solid ($0.56 \mathrm{~g}, 63 \%$ yield).
m.p. $31.8-32.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz}), 6.51(\mathrm{~d}, 1 \mathrm{H}, J=3.5 \mathrm{~Hz})$, $4.36(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.0,143.8,140.5,118.4,115.0,92.6,69.6,60.9$, 14.2, 4.4.

HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{NaO}_{3}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$201.0522, found 201.0524.

Methyl-4-(prop-1-yn-1-yl)-1H-pyrazole (1ag)
Following the general procedure B, the crude product was purified by flash chromatography on silica gel ($5: 1$ petroleum ether/EtOAc) to afford 1ag as colorless liquid ($0.44 \mathrm{~g}, 73 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{~s}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.00(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.4,131.9,103.6,85.7,70.3,38.7,4.0$.
HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$121.0760, found 121.0762.

(3R,4S)-1-(4-Fluorophenyl)-3-((S)-3-(4-fluorophenyl)-3-hydroxypropyl)-4-(4-(prop-1-yn-1-yl)phenyl)azetidin-2-one (1as)
m.p. $56.7-58.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.33-7.16(\mathrm{~m}, 6 \mathrm{H})$, 7.07-6.88 (m, 4H), 4.76-4.68 (m, 1H), 4.60 (d, 1H, J = 2.4 Hz), 3.13-3.03 (m, 1 H), 2.21 (brd, 1H, J=3.2 Hz), $2.05(\mathrm{~s}, 3 \mathrm{H}), 2.06-1.82(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, acetone- d_{6}) $\delta 167.8,162.6(\mathrm{~d}, J=242.4 \mathrm{~Hz}), 159.9(\mathrm{~d}, J$ $=240.6 \mathrm{~Hz}), 142.8(\mathrm{~d}, \mathrm{~J}=2.9 \mathrm{~Hz}), 138.8,135.3(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 132.8,128.4(\mathrm{~d}$, $J=7.9 \mathrm{~Hz}), 127.1,125.0,119.1(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 115.5(\mathrm{~d}$, $J=21.3 \mathrm{~Hz}$), 87.3, 79.9, 72.9, 61.3, 61.1, 37.6, 25.8, 4.0.

HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{KNO}_{2}{ }^{+}[\mathrm{M}+\mathrm{K}]^{+} 470.1328$, found 470.1318 .

Isopropyl 2-Methyl-2-(4-(4-(prop-1-yn-1-yl)benzoyl)phenoxy)propanoate (1au)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.68(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz})$, 7.47 (d, 2H, $J=8.2 \mathrm{~Hz}$), 6.86 (d, 2H, $J=8.8 \mathrm{~Hz}$), 5.09 (hept, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}$), 2.09 (s, 3H), 1.66 (s, 6H), 1.20 (d, 6H, J = 6.3 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.5,172.9,159.4,136.6,131.8,131.1,130.3$, 129.5, 127.9, 117.1, 89.0, 79.23, 79.20, 69.1, 25.2, 21.4, 4.3.

HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 365.1747$, found 365.1739.

Methyl Prop-2-ene-1-sulfonate (2a)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.2,9.8,7.2 \mathrm{~Hz}$), $5.55-5.49$ (m, $1 \mathrm{H}), 5.48-5.43$ (m, 1H), 3.92 (s, 3H), 3.86 (d, 2H, J = 7.2 Hz).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 124.4,124.2,56.2,54.0$.
HRMS (ESI) calcd for $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{~S}^{-}\left[\mathrm{M}-\mathrm{CH}_{3}\right]^{-1}$ 120.9965, found 120.9964 .

Butyl Prop-2-ene-1-sulfonate (2b)
Following the general procedure D , the crude product was purified by flash chromatography on silica gel ($5: 1$ petroleum ether/EtOAc) to afford $\mathbf{2 b}$ as colorless liquid ($0.64 \mathrm{~g}, 73 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.4,10.3,7.2 \mathrm{~Hz}$), $5.51-5.42$ (m, 2H), $4.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz}), 3.83(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.78-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.50-1.38(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 124.5,124.2,70.5,54.6,31.0,18.5,13.3$.

HRMS (ESI) calcd for $\mathrm{C}_{7} \mathrm{H}_{15} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$179.0736, found 179.0738.

2,2,2-Trifluoroethyl Prop-2-ene-1-sulfonate (2d)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.90$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.3,10.2,7.2 \mathrm{~Hz}$), $5.60-5.47$ $(\mathrm{m}, 2 \mathrm{H}), 4.52(\mathrm{q}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 3.96(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 125.7,123.2,121.8(\mathrm{q}, J=275.8 \mathrm{~Hz}), 64.6(\mathrm{q}, J=$ 38.5 Hz), 55.7.
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-74.0(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz})$.
HRMS (EI) calcd for $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}]^{+}$204.0063, found 204.0053.

((3r,5r,7r)-Adamantan-1-yl)methyl prop-2-ene-1-sulfonate (2e)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford 2d as a white solid ($0.78 \mathrm{~g}, 57 \%$ yield).
m.p. $30.2-31.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.91$ (ddt, $1 \mathrm{H}, J=17.5,10.3,7.2 \mathrm{~Hz}$), $5.50-5.41$ $(\mathrm{m}, 2 \mathrm{H}), 3.83(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 3.79(\mathrm{~s}, 2 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.58(\mathrm{~m}$, $6 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 124.5,124.3,79.9,54.4,38.6,36.6,33.5,27.7$. HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$293.1182, found 293.1180.

2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)ethylprop-2-en e-1-sulfonate (2f)

Following the general procedure D , the crude product was purified by flash chromatography on silica gel (1:2 petroleum ether/EtOAc) to afford $\mathbf{2 f}$ as a white solid ($0.67 \mathrm{~g}, 41 \%$ yield).
m.p. $131.0-132.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~s}, 1 \mathrm{H}), 5.81$ (ddt, $1 \mathrm{H}, \mathrm{J}=17.3,10.1,7.2 \mathrm{~Hz}$), 5.49-5.35 (m, 2H), 4.62 (s, 4H), 3.81 (d, 2H, J = 7.2 Hz), 3.61 (s, 3H), 3.42 (s, 3 H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.2,151.4,149.1,142.1,124.9,123.7,106.2$, 68.1, 54.9, 46.5, 29.7, 27.9.

HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$351.0734, found 351.0733.

Prop-2-ene-1-sulfonyl fluoride (4)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.92$ (ddt, $\left.1 \mathrm{H}, J=17.3,10.2,7.2 \mathrm{~Hz}\right), 5.65-5.55$ (m, 2H), 4.13-4.04 (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 126.6,122.0,54.8(\mathrm{~d}, J=18.1 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 52.0$.
HRMS (ESI) calcd for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{FO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$125.0067, found 125.0059.

III. Screening of reaction conditions

Standard conditions: To a screw-cap test tube, which was equipped with a stir bar and charged with bpyCu($\left.\mathrm{CF}_{3}\right)_{3}(102.4 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv.) and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ ($136.8 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv.), was evacuated and backfilled with argon. 1-Methoxy-4-(prop-1-yn-1-yl)benzene 1a (29.2 mg, $0.20 \mathrm{mmol}, 1.0$ equiv.), methyl prop-2-ene-1-sulfonate 2a ($81.6 \mathrm{mg}, 0.60 \mathrm{mmol}, 3.0$ equiv.), acetone $(2 \mathrm{~mL}), \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs $\left(\lambda_{\max }=460 \mathrm{~nm}\right.$) irradiation for 4 h . (Trifluoromethoxy)benzene was added as an internal standard and the yields were determined by ${ }^{19} \mathrm{~F}$ NMR spectroscopy.

Table S3. Screening of Reaction Conditions

Entry	Conditions	${ }^{19}$ F NMR yield (\%)			Ratio of 3a/Z-3a
		3a	Z-3a	bis-3a	
1	Standard conditions	77	6	15	13:1
2	acetone (4 mL) as solvent	55	6	26	9:1
3	acetone/ $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL} / 2 \mathrm{~mL})$ as solvent	7	ND	5	-
4	acetone/ $\mathrm{H}_{2} \mathrm{O}(3.2 \mathrm{~mL} / 0.8 \mathrm{~mL})$ as solvent	52	5	20	10: 1
5	acetone/ $/ \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 80 \mathrm{uL})$ as solvent	68	5	23	14:1
6	$\mathrm{CH}_{3} \mathrm{CN}(4 \mathrm{~mL})$ as solvent	57	12	17	5:1
7	$\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 80 \mathrm{uL})$ as solvent	69	6	10	12:1
8	THF/ $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 80 \mathrm{uL})$ as solvent	ND	ND	trace	-
9	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 80 \mathrm{uL})$ as solvent	43	5	19	9:1
10	EtOAc/ $\mathrm{H}_{2} \mathrm{O}(4 \mathrm{~mL} / 80 \mathrm{uL})$ as solvent	29	ND	30	-
11	acetone/ $/ \mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL} / 2 \mathrm{~mL})$ as solvent	64	8	22	8:1
12	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ instead of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	52	5	16	10:1
13	$\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$ instead of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	46	4	20	11:1
14	without $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$	4	ND	24	-
15	365 nm instead of blue LED	64	5	13	13:1
16	254 nm instead of blue LED	40	4	10	10:1
17	performed in dark	ND	ND	ND	-
18	2 equiv. of 2a used instead	66	7	26	9:1
19	AcOH (4 equiv.)	61	7	24	9:1
20	TFA (4 equiv.)	63	5	12	13:1
21	$\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ (4 equiv.)	18	ND	trace	-
22	KF (4 equiv.)	50	4	22	13:1
23	NaOAc (4 equiv.)	33	trace	22	-
24	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (4 equiv.)	31	trace	30	-
25	$\mathrm{K}_{3} \mathrm{PO}_{4}$ (4 equiv.)	ND	ND	26	-
26	pyridine (4 equiv.)	4	ND	7	-
27	$\mathrm{Et}_{3} \mathrm{~N}$ (4 equiv.)	28	trace	26	-
28	FeCl_{3} (4 equiv.)	9	ND	4	-
29	AlCl_{3} (4 equiv.)	10	trace	5	-

IV. Synthesis and characterization of products

4.1 General procedures for the synthesis of products

General procedure A: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne ($0.20 \mathrm{mmol}, 1.0$ equiv., if it is a solid), bpyCu($\left.\mathrm{CF}_{3}\right)_{3}$ (102.4 mg, 0.24 mmol , 1.2 equiv.), and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(136.8 \mathrm{mg}$, $0.60 \mathrm{mmol}, 3.0$ equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), alkyl allylsulfonate ($0.60 \mathrm{mmol}, 3$ equiv.), acetone (2 mL), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs ($\lambda_{\max }=460 \mathrm{~nm}$) irradiation for 4 h . The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure B: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne ($0.20 \mathrm{mmol}, 1.0$ equiv., if it is a solid), $\operatorname{bpyCu}\left(\mathrm{CF}_{3}\right)_{3}\left(128.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5\right.$ equiv.), and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(136.8 \mathrm{mg}$, $0.60 \mathrm{mmol}, 3.0$ equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), alkyl allylsulfonate (0.60 mmol , 3 equiv.), acetone (2 mL) , $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ were added through septum via syringe. The reaction mixture was stirred at room temperature under blue LEDs $\left(\lambda_{\max }=460 \mathrm{~nm}\right)$ irradiation for 8 h . The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure C: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne ($0.20 \mathrm{mmol}, 1.0$ equiv., if it is a solid), bpyCu $\left(\mathrm{CF}_{3}\right)_{3}(128.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5$ equiv. $)$, and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(136.8 \mathrm{mg}$, $0.60 \mathrm{mmol}, 3.0$ equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), allylsulfonyl fluoride ($74.5 \mathrm{mg}, 0.60 \mathrm{mmol}, 3$ equiv.), acetone (2 mL), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ were added through
septum via syringe. The reaction mixture was stirred at room temperature under $365 \mathrm{~nm}(5 \mathrm{~W})$ irradiation for 4 h . The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

General procedure D: To a screw-cap test tube, which was equipped with a stir bar and charged with alkyne ($0.20 \mathrm{mmol}, 1.0$ equiv., if it is a solid), $\operatorname{bpyCu}\left(\mathrm{CF}_{3}\right)_{3}\left(128.0 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.5\right.$ equiv.), and $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{~S}_{2} \mathrm{O}_{8}(136.8 \mathrm{mg}$, $0.60 \mathrm{mmol}, 3.0$ equiv.), was evacuated and backfilled with argon. Alkyne (0.20 mmol, 1.0 equiv., if it is liquid), allylsulfonyl fluoride ($99.3 \mathrm{mg}, 0.80 \mathrm{mmol}, 4$ equiv.), acetone (2 mL), $\mathrm{CH}_{3} \mathrm{CN}(2 \mathrm{~mL})$, and $\mathrm{H}_{2} \mathrm{O}(80 \mu \mathrm{~L})$ were added through septum via syringe. The reaction mixture was stirred at room temperature under $365 \mathrm{~nm}(5 \mathrm{~W})$ irradiation for 8 h . The solvent was removed on rotovap and the crude product was purified by flash chromatography on silica gel (petroleum ether/EtOAc) to afford the title product.

4.2 Characterization of products

3a

Z-3a

bis-3a

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (petroleum ether to 60:1 petroleum ether/EtOAc) to sequentially afford bis-3a (colorless liquid, $5.2 \mathrm{mg}, 9 \%$ yield), 3a (white solid, $45.1 \mathrm{mg}, 73 \%$ yield), and \mathbf{Z}-3a (colorless liquid, $1.3 \mathrm{mg}, 2 \%$ yield).

Methyl (E)-4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-ene-2-sulfonate (3a)

 m.p. $82.3-84.2^{\circ} \mathrm{C}$.${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13}{ }^{\text {C }}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,142.3(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.1(\mathrm{q}, J=31.3$ $\mathrm{Hz}), 130.4,123.3(\mathrm{q}, J=1.2 \mathrm{~Hz}), 122.4(\mathrm{q}, J=278.7 \mathrm{~Hz}), 113.6,56.1,55.2$, $16.8(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl 3) $\delta-59.1(q, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$333.0379, found 333.0378.

Methyl (Z)-4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-ene-2-sulfonate

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11$ (d, 2H, J = 8.6 Hz), $6.97(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz})$, $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{q}, 3 \mathrm{H}, J=2.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.3,141.5(\mathrm{q}, ~ J=2.6 \mathrm{~Hz}), 138.5(\mathrm{q}, J=34.5$ $\mathrm{Hz}), 129.6,125.1(\mathrm{q}, J=2.1 \mathrm{~Hz}), 120.8(\mathrm{q}, J=276.0 \mathrm{~Hz}), 114.4,56.6,55.3$, 19.9.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.4$ ($\mathrm{q}, \mathrm{J}=2.1 \mathrm{~Hz}$).
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 333.0379$, found 333.0377 .
(E)-1-(1,1,1,4,4,4-Hexafluoro-3-methylbut-2-en-2-yl)-4-methoxybenzene (bis-3a)
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 6.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,136.0(\mathrm{qq}, J=31.3,3.2 \mathrm{~Hz}), 134.4(\mathrm{qq}, J$
$=29.2,2.6 \mathrm{~Hz}), 130.2(\mathrm{q}, J=1.8 \mathrm{~Hz}), 124.2(\mathrm{q}, J=1.5 \mathrm{~Hz}), 123.0(\mathrm{q}, J=276.6$
$\mathrm{Hz}), 122.8(\mathrm{q}, J=276.6 \mathrm{~Hz}), 113.5,55.2,14.3(\mathrm{qq}, J=5.4,2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl_{3}) δ-59.0 (m), -61.2 (m).
HRMS (EI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{O}^{+}[\mathrm{M}]^{+}$284.0630, found 284.0626.

Methyl (E)-4,4,4-Trifluoro-3-(p-tolyl)but-2-ene-2-sulfonate (3b)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford $\mathbf{3} \mathbf{b}$ as a white solid ($41.5 \mathrm{mg}, 74 \%$ yield).
m.p. $66.1-67.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, 2.46 ($\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.4(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.2(\mathrm{q}, J=31.3 \mathrm{~Hz})$, 131.4 ($q, J=1.2 \mathrm{~Hz}), 129.4,128.8,128.1,122.3(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.1,16.7$ ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$303.0273, found 303.0273 .

Methyl (E)-4,4,4-Trifluoro-3-(p-tolyl)but-2-ene-2-sulfonate (3c)

Following the general procedure A , the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3c as a white solid (38.1 mg , 65% yield).
m.p. $64.2-66.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz})$, $3.66(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.2(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.5,139.4(\mathrm{q}, J=31.2$ $\mathrm{Hz}), 128.8,128.7,128.4(\mathrm{q}, J=1.2 \mathrm{~Hz}), 122.4(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.1,21.4$, $16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$317.0430, found 317.0429.

Methyl
(E)-4,4,4-Trifluoro-3-(4-(tert-butyl)phenyl)but-2-ene-2-sulfonate (3d)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3d as colorless oil ($43.1 \mathrm{mg}, 64 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})$, $3.61(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 1.33(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.5,142.2(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.3(\mathrm{q}, J=31.3$ $\mathrm{Hz}), 128.6,128.3(\mathrm{q}, J=1.2 \mathrm{~Hz}), 125.0,122.4(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.1,34.7$, 31.2, 16.7 ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$359.0899, found 359.0900.

Methyl
(E)-4,4,4-Trifluoro-3-([1,1'-biphenyl]-4-yl)but-2-ene-2-sulfonate (3e)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($60: 1$ petroleum ether/EtOAc) to afford $3 e$ as a white solid ($51.9 \mathrm{mg}, 73 \%$ yield).
m.p. $110.1-111.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.31(\mathrm{~d}, 2 \mathrm{H}$, $J=8.2 \mathrm{~Hz}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, 3 \mathrm{H}, J=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.6(\mathrm{q}, J=2.2 \mathrm{~Hz}$), 142.2, 140.0, $139.0(\mathrm{q}, J=$ $31.2 \mathrm{~Hz}), 130.2,129.3,128.8,127.8,127.1,126.7,122.4(\mathrm{q}, J=278.7 \mathrm{~Hz})$, 56.1, 16.8 ($\mathrm{q}, \mathrm{J}=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.7(\mathrm{q}, \mathrm{J}=2.3 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$379.0586, found 379.0579 .

(E)-4-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)phenyl acetate (3f) Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford 3 f as a white solid ($48.5 \mathrm{mg}, 72 \%$ yield).
m.p. $63.4-65.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz})$, 3.63 (s, 3H), 2.45 (q, 3H, J = 2.4 Hz), 2.31 (s, 3H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.9,151.5,143.2(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.2(\mathrm{q}, J=$ $31.5 \mathrm{~Hz}), 130.2,128.7(\mathrm{q}, J=1.2 \mathrm{~Hz}), 122.2(\mathrm{q}, J=278.7 \mathrm{~Hz}), 121.4,56.1$, 21.1, 16.7 ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-58.7(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$361.0328, found 361.0324.

