Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Hydrofluoromethylation of Alkenes with Fluoroiodomethane and Beyond

Sandrine M. Hell, \S , \dagger Claudio F. Meyer, \S , \dagger Sebastiano Ortalli, \S , \dagger Jeroen B. I. Sap, \dagger Xuanxiao Chen, \dagger Véronique Gouverneur*, \dagger

[†] University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford, OX1 3TA (United-Kingdom)

[§] These authors contributed equally to this work

Table of contents:

1. General information	S3
2. Starting material synthesis	S4
3. Cyclic Voltammetry of CH ₂ FI and CH ₃ I	S 6
4. Optimization of the reaction conditions	S 8
4.1. Hydrofluoromethylation of electron-deficient alkenes	S 8
4.2. Hydromethylation of electron-deficient alkenes	S11
5. Mechanistic investigations	S15
6. Proposed mechanisms	S18
7. Kinetic profile	S19
8. Scale-up experiment	S21
9. Robustness screen	S23
10. Further functionalizations	S27
11. ¹⁸ F-Hydrofluoromethylation of alkenes	S31
12. Competition experiments	S34
13. Limitations	S37
14. Isolation of (TMS) ₃ SiOH	S39
15. General Procedures	S40
16. Characterizations	S41
16.1. Hydrofluoromethylation of electron-deficient alkenes	S41
16.2. Hydro(poly)fluoroalkylation of electron-deficient alkenes	S52
16.3. Hydrohalomethylation of electron-deficient alkenes	S56
16.4. Hydromethylation of electron-deficient alkenes	S60
17. References	S67
18. Spectra	S68

1. General information

All NMR spectra were recorded on a Bruker AVIIIHD 400 spectrometer with standard pulse sequences operating at 400 MHz, using CDCl₃ as solvent. ¹H and ¹³C NMR spectral data are reported as chemical shifts (δ) in parts per million (ppm) relative to the solvent peak using the Bruker internal referencing procedure (edlock). ¹⁹F NMR spectra are referenced relative to CFCl₃ in CDCl₃. Coupling constants (J) are measured in hertz (Hz). The following abbreviations are used to describe multiplicities s=singlet, d=doublet, t=triplet, q=quartet, quint=quintet, m=multiplet, dd=doublet of doublets, dt=doublet of triplets, td=triplet of doublets, tt=triplet of triplets. NMR spectra were processed with MestReNova 11.0 or higher. High resolution mass spectra (HRMS, m/z) were recorded on a Thermo Exactive HighResolution Orbitrap FTMS instrument equipped with Waters Acquity liquid chromatography system using either the heated electrospray (HESI-II) probe for positive electrospray ionization (ESI+) or the atmospheric pressure chemical ionization (APCI) probe. Melting points of solids were measured on a Griffin apparatus and are uncorrected. Infrared spectra were recorded as the neat compound or in solution using a Bruker tensor 27 FT-IR spectrometer. Absorptions are reported in wavenumber (cm⁻¹). IUPAC names were obtained using the ChemDraw service. Weighing was performed with a 4 decimal place balance. All reactions for the hydrofluoromethylation of electron-deficient alkenes were conducted in non-dried glassware with magnetic stirring. All solvents were used as received without further purification. (TMS)₃SiH was purchased from Fluorochem. Fluoroiodomethane was purchased from abcr. All commercially available substrates were purchased from commercial suppliers or otherwise synthesized according to literature. Reactions were performed in 7 mL vials in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp $(\lambda = 450 \text{ nm})$. The yields were determined by isolation on SiO₂ gel column chromatography.

2. Starting material synthesis

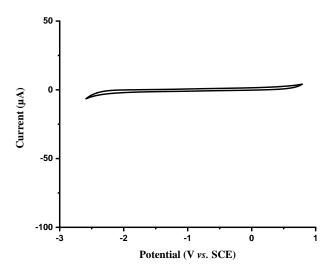
Compounds 1a, 1b, 1c, 1d, 1e, 1f, 1l, 1r, and 1u were synthesised according to literature procedures and spectroscopic data were in accordance with previous reports.^[1-6]

Benzyl acrylate- d_3 (1i)

Benzyl bromide (143 uL, 1.2 mmol, 1.2 equiv) was added dropwise to a stirred suspension of acrylic-2,3,3-d₃ acid (75 mg, 1.0 mmol, 1.0 equiv) and K₂CO₃ (387 mg, 2.8 mmol, 2.8 equiv) in DMF (6.0 mL) at 0 °C. The reaction mixture was stirred at room temperature for 16 hours, then diluted with Et₂O and washed with an aqueous solution of saturated NaHCO₃. The organic layer was then washed with an aqueous solution of LiCl (10% w/w) five times. The organic phases were combined, dried (Na₂SO₄), filtered and evaporated *in vacuo*. The residue was purified by column chromatography (silica, Et₂O in pentane 0/100 to 100/0) to yield the desired product as a colourless oil in quantitative yield.

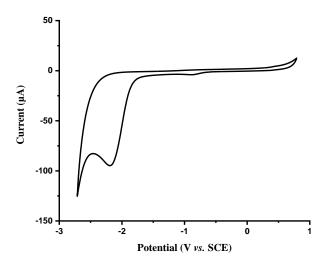
¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.29 (m, 5H), 5.23 (s, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 166.1, 136.0, 131.1 – 129.7 (m), 128.9 – 127.4 (m), 128.6, 128.3, 128.3, 66.3. The compound did not ionize; **IR** (neat) 3035, 2955, 1718, 1565, 1498, 1455, 1375, 1225, 1073, 1015, 965, 918, 814, 749, 716, 696, 615.

Benzyl 2-(2,3-dichloro-4-(2-methylenebutanoyl)phenoxy)acetate (1w)

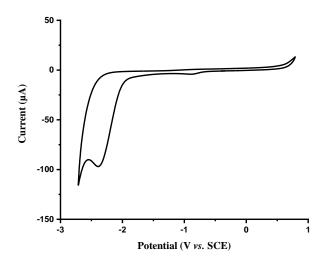

Benzyl bromide (143 uL, 1.2 mmol, 1.2 equiv) was added dropwise to a stirred suspension of 2-(2,3-dichloro-4-(2-methylenebutanoyl)phenoxy)acetic acid (302.0 mg, 1.0 mmol, 1.0 equiv) and K₂CO₃ (387 mg, 2.8 mmol, 2.8 equiv) in DMF (6.0 mL) at 0 °C. The reaction mixture was stirred at room temperature for 16 hours, then diluted with Et₂O and washed with an aqueous solution of saturated NaHCO₃. The organic layer was then washed with an aqueous solution of LiCl (10% w/w) five times. The organic phases were combined, dried (Na₂SO₄), filtered and evaporated *in vacuo*. The desired product was obtained as a colourless oil in quantitative yield, and used as such in the next step.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 7.09 (d, J = 8.5 Hz, 1H), 6.73 (d, J = 8.5 Hz, 1H), 5.93 (t, J = 1.5 Hz, 1H), 5.58 (s, 1H), 5.25 (s, 2H), 4.79 (s, 2H), 2.47 (qdd, J = 7.4, 1.5, 0.9 Hz, 2H), 1.15 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 195.9, 167.7, 155.5, 150.3, 135.0, 134.1, 131.6, 128.8, 128.8, 128.7, 128.6, 126.9, 123.5, 110.9, 67.5, 66.4, 23.6, 12.5; **HRMS** (ESI-TOF) calculated for C₂