Methyl

(E)-4,4,4-Trifluoro-3-(4-((tert-butyldimethylsilyl)oxy)phenyl)but-2-ene-

2-sulfonate (3 g)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford $\mathbf{3 g}$ as colorless oil ($49.1 \mathrm{mg}, 60 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.10(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, 3.62 (s, 3H), 2.43 (q, 3H, J = 2.4 Hz), 0.98 (s, 9H), 0.21 (s, 6H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.8,142.3(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.0(\mathrm{q}, J=31.3$ $\mathrm{Hz}), 130.4,123.9(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}), 122.4(\mathrm{q}, J=278.7 \mathrm{~Hz}), 119.7,56.0,25.6$, 18.2, 16.7 ($q, J=2.8 \mathrm{~Hz}$), -4.4.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.0(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 433.1087$, found 433.1081.

Methyl (E)-4,4,4-Trifluoro-3-(4-phenoxyphenyl)but-2-ene-2-sulfonate (3h) Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($60: 1$ petroleum ether/EtOAc) to afford 3 h as a white solid ($48.3 \mathrm{mg}, 65 \%$ yield).
m.p. $70.0-71.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.9 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, $7.16(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.06(\mathrm{~d}, 2 \mathrm{H}, J=7.9 \mathrm{~Hz}), 7.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 3.70$ (s, 3H), $2.45(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,156.1,142.7(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.8(\mathrm{q}, J=$ $31.3 \mathrm{~Hz}), 130.5,129.9,125.5(\mathrm{q}, J=1.1 \mathrm{~Hz}), 124.0,122.4(q, J=278.7 \mathrm{~Hz})$, 119.7, 117.6, 56.1, $16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.0(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 395.0535$, found 395.0530 .

Methyl (E)-4,4,4-Trifluoro-3-(4-hydroxyphenyl)but-2-ene-2-sulfonate (3i)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($5: 1$ petroleum ether/EtOAc) to afford $3 \mathbf{i}$ as a white solid ($39.8 \mathrm{mg}, 67 \%$ yield).
m.p. $134.8-136.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.85(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $5.20(\mathrm{~s}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 159.8,143.6(\mathrm{q}, J=2.3 \mathrm{~Hz}), 140.4(\mathrm{q}, J=31.1$ $\mathrm{Hz}), 131.7,124.1(\mathrm{q}, J=277.8 \mathrm{~Hz}), 123.5,115.9,57.4,17.0(\mathrm{q}, J=2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.1(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 319.0222$, found 319.0219.

Methyl

(E)-4,4,4-Trifluoro-3-(4-((4-methylphenyl)sulfonamido)phenyl)but-2-ene-2-sulfonate (3j)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($3: 1$ petroleum ether/EtOAc) to afford $\mathbf{3 j}$ as a white solid ($57.4 \mathrm{mg}, 64 \%$ yield).
m.p. $120.5-122.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$, 7.14-7.06 (m, 4H), $6.56(b r s, 1 H), 3.61(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 2.38(\mathrm{~s}$, $3 H)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.1,143.0(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.3(\mathrm{q}, J=31.5$ $\mathrm{Hz}), 137.9,135.8,130.0,129.7,128.0(\mathrm{q}, J=1.2 \mathrm{~Hz}), 127.2,122.2(\mathrm{q}, J=$ $278.7 \mathrm{~Hz}), 120.6,56.1,21.5,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{NNaO}_{5} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 472.0471$, found 472.0468 .

Methyl (E)-4,4,4-Trifluoro-3-(4-fluorophenyl)but-2-ene-2-sulfonate (3k)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford $\mathbf{3 k}$ as a white solid ($37.8 \mathrm{mg}, 63 \%$ yield).
m.p. $65.3-66.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.26-7.19 (m, 2H), 7.15-7.07 (m, 2H), $3.69(\mathrm{~s}, 3 \mathrm{H})$, 2.45 ($\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.3(\mathrm{~d}, J=249.8 \mathrm{~Hz}), 143.2(\mathrm{q}, J=2.3 \mathrm{~Hz})$, 138.3 (q, J = 31.5 Hz), 130.9 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}$), $127.2(\mathrm{~m}), 122.2(\mathrm{q}, J=278.7 \mathrm{~Hz})$, 115.4 ($\mathrm{d}, J=22.0 \mathrm{~Hz}$), $56.1,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9(\mathrm{q}, ~ J=2.4 \mathrm{~Hz}),-110.9(\mathrm{tt}, J=8.2,5.2 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$321.0179, found 321.0179 .

Methyl (E)-4,4,4-Trifluoro-3-(4-chlorophenyl)but-2-ene-2-sulfonate (3I)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford 31 as a white solid ($47.7 \mathrm{mg}, 76 \%$ yield).
m.p. $68.3-69.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2(\mathrm{q}, J=2.4 \mathrm{~Hz}), 138.1(\mathrm{q}, J=31.5 \mathrm{~Hz})$, $135.8,130.2,129.7(q, J=1.1 \mathrm{~Hz}), 128.5,122.2(q, J=278.7 \mathrm{~Hz}), 56.1,16.7$ (q, $J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClF}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 336.9883$, found 336.9886.

Methyl (E)-4,4,4-Trifluoro-3-(4-bromophenyl)but-2-ene-2-sulfonate (3m)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford 3 m as a white solid ($51.5 \mathrm{mg}, 72 \%$ yield).
m.p. $83.7-85.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.11(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.1(\mathrm{q}, J=31.5 \mathrm{~Hz})$, $131.4,130.5,130.2(q, J=1.1 \mathrm{~Hz}), 124.0,122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.2,16.7$ (q, $J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-58.8(\mathrm{q}, J=2.4 \mathrm{~Hz})$.

HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}]^{+}$357.9481, found 357.9500.

Methyl (E)-4,4,4-Trifluoro-3-(4-iodophenyl)but-2-ene-2-sulfonate (3n)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford $\mathbf{3 n}$ as a white solid ($54.7 \mathrm{mg}, 67 \%$ yield).
m.p. $106.5-108.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $3.70(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.1(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.2(\mathrm{q}, J=31.5 \mathrm{~Hz})$, $137.3,130.9(q, J=1.3 \mathrm{~Hz}), 130.5,122.0(q, J=278.7 \mathrm{~Hz}), 95.8,56.2,16.7(q$, $J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$) $\delta-58.8(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{3} / \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 428.9240$, found 428.9242.

Methyl

(E)-4,4,4-Trifluoro-3-(4-trifluoromethylphenyl)but-2-ene-2-sulfonate (30)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 30 as a white solid ($40.6 \mathrm{mg}, 58 \%$ yield).
m.p. $61.7-63.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.37(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5(\mathrm{q}, J=2.4 \mathrm{~Hz}), 137.9(\mathrm{q}, J=31.8 \mathrm{~Hz})$, 135.1 (m), 131.5 (q, $J=32.8 \mathrm{~Hz}$), $129.4,125.2(\mathrm{q}, J=3.8 \mathrm{~Hz}), 123.7(\mathrm{q}, J=$ $272.5 \mathrm{~Hz}), 122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.2,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, J=2.4 \mathrm{~Hz}),-62.9$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$371.0147, found 371.0138.

Ethyl (E)-4-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)benzoate (3p)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($25: 1$ petroleum ether/EtOAc) to afford 3 p as a white solid ($44.4 \mathrm{mg}, 63 \%$ yield).
m.p. $79.2-80.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.32(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$, 4.39 (q, 2H, $J=7.2 \mathrm{~Hz}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{q}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=$ 7.2 Hz).
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,143.1(\mathrm{q}, J=2.4 \mathrm{~Hz}), 138.4(\mathrm{q}, J=31.2$ $\mathrm{Hz}), 135.9(\mathrm{q}, J=1.2 \mathrm{~Hz}), 131.4,129.3,128.9,122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 61.2$, $56.1,16.7(q, J=2.8 \mathrm{~Hz}), 14.3$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 375.0484$, found 375.0481 .

Methyl (E)-4,4,4-Trifluoro-3-(4-formylphenyl)but-2-ene-2-sulfonate (3q)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($25: 1$ petroleum ether/EtOAc) to afford $\mathbf{3 q}$ as a white solid ($32.6 \mathrm{mg}, 53 \%$ yield).
m.p. $94.5-95.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.42(\mathrm{~d}$, $2 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}$), $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.4,143.4(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.0(\mathrm{q}, J=31.2$ $\mathrm{Hz}), 137.4(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}), 136.7,129.6,129.3,122.0(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.2$, $16.6(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.5(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$309.0403, found 309.0402.

Methyl (E)-4,4,4-Trifluoro-3-(4-cyanophenyl)but-2-ene-2-sulfonate (3r)
Following the general procedure B, the crude product was purified by flash chromatography on silica gel ($25: 1$ petroleum ether/EtOAc) to afford 3 r as colorless oil ($31.6 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, 3.75 (s, 3H), 2.48 (q, 3H, J = 2.4 Hz).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.9(\mathrm{q}, J=2.4 \mathrm{~Hz}), 137.3(\mathrm{q}, J=32.1 \mathrm{~Hz})$, 136.1 ($q, J=1.1 \mathrm{~Hz}), 131.9,129.7,121.9(\mathrm{q}, J=278.7 \mathrm{~Hz}), 118.0,113.5,56.3$, $16.6(q, J=2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$) $\delta-58.5(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$306.0406, found 306.0407.

Methyl

(E)-4,4,4-Trifluoro-3-(4-(2-hydroxypropan-2-yl)phenyl)but-2-ene-2-sulfona te (3s)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford 3 s as a white solid ($50.8 \mathrm{mg}, 75 \%$ yield).
m.p. $78.0-79.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.21(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz})$, $3.65(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{q}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}), 1.77$ (brs, 1H), $1.60(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 150.5,142.4(\mathrm{q}, ~ J=2.3 \mathrm{~Hz}), 139.2(\mathrm{q}, J=31.2$ $\mathrm{Hz}), 129.7(\mathrm{q}, J=1.2 \mathrm{~Hz}), 128.7,124.2,122.3(\mathrm{q}, J=278.7 \mathrm{~Hz}), 72.4,56.1$, 31.6, 16.7 ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 361.0692$, found 361.0689 .

Methyl

(E)-4,4,4-Trifluoro-3-(4-(pyrrolidine-1-carbonyl)phenyl)but-2-ene-2- sulfonate (3t)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford $3 t$ as colorless oil ($53.3 \mathrm{mg}, 71 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.56(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz})$, $3.68(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}), 2.46(\mathrm{q}, 3 \mathrm{H}, J=$ $2.5 \mathrm{~Hz}), 2.01-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.7,142.9(\mathrm{q}, J=2.4 \mathrm{~Hz}), 138.5(\mathrm{q}, J=31.5$ $\mathrm{Hz}), 138.1,132.8(\mathrm{q}, J=1.2 \mathrm{~Hz}), 128.8,126.9,122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.2$, 49.6, 46.2, 26.4, 24.4, 16.6 (q, $J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$378.0981, found 378.0975.

Methyl

(E)-4,4,4-Trifluoro-3-(4-(1H-pyrazol-1-yl)phenyl)but-2-ene-2-sulfonate (3u)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($25: 1$ petroleum ether/EtOAc) to afford $3 \mathbf{u}$ as a white solid ($48.3 \mathrm{mg}, 70 \%$ yield).
m.p. $101.5-103.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, 1 \mathrm{H}, J=2.5,0.5 \mathrm{~Hz}), 7.77(\mathrm{~d}, 2 \mathrm{H}, J=8.7$ $\mathrm{Hz}), 7.74(\mathrm{dd}, 1 \mathrm{H}, J=1.9,0.5 \mathrm{~Hz}), 7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.49(\mathrm{dd}, 1 \mathrm{H}, J=$ $2.5,1.9 \mathrm{~Hz}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{q}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1(\mathrm{q}, J=2.4 \mathrm{~Hz}), 141.5,140.8,138.3(\mathrm{q}, J=$ $31.6 \mathrm{~Hz}), 130.2,129.1(\mathrm{q}, J=1.2 \mathrm{~Hz}), 126.7,122.2(\mathrm{q}, J=278.7 \mathrm{~Hz}), 118.4$, 108.1, 56.2, 16.7 ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 369.0491$, found 369.0487.

Methyl

(E)-4,4,4-Trifluoro-3-(4-(but-2-yn-1-yloxy)phenyl)but-2-ene-2-sulfonate (3v)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($60: 1$ petroleum ether/EtOAc) to afford 3 v as colorless oil ($36.8 \mathrm{mg}, 53 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.17(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.98(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$, 4.67 (q, 2H, $J=2.4 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.87(\mathrm{t}, 3 \mathrm{H}, J=$ $2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.7,142.4(\mathrm{q}, J=2.4 \mathrm{~Hz}), 138.9(\mathrm{q}, J=31.3$ $\mathrm{Hz}), 130.3,123.8(q, J=1.2 \mathrm{~Hz}), 122.4(q, J=278.7 \mathrm{~Hz}), 114.4,84.1,73.6$, $56.5,56.1,16.7(q, J=2.8 \mathrm{~Hz}), 3.6$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.0(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}$).
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 371.0535$, found 371.0531.

Methyl (E)-4,4,4-Trifluoro-3-(m-tolyl)but-2-ene-2-sulfonate (3w)

Following the general procedure A , the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford 3 w as a white solid ($38.2 \mathrm{mg}, 65 \%$ yield).
m.p. $58.3-59.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.33-7.21 (m, 2H), 7.06-7.00 (m, 2H), $3.65(\mathrm{~s}, 3 \mathrm{H})$, 2.44 (q, 3H, J = 2.4 Hz), 2.38 (s, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.4(\mathrm{q}, J=31.2 \mathrm{~Hz})$, 137.8, 131.3 (q, J = 1.2 Hz), 130.2, 129.3, 127.9, 125.9, 122.4 (q, $J=278.7$ $\mathrm{Hz}), 56.0,21.4,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 317.0430$, found 317.0428 .

Methyl (E)-4,4,4-Trifluoro-3-(3-methoxyphenyl)but-2-ene-2-sulfonate (3x)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($60: 1$ petroleum ether/EtOAc) to afford $3 \mathbf{x}$ as a white solid ($42.9 \mathrm{mg}, 69 \%$ yield).
m.p. $50.2-51.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.4,7.6 \mathrm{~Hz}), 6.96$ (ddd, $1 \mathrm{H}, \mathrm{J}=$ $8.4,2.5,0.8 \mathrm{~Hz}), 6.82(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}), 6.79-6.75(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.67$ ($\mathrm{s}, 3 \mathrm{H}$), $2.45(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 159.1, 142.4 (q, $J=2.2 \mathrm{~Hz}$), 138.9 (q, $J=31.5$ $\mathrm{Hz}), 132.5(\mathrm{q}, J=1.2 \mathrm{~Hz}), 129.2,122.3(\mathrm{q}, J=278.7 \mathrm{~Hz}), 121.1,114.80$, 114.78, 56.1, 55.3, 16.7 ($q, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}$).
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 333.0379$, found 333.0378 .

Methyl (E)-3-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)benzoate (3y)

Following the general procedure B , the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford $3 y$ as a white solid ($47.1 \mathrm{mg}, 70 \%$ yield).
m.p. $52.2-53.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.11$ (d, 1H, J = 7.5 Hz), 7.92 (s, 1H), 7.50 (dd, $1 \mathrm{H}, J=7.9,7.5 \mathrm{~Hz}), 7.43(\mathrm{~d}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{q}$, $3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 166.2, 143.3 (q, $J=2.4 \mathrm{~Hz}$), 138.3 (q, $J=31.5$ $\mathrm{Hz}), 133.3,131.7(\mathrm{q}, \mathrm{J}=1.2 \mathrm{~Hz}), 130.5,130.2,129.9,128.3,122.2(\mathrm{q}, \mathrm{J}=$ $278.7 \mathrm{~Hz}), 56.1,52.3,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.7(\mathrm{q}, ~ J=2.4 \mathrm{~Hz}$).
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 361.0328$, found 361.0326 .

Methyl (E)-4,4,4-Trifluoro-3-(2-hydroxyphenyl)but-2-ene-2-sulfonate (3z)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford $\mathbf{3 z}$ as colorless oil ($40.5 \mathrm{mg}, 68 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30$ (ddd, $1 \mathrm{H}, \mathrm{J}=8.2,8.0,1.6 \mathrm{~Hz}$), 7.11 (dd, 1 H , $J=7.6,1.6 \mathrm{~Hz}), 6.98(\mathrm{ddd}, 1 \mathrm{H}, J=8.0,7.6,0.8 \mathrm{~Hz}), 6.81(\mathrm{dd}, 1 \mathrm{H}, J=8.2,0.8$ $\mathrm{Hz}), 5.17$ (brs, 1H), $3.73(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, 3 \mathrm{H}, J=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.0,142.9(\mathrm{q}, J=2.4 \mathrm{~Hz}), 137.2(\mathrm{q}, J=32.7$ $\mathrm{Hz}), 131.1,130.5,122.2(\mathrm{q}, J=278.7 \mathrm{~Hz}), 120.5,119.2(\mathrm{q}, J=2.3 \mathrm{~Hz}), 115.5$, $56.7,16.6(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.9(\mathrm{q}, J=2.3 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$319.0222, found 319.0220.

Methyl
(E)-4,4,4-Trifluoro-3-(2-methoxyphenyl)but-2-ene-2-sulfonate (3aa)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford 3aa as colorless oil ($26.5 \mathrm{mg}, 43 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41$ (ddd, $1 \mathrm{H}, \mathrm{J}=8.3,7.5,1.7 \mathrm{~Hz}$), 7.13 (dd, 1 H , $J=7.5,1.7 \mathrm{~Hz}), 6.99(\mathrm{ddd}, 1 \mathrm{H}, J=8.3,7.5,0.9 \mathrm{~Hz}), 6.93(\mathrm{dd}, 1 \mathrm{H}, J=8.3,0.9$ $\mathrm{Hz}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,142.2(\mathrm{q}, J=2.4 \mathrm{~Hz}), 137.6(\mathrm{q}, J=32.1$ $\mathrm{Hz}), 131.1,130.5,122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 120.9(\mathrm{q}, J=1.1 \mathrm{~Hz}), 120.3,110.4$, $56.4,55.6,16.5(q, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.2(\mathrm{q}, J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 333.0379$, found 333.0378 .

Methyl (E)-4,4,4-Trifluoro-3-(naphthalen-2-yl)but-2-ene-2-sulfonate (3ab)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford 3ab as a white solid ($35.6 \mathrm{mg}, 54 \%$ yield).
m.p. $90.2-91.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92-7.83(\mathrm{~m}, 3 \mathrm{H}), 7.74(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.4 \mathrm{~Hz})$, $7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, 1 \mathrm{H}, J=8.6,1.4 \mathrm{~Hz}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 2.51(\mathrm{q}, 3 \mathrm{H}, J=$ 2.4 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.8(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.2(\mathrm{q}, J=31.5 \mathrm{~Hz})$, 133.3, 132.5, 128.80 ($q, J=1.2 \mathrm{~Hz}$), 128.76, 128.3, 127.8, 127.1, 126.7, 125.8, $122.5(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.1,16.8(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, \mathrm{J}=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$353.0430, found 353.0429 .

Methyl (E)-4,4,4-Trifluoro-3-(benzo[b]thiophen-5-yl)but-2-ene-2-sulfonate (3ac)

Following the general procedure A , the crude product was purified by flash chromatography on silica gel (25:1 petroleum ether/EtOAc) to afford 3ac as a white solid ($38.9 \mathrm{mg}, 58 \%$ yield).
m.p. $101.2-102.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.91(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.71(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz})$, 7.51 (d, 1H, $J=5.4 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}), 7.19(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.1 \mathrm{~Hz})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.7(\mathrm{q}, J=2.4 \mathrm{~Hz}), 140.7,139.2(\mathrm{q}, J=31.5$ $\mathrm{Hz}), 139.1,127.6,127.3(\mathrm{q}, J=1.2 \mathrm{~Hz}), 124.4,124.2,123.9,122.4(\mathrm{q}, J=$ $278.7 \mathrm{~Hz}), 122.2,56.1,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.7(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 358.9994$, found 358.9993 .

Methyl (Z)-4,4,4-Trifluoro-3-(thiophen-2-yl)but-2-ene-2-sulfonate (3ad)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford 3ad as a colorless oil ($30.2 \mathrm{mg}, 53 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0,1.2 \mathrm{~Hz}), 7.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $3.7,1.2 \mathrm{~Hz}), 7.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.0,3.7 \mathrm{~Hz}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.46(\mathrm{q}, 3 \mathrm{H}, J=2.5$ Hz).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 145.7(\mathrm{q}, J=2.1 \mathrm{~Hz}), 132.5(\mathrm{q}, J=32.7 \mathrm{~Hz})$, $131.3,129.8(q, J=1.2 H z), 129.1,126.8,121.7(q, J=278.7 \mathrm{~Hz}), 56.5,17.2$ ($q, J=2.9 \mathrm{~Hz}$).
${ }^{19}$ F NMR (282 MHz, CDCl ${ }_{3}$) $\delta-59.8(\mathrm{q}, \mathrm{J}=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 308.9837$, found 308.9837.

Methyl (E)-4,4,4-Trifluoro-3-(thiophen-3-yl)but-2-ene-2-sulfonate (3ae)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (60:1 petroleum ether/EtOAc) to afford 3ae as a white solid ($33.7 \mathrm{mg}, 59 \%$ yield).
m.p. $53.1-54.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 8 7.40-7.36 (m, 2H), 7.04-7.00 (m, 1H), $3.68(\mathrm{~s}, 3 \mathrm{H})$, 2.44 ($\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.4(\mathrm{q}, J=2.4 \mathrm{~Hz}), 134.5(\mathrm{q}, J=32.1 \mathrm{~Hz})$, 130.0 (q, $J=1.2 \mathrm{~Hz}), 127.9,127.4,125.6,122.1(\mathrm{q}, J=278.7 \mathrm{~Hz}), 56.2,16.9$ (q, $J=2.9 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.6(\mathrm{q}, \mathrm{J}=2.5 \mathrm{~Hz}$).
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 308.9837$, found 308.9838.

Ethyl (E)-5-(1,1,1-Trifluoro-3-(methoxysulfonyl)but-2-en-2-yl)furan-2-

 carboxylate (3af)Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford 3af as a white solid ($48.8 \mathrm{mg}, 71 \%$ yield).
m.p. $36.9-38.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz}), 6.66(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz})$, $4.36(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 2.47(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 1.37(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=$ 7.2 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2$, $148.2(\mathrm{q}, ~ J=2.0 \mathrm{~Hz}), 146.0,144.7(\mathrm{q}, J=$ $1.5 \mathrm{~Hz}), 127.9(q, J=34.1 \mathrm{~Hz}), 121.4(q, J=278.7 \mathrm{~Hz}), 118.5,115.6,61.3$, 57.5, 16.9 ($\mathrm{q}, J=2.5 \mathrm{~Hz}$), 14.2.
${ }^{19}$ F NMR ($\left.282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.7(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$365.0277, found 365.0273 .

Methyl

(E)-4,4,4-Trifluoro-3-(1-methyl-1H-pyrazol-4-yl)but-2-ene-2-sulfonate (3ag)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford 3ag as a white solid ($35.2 \mathrm{mg}, 62 \%$ yield).
m.p. $173.1^{\circ} \mathrm{C}$ (dec.)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ ($\mathrm{s}, 1 \mathrm{H}$), $7.50(\mathrm{~s}, 1 \mathrm{H}), 3.93$ (s, 3H), 3.70 (s, $3 \mathrm{H}), 2.41(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.6 \mathrm{~Hz})$; $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.32(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 6 \mathrm{H})$, $2.40(q, 3 H, J=2.7 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 157.7$ ($\mathrm{q}, J=2.4 \mathrm{~Hz}$), 139.2, 124.3 ($\mathrm{q}, J=276.1$ $\mathrm{Hz}), 118.8(\mathrm{q}, J=32.2 \mathrm{~Hz}), 115.6(\mathrm{q}, J=1.8 \mathrm{~Hz}), 37.1,17.9(\mathrm{q}, J=2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.1(\mathrm{q}, J=2.6 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$285.0515, found 285.0512 .

Methyl (E)-1,1,1-Trifluoro-2-phenylpent-2-ene-3-sulfonate (3ah)

Following the general procedure A , the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3ah as a white solid ($40.8 \mathrm{mg}, 69 \%$ yield).
m.p. $60.1-62.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H})$, 2.85 (qq, 2H, $J=7.3,1.7 \mathrm{~Hz}), 1.37(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.0(\mathrm{q}, J=2.5 \mathrm{~Hz}), 138.7(\mathrm{q}, J=31.2 \mathrm{~Hz})$, 131.6 (q, $J=1.2 \mathrm{~Hz}), 129.4,128.9,128.0,122.5(\mathrm{q}, J=278.7 \mathrm{~Hz}), 55.7,24.5$ ($q, J=2.6 \mathrm{~Hz}$), 14.2.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-58.2.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 317.0430$, found 317.0428 .

Methyl (E)-1,1,1-Trifluoro-5-hydroxy-2-phenylpent-2-ene-3-sulfonate (3ai)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (10:1 petroleum ether/EtOAc) to afford 3ai as a white solid ($43.4 \mathrm{mg}, 70 \%$ yield).
m.p. $67.2-70.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.38$ (m, 3H), 7.30-7.24 (m, 2H), 4.01 (dt, 2H, $J=6.7,6.3 \mathrm{~Hz}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.13(\mathrm{tq}, 2 \mathrm{H}, J=6.7,1.7 \mathrm{~Hz}), 1.89(\mathrm{t}, 1 \mathrm{H}, J=6.3$ Hz).
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.2(\mathrm{q}, J=2.2 \mathrm{~Hz}), 140.9(\mathrm{q}, J=31.3 \mathrm{~Hz})$, $131.4(\mathrm{q}, J=1.2 \mathrm{~Hz}), 129.5,128.9,128.0,122.3(\mathrm{q}, J=278.7 \mathrm{~Hz}), 61.4(\mathrm{q}, J=$ 1.5 Hz), 56.0, 33.9 ($q, J=2.9 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.3$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 333.0379$, found 333.0377.

Methyl (E)-5-Bromo-1,1,1-trifluoro-2-phenylpent-2-ene-3-sulfonate (3aj)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford 3aj as a white solid ($47.6 \mathrm{mg}, 64 \%$ yield).
m.p. $69.1-70.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major E-isomer) $\delta 7.47-7.39(\mathrm{~m}, 3 \mathrm{H})$, 7.29-7.22 (m, 2 H), 3.66 (t, 2H, J = 8.0 Hz), $3.58(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{tq}, 2 \mathrm{H}, \mathrm{J}=8.0,1.3 \mathrm{~Hz}$); (minor Z-isomer) δ 7.52-7.45 (m, 3H), 7.29-7.22 (m, 2H), $4.04(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=$ $7.5 \mathrm{~Hz}), 2.87$ (tq, 2H, J = 7.9, 1.1 Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major E-isomer) $\delta 144.0(\mathrm{q}, J=2.2 \mathrm{~Hz}$), 141.6 (q , $J=31.6 \mathrm{~Hz}), 131.0(\mathrm{q}, J=1.1 \mathrm{~Hz}), 129.75,128.7,128.1,122.1(\mathrm{q}, J=278.7$ $\mathrm{Hz}), 56.1,33.9(\mathrm{q}, J=2.6 \mathrm{~Hz}), 28.0(\mathrm{q}, J=1.8 \mathrm{~Hz})$; (minor Z-isomer) $\delta 129.79$, 129.1, 128.0, 56.8, 35.9 , (some carbon peaks were missed due to the small amount.).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-56.9$ (minor Z-isomer), -58.3 (major E-isomer). HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{BrF}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 394.9535$, found 394.9535 .

Methyl 1,1,1-Trifluoro-4-methyl-2-phenylpent-2-ene-3-sulfonate (3ak)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3ak as a 1:1 E/Z mixture as colorless oil ($37.8 \mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.47-7.43 (m, $\left.0.5 \times 3 \mathrm{H}\right), 7.42-7.38(\mathrm{~m}, 0.5 \times 3 \mathrm{H})$, 7.26-7.23 (m, 0.5 $\times 2 \mathrm{H}$), 7.20-7.16 (m, $0.5 \times 2 \mathrm{H}$), $3.99(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 3.51$ (hept, $0.5 \times 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 3.47(\mathrm{~s}, 0.5 \times 3 \mathrm{H}), 2.74($ hept, $0.5 \times 1 \mathrm{H}, J=8.7 \mathrm{~Hz}), 1.47$
(d, $0.5 \times 6 \mathrm{H}, J=8.7 \mathrm{~Hz}), 1.21(\mathrm{~d}, 0.5 \times 6 \mathrm{H}, J=8.7 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.5(\mathrm{q}, J=2.2 \mathrm{~Hz}), 151.0(\mathrm{q}, J=2.6 \mathrm{~Hz})$, 138.3 (q, $J=31.0 \mathrm{~Hz}), 138.0(\mathrm{q}, J=33.8 \mathrm{~Hz}), 133.5(\mathrm{q}, J=1.9 \mathrm{~Hz}), 131.9(\mathrm{q}, J$ $=1.4 \mathrm{~Hz}$), 129.3, 129.2, 129.0, 128.9, 127.9 (two peaks overlay), 122.5 (q, J = $278.7 \mathrm{~Hz}), 120.9(\mathrm{q}, J=276.2 \mathrm{~Hz}), 55.9,55.1,33.7,31.5(\mathrm{q}, J=2.8 \mathrm{~Hz}), 20.4$, 19.9.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.2,-57.4$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 331.0586$, found 331.0585 .

Methyl (Z)-1,1,1-Trifluoro-4,4-dimethyl-2-phenylpent-2-ene-3-sulfonate (3al)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford 3al as a white solid ($16.8 \mathrm{mg}, 26 \%$ yield).
m.p. $63.8-64.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, 1.15 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6(\mathrm{q}, J=2.3 \mathrm{~Hz}), 138.7(\mathrm{q}, J=32.3 \mathrm{~Hz})$, 133.3 (q, $J=1.8 \mathrm{~Hz}), 131.3129 .9,127.9,121.2(\mathrm{q}, J=277.2 \mathrm{~Hz}), 56.2,40.3$, 31.8 .
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}^{+}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 340.1189$, found 340.1193.

Methyl

(Z)-3,3,3-Trifluoro-2-([1,1'-biphenyl]-4-yl)-1-(trimethylsilyl)prop-1-ene-1Sulfonate (3am)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3am as a white solid ($48.7 \mathrm{mg}, 59 \%$ yield).
m.p. $78.1-79.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, 2 \mathrm{H}$, $J=8.4 \mathrm{~Hz}), 3.98(\mathrm{~s}, 3 \mathrm{H}),-0.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl $)^{2} \delta 150.2(\mathrm{q}, J=1.8 \mathrm{~Hz}), 148.9(\mathrm{q}, J=32.9 \mathrm{~Hz})$, 143.3, 139.6, 132.3 ($\mathrm{q}, J=1.5 \mathrm{~Hz}$), 131.3, 129.0, 128.1, 127.1, 126.9, 120.4 (q , $J=279.6 \mathrm{~Hz}$), 55.7, 0.9.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-59.2.
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 437.0825$, found 437.0811 .

Butyl (E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3an)
Following the general procedure A, the crude product was purified by flash chromatography on silica gel ($80: 1$ petroleum ether/EtOAc) to afford 3an the title compound as colorless oil ($40.8 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36$ (m, 3H), 7.27-7.20 (m, 2H), 3.97 (t, 2H, $J=6.6 \mathrm{~Hz}), 2.45(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.90$ $(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=6.6 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.0(\mathrm{q}, J=2.5 \mathrm{~Hz}), 138.7(\mathrm{q}, J=31.3 \mathrm{~Hz})$, $131.5,129.3,128.9,128.0,122.4(q, J=278.7 \mathrm{~Hz}), 70.8,30.9,18.6,16.6$ (q, J $=2.8 \mathrm{~Hz}$), 13.4 .
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 345.0743$, found 345.0741 .

Isopropyl (E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3ao)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3ao as a white solid ($39.5 \mathrm{mg}, 64 \%$ yield).
m.p. $37.1-38.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.44-7.36 (m, 3H), 7.25-7.20 (m, 2H), 4.76 (hept, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}), 2.45(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 1.31(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.7$ (q, J = 2.5 Hz), 138.2 ($\mathrm{q}, \mathrm{J}=31.2 \mathrm{~Hz}$), $131.6(\mathrm{q}, J=1.2 \mathrm{~Hz}), 129.2,129.0,128.0,122.5(\mathrm{q}, J=278.7 \mathrm{~Hz}), 78.2,22.8$, $16.6(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$331.0586, found 331.0586.

2,2,2-Trifluoroethyl (3ap)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3ap as colorless oil ($42.3 \mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{q}, 2 \mathrm{H}$, $J=7.9 \mathrm{~Hz}), 2.49(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.5(\mathrm{q}, J=2.2 \mathrm{~Hz}), 140.3(\mathrm{q}, J=31.5 \mathrm{~Hz})$, $131.0,129.7,128.8,128.3,122.2(q, J=278.7 \mathrm{~Hz}), 121.7(q, J=278.7 \mathrm{~Hz})$, $64.4(q, J=38.4 \mathrm{~Hz}), 16.5(q, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.1(\mathrm{q}, ~ J=2.4 \mathrm{~Hz}),-73.8(\mathrm{t}, J=7.9 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{6} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$371.0147, found 371.0141.

((3r,5r,7r)-Adamantan-1-yl)methyl (E)-4,4,4-Trifluoro-3-phenylbut-2-ene-1-

Sulfonate (3aq)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford 3aq as colorless oil ($54.8 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36$ (m, 3H), 7.25-7.20 (m, 2H), $3.54(\mathrm{~s}, 2 \mathrm{H})$, $2.44(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.5 \mathrm{~Hz}), 2.02-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.77-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.57(\mathrm{~m}$, $3 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 142.9(\mathrm{q}, J=2.5 \mathrm{~Hz}), 138.7(\mathrm{q}, J=31.3 \mathrm{~Hz})$, $131.5(\mathrm{q}, J=1.2 \mathrm{~Hz}), 129.3,128.9,128.0,122.5(\mathrm{q}, J=278.7 \mathrm{~Hz}), 80.1,38.6$, $36.6,33.4,27.7,16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-55.7(\mathrm{q}, J=2.1 \mathrm{~Hz}$, minor Z-isomer), $-58.8(\mathrm{q}, J$ $=2.5 \mathrm{~Hz}$, major E-isomer).

HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 437.1369$, found 437.1362.

Methyl
(E)-4,4,4-Trifluoro-3-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14, 15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)but-2-ene-2-sulfo nate (3ar)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford 3ar as a white solid ($59.5 \mathrm{mg}, 65 \%$ yield).
m.p. $162.0-163.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.00(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz})$, 6.96 (s, 1H), 3.69 (s, 3H), 2.98-2.88 (m, 2H), 2.58-2.25 (m, 3H), 2.44 (q, 3H, J $=2.4 \mathrm{~Hz})$, 2.24-1.92 (m, 4H), 1.74-1.39 (m, 6H), $0.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}$ C NMR (125 MHz, CDCl_{3}) $\delta 220.6,141.9,141.1,139.4$ (q, J = 31.3 Hz), 136.3, 129.3, 128.7, 126.1, 124.9, 122.4 (q, $J=278.7 \mathrm{~Hz}$), 56.1, $50.5,47.9$, $44.3,37.7,35.8,31.5,29.1,26.3,25.4,21.5,16.7(q, J=2.7 \mathrm{~Hz}), 13.8$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8$.
HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~F}_{3} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 479.1474$, found 479.1474.

Methyl

(E)-4,4,4-Trifluoro-3-(4-((2R,3R)-1-(4-fluorophenyl)-3-((S)-3-(4-fluorop henyl)-3-hydroxypropyl)-4-oxoazetidin-2-yl)phenyl)but-2-ene-2-sulfonate (3as)

Following the general procedure B, the crude product was purified by flash chromatography on silica gel (3:1 petroleum ether/EtOAc) to afford 3as as a brown solid ($68.9 \mathrm{mg}, 58 \%$ yield).
m.p. $136.5-138.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.19(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.94(\mathrm{t}$, $2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 4.75-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 3.65(\mathrm{~s}, 3 \mathrm{H})$,
3.20-3.11 (m, 1H), $2.45(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.21(\mathrm{~d}, 1 \mathrm{H}, J=3.4 \mathrm{~Hz}), 2.09-1.86$ ($\mathrm{m}, 4 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, acetone- d_{6}) $\delta 167.8,162.6(\mathrm{~d}, J=242.3 \mathrm{~Hz}), 159.0(\mathrm{~d}, J=$ $241.8 \mathrm{~Hz}), 144.2(\mathrm{q}, J=2.5 \mathrm{~Hz}), 142.9(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 140.7,138.8(\mathrm{q}, J=31.2$ $\mathrm{Hz}), 135.4(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.6(\mathrm{q}, J=1.1 \mathrm{~Hz}), 130.7,128.5(\mathrm{~d}, J=8.0 \mathrm{~Hz})$, $126.8,123.5(\mathrm{q}, J=277.8 \mathrm{~Hz}), 119.2(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 116.4(\mathrm{~d}, J=23.0 \mathrm{~Hz})$, 115.5 (d, $J=21.4 \mathrm{~Hz}), 72.7,61.2,61.1,57.7,37.6,25.7,16.9(\mathrm{q}, J=2.9 \mathrm{~Hz})$. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.8(\mathrm{q}, J=2.5 \mathrm{~Hz}),-114.8(\mathrm{~m}),-117.8(\mathrm{~m})$.
HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{26} \mathrm{~F}_{5} \mathrm{NNaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$618.1344, found 618.1341.

Methyl

(E)-4,4,4-Trifluoro-3-(4-methyl-2-oxo-2H-chromen-7-yl)but-2-ene-2-sulfon ate (3at)
Following the general procedure B, the crude product was purified by flash chromatography on silica gel ($25: 1$ petroleum ether/EtOAc) to afford 3at as a white solid ($53.7 \mathrm{mg}, 74 \%$ yield).
m.p. $142.7-143.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.1 \mathrm{~Hz}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.36$ $(\mathrm{d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.49(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz}), 2.46(\mathrm{~d}, 3 \mathrm{H}, J=1.1$ Hz).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,152.8,151.8,143.6(\mathrm{q}, \mathrm{J}=2.1 \mathrm{~Hz}), 137.4$ (q, $J=31.9 \mathrm{~Hz}$), 134.8, 124.9, 124.5, $122.0(\mathrm{q}, J=278.5 \mathrm{~Hz}), 120.6,117.4$, $116.1,56.4,18.5,16.7(q, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$363.0509, found 363.0502.

Isopropyl

(E)-2-Methyl-2-(4-(4-(1,1,1-trifluoro-3-(methoxysulfonyl)but-2-en-2-yl) benzoyl)phenoxy)propanoate (3au)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford 3au as a white solid ($66.5 \mathrm{mg}, 63 \%$ yield).
m.p. $60.2-61.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.79(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz})$, 7.35 (d, 2H, J = 8.5 Hz), 6.87 (d, 2H, J = 8.8 Hz), 5.09 (hept, 1H, J = 6.2 Hz), $3.72(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~d}, 6 \mathrm{H}, J=6.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.5,173.0,159.7,134.0(\mathrm{q}, \mathrm{J}=2.2 \mathrm{~Hz}), 138.7$, 138.3 (q, J = 31.6 Hz), 134.9 (q, $J=1.1 \mathrm{~Hz}$), 132.0, 130.0, 129.4, 128.8, 122.1 ($q, J=278.9 \mathrm{~Hz}$), 117.1, 79.3, 69.3, 56.2, 25.3, 21.5, 16.6 (q, $J=2.9 \mathrm{~Hz}$). ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.5(\mathrm{q}, J=2.4 \mathrm{~Hz})$.

HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{O}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 529.1502$, found 529.1498 .

2-(1,3-Dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)ethyl (E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonate (3av)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel $\left(20: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}\right)$ to afford 3av as colorless liquid ($55.7 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major E-isomer) $\delta 7.50(\mathrm{~s}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m} \mathrm{3H})$, 7.21-7.15 (m, 2H), $4.44(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}), 4.32(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.6 \mathrm{~Hz}), 3.60(\mathrm{~s}, 3 \mathrm{H})$,
3.41 (s, 3H), 2.31 (q, 3H, J = 2.5 Hz); (minor Z-isomer) 7.68 (s, 1H), 7.47-7.39 $(\mathrm{m}, 3 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.71(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.4 \mathrm{~Hz}), 4.67(\mathrm{t}, 2 \mathrm{H}, J=4.4 \mathrm{~Hz})$, $3.60(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 1.88(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.0 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major E-isomer) $\delta 155.2,151.5,149.2,142.11$, $142.2(\mathrm{q}, J=2.4 \mathrm{~Hz}), 139.6(\mathrm{q}, J=31.5 \mathrm{~Hz}), 131.1(\mathrm{q}, J=1.1 \mathrm{~Hz}), 129.46$, 128.7, 128.1, 122.1 ($q, J=278.7 \mathrm{~Hz}$), 106.2, 68.2, 46.3, 29.8, 27.91, 16.4 (q, J $=2.7 \mathrm{~Hz})$; (minor Z-isomer) $\delta 155.3,151.4,149.3,142.2,142.13(\mathrm{q}, J=2.1 \mathrm{~Hz})$, 129.52, 129.0, 127.8, 106.3, 68.6, 46.4, 27.94, 19.6 (some carbon peaks were missed due to the low amount.).
${ }^{19}$ F NMR (282 MHz, CDCl 3) $\delta-56.1$ ($\mathrm{q}, \mathrm{J}=2.0 \mathrm{~Hz}$, minor Z-isomer), -59.0 (q, J $=2.5 \mathrm{~Hz}$, major E-isomer).

HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 495.0920$, found 495.0920.

(E)-4,4,4-Trifluoro-3-phenylbut-2-ene-2-sulfonyl Fluoride (5a)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford 5a as colorless liquid ($32.5 \mathrm{mg}, 61 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{q}, 3 \mathrm{H}$, $J=2.3 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0$ (qd, $J=32.1,2.6 \mathrm{~Hz}$), 141.3 (dq, $J=23.8$, $2.3 \mathrm{~Hz}), 130.3(\mathrm{q}, J=1.1 \mathrm{~Hz}), 130.1,128.7,128.5,121.9(\mathrm{qd}, J=278.5,4.7$ $\mathrm{Hz}), 16.6(\mathrm{q}, \mathrm{J}=2.8 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9,-59.3$.
HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+}$268.0181, found 268.0187.

(E)-3-(4-(tert-Butyl)phenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl

Fluoride (5b)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $\mathbf{5 b}$ as colorless liquid ($37.8 \mathrm{mg}, 58 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.16(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, 2.53 ($\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz}$), $1.33(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,142.2(\mathrm{qd}, J=32.2,2.7 \mathrm{~Hz}), 141.0(\mathrm{dq}, J$ $=23.7,2.2 \mathrm{~Hz}$), 128.5, 127.3 (q, $J=1.1 \mathrm{~Hz}), 125.4,122.0(q d, J=278.3,4.6$ $\mathrm{Hz}), 34.8,31.1,16.7(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl_{3}) δ 57.6, -59.4.
HRMS (EI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+}$324.0802, found 324.0796.

(E)-3-([1,1'-Biphenyl]-4-yl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5c)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $5 \mathbf{c}$ as a white solid ($44.3 \mathrm{mg}, 64 \%$ yield).
m.p. $145.1-146.6^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, 2 \mathrm{H}$, $J=8.1 \mathrm{~Hz}), 2.57(\mathrm{q}, 3 \mathrm{H}, J=2.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.1,141.9(\mathrm{qd}, J=32.4,2.5 \mathrm{~Hz}), 141.4(\mathrm{dq}, J$ = 24.0, 2.2 Hz), 139.9, 129.3, 129.1 (q, J=1.1 Hz), 128.9, 128.0, 127.2, 127.1, $122.0(q d, J=278.6,4.7 \mathrm{~Hz}), 16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 57.9, -59.3.
HRMS (EI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+} 344.0489$, found 344.0491 .

(E)-4-(1,1,1-Trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)phenyl Acetate (5d)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $5 \mathbf{d}$ as a white solid ($39.2 \mathrm{mg}, 60 \%$ yield).
m.p. $60.1-60.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}), 7.20(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz})$, $2.54(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}), 2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{3} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.7,152.1,141.8(\mathrm{dq}, J=24.1,2.2 \mathrm{~Hz}), 141.2$ (qd, $J=32.4,2.5 \mathrm{~Hz}), 130.1,127.5(q, J=1.1 \mathrm{~Hz}), 121.8(q d, J=278.8,4.6$ $\mathrm{Hz}), 121.7,21.1,16.7(\mathrm{q}, J=2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($\left.282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 57.9,-59.3(\mathrm{q}, J=2.2 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 327.0309$, found 327.0306 .

(E)-4,4,4-Trifluoro-3-(4-((4-methylphenyl)sulfonamido)phenyl)but-2-ene-2 -sulfonyl Fluoride (5e)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (20:1 petroleum ether/EtOAc) to afford 5 e as a white solid ($48.3 \mathrm{mg}, 55 \%$ yield).
m.p. $105.7-107.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz})$, $7.12(\mathrm{~s}, 4 \mathrm{H}), 6.62(\mathrm{brs}, 1 \mathrm{H}), 2.52(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz}), 2.38(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.3,141.6$ (dq, $J=23.8,2.2 \mathrm{~Hz}$), 141.2 (qd, J $=32.6,2.5 \mathrm{~Hz}), 138.7,135.5,129.9,129.7,127.1,126.6(\mathrm{q}, J=1.1 \mathrm{~Hz}), 121.7$ (qd, $J=278.5,4.8 \mathrm{~Hz}), 120.6,21.5,16.6(\mathrm{q}, J=2.8 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.9,-59.4$.
HRMS (ESI) calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{NO}_{4} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$438.0451, found 438.0447.

(E)-3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5f)

Following the general procedure C, the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford $\mathbf{5 f}$ as a white solid ($34.5 \mathrm{mg}, 57 \%$ yield).
m.p. $35.7-36.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.18(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz})$, $2.55(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.0(\mathrm{dq}, J=24.1,2.3 \mathrm{~Hz}), 140.9(\mathrm{qd}, J=32.5$, $2.5 \mathrm{~Hz}), 136.6,130.1,128.9,128.6(q, J=1.4 \mathrm{~Hz}), 121.7(q d, J=278.9,4.7$ $\mathrm{Hz}), 16.6(\mathrm{q}, ~ J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 58.0, -59.4.
HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{CIF}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+}$301.9786, found 301.9787.

(E)-3-(4-Bromophenyl)-4,4,4-Trifluorobut-2-ene-2-sulfonyl Fluoride (5g)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford $\mathbf{5 g}$ as a white solid ($42.3 \mathrm{mg}, 61 \%$ yield).
m.p. $39.1-40.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, $2.54(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 141.9$ (dq, $J=24.1,2.4 \mathrm{~Hz}$), 140.9 (qd, $J=32.7$, $2.6 \mathrm{~Hz}), 131.9,130.3,129.1(\mathrm{q}, J=1.1 \mathrm{~Hz}), 124.9,121.6(\mathrm{qd}, J=278.5,4.4$ Hz), 16.7 ($\mathrm{q}, \mathrm{J}=2.7 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 58.0, -59.3.
HRMS (EI) calcd for $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{BrF}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+}$345.9286, found 345.9289.

(E)-3-(4-(1H-Pyrazol-1-yl)phenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5h)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $5 \mathbf{h}$ as a white solid ($36.0 \mathrm{mg}, 54 \%$ yield).
m.p. $70.2-71.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, 1 \mathrm{H}, J=2.5 \mathrm{~Hz}), 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, 7.75 (d, 1H, J = 1.4 Hz), $7.34(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.50(\mathrm{dd}, 1 \mathrm{H}, J=2.5,1.4 \mathrm{~Hz})$, $2.57(\mathrm{q}, 3 \mathrm{H}, J=2.2 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 141.8(\mathrm{dq}, J=24.0,2.5 \mathrm{~Hz}), 141.7,141.3,141.2$ (qd, $J=32.1,2.6 \mathrm{~Hz}), 130.1,127.9(\mathrm{q}, J=1.4 \mathrm{~Hz}), 126.7,121.8(\mathrm{qd}, J=279.4$, $4.5 \mathrm{~Hz}), 118.7,108.2,16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 58.0, -59.3.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 335.0472$, found 335.0461 .

Ethyl (E)-4-(1,1,1-Trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)benzoate (5i)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $\mathbf{5 i}$ as colorless oil ($36.8 \mathrm{mg}, 54 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz}), 7.33(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.4 \mathrm{~Hz})$, $4.40(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.57(\mathrm{q}, 3 \mathrm{H}, J=2.3 \mathrm{~Hz}), 1.40(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,141.8(\mathrm{dq}, J=24.6,2.5 \mathrm{~Hz}), 141.2(\mathrm{qd}, J$ $=32.5,2.5 \mathrm{~Hz}), 134.6(\mathrm{q}, J=1.1 \mathrm{~Hz}), 132.1,129.6,128.8,121.7(\mathrm{qd}, J=278.8$, $4.5 \mathrm{~Hz}), 61.3,16.7(\mathrm{q}, \mathrm{J}=2.7 \mathrm{~Hz}), 14.3$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 58.3, -59.1.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 341.0465$, found 341.0459.

(E)-3-(3-Cyanophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5j)

Following the general procedure D , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $5 \mathbf{j}$ as colorless liquid ($29.8 \mathrm{mg}, 51 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 7.59(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz})$, $7.56(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.58(\mathrm{q}, 3 \mathrm{H}, J=2.7 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9$ (dq, $J=24.7,2.2 \mathrm{~Hz}$), 139.5 (qd, $J=32.9$, $2.5 \mathrm{~Hz}), 133.6,133.0,132.1,131.6(\mathrm{q}, J=1.1 \mathrm{~Hz}), 129.5,121.4(\mathrm{qd}, J=279.3$, $4.4 \mathrm{~Hz}), 117.6,113.2,16.6(q, J=2.7 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 58.4,-59.1$.
HRMS (EI) calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+}$293.0128, found 293.0128.

(E)-4,4,4-Trifluoro-3-(2-methoxyphenyl)but-2-ene-2-sulfonyl Fluoride (5k)

Following the general procedure D , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $\mathbf{5 k}$ as colorless liquid ($26.2 \mathrm{mg}, 44 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ (ddd, $1 \mathrm{H}, \mathrm{J}=8.4,7.5,1.8 \mathrm{~Hz}$), 7.12 (dd, 1 H , $J=7.8,1.8 \mathrm{~Hz}), 7.00(\mathrm{ddd}, 1 \mathrm{H}, J=7.8,7.5,1.0 \mathrm{~Hz}), 6.94(\mathrm{dd}, 1 \mathrm{H}, J=8.4,1.0$ $\mathrm{Hz}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.53(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.1 \mathrm{~Hz})$.
${ }^{13}{ }^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,141.2(\mathrm{dq}, J=24.1,2.5 \mathrm{~Hz}), 140.3$ (qd, J $=33.3,2.7 \mathrm{~Hz}), 131.9,129.9,121.7(q d, J=279.5,4.5 \mathrm{~Hz}), 120.4,119.8(\mathrm{q}, J$ $=1.1 \mathrm{~Hz}), 110.8,55.7,16.5(\mathrm{q}, J=2.6 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl3) δ 56.8, -60.5.
HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~F}_{4} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$321.0179, found 321.0175.

(E)-3-(Benzo[b]thiophen-5-yl)-4,4,4-trifluorobut-2-ene-2-sulfonyl Fluoride (5I)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford 5 I as a white solid ($34.6 \mathrm{mg}, 53 \%$ yield).
m.p. $68.1-69.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.97(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.3 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz})$, 7.56 (d, 1H, J = 5.4 Hz), 7.40 (d, 1H, J = 5.4 Hz), 7.22 (dd, 1H, $J=8.3,1.1 \mathrm{~Hz}$), $2.61(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1$ (qd, $J=32.1,2.6 \mathrm{~Hz}$), 141.6 ($\mathrm{dq}, J=23.6$, $2.2 \mathrm{~Hz}), 141.4,139.3,128.0,126.3(\mathrm{q}, \mathrm{J}=1.1 \mathrm{~Hz}), 124.1,123.9,122.7,120.0$ (qd, $J=278.5,4.7 \mathrm{~Hz}), 16.7(q, J=2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.7,-59.3$.
HRMS (ESI) calcd for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~F}_{4} \mathrm{NaO}_{2} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 346.9794$, found 346.9789.

(E)-4,4,4-T
rifluoro-3-(thiophen-3-yl)but-2-ene-2-sulfonyl Fluoride (5m)
Following the general procedure C , the crude product was purified by flash chromatography on silica gel (petroleum ether) to afford 5m as colorless liquid ($26.8 \mathrm{mg}, 49 \%$ yield).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{qd}$, $3 \mathrm{H}, J=2.4,1.2 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.1(\mathrm{dq}, J=24.2,2.3 \mathrm{~Hz}), 137.4(\mathrm{qd}, J=33.1$, $2.6 \mathrm{~Hz}), 129.0(\mathrm{q}, J=1.2 \mathrm{~Hz}), 128.2,127.6,126.5,121.6(\mathrm{qd}, J=278.6,4.7$ $\mathrm{Hz}), 16.8(\mathrm{q}, J=2.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 56.7,-60.1$.
HRMS (El) calcd for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{+}[\mathrm{M}]^{+}$273.9740, found 273.9742.

(E)-1,1,1-Trifluoro-2-phenylhept-2-ene-3-sulfonyl Fluoride (5n)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $\mathbf{5 n}$ as colorless liquid ($34.3 \mathrm{mg}, 55 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.52-7.39 (m, 3H), 7.28-7.22 (m, 2H), 2.90-2.80 (m, 2H), 1.82-1.69 (m, 2H), 1.49 (tq, 2H, J = 7.3, 7.3 Hz), $0.99(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.3$ Hz).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.8(\mathrm{dq}, J=19.0,2.3 \mathrm{~Hz}), 141.7(\mathrm{qd}, J=32.2$, $1.4 \mathrm{~Hz}), 130.5(q, J=1.1 \mathrm{~Hz}), 130.0,128.8,128.4,122.2(q d, J=279.1,4.4$ $\mathrm{Hz}), 31.5,30.8(\mathrm{q}, J=2.2 \mathrm{~Hz}), 22.7,13.5$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 62.5,-58.7$.

HRMS (El) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}]^{+} 310.0645$, found 310.0648 .

(Z)-1,1,1-Trifluoro-4,4-dimethyl-2-phenylpent-2-ene-3-sulfonyl Fluoride (50)

Following the general procedure C , the crude product was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford 50 as a white solid ($19.9 \mathrm{mg}, 32 \%$ yield).
m.p. $76.8-77.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, 9 \mathrm{H}$, $J=0.6 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$ (dq, $J=14.1,2.1 \mathrm{~Hz}$), $141.5(\mathrm{q}, J=33.2$ $\mathrm{Hz}), 132.2(\mathrm{q}, J=3.2 \mathrm{~Hz}), 131.1,130.5,128.3,121.0(\mathrm{q}, J=277.7 \mathrm{~Hz}), 40.6$, 31.8 (d, J = 2.5 Hz).
${ }^{19}$ F NMR ($\left.282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.4(\mathrm{q}, J=19.8 \mathrm{~Hz}),-59.3(\mathrm{~d}, J=19.8 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$311.0723, found 311.0733.

(E)-4,4,4-Trifluoro-3-((8R,9S,13S,14S)-13-methyl-17-oxo-7,8,9,11,12,13,14, 15,16,17-decahydro-6H-cyclopenta[a]phenanthren-3-yl)but-2-ene-2-sulfo nyl Fluoride (5p)

Following the general procedure D, the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford $\mathbf{5 p}$ as a white solid ($54.4 \mathrm{mg}, 61 \%$ yield).
m.p. $45.8-47.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.01(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz})$,
$6.96(\mathrm{~s}, 1 \mathrm{H}), 3.00-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.53(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$, 2.24-1.98 (m, 4H), 1.74-1.41 (m, 6H), 0.93 (s, 3H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 220.7$, $142.2(\mathrm{qd}, ~ J=35.2,2.5 \mathrm{~Hz}$), 142.0, 140.8 (dq, $J=24.9,2.6 \mathrm{~Hz}), 136.8,129.1,127.6,126.0,125.4,121.9(q d, J=279.0$, $4.7 \mathrm{~Hz}), 50.5,47.9,44.3,37.7,35.8,31.5,29.1,26.2,25.4,21.5,16.6(q, J=$ $2.6 \mathrm{~Hz}), 13.8$.
${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 57.6,-59.4$.
HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 445.1455$, found 445.1453.

(E)-4,4,4-Trifluoro-3-(4-methyl-2-oxo-2H-chromen-7-yl)but-2-ene-2-sulfon yl Fluoride (5q)

Following the general procedure D , the crude product was purified by flash chromatography on silica gel (20:1 petroleum ether/EtOAc) to afford $5 \mathbf{q}$ as a white solid ($46.9 \mathrm{mg}, 67 \%$ yield).
m.p. $141.6-143.2^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.2 \mathrm{~Hz}), 7.24(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz})$, $7.18(\mathrm{dd}, 1 \mathrm{H}, J=8.2,1.5 \mathrm{~Hz}), 6.38(\mathrm{q}, 1 \mathrm{H}, J=1.2 \mathrm{~Hz}), 2.59(\mathrm{q}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz})$, 2.47 (d, 3H, J = 1.2 Hz).
${ }^{13}$ C NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,153.0,151.6,142.4(\mathrm{dq}, J=24.5,2.5 \mathrm{~Hz}$), 140.1 (qd, $J=32.8,2.6 \mathrm{~Hz}), 133.4(q, J=1.4 \mathrm{~Hz}), 124.9,124.5,121.5(q d, J=$ $279.3,4.4 \mathrm{~Hz}), 121.3,117.5,116.5,18.5,16.7(q, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR (282 MHz, CDCl_{3}) δ 58.4, -59.0.
HRMS (ESI) calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{4} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$351.0309, found 351.0299.

Isopropyl

(E)-2-Methyl-2-(4-(4-(1,1,1-trifluoro-3-(fluorosulfonyl)but-2-en-2-yl)benzoy I)phenoxy)propanoate (5r)

Following the general procedure D , the crude product was purified by flash chromatography on silica gel ($30: 1$ petroleum ether/EtOAc) to afford 5 r as a white solid ($53.5 \mathrm{mg}, 52 \%$ yield).
m.p. $60.1-61.4^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.76(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz})$, 7.36 (d, 2H, $J=8.3 \mathrm{~Hz}$), 6.88 (d, 2H, $J=8.9 \mathrm{~Hz}$), 5.09 (hept, $1 \mathrm{H}, J=6.3 \mathrm{~Hz}$), $2.58(\mathrm{q}, 3 \mathrm{H}, J=2.3 \mathrm{~Hz}), 1.67(\mathrm{~s}, 6 \mathrm{H}), 1.20(\mathrm{~d}, 6 \mathrm{H}, J=6.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.4,173.0,159.9,141.8(\mathrm{dq}, J=24.2,2.4 \mathrm{~Hz}$), 141.2 (qd, $J=32.8,2.6 \mathrm{~Hz}$), 139.5, 133.6, 132.1, 129.9, 129.6, 128.7, 121.7 (qd, $J=279.3,4.1 \mathrm{~Hz}$), 117.2, $79.4,69.3,25.3,21.5,16.7(q, J=2.5 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 58.2, -59.0.
HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{O}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 517.1302$, found 517.1295.

Synthesis

(E)-4-((4,4,4-Trifluoro-3-(4-methoxyphenyl)but-2-en-2-yl)sulfonyl)morphol ine (6)

A mixture of 3a ($62.1 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.) and TBAI ($88.7 \mathrm{mg}, 0.24 \mathrm{mmol}$) in acetone (1 mL) was heated to reflux for 4 h . The solvent was evaporated to afford crude sulfonic acid. Then $\mathrm{PPh}_{3}\left(104.9 \mathrm{mg}, 0.4 \mathrm{mmol}\right.$), anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1 \mathrm{~mL})$, and $\mathrm{SOCl}_{2}(21.8 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$ was added at $0^{\circ} \mathrm{C}$. The mixture was stirred at this temperature for 2 h . To the mixture were added $\mathrm{Et}_{3} \mathrm{~N}(83.0 \mu \mathrm{~L}$, $0.6 \mathrm{mmol})$ and morpholine $(26.1 \mu \mathrm{~L})$. The reaction mixture was stirred at room
temperature for 3 h . EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc (2 $\times 8$ $\mathrm{mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel ($3: 1$ petroleum ether/EtOAc) to afford 6 ($49.9 \mathrm{mg}, 68 \%$ yield) as a pale-yellow solid.
m.p. $135.4-137.0^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.92(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.7 \mathrm{~Hz})$, $3.82(\mathrm{~s}, 3 \mathrm{H}), 3.65-3.57(\mathrm{~m}, 4 \mathrm{H}), 3.08-2.99(\mathrm{~m}, 4 \mathrm{H}), 2.36(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.0,144.9(\mathrm{q}, J=2.2 \mathrm{~Hz}), 137.1(\mathrm{q}, J=30.8$ $\mathrm{Hz}), 130.5,123.8(\mathrm{q}, J=1.1 \mathrm{~Hz}), 122.7(\mathrm{q}, J=278.9 \mathrm{~Hz}), 113.4,66.6,55.1$, 45.3, 16.9 ($q, J=2.9 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.6(\mathrm{q}, J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 366.0981$, found 366.0982.

Synthesis of
(E)-1-((3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-en-2-yl)sulfonyl)-1H-imidaz ole (7)

A mixture of 5 f ($60.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), imidazole ($20.4 \mathrm{mg}, 0.3 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130.3 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was stirred at room temperature for 1 h . EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc $(2 \times 8 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (5:1 petroleum ether/EtOAc) to afford $7(33.5 \mathrm{mg}, 48 \%$ yield) as a white solid.
m.p. $64.3-66.5^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz})$, 7.14-7.12 (m, 1H), $7.09(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz}), 7.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.5,1.4 \mathrm{~Hz}), 2.34$ $(q, 3 H, J=2.3 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.1(\mathrm{q}, J=2.2 \mathrm{~Hz}), 139.8(\mathrm{q}, J=32.2 \mathrm{~Hz})$, 137.1, 136.4, 131.5, 130.1, 128.8, $128.3(J=1.2 H z), 121.7(q, J=279.1 \mathrm{~Hz})$, 117.5, 16.1 ($\mathrm{q}, J=2.8 \mathrm{~Hz}$).
${ }^{19}$ F NMR (282 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-59.2(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{ClF}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 351.0176$, found 351.0174 .

Synthesis of (E)-3-(4-Chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonyl azide (8)

A mixture of 5 f ($60.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{TMSN}_{3}(40 \mu \mathrm{~L}, 0.3 \mathrm{mmol})$, and DBU ($6.0 \mu \mathrm{~L}, 0.04 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was stirred at room temperature for 45 min . EtOAc $(10 \mathrm{~mL})$ and water $(8 \mathrm{~mL})$ were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 8 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel (100:1 petroleum ether/EtOAc) to afford $8(46.0 \mathrm{mg}, 71 \%$ yield) as a white solid.
m.p. $61.5-62.7^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz}), 7.19(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.5 \mathrm{~Hz})$, $2.51(\mathrm{q}, 3 \mathrm{H}, \mathrm{J}=2.4 \mathrm{~Hz})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.0(\mathrm{q}, J=2.2 \mathrm{~Hz}), 138.7(\mathrm{q}, \mathrm{J}=32.2 \mathrm{~Hz})$, $136.3,130.3,128.9(q, J=1.4 \mathrm{~Hz}), 128.8,122.0(\mathrm{q}, J=279.1 \mathrm{~Hz}), 16.8(\mathrm{q}, J=$
$2.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.1(\mathrm{q}, ~ J=2.4 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{CIF}_{3} \mathrm{NO}_{2} \mathrm{~S}^{+}\left[\mathrm{M}-\mathrm{N}_{2}+\mathrm{H}\right]^{+}$297.9911, found 297.9907.

Synthesis
 of
 Phenyl

(E)-3-(4-chlorophenyl)-4,4,4-trifluorobut-2-ene-2-sulfonate (9)

A mixture of $3 \mathrm{f}(60.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv.), phenol ($20.7 \mathrm{mg}, 0.22 \mathrm{mmol}$), and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(130.3 \mathrm{mg}, 0.4 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(1 \mathrm{~mL})$ was stirred at room temperature for 3 h . EtOAc (10 mL) and water (8 mL) were added. The two layers were separated and the aqueous layer was extracted with EtOAc ($2 \times 8 \mathrm{~mL}$). The combined organic layers were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by flash chromatography on silica gel ($5: 1$ petroleum ether/EtOAc) to afford $9(62.5 \mathrm{mg}, 83 \%$ yield) as a white solid. m.p. $82.4-84.1^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.23(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.6 \mathrm{~Hz})$, 7.12-7.05 (m, 2H), $6.73(\mathrm{~d}, 2 \mathrm{H}, J=8.6 \mathrm{~Hz}), 2.59(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz})$.
${ }^{13}{ }^{3}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.7,142.2(\mathrm{q}, ~ J=2.2 \mathrm{~Hz}$), $139.8(\mathrm{q}, J=31.7$ $\mathrm{Hz}), 135.5,130.0,129.8,129.4(\mathrm{q}, J=1.1 \mathrm{~Hz}), 128.2,127.7,122.2,122.0(\mathrm{q}, J$ $=279.0 \mathrm{~Hz}), 17.0(\mathrm{q}, J=2.9 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-59.1(\mathrm{q}, ~ J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClF}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$399.0040, found 399.0038.

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (100:1 to $50: 1$ petroleum ether/EtOAc) to afford S1 ($25.5 \mathrm{mg}, 37 \%$) and $\mathbf{S 2}$ ($24.5 \mathrm{mg}, 39 \%$ yield) as white solids.

Methyl (E)-3,3,3-Trifluoro-2-([1,1'-biphenyl]-4-yl)prop-1-ene-1-sulfonate (S1)
m.p. $117.9-119.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69(\mathrm{~d}, 2 \mathrm{H}, J=8.5 \mathrm{~Hz}), 7.62(\mathrm{~d}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz})$, $7.51-7.35(\mathrm{~m}, 4 \mathrm{H}), 3.39(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}), 7.07(\mathrm{q}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}), 3.79(\mathrm{~s}$, 3 H).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.4,143.3(\mathrm{q}, J=32.0 \mathrm{~Hz}$), 139.8, 129.3, 129.2 ($\mathrm{q}, J=5.4 \mathrm{~Hz}$), 128.9, 128.0, 127.2, 127.1, 126.7, 121.6 ($\mathrm{q}, J=276.6$ Hz), 56.7.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-67.2.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$365.0430, found 365.0423 .
(E)-4-(1,1,1,4,4,4-Hexafluoro-3-methylbut-2-en-2-yl)-1,1'-biphenyl (S2)
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~d}, 2 \mathrm{H}, J=8.3 \mathrm{~Hz}), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz})$,
$7.46(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 6.52(\mathrm{qq}, 1 \mathrm{H}, J=7.3,1.4 \mathrm{~Hz})$.
${ }^{19} \mathrm{~F}$ NMR $\left(282 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-57.9(\mathrm{dq}, J=7.3,1.4 \mathrm{~Hz}),-68.1$.
The ${ }^{1} \mathrm{H}$ NMR and ${ }^{19} \mathrm{~F}$ NMR spectral data correspond well to those previously reported. ${ }^{15 a}$

(E)-(1,1,1-Trifluoro-3-(phenylsulfonyl)but-2-en-2-yl)benzene (S3)

Following the general procedure A, the crude product was purified by flash chromatography on silica gel (80:1 petroleum ether/EtOAc) to afford S3 as a white solid ($20.4 \mathrm{mg}, 31 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{tt}, 1 \mathrm{H}, \mathrm{J}=7.2,1.6 \mathrm{~Hz}), 7.41-7.27(\mathrm{~m}, 5 \mathrm{H})$, 7.20 (dd, 2H, $J=7.8,7.2 \mathrm{~Hz}$), $6.94(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}), 2.50(\mathrm{q}, 3 \mathrm{H}, J=2.5 \mathrm{~Hz})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3(\mathrm{q}, \mathrm{J}=2.3 \mathrm{~Hz}), 139.5,138.4(\mathrm{q}, J=31.5$ $\mathrm{Hz}), 133.3,130.6(\mathrm{q}, ~ J=1.3 \mathrm{~Hz}), 129.8,128.9,128.8,127.8,127.6,122.4(\mathrm{q}, J$ $=278.2 \mathrm{~Hz}), 15.9(\mathrm{q}, J=2.7 \mathrm{~Hz})$.
${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-58.9(\mathrm{q}, ~ J=2.5 \mathrm{~Hz})$.
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NaO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$349.0481, found 349.0480.

V. Additional substrates explored

(1)

(2)

(3)

(4)

(5)

VI. Single Crystal X-Ray Data

Structure of 3a
CDCC
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ $/{ }^{3}$
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F (000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [l>=2 $\sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2083910
3a
$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{4} \mathrm{~S}$
310.28
296.15
monoclinic
P2 1
10.086(2)
5.508(2)
12.766(3)

90
108.14(3)

90
674.0(3)

2
1.529
0.286
320.0
$0.13 \times 0.12 \times 0.10$
MoKa ($\lambda=0.71073$)
4.25 to 55.036
$-13 \leq h \leq 13,-4 \leq k \leq 7,-16 \leq 1 \leq 15$
5559
$2333\left[\mathrm{R}_{\text {int }}=0.0450, \mathrm{R}_{\text {sigma }}=0.0529\right]$
2333/1/185
1.038
$R_{1}=0.0576, w R_{2}=0.1507$
$R_{1}=0.0709, w R_{2}=0.1614$
0.81/-0.27

Structure of 3al
CDCC
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
c/Å
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
Y°
Volume/ A^{3}
Z
Density (calculated)
Absorption coefficient
F (000)
Crystal size $/ \mathrm{mm}^{3}$
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$l>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2083911

3al

$\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{~S}$
322.33
170.00(10) K
monoclinic
P 1 21/c 1
6.8048(3)
12.4774(5)
17.3856(6)

90
93.185(3)

90
1473.87(10)

4
$1.453 \mathrm{Mg} / \mathrm{m}^{3}$
$0.259 \mathrm{~mm}^{-1}$
672
$0.38 \times 0.32 \times 0.26$
3.265 to 27.484
$-8<=h<=8,-16<=k<=16,-22<=\mid<=22$
25409
3377 [$\mathrm{R}(\mathrm{int})=0.0533]$
3377/0/194
1.041
$R 1=0.0347, w R 2=0.0899$
$R 1=0.0401, w R 2=0.0935$
0.337 and -0.486 e \AA^{-3}

Structure of 3am

CDCC

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
$\mathrm{b} / \AA \AA$
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /^{\circ}$
$Y /{ }^{\circ}$
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F (000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection/ ${ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$1>=2 \sigma(I)$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

2083912

3am

$\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{3} \mathrm{SSi}$
414.51
193.0
monoclinic
P2 $1 / \mathrm{c}$
7.4060(3)
15.9894(6)
34.9562(12)

90
94.362(3)

90
4127.4(3)

8
1.334
1.519
1728.0
$0.05 \times 0.01 \times 0.01$
GaKa ($\lambda=1.34139$)
6.526 to 110.184
$-9 \leq h \leq 8,-19 \leq k \leq 19,-40 \leq \mathrm{l} \leq 42$

46817

$7828\left[R_{\text {int }}=0.0959, R_{\text {sigma }}=0.0793\right]$
7828/0/495
1.025
$R_{1}=0.0718, w R_{2}=0.1544$
$R_{1}=0.1485, w R_{2}=0.1955$
0.27/-0.54

Structure of 50

2083913
50
$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~F}_{4} \mathrm{O}_{2} \mathrm{~S}$
310.30
273.15
monoclinic
Pc
11.1315(7)
8.3917(5)
15.5384(10)

90
109.425(3)

90
1368.85(15)

Volume/ \AA^{3}
Z
$\rho_{\text {calc }} / \mathrm{cm}^{3}$
μ / mm^{-1}
F (000)
Crystal size/mm ${ }^{3}$
Radiation
2Θ range for data collection $/^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[1>=2 \sigma(I)]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}

4
1.506
2.556
640.0
$0.11 \times 0.10 \times 0.09$
MoKa ($\lambda=1.54178$)
4.25 to 55.036
$-13 \leq h \leq 12,-9 \leq k \leq 10,-16 \leq \mathrm{l} \leq 18$
8209
$3662\left[R_{\text {int }}=0.0193, R_{\text {sigma }}=0.0321\right]$
3662/3/367
1.068
$R_{1}=0.0246, w R_{2}=0.0623$
$R_{1}=0.0249, w R_{2}=0.0625$
0.21/-0.24

VII. Mechanistic studies

(1) Standard reaction in the presence of 1.5 equiv. of TEMPO

1.5 SO3Me \#121 RT: 1.15 AV: 1 NL: $5.44 E 5$
T: FTMS + p ESI Full ms [100.0000-1500.0000]

(

(2) Standard reaction in the presence of 4 equiv. of TEMPO

4 SO3Me \#4-116 RT: 0.03-1.10 AV: 113 NL: 1.09E7
T: FTMS + P ESI Full ms [100.0000-1500.0000]

(3) Standard reaction in the presence of 1.5 equiv. of TEMPO

1.5 SO2F \#1-151 RT: 0.01-1.44 AV: 151 NL: 2.23E6
T: FTMS + pESI Full ms

(4) Standard reaction in the presence of 4 equiv. of TEMPO

VIII. Computational studies

8.1 Computational details

All calculations were carried out by using the Gaussian 09 suite of computational programs. ${ }^{8}$ The obtained transition states were fully optimized at the DFT level using the M06-L functional, ${ }^{9}$ which has been found reliable in completing the thermochemistry calculations of transition-metal-containing systems. ${ }^{10}$ The standard $6-311 \mathrm{G}^{* *}$ basis set ${ }^{11}$ was applied for all atoms except the Cu atom, in which LANL2DZ ECP was used. ${ }^{12}$ Frequencies were analytically computed at the same level of theory to get the thermodynamic corrections and to confirm whether the structures are the corresponding transition states (only one imaginary frequency). Electronic energies were obtained from single-point calculations on the M06-L/LANL2DZ(Cu)-6-311G** geometries using M06-L functional with the def2-TZVPP basis set for all atoms. ${ }^{13}$ The obtained Gibbs free energies in the gas phase were reported herein. All energies were reported in $\mathrm{kcal} / \mathrm{mol}$. Visualization was completed using VMD (Visual Molecular Dynamics) ${ }^{14}$ and CLYview software. ${ }^{15}$

Previous studies demonstrated that a trifluoromethyl radical and bpyCu($\left.\mathrm{CF}_{3}\right)_{2}$ species were generated when bpyCu($\left.\mathrm{CF}_{3}\right)_{3}$ was exposed to light. ${ }^{16}$ Moreover, the binding of sulfate to the copper species were found to lower the overall activation energy and accelerate the reaction rate. In view that hydrogen sulfate could be generated under our reaction conditions, we use bpyCu($\left.\mathrm{CF}_{3}\right)\left(\mathrm{OSO}_{3} \mathrm{H}\right)$ and trifluoromethyl radical, together with prop-1-yn-1-ylbenzene $\mathbf{1 b}$ and methyl prop-2-ene-1-sulfonate $\mathbf{2 a}$, as the starting point in this calculation (Figure S1). The computational results are reported herein.

Figure S1. Model catalysts and substrates.

8.2. Computational results and discussion

8.2.1 The potential energy surface leading to the major product

As shown in Figure S2, the alkoxysulfonyltrifluoromethylation process proceeded facilely through the addition of trifluoromethyl radical into the unsaturated double or triple bond. The activation energy of TS1, which corresponded to the addition of $\mathrm{CF}_{3}{ }^{\circ}$ into allyl sulfonate, was calculated to be $9.2 \mathrm{kcal} / \mathrm{mol}$. This was $0.8 \mathrm{kcal} / \mathrm{mol}$ lower than the energy of TSA that was formed from the addition of $\mathrm{CF}_{3} \cdot$ to alkynyl carbon. This disparity might originate from the steric effect of the methyl group on the alkyne and allow for the former process more feasible herein. Importantly, the resulting intermediates after the addition steps, INT1 and INTA, were far more stable than the corresponding transition states TS1 and TSA by $>30 \mathrm{kcal} / \mathrm{mol}$. Such high backward energy rendered the addition processes irreversible.

Along the pathway of product formation, a secondary alkyl radical species INT1 could be obtained via TS1. This transition state adopted a planar structure to accommodate the unpaired electron. Subsequently, sulfonyl radical INT2 could be readily accessed via β-fragmentation by passing the energy barrier of TS2 in 12.2 $\mathrm{kcal} / \mathrm{mol}$. Free sulfonyl radical INT2, together with 4,4,4-trifluoromethyl-1-butene, was found to be more stable than INT1 by $3.0 \mathrm{kcal} / \mathrm{mol}$. The addition of sulfonyl
radical INT2 onto the carbon atom adjacent to methyl in alkyne required activation energy of $12.5 \mathrm{kcal} / \mathrm{mol}$ relative to INT2. Then, a linear allenyl radical intermediate INT3 was obtained, which would recombine with the copper(II) species to form intermediate INT4E. This intermediate was $37.9 \mathrm{kcal} / \mathrm{mol}$ more stabilized than the starting point. Eventually, the reductive elimination proceeded through TS4e in energetic barrier of $12.3 \mathrm{kcal} / \mathrm{mol}$ to afford the $\mathrm{Cu}(\mathrm{I})$ species INT5 E coordinated to the double bond in product.

In conclusion, the formation of the product could be achieved via the sequential generation of sulfonyl radical, addition of sulfonyl radical into the triple bond, and the reductive elimination. Among these, the preference of the S -addition product was mainly determined by the energy difference between TS1 and TSA, which would irreversibly lead to the corresponding product. The following steps could facilely proceed, because the activation energy barriers of the following transition states were all less than $13 \mathrm{kcal} / \mathrm{mol}$.

Figure S2. The potential energy surface leading to the products.

Figure S3. The optimized geometric structures of selected intermediates and transition states. Bond lengths are shown in angstroms (\AA).

8.2.2 Other competing reaction pathways

Theoretically, both sp-hybridized carbons on the alkynyl substrate were prone to be attacked by a radical species (Figure S4). Besides TSA and TS3, the transition states TS1' and TS3' were depicted by the addition of $\mathrm{CF}_{3} \cdot$ and $\mathrm{MeOSO}_{2} \cdot$ into the alkynyl carbon adjacent to the phenyl group, respectively. The latter cases were calculated to be more energy-demanding with 15.0 $\mathrm{kcal} / \mathrm{mol}$ for TS1' and $-12.4 \mathrm{kcal} / \mathrm{mol}$ for TS3', respectively.

TS3

Figure S4. Comparison of the radical addition steps.

Furthermore, the transition states of reductive elimination steps, which cor-
responded to the formation of E / Z isomers in this difunctionalization process, were shown in Figure S5. No matter the reactions were triggered by CF_{3} radical or sulfonyl radical, the transition states leading to the formation of E-isomers were uniformly favored by approximately $1.5 \mathrm{kcal} / \mathrm{mol}$. This was consistent with the experimental observation.

$\mathrm{TSB}_{\mathrm{E}}$

Figure S5. Comparison of the reductive elimination steps.

8.3. Cartesian coordinates

Alkyne

C	0.749193	1.207135	-0.000558
C	0.032248	-0.000210	-0.000987
C	0.749490	-1.207353	-0.000553
C	2.136429	-1.202745	0.000396
C	2.835822	0.000179	0.000904
C	2.136098	1.202932	0.000394
H	0.201512	2.143618	-0.000834
H	0.202021	-2.143965	-0.000825
H	2.675699	-2.144732	0.000821
H	3.920863	0.000338	0.001751
H	2.675091	2.145079	0.000817
C	-1.388897	-0.000232	-0.001295

C	-2.598164	0.000415	-0.000915
C	-4.043428	0.000215	0.001224
H	-4.440892	-0.424369	0.927931
H	-4.443056	1.013570	-0.094173
H	-4.443982	-0.591554	-0.827149

CF_{3} radical

C	0.000000	0.000000	0.335151
F	0.000000	1.256101	-0.074478
F	1.087815	-0.628050	-0.074478

Sulfonate

C	-3.287458	-0.365804	0.257941
H	-3.232097	-1.365186	0.679921
H	-4.201581	0.189128	0.433979
C	-2.284177	0.151336	-0.441410
H	-2.352376	1.158769	-0.845610
C	-1.013989	-0.575876	-0.709578
H	-1.033294	-1.606909	-0.352740
H	-0.735206	-0.561050	-1.766434
S	0.358341	0.230062	0.136781
O	0.292230	-0.008985	1.562325
O	0.516825	1.577207	-0.370080
O	1.521824	-0.724376	-0.512408
C	2.853199	-0.409999	-0.078057
H	3.500935	-1.117513	-0.591184
H	3.120648	0.610355	-0.362293
H	2.947036	-0.537289	1.003791

C	1.132310	1.122751	0.501153
H	1.138094	1.493178	-0.520117
H	1.626304	1.738076	1.244217
C	0.365458	0.078683	0.855991
H	0.290449	-0.221317	1.897578
C	-0.376692	-0.745930	-0.128296
H	-0.128640	-0.508500	-1.164850
H	-0.235682	-1.820729	0.022616
S	-2.163924	-0.540059	0.008021
O	-2.563107	-0.537321	1.400903
O	-2.821806	-1.409748	-0.941885
O	-2.201528	0.997674	-0.549660
C	-3.410610	1.713907	-0.259896
H	-3.259260	2.711179	-0.666283
H	-4.268096	1.244017	-0.748782
H	-3.576537	1.767660	0.818262
C	3.274535	0.078547	-0.094070
F	3.853234	-0.375713	1.005296
F	2.928053	-0.933002	-0.880991
F	4.087343	0.902581	-0.739321

INT1

C	1.414553	0.552464	0.459545
H	0.975444	1.222329	-0.285697
H	1.574070	1.133482	1.372331
C	0.543892	-0.624127	0.706885
H	0.576826	-1.119067	1.671149
C	-0.397214	-1.118103	-0.306046
H	-0.141994	-0.828379	-1.328217
H	-0.544850	-2.201119	-0.273031

S	-2.083143	-0.475599	-0.040215
O	-2.473082	-0.666708	1.341109
O	-2.956125	-0.893156	-1.115510
O	-1.679010	1.103790	-0.252166
C	-2.735069	2.029662	0.047334
H	-2.312973	3.017560	-0.121837
H	-3.586399	1.873807	-0.620047
H	-3.049350	1.930642	1.089127
C	2.780434	0.147753	-0.046711
F	3.417713	-0.648681	0.829225
F	2.691122	-0.532077	-1.208322
F	3.565129	1.214427	-0.266885

TSA

C	-1.298391	0.553304	-0.132812
C	-1.833249	-0.239380	-1.165590
C	-2.086766	0.801084	1.006094
C	-3.111291	-0.763188	-1.057419
C	-3.364463	0.273247	1.102916
C	-3.882770	-0.509207	0.074087
H	-1.226265	-0.438936	-2.042102
H	-1.679015	1.409611	1.805924
H	-3.509409	-1.376126	-1.859369
H	-3.960947	0.471824	1.987284
H	-4.883191	-0.920925	0.154496
C	0.005291	1.082962	-0.240639
C	1.193946	1.368821	-0.305569
C	2.224324	-0.718611	0.195229
F	3.121286	-0.999028	-0.751497
F	2.836998	-0.651988	1.375369

F	1.292184	-1.658200	0.222512
C	2.435248	2.105153	-0.486338
H	3.050973	2.073738	0.416875
H	3.031049	1.685390	-1.300727
H	2.231303	3.153250	-0.719586

INTA

C
C
-1.298772
0.040594
0.172608
2.036328
1.220634
-0.144314
C
-2.017898
-1.187634
0.279892

C
3.401116
1.161501
-0.333566
C
-3.382537
-1.217748
0.085436

C

H
4.087779
-0.050694
-0.221766
-1.503412
2.160961
-0.234321

H
-1.470129
H
3.944959
-2.093679
0.514533
-3.911919
-2.161403
0.171820

H
-5.161200
C
0.058382
0.077577
0.355285

C
1.327521
0.120612
0.645255

C
2.354410
-0.078058
-0.438051
F
3.158704
1.002100
-0.547637
F
3.162918
-1.122763
-0.153159
F
1.819863
-0.303239
-1.641726
C
1.905724
0.358339
2.014648

H
2.523344
-0.490347
2.321115

H
2.547537
1.243632
2.010887

H
1.117731
0.501117
2.751931

C	-0.916785	0.484406	-0.116949
C	-1.865875	1.342332	0.460639
C	-1.347145	-0.744728	-0.632972
C	-3.202847	0.978483	0.516702
C	-2.687478	-1.100496	-0.576495
C	-3.619936	-0.243896	-0.001636
H	-1.535721	2.294122	0.863156
H	-0.627427	-1.415732	-1.087311
H	-3.923205	1.652676	0.968702
H	-3.004714	-2.054587	-0.984662
H	-4.666278	-0.527273	0.043339
C	0.455500	0.911941	-0.183131
C	1.344371	1.760836	-0.273472
C	1.625199	-1.020182	0.187288
F	1.044390	-1.780150	1.110146
F	1.778799	-1.727408	-0.935208
F	2.823502	-0.636131	0.621397
C	2.578083	2.502904	-0.353916
H	2.673414	3.210443	0.474806
H	3.442013	1.830028	-0.316290
H	2.643168	3.073911	-1.285095

TS2

C	-1.857975	0.930356	-0.732457
H	-2.611090	1.670974	-1.030039
H	-1.474544	0.465403	-1.644726
C	-0.765147	1.558018	0.057339
H	-0.989407	1.822764	1.087905
C	0.522514	1.672696	-0.404879
H	0.723344	1.592031	-1.470419

H	1.244295	2.249216	0.165574
S	1.562000	-0.410634	-0.099882
O	1.072803	-1.278559	-1.156606
O	1.561301	-0.815706	1.301203
O	3.127184	-0.057020	-0.550651
C	3.969348	0.445489	0.489466
H	4.946779	0.581654	0.029639
H	3.612609	1.409997	0.866019
H	4.035922	-0.261625	1.318081
C	-2.585994	-0.128252	0.060136
F	-1.746921	-1.074097	0.506700
F	-3.196906	0.402110	1.139475
F	-3.530251	-0.730217	-0.678743

Side-product

C	0.445703	0.286203	-0.791061
H	0.596685	1.368092	-0.825405
H	0.236778	-0.049409	-1.813053
C	1.642680	-0.408332	-0.229444
H	1.574329	-1.491916	-0.153498
C	2.744045	0.215601	0.168709
H	2.838658	1.296385	0.110154
H	3.594038	-0.326526	0.566912
C	-0.806632	0.028863	0.006466
F	-1.125342	-1.281275	0.027469
F	-0.680513	0.425167	1.283835
F	-1.860285	0.686036	-0.512763

INT2

S
0.579816
0.059769
-0.265679

O	0.397425	1.442938	0.187213
O	1.654576	-0.791607	0.229495
O	-0.811297	-0.791804	0.073674
C	-2.028328	-0.037275	0.038315
H	-2.806370	-0.746651	0.315069
H	-1.995517	0.790914	0.748010
H	-2.230841	0.346869	-0.965152

TS3

C
1.466237
0.779304
0.026551

C
1.952372
0.285014
1.255390

C
2.277325
0.665327
-1.122830
C
3.201020
-0.307638
1.321808

C
3.525879
0.074134
-1.040343
C
3.992843
-0.414712
0.179014

H
1.321519
0.355537
2.134518

H
1.905072
1.044131
-2.068935
H
3.561420
-0.694091
2.269171

H
H
4.141668
4.971860
0.187037
1.347119
-0.055995
C
-1.030585
C
2.166834
1.588639
-0.098582

C
2.807161
-2.781265
-1.817443
3.532740
-0.300598
S
-2.157641
-0.454883
0.138314

0
-2.884784
-0.815292
-1.081439
0
-2.805956
-0.490763
1.442198

0
-0.866927
-1.485180
0.301630

C	-0.271858	-1.915591	-0.926338
H	0.693098	-2.341599	-0.650362
H	-0.896129	-2.664978	-1.417710
H	-0.109678	-1.078694	-1.612950

TS3'

C	-1.188853	0.528357	-0.214170
C	-2.123429	1.248450	0.546251
C	-1.597777	-0.640552	-0.866648
C	-3.436153	0.812575	0.640137
C	-2.915051	-1.066964	-0.768549
C	-3.837285	-0.346221	-0.017931
H	-1.803194	2.150944	1.057284
H	-0.884768	-1.208811	-1.453070
H	-4.148478	1.379184	1.231146
H	-3.221092	-1.971786	-1.283050
H	-4.864938	-0.686416	0.056378
C	0.164249	1.033694	-0.301673
C	0.883300	2.059843	-0.281338
C	2.046581	2.906874	-0.302353
H	2.061599	3.544453	-1.190952
H	2.089869	3.554265	0.578142
H	2.951175	2.285428	-0.310851
S	1.606236	-0.734850	-0.354316
O	2.899804	-0.171340	0.023412
O	1.489267	-1.631260	-1.495800
O	1.033679	-1.642286	0.917121
C	1.187315	-1.039523	2.202657
H	0.774627	-1.755217	2.911591
H	2.240357	-0.853361	2.425231

H
0.625690
-0.101188
2.271037

INT3
C
1.428385
0.649638
-0.116800
C
2.029362
0.594980
1.169867

C
2.199871
0.240141
-1.237888
C
C
3.326664
0.145027
1.314456

C
3.495963
4.070081
-0.256320
0.202307

H
1.443971
0.894552
2.031992

H
H
1.753680
0.285902
-2.226292
3.768241
0.099096
2.304750

H
4.071098
-0.516699
-1.935628
H
5.089384
-0.606237
0.325861

C
0.132346
1.107155
-0.267871
C
1.162296
1.170782
-0.262518
C
2.061752
2.323679
-0.580428
H
2.722575
2.075994
-1.415508
H
2.692830
2.566065
0.278772

H -1.473688
S
-2.116748
-0.313671
0.220821

0
0
-2.873811
-2.752822
-0.938277
C
-0.446517
-2.154926
-0.558871

H
0.424772
-1.203110
-2.862740
-0.900394
H
-0.144330
-1.513022
-1.391040

CuS

Cu	-0.390360	-0.368312	-0.529671
N	0.924849	1.228414	-0.680604
C	0.570585	2.464498	-1.037723
H	-0.463767	2.581243	-1.346577
C	1.458125	3.530958	-0.987295
H	1.130103	4.520669	-1.280200
C	2.751412	3.296995	-0.542927
H	3.470258	4.107029	-0.483021
C	3.116748	2.013542	-0.161642
H	4.118515	1.817669	0.200551
C	2.174174	0.991261	-0.239796
N	1.405971	-1.259148	0.041346
C	2.442567	-0.402139	0.162296
C	3.672738	-0.831994	0.655397
H	4.498340	-0.137016	0.746960
C	3.828620	-2.155473	1.038161
H	4.779301	-2.501397	1.428984
C	2.753149	-3.023622	0.919020
H	2.828022	-4.063752	1.211839
C	1.557864	-2.532577	0.412389
H	0.685396	-3.164050	0.292995
C	-1.671522	-1.881217	-0.769742
F	-1.157768	-3.150166	-0.826694
F	-2.570367	-1.920918	0.277170
F	-2.417301	-1.742675	-1.884115
O	-1.974770	0.941292	-0.564116
S	-2.087845	1.312940	0.910309
O	-2.229674	2.728025	1.135750
O	-1.016454	0.594325	1.624596
O	-3.502034	0.673565	1.375502

H	-3.470333	-0.266439	1.138875

INT4E

Cu	0.482468	0.183517	-0.517239
N	1.455588	2.072432	0.482767
C	1.577219	3.298030	-0.022722
H	0.919464	3.538979	-0.853332
C	2.487663	4.233490	0.450475
H	2.545407	5.216949	-0.000354

C
H
3.316946
$3.865309 \quad 1.500433$

C
4.048072
$4.559374 \quad 1.900639$

H
3.210500
2.586268
2.022819

H
3.871394

C
2.266986
2.273997
2.821147

N
1.358133
2.142863
0.309825
1.486604

C
2.830288
-0.162639
3.073848

H

C
3.434923
0.510681
3.666867
3.421899

H
C
H
C
2.742086
-1.501111
4.286314
3.279288
-1.875980
2.639736

1.974495
-2.348945
2.848531

H
1.299650
-1.812846
1.553655

0.719555
-2.441363
0.889483

C
-0.263448
0.665370
-2.306976
F
0.155312
-0.257920
-3.179979
F $\quad-1.571134$
0.855512
-2.534281
F
0.351161
1.835395
-2.613943
C
-1.390834
-0.093791
0.060025

C
-2.154105
0.971255
0.283726

C	-1.574224	-1.514718	0.263450
C	-1.891320	-2.023929	1.535547
C	-1.323129	-2.412654	-0.786199
C	-1.999862	-3.390231	1.733643
C	-1.434487	-3.778848	-0.579744
C	-1.773411	-4.271230	0.677890
H	-2.055076	-1.334607	2.356820
H	-1.010980	-2.031081	-1.752124
H	-2.258765	-3.771352	2.715893
H	-1.231905	-4.460629	-1.398105
H	-1.848269	-5.341668	0.839199
O	2.328160	0.151416	-1.357006
S	2.806565	-1.282270	-1.490228
0	3.233674	-1.418744	-3.061093
0	1.684080	-2.204545	-1.362253
0	4.000354	-1.521798	-0.698100
H	4.087839	-0.981360	-3.161778
C	-1.811209	2.407855	0.066582
H	-2.598410	2.914004	-0.495720
H	-1.686953	2.934397	1.01697
H	-0.884624	2.478306	-0.497658
S	-3.863305	0.785840	0.804289
0	-4.118300	1.746558	1.862248
0	-4.290046	-0.588042	0.960659
0	-4.512943	1.360345	-0.590535
C	-5.930313	1.173220	-0.704663
H	-6.458988	1.705708	0.090854
H	-6.199243	1.595414	-1.670245
H	-6.182286	0.110740	-0.677151

TS4E

Cu	0.593315	0.115089	-0.516052
N	1.494126	2.101192	0.089448
C	1.667625	3.160412	-0.700027
H	1.052955	3.191179	-1.596181
C	2.575848	4.173993	-0.428556
H	2.678382	5.012250	-1.107117
C	3.345323	4.071260	0.722144
H	4.072685	4.835604	0.973356
C	3.188975	2.961748	1.537393
H	3.810058	2.843854	2.416394
C	2.255422	1.982998	1.189998
N	1.421382	-0.261427	1.371743
C	2.108391	0.731408	1.965569
C	2.690992	0.550875	3.219913
H	3.213484	1.365062	3.706021
C	2.594854	-0.684322	3.842613
H	3.044574	-0.839068	4.817466
C	1.934533	-1.717489	3.193950
H	1.864143	-2.708054	3.626264
C	1.361260	-1.460683	1.956653
H	0.862999	-2.237544	1.387640
C	-0.683142	0.039364	-2.259868
F	0.122850	-0.826854	-2.883226
F	-1.915383	-0.219858	-2.719489
F	-0.372494	1.286139	-2.676848
C	-1.354557	-0.093868	-0.332503
C	-2.151011	0.968431	-0.104357
C	-1.496293	-1.461478	0.160229
C	-1.805190	-1.641208	1.521605
		S102	

C	-1.258395	-2.592584	-0.631283
C	-1.936052	-2.912612	2.053339
C	-1.381469	-3.862828	-0.088596
C	-1.727723	-4.029470	1.248480
H	-1.931822	-0.770353	2.158533
H	-0.960502	-2.485595	-1.665516
H	-2.190352	-3.031132	3.101285
H	-1.191165	-4.727420	-0.714481
H	-1.818603	-5.026602	1.666503
0	2.441098	-0.029335	-1.438646
S	2.877299	-1.466051	-1.303754
0	3.164032	-1.959438	-2.842572
0	1.745582	-2.301323	-0.898465
O	4.128918	-1.603478	-0.578927
H	4.031002	-1.614742	-3.087171
C	-1.883566	2.394319	-0.455564
H	-2.436514	2.700927	-1.347369
H	-2.196512	3.049594	0.361505
H	-0.820516	2.542123	-0.619361
S	-3.747000	0.729826	0.679618
0	-3.708899	1.270738	2.026579
0	-4.312164	-0.581247	0.443247
O	-4.548306	1.796483	-0.280355
C	-5.976863	1.681445	-0.217713
H	-6.338828	1.875198	0.795707
H	-6.356177	2.444368	-0.893856
H	-6.299376	0.691728	-0.547589

INT5 ${ }_{\text {E }}$

Cu
0.442646
-0.417364
-0.269676

N	2.411742	-0.011910	-1.025209
C	2.837583	-0.337484	-2.245707
H	2.141834	-0.912492	-2.851032
C	4.089693	0.019419	-2.724677
H	4.396741	-0.269854	-3.722421
C	4.926009	0.750577	-1.890153
H	5.909973	1.058736	-2.226966
C	4.496209	1.070911	-0.611907
H	5.144379	1.623503	0.056608
C	3.227332	0.663367	-0.196507
N	1.488656	0.375267	1.418379
C	2.708491	0.885133	1.170531
C	3.438076	1.539744	2.160386
H	4.414987	1.954689	1.946187
C	2.896820	1.651072	3.432456
H	3.447709	2.159518	4.216506
C	1.651540	1.095326	3.687685
H	1.199916	1.146019	4.670773
C	0.980771	0.465943	2.648174
H	0.006817	0.013661	2.792695
C	-1.597794	-0.968159	-2.218927
F	-2.163514	-2.116297	-1.856592
F	-2.393216	-0.402964	-3.159384
F	-0.436165	-1.272815	-2.840257
C	-1.431854	-0.027154	-1.039986
C	-0.621291	1.105924	-1.188430
C	-2.554639	-0.114029	-0.057925
C	-2.524328	-0.972731	1.038074
C	-3.683463	0.675797	-0.291269
C	-3.600702	-1.012962	1.914358

C	-4.761948	0.623591	0.583360
C	-4.718506	-0.215017	1.692221
H	-1.651454	-1.589172	1.221949
H	-3.708461	1.330889	-1.157619
H	-3.560857	-1.675185	2.772588
H	-5.636863	1.238679	0.396893
H	-5.558068	-0.250805	2.378849
0	0.512101	-2.399472	-0.312504
S	0.519030	-3.232625	0.951877
0	-0.937325	-4.005864	0.885116
0	0.372300	-2.412070	2.144456
0	1.547414	-4.250576	0.912799
H	-0.911418	-4.596653	0.122846
C	0.003703	1.611430	-2.457908
H	-0.670083	2.345323	-2.914491
H	0.950023	2.113468	-2.257599
H	0.168813	0.815255	-3.178193
S	-0.684799	2.411832	0.053101
0	0.570559	3.130619	-0.030006
0	-1.175699	1.958541	1.336974
0	-1.846237	3.330097	-0.652748
C	-2.760601	3.992038	0.236806
H	-2.245100	4.750268	0.830949
H	-3.491020	4.469005	-0.413910
H	-3.250532	3.269971	0.893613

INT4z

Cu	-0.092783	-0.116532	-0.535821
N	2.171186	-0.510493	-0.322480
C	3.127266	-0.366819	-1.237103

H	2.837475	0.149101	-2.144204
C	4.425006	-0.830032	-1.051921
H	5.167446	-0.692556	-1.829115
C	4.734647	-1.467143	0.141382
H	5.734629	-1.844264	0.327417
C	3.740747	-1.625539	1.094728
H	3.961804	-2.134517	2.024500
C	2.459094	-1.138658	0.825722
N	0.123943	-0.865467	1.367740
C	1.335634	-1.304634	1.769497
C	1.485744	-1.924633	3.009838
H	2.459286	-2.271551	3.330032
C	0.381643	-2.119016	3.823392
H	0.492159	-2.609577	4.784384
C	-0.861827	-1.697526	3.379682
H	-1.760354	-1.851844	3.963758
C	-0.943651	-1.077926	2.142636
H	-1.896563	-0.765646	1.734144
C	-0.428568	0.454514	-2.417774
F	-1.392110	-0.345583	-2.903806
F	-0.761055	1.707953	-2.730941
F	0.706155	0.158003	-3.062766
C	-1.059105	1.523355	0.007808
C	-0.464331	2.707909	0.185631
C	-2.446234	1.250380	0.367903
C	-2.911656	1.634588	1.641184
C	-3.326602	0.580815	-0.492752
C	-4.219701	1.382069	2.023260
C	-4.637477	0.341596	-0.108712
C	-5.089232	$\begin{array}{r} 0.738256 \\ \text { S106 } \end{array}$	1.145598

H	-2.223060	2.115236	2.329791
H	-2.973695	0.226176	-1.450835
H	-4.561105	1.682543	3.008575
H	-5.303285	-0.180227	-0.787129
H	-6.111643	0.533901	1.446036
O	0.159491	-2.037569	-1.260214
S	-0.983675	-2.908276	-0.820691
O	-1.388229	-3.602727	-2.248977
O	-2.119150	-2.084579	-0.391993
O	-0.596480	-3.986933	0.074610
H	-1.850311	-4.421414	-2.032971
C	-1.111424	3.996602	0.601160
H	-0.835370	4.276505	1.622783
H	-0.784991	4.813621	-0.045638
H	-2.195808	3.908754	0.544997
S	1.282472	2.874622	-0.093002
O	1.679578	4.255586	0.096855
O	1.715414	2.168357	-1.283322
O	1.777077	2.020866	1.230790
H	3.188901	2.079475	1.468349
H	3.509415	3.108564	1.650007
H	3.360300	1.475588	2.358222
H	3.745942	1.658064	0.624879

TS4z

Cu	0.004920	0.099683	0.413285
N	2.169992	0.426841	0.698685
C	2.945285	-0.038014	1.678663
H	2.456074	-0.668741	2.409604
C	4.302872	0.242678	1.767307
		S 107	

H	4.887022	-0.155524	2.588310
C	4.878739	1.031696	0.781452
H	5.938297	1.263699	0.802823
C	4.075933	1.527987	-0.233492
H	4.508089	2.147943	-1.008905
C	2.712539	1.221676	-0.238088
N	0.507816	1.331821	-1.206811
C	1.781526	1.773959	-1.245619
C	2.173252	2.757606	-2.153820
H	3.192116	3.122446	-2.160568
C	1.240008	3.301380	-3.022093
H	1.532583	4.075826	-3.722846
C	-0.072405	2.862953	-2.952894
H	-0.846601	3.282962	-3.582908
C	-0.394267	1.884617	-2.023553
H	-1.417285	1.557387	-1.881369
C	-0.863366	-1.207498	1.904962
F	-1.848200	-0.414284	2.307461
F	-1.228689	-2.473580	2.152151
F	0.200194	-0.968040	2.689285
C	-1.093068	-1.468661	-0.115752
C	-0.461656	-2.497092	-0.722023
C	-2.457942	-1.095223	-0.523514
C	-2.620886	-0.635339	-1.839075
C	-3.594306	-1.237590	0.279765
C	-3.870806	-0.280252	-2.321281
C	-4.844132	-0.887174	-0.209570
C	-4.988083	-0.393126	-1.501187
H	-1.747620	-0.570287	-2.481399
H	-3.508902	$\begin{array}{r} -1.630650 \\ \text { S108 } \end{array}$	1.283459

H	-3.972962	0.082180	-3.339035
H	-5.714389	-1.000963	0.427882
H	-5.967437	-0.108084	-1.870384
O	-0.137102	1.834021	1.672433
S	-1.299537	2.614151	1.164354
O	-2.115664	2.895592	2.564951
O	-2.171634	1.768270	0.328819
O	-0.973424	3.916078	0.598803
H	-2.768643	3.577068	2.366989
C	-1.030753	-3.380672	-1.787184
H	-0.615314	-3.135123	-2.770451
H	-0.772470	-4.423181	-1.589477
H	-2.113409	-3.275119	-1.836468
S	1.234100	-2.874077	-0.357728
O	1.555346	-4.207151	-0.824012
O	1.589253	-2.481803	0.990889
O	1.892932	-1.793842	-1.412205
C	3.321222	-1.869784	-1.520481
H	3.631471	-2.856095	-1.874956
H	3.598038	-1.109710	-2.248993
	3.795345	-1.649592	-0.558339

INT5z

Cu	0.003177	-0.080173	-0.221748
N	1.958442	0.606125	-0.618651
C	2.279209	1.276883	-1.725716
H	1.445585	1.634899	-2.320746
C	3.594858	1.519789	-2.096490
H	3.810376	2.063090	-3.008479
C	4.609454	1.043690	-1.277312

H	5.650518	1.206885	-1.534665
C	4.277663	0.333752	-0.133294
H	5.056149	-0.079988	0.495496
C	2.933834	0.117197	0.165464
N	1.188613	-1.041657	1.318096
C	2.491279	-0.708702	1.309003
C	3.361484	-1.170103	2.295862
H	4.404239	-0.877476	2.292354
C	2.878677	-2.018228	3.281028
H	3.543097	-2.390870	4.053236
C	1.542755	-2.394749	3.254986
H	1.131897	-3.078048	3.988054
C	0.735340	-1.876609	2.252480
H	-0.313302	-2.152932	2.176217
C	-2.179075	1.188724	-1.582529
F	-3.032567	0.405168	-2.246700
F	-2.740484	2.415137	-1.506458
F	-1.077220	1.296651	-2.342085
C	-1.916359	0.627143	-0.190263
C	-1.131914	1.264902	0.787173
C	-2.931153	-0.375399	0.269790
C	-2.681952	-1.747013	0.245657
C	-4.154210	0.098935	0.752059
C	-3.646507	-2.633313	0.714953
C	-5.116188	-0.792385	1.209836
C	-4.861876	-2.160662	1.196589
H	-1.742349	-2.126412	-0.144786
H	-4.346032	1.168875	0.767287
H	-3.439991	-3.698346	0.693156
H	-6.063857	$\begin{array}{r} -0.416332 \\ \mathrm{~S} 110 \end{array}$	1.581132

H	-5.612737	-2.855570	1.558145
O	-0.029141	-1.443167	-1.697410
S	0.788943	-2.675410	-1.426771
O	0.586408	-3.420519	-2.873240
O	0.192841	-3.536419	-0.406843
O	2.213757	-2.401569	-1.271499
H	1.029921	-4.274369	-2.802731
C	-1.282702	0.944748	2.251870
H	-0.338318	1.064770	2.781422
H	-2.014689	1.620930	2.705694
H	-1.639884	-0.075421	2.386994
S	-0.418394	2.904161	0.567634
O	-1.274313	3.848906	1.253274
O	0.033861	3.163941	-0.780746
O	0.908931	2.637510	1.502276
C	2.032762	3.478907	1.215528
H	1.798852	4.528195	1.414358
H	2.817895	3.145295	1.891730
H	2.353720	3.359459	0.177553

INTBE

Cu	0.227261	0.215916	-0.517686
N	1.573499	1.828618	0.597918
C	2.032057	2.979027	0.109520
H	1.433191	3.438922	-0.672103
C	3.209543	3.578158	0.537887
H	3.537361	4.513380	0.100120
C	3.950572	2.935735	1.519177
H	4.885453	3.356000	1.873838
C	3.488490	1.732259	2.028077

H	4.072304	1.196946	2.766084
C	2.290170	1.203469	1.544164
N	0.823755	-0.692765	1.257140
C	1.777144	-0.102629	2.006890
C	2.275990	-0.730554	3.147865
H	3.012435	-0.230953	3.763757
C	1.825888	-1.995627	3.489180
H	2.212604	-2.492623	4.372256
C	0.891770	-2.616904	2.675364
H	0.533204	-3.618591	2.876943
C	0.418691	-1.928385	1.569095
H	-0.280817	-2.388213	0.882413
C	-0.265739	0.883838	-2.328193
F	0.019662	-0.095265	-3.194852
F	-1.478548	1.352247	-2.653162
F	0.605591	1.897835	-2.542683
C	-1.684035	0.374936	-0.075942
C	-2.227512	1.569433	0.159832
C	-2.208684	-0.970961	0.069098
C	-2.781415	-1.388934	1.284043
C	-2.060849	-1.905578	-0.967030
C	-3.227211	-2.692451	1.436350
C	-2.507147	-3.208875	-0.805919
C	-3.090907	-3.606841	0.393599
H	-2.873739	-0.677919	2.098385
H	-1.562064	-1.611275	-1.884037
H	-3.676175	-2.999977	2.375274
H	-2.377979	-3.920748	-1.613700
H	-3.429025	-4.630038	0.520662
O	2.085596	-0.193316	-1.229886
		S112	

S	2.264188	-1.684242	-1.356045
O	2.838277	-1.771154	-2.885910
O	0.961989	-2.357254	-1.326570
O	3.293296	-2.227049	-0.484787
H	3.269412	-2.630157	-2.969871
C	-1.533963	2.881815	-0.005242
H	-2.079696	3.524619	-0.699716
H	-1.462884	3.418304	0.947497
H	-0.528649	2.729834	-0.385475
C	-3.655758	1.696458	0.630087
F	-3.717790	1.730510	1.987862
F	-4.466668	0.711287	0.228008
F	-4.208815	2.850460	0.206125

TSBE

Cu	-0.279245	-0.160715	-0.456070
N	-1.713345	-1.824397	0.161416
C	-2.105573	-2.849307	-0.594002
H	-1.431604	-3.134384	-1.397518
C	-3.301834	-3.526931	-0.403615
H	-3.572347	-4.350872	-1.052871
C	-4.134065	-3.106852	0.624133
H	-5.083786	-3.598130	0.805886
C	-3.744638	-2.029932	1.404386
H	-4.399674	-1.662837	2.184227
C	-2.525190	-1.401160	1.144782
N	-1.074237	0.505296	1.362304
C	-2.096827	-0.195397	1.887701
C	-2.743829	0.238529	3.044812
H	-3.544188	-0.346997	3.478801

C	-2.356894	1.431018	3.636015
H	-2.856203	1.781915	4.532714
C	-1.339741	2.172557	3.053586
H	-1.027088	3.126672	3.459562
C	-0.726124	1.670418	1.915323
H	0.049418	2.224339	1.399383
C	0.950814	-0.545435	-2.170921
F	0.421091	0.469629	-2.862702
F	2.204415	-0.680601	-2.633174
F	0.299254	-1.678277	-2.516542
C	1.658179	-0.418182	-0.246512
C	2.159484	-1.620368	0.101182
C	2.153932	0.914069	0.106148
C	2.467044	1.164380	1.454830
C	2.271231	1.964274	-0.813363
C	2.932173	2.406133	1.855970
C	2.728680	3.207709	-0.402808
C	3.066563	3.434200	0.926976
H	2.335228	0.371699	2.183869
H	1.994720	1.819670	-1.848648
H	3.178750	2.574635	2.899198
H	2.809835	4.008900	-1.128965
H	3.419607	4.410826	1.241065
0	-2.039443	0.412630	-1.425846
S	-2.080297	1.907069	-1.356801
0	-2.316563	2.273113	-2.941160
0	-0.758968	2.437348	-0.982852
0	-3.213287	2.452862	-0.626630
H	-2.621089	3.187917	-2.967351
C	1.510960	-2.938141	-0.175066

H	2.005637	-3.466131	-0.996530
H	1.582797	-3.583904	0.705195
H	0.461106	-2.812236	-0.414108
C	3.485481	-1.766210	0.801098
F	3.332341	-1.886179	2.145979
F	4.350325	-0.769968	0.588695
F	4.099456	-2.900114	0.399177

INTC $_{E}$

Cu	-0.143975	-0.445242	-0.256790
N	-2.024557	-1.280121	-0.017798
C	-2.426946	-2.334209	-0.730187
H	-1.660727	-2.826131	-1.323841
C	-3.738700	-2.781310	-0.738486
H	-4.019845	-3.637605	-1.339100
C	-4.667865	-2.094081	0.031715
H	-5.706498	-2.405849	0.052938
C	-4.257579	-0.989973	0.760720
H	-4.976768	-0.427276	1.341668
C	-2.922282	-0.591306	0.710493
N	-1.138432	0.944519	1.134783
C	-2.418984	0.622784	1.387587
C	-3.222656	1.421258	2.199085
H	-4.248505	1.145238	2.407624
C	-2.697530	2.591187	2.726277
H	-3.311489	3.231274	3.350727
C	-1.385826	2.934695	2.433533
H	-0.942533	3.849562	2.807122
C	-0.643275	2.075209	1.636051
H	0.387664	2.299005	1.377371
		5115	

C	2.128492	-1.406591	-1.702890
F	2.528675	-0.478126	-2.564197
F	3.108717	-2.341348	-1.632636
F	1.054676	-2.021613	-2.250760
C	1.858266	-0.831847	-0.322497
C	1.253677	-1.658268	0.638050
C	2.690385	0.368196	-0.007082
C	2.323186	1.640466	-0.450086
C	3.883942	0.200042	0.699122
C	3.127507	2.734627	-0.156151
C	4.690126	1.296363	0.978952
C	4.310200	2.566344	0.557668
H	1.402480	1.773997	-1.010688
H	4.174294	-0.792362	1.031491
H	2.823950	3.720457	-0.493312
H	5.614750	1.157258	1.529375
H	4.937828	3.422705	0.782091
0	-0.433877	0.519682	-2.001769
S	-1.365892	1.697466	-1.989291
0	-1.478643	1.935218	-3.609882
0	-0.761164	2.900035	-1.422419
0	-2.701565	1.366456	-1.502354
H	-1.945349	2.771250	-3.727330
C	0.947730	-3.123281	0.456218
H	1.737569	-3.714847	0.932265
H	0.007510	-3.388035	0.942347
H	0.896583	-3.421208	-0.585426
C	1.289407	-1.301084	2.106668
F	1.405663	0.001986	2.380506
F	2.321932	$\begin{array}{r} -1.927452 \\ \mathrm{~S} 116 \end{array}$	2.719442

F
0.166327
-1.729237
2.723666

INTBz

Cu
0.031768

0.034177	-0.501967
0.054669	-0.034087
0.510909	-0.780527

H
C
H

C

H

C
H
C
2.299242
0.510909
-1.685050
4.63788
0.341414
-0.441856
H
5.417160
0.729705
-1.086805
4.938119
-0.329537
0.734755
,
5.967376
-0.476422
1.043975
3.899830
-0.821727
1.509667
2.424048

N
0.200120

C
1.426044
1.571106
2.555255
-2.153696
3.370946

C
0.453850
-2.510194
3.571384

H
0.563126
-3.129769
4.454903

C
-0.795351
-2.276847
3.017810

H
-1.696087

C
0.874835
-2.709211
3.435004

H
C
1.820336
-1.307411
1.386992

C -0.273575
F
-1.034654
F $\quad-0.804555$
F 0.945995
0.817169
-2.308705
-0.050655
-2.993410

C
-1.084905
1.498711
0.199620

C
-0.621968

2.712353

0.515190

C	-2.422021	0.988947	0.477057
C	-2.949796	1.097496	1.778286
C	-3.181049	0.328440	-0.499207
C	-4.207532	0.595994	2.076920
C	-4.440131	-0.167949	-0.195503
C	-4.958827	-0.036240	1.088796
H	-2.348518	1.564360	2.552870
H	-2.768326	0.179321	-1.488659
H	-4.599210	0.689155	3.084815
H	-5.008914	-0.681355	-0.962848
H	-5.938627	-0.438335	1.324641
0	0.675286	-1.673268	-1.416728
S	-0.342253	-2.771568	-1.268389
0	-0.455678	-3.275918	-2.822719
0	-1.643176	-2.213110	-0.886475
0	0.125451	-3.909124	-0.493142
H	-0.771457	-4.186762	-2.790817
C	-1.464959	3.819961	1.084935
H	-1.148042	4.084108	2.099961
H	-1.361122	4.723446	0.479233
H	-2.516099	3.541599	1.114560
C	0.822964	3.069495	0.336401
F	1.347395	2.632982	-0.824551
F	1.592448	2.553230	1.328788
F	1.022880	4.400368	0.367045

TSBz

Cu	0.045315	-0.075701	-0.452508
N	2.245998	-0.410134	-0.616918
C	3.089918	0.118663	-1.501867

H	2.635676	0.668384	-2.318459
C	4.469183	-0.000899	-1.400012
H	5.111763	0.447073	-2.148464
C	4.990885	-0.691201	-0.314866
H	6.063067	-0.785839	-0.180332
C	4.119492	-1.270234	0.594099
H	4.507629	-1.818751	1.443270
C	2.743826	-1.130205	0.401899
N	0.455763	-1.471425	1.069216
C	1.748607	-1.799116	1.266877
C	2.109696	-2.782932	2.187914
H	3.150219	-3.047177	2.326879
C	1.123523	-3.453234	2.894515
H	1.392114	-4.227464	3.605253
C	-0.205317	-3.140703	2.651230
H	-1.012703	-3.663700	3.148902
C	-0.494187	-2.146059	1.727686
H	-1.514301	-1.885486	1.465178
C	-0.642812	1.532179	-1.702630
F	-1.727003	0.937538	-2.186913
F	-0.863268	2.857625	-1.748852
F	0.374753	1.305467	-2.560106
C	-0.706744	1.552556	0.383501
C	0.094189	2.435549	1.010119
C	-2.063848	1.230167	0.850924
C	-2.189081	0.562390	2.077867
C	-3.227950	1.596397	0.166645
C	-3.436961	0.242695	2.591101
C	-4.474167	1.275673	0.684510
C	-4.585893	0.588717	1.888367
		S119	

H	-1.288229	0.304522	2.627157
H	-3.161876	2.137586	-0.767888
H	-3.511759	-0.278404	3.540313
H	-5.366721	1.563440	0.139354
H	-5.563883	0.330084	2.280021
O	-0.228242	-1.551275	-1.918942
S	-1.501171	-2.253988	-1.583289
O	-2.307316	-2.134681	-3.011206
O	-2.267524	-1.475610	-0.592707
O	-1.374514	-3.675086	-1.299546
H	-2.992499	-2.812819	-2.991181
C	-0.301996	3.195567	2.241078
H	0.342931	2.932699	3.086743
H	-0.180075	4.269609	2.077490
H	-1.333414	2.997077	2.521697
C	1.506258	2.701047	0.591487
F	1.742562	2.470633	-0.707904
F	2.378039	1.928971	1.293291
F	1.865517	3.976469	0.829359

INTC $_{z}$

Cu	-1.140966	0.044955	-0.914309
N	-0.146622	-1.739100	-1.182970
C	1.148931	-1.851690	-1.508107
H	1.603435	-0.976569	-1.956285
C	1.889461	-3.003958	-1.284776
H	2.939870	-3.027652	-1.549900
C	1.251937	-4.101931	-0.720267
H	1.795378	-5.019898	-0.524576
C	-0.095920	-4.004534	-0.403467
		S 120	

H	-0.612189	-4.842109	0.050650
C	-0.772792	-2.809174	-0.641490
N	-2.586063	-1.316819	-0.232232
C	-2.186790	-2.602414	-0.267418
C	-3.053281	-3.645031	0.058152
H	-2.726662	-4.676569	-0.004606
C	-4.350823	-3.342794	0.447640
H	-5.042096	-4.138295	0.704584
C	-4.748874	-2.012743	0.499191
H	-5.750396	-1.736316	0.807062
C	-3.836142	-1.027200	0.143162
H	-4.075021	0.033500	0.168887
C	2.162052	1.770748	-0.447229
F	1.456877	2.885941	-0.228783
F	3.427591	2.169111	-0.663523
F	1.704074	1.244462	-1.602977
C	2.063753	0.787750	0.709111
C	3.068003	-0.075230	0.989526
C	0.800171	0.764062	1.485281
C	0.209277	-0.486539	1.741749
C	0.146111	1.907839	1.962975
C	-0.986439	-0.589530	2.437221
C	-1.058781	1.800974	2.643696
C	-1.631514	0.558697	2.881526
H	0.696238	-1.384286	1.374061
H	0.563900	2.888862	1.794083
H	-1.428022	-1.567801	2.605268
H	-1.567430	2.704915	2.957290
H	-2.586943	0.488576	3.390527
0	-1.191292	1.940466	-1.231384

S	-2.353691	2.757384	-0.709365
O	-1.614807	3.874217	0.256707
O	-3.170876	2.005156	0.233964
O	-3.010044	3.501371	-1.765186
H	-1.184926	4.502428	-0.336411
C	3.151483	-0.871350	2.256577
H	2.950400	-1.935083	2.099275
H	4.170220	-0.809360	2.651693
H	2.461682	-0.496899	3.009769
C	4.254679	-0.329704	0.088462
F	3.973172	-0.245699	-1.223840
F	4.699883	-1.598000	0.278968
F	5.295906	0.474738	0.345481

Producte

C
2.191406
3.160198
2.262122
2.503134
0.820173
-0.231993
0.759618
1.315870
0.146066
1.223071
0.066679
0.596202
1.796645
-0.271940
1.638915
-1.144598
0.235939
0.206376
1.438189
-0.691845
0.002657
-0.089135
$0.939643-0.035904$
1.655611 -1.097356
1.6290721 .010790
$3.038696-1.128486$
$3.016087 \quad 0.982649$
$3.722188 \quad-0.090551$
$1.121779-1.910896$
$1.068291 \quad 1.840789$
$3.586614 \quad-1.967522$

H	-0.410742	3.544947	1.801437
H	0.526194	4.804544	-0.118191
C	-0.249801	-2.846845	0.086666
H	-0.960564	-3.114857	0.874383
H	-0.597736	-3.341361	-0.822487
H	0.727659	-3.237274	0.356249
S	-1.860071	-0.710298	-0.511614
O	-2.648694	-1.826046	-0.982471
O	-1.784761	0.510597	-1.282409
O	-2.348331	-0.342333	1.010190
C	-3.216074	0.796542	1.130849
H	-4.173089	0.613010	0.636493
H	-3.373488	0.919944	2.200638
H	-2.742838	1.686829	0.709254

Productz

C	0.015508	1.571367	-0.311600
F	0.924811	2.435879	0.181720
F	-0.032668	1.775313	-1.634530
F	-1.162117	1.934327	0.216270
C	0.414082	0.148036	0.013723
C	-0.433440	-0.887195	0.147423
C	1.881245	-0.082532	0.089994
C	2.661006	0.405879	1.141098
C	2.492821	-0.824677	-0.924303
C	4.024148	0.143639	1.179527
C	3.858882	-1.073544	-0.889812
C	4.626685	-0.592975	0.164472
H	2.195478	0.984047	1.931850
H	1.886882	-1.198519	-1.744823

H	4.619003	0.518807	2.005843
H	4.322558	-1.644177	-1.687624
H	5.693037	-0.790781	0.195940
C	-0.025994	-2.260519	0.569371
H	-0.686567	-2.618295	1.363751
H	-0.122954	-2.976866	-0.250315
H	1.001299	-2.270051	0.930114
S	-2.193243	-0.812127	-0.258237
O	-2.635084	-2.182588	-0.385338
O	-2.459291	0.138869	-1.313374
O	-2.749666	-0.229539	1.158857
C	-3.877425	0.658086	1.082714
H	-4.768452	0.125166	0.742280
H	-4.025829	1.012330	2.100470
H	-3.665592	1.495385	0.416366
SPE			
C	1.037142	0.005662	-0.000199
C	1.696227	-0.239874	-1.204619
C	1.696310	-0.238911	1.204397
C	2.987342	-0.750703	-1.203084
C	2.987438	-0.749772	1.203174
C	3.634767	-1.008853	0.000115
H	1.187251	-0.038742	-2.142318
H	1.187415	-0.036949	2.141976
H	3.488654	-0.947841	-2.145048
H	3.488806	-0.946167	2.145284
H	4.643545	-1.408519	0.000242
C	-0.342549	0.569514	-0.000277
C	-1.487147	-0.131004	-0.000043

C	-1.503821	-1.639902	0.000188
F	-0.320835	-2.250784	0.000275
F	-2.177849	-2.085340	1.084214
F	-2.177793	-2.085533	-1.083984
C	-0.307383	2.077381	-0.000178
F	-1.504284	2.681427	-0.001272
F	0.353077	2.530047	1.083703
F	0.355236	2.530329	-1.082519
C	-2.891755	0.413342	-0.000076
H	-3.085462	1.029674	0.878108
H	-3.085706	1.028979	-0.878677
H	-3.611883	-0.403034	0.000308

SPZ
C
C
-1.451244
-2.048414
-0.160848
-0.008836
-2.255825
-0.984515
0.948461

C
C
3.418472
0.445633
-0.977337
-1.212614
0.927994

C
C
4.208766
-1.429710

-1.440439	1.716027
1.100396	-1.715643

H

H
H
5.278581

C
0.012103
0.911769
-1.852486
1.679724
1.802783
3.868975
0.678048
-1.765095
-5.278581

C
0.383949

C
C 2.410651
F
F $\quad-0.618037$
-0.800403
-0.069221
0.087793
0.016703
$-0.900467 \quad-0.145390$
C
1.545362
0.202970
-0.674903
-0.095534
2.226433
0.786236

F	1.464500	1.725842	0.971234
F	0.617804	2.147140	-0.982469
F	2.846709	-0.550774	1.170500
F	2.814717	0.401145	-0.783141
F	3.070601	-1.727868	-0.620897
C	0.535088	-2.327837	-0.381661
H	0.915415	-2.968043	0.421180
H	-0.541296	-2.459894	-0.449945
H	0.993231	-2.693455	-1.30368

[^0]IX. Copies of NMR spectra

[^1]

(1.fid

[^2]

HDX2370868-1.3. fid

5
1
1
1

$\underset{\substack{0 \\ i=0}}{\substack{0 \\ i}}$

wxH23706068-2. 3. fid
戸్లొల్ల
Oi io MeO

[^3]

\qquad

$\left[\begin{array}{l}77.32 \\ 77.00 \\ 76.68\end{array}\right.$
-56.09
MォNO® $\underbrace{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}{ }^{\circ}$
105^{68}

12370501A-1
꾸ํํ․․
$\stackrel{\square}{i}$
느ำ
ing ing
$\stackrel{8}{8}$
1

JUH2370501A-1

JWH2370501H-01

\qquad

JUH2370501F-01

JWH2370501F-01
7. 88
\%

[^4]

守守守系系系

JWH2370503B-01

$\underset{\sim}{4}$

JWH2370502C-01

No
$\stackrel{\infty}{\stackrel{\infty}{\circ}}$


```
JWH2370503D－1
```


 がinj

㔖

혁역윤․․
4

8
i

JWH2370508B-2.3.fid

-
NC-

[^5]

anzsioszon-v2. 3. 11 d
No
$\underbrace{\infty} \underbrace{\infty} 0^{\infty}$

N No
$\underset{\substack{n \\ i}}{\substack{~}}$
か゚゚ロ゚ロ $\stackrel{\varphi}{\circ}$

ジต⿺辶

$\underbrace{\circ}$

fid	$\stackrel{\infty}{\sim}$	
	¢	

Coser

10	0	-10	$\stackrel{1}{-20}$	${ }_{-30}$	-40	$\stackrel{1}{-50}$	$\stackrel{1}{-60}$	$\stackrel{-}{-70}$	-80	-90	${ }_{-100}$	${ }_{-110}$	$\stackrel{1}{-120}$	-130	${ }_{-140}$	$\stackrel{1}{-150}$	${ }_{-160}$	-170	-180	${ }_{-190}{ }^{1}$	${ }_{-200}$	${ }_{-210}$
											f 1 (ppn)											

JWH2370506A-1
nege
y
SS

$\underbrace{\circ} 0$

JWH2370514D-1. 3. fid

oio

8
6
0
1

$\underset{\sim}{N}$

JUH2370506F-01

JWH2370507E-1. 2. fid

 N

WH2370507E-1

58
$i 4$
$i 4$

JUH5204018H-01.2. fid

N

$\xrightarrow[\longrightarrow]{ }$

ח
$\stackrel{\leftrightarrow}{\stackrel{\leftrightarrow}{\circ}}$
85
00
8

JUH2370514E-001. 3. fid
$\stackrel{6}{8}$

JWH2370516B-01.2.fid

Nos
NiN
NiN

-

8
i
i

－

$\stackrel{\infty}{\infty} \stackrel{\sim}{\sim}$

wh2370507a-m0. fid
O.
N
N

 $\underbrace{\text { N N N N N , }}$

Cosmes
No:
n
en
i

$\stackrel{\infty}{\infty} \underbrace{\circ} \underbrace{\circ} \underbrace{\circ}$

00	190	180	170	160	150	140	130	120	110	$\underset{f}{1} 100$	1

$\underbrace{\text { Nin }}$

DXR2370982D-1-1. 3. fid

$\stackrel{\stackrel{\circ}{i}}{\stackrel{\circ}{1}}$
๗్ఞ

$$
\text { DXR2370975-1-1.1. fid } \underset{\sim}{\circ} \text { © }
$$

DXR2370975-1-1.3. fid
$\stackrel{\text { in }}{\substack{\text { i }}}$

DXR23709788-1. 3. fid
fid

DXR23709768-1. 1. fid
8 ¢ M N
NiN

8

DXR2370976B-1. 3 . fid

Niल్
+

都

DXR2370984H-1. 3. fid
J. 1. fid

よi
$\underbrace{\infty}$
$\stackrel{8}{\circ}$

DXR2370984I-1. 3. fid
ñ
î
in
우웅

8.8:

$\stackrel{5}{\square}$

DXR2370990B-1.2 fid

 NC

 ก

No
웅

DXR23709880-1. 1. f

$\underbrace{\text { חֻ }}$
$\stackrel{\circ}{\circ}$

Sill

DXR2370988d--1. 3. fid
\circ
¢
i

Cise

DXR23709888-1C. 2 . fid

$\underbrace{\circ 0 \sim}$
$\stackrel{\circ}{\circ}$

DXR23709900-1. 3. fid
$\hat{0}$
io
in
\%io

DXR2370985C-1. 3. fid
ก̀
∞
0
i

0

wXH5204420. 2.fid

No

 Nั Niviv
$\stackrel{\leftrightarrow}{\circ}$

wxH5204419-C. 2. fid

N
 $\dot{\circ} \dot{\circ}$

wXH5204419. 3. fid

응ㅇㅇㅇ oi io io

 Cl

wxh5204404. 2. fid

 77.32
-77.00
76.68

NNNNNNNNNNNNNNNNN

$\stackrel{\infty}{\infty}$
$\stackrel{i}{i}$
㽣

JUH2370514F-1
$\stackrel{\infty}{\stackrel{\infty}{i}}$

[^0]: ${ }^{1}$ M. W. Carson, M. W. Giese, M. J. Coghlan, Org. Lett. 2008, 10, 2701.
 ${ }^{2}$ S. Fabig, A. Janiszewski, M. Floß, M. Kreuzahler, G. Haberhauer, J. Org. Chem. 2018, 83, 7878.
 ${ }^{3}$ S. Gao, H. Liu, Z. Wu, H. Yao, A. Lin, Green Chem. 2017, 19, 1861.
 ${ }^{4}$ P. Tang, T. Furuya, T. Ritter, J. Am. Chem. Soc. 2010, 132, 12150.
 ${ }^{5}$ P. Prabhala, H. M. Savanur, R. G. Kalkhambkar, K. K. Laali, Eur. J. Org. Chem. 2019, 10, 2061.
 ${ }^{6}$ Y. Xia, L. Wang, A. Studer, Angew. Chem. Int. Ed. 2018, 57, 12940.
 7 P. K. Shyam, H.-Y. Jang, J. Org. Chem. 2017, 82, 1761.
 ${ }^{8}$ Gaussian, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N.
 Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Lyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
 ${ }^{9}$ Y. Zhao, D. G. Truhlar, J. Chem. Phys. 2006, 125, 194101.
 ${ }^{10}$ Y. Zhao, D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157.
 ${ }^{11}$ (a) W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257; (b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 1973, 28, 213.
 ${ }^{12}$ (a) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270; (b) W. R. Wadt, P. J. Hay, J. Chem. Phys. 1985, 82, 284; (c) P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
 ${ }^{13}$ (a) F. Weigend, M.Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett. 1998, 294, 143; (b) F. Weigend, R. Ahlrichs, Chem. Chem. Phys. 2005, 7, 3297.
 ${ }^{14}$ W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics, 1996, 14, 33.
 ${ }^{15}$ CYLview, 1.0b; C. Y. Legault, Université de Sherbrooke, 2009 (http://www. cylview. org).
 ${ }^{16}$ (a) S. Guo, D. I. AbuSalim, S. P. Cook, Angew. Chem. Int. Ed. 2019, 58, 11704; (b) S. Guo, D. I. AbuSalim, S. P. Cook, J. Am. Chem. Soc. 2018, 140, 12378.

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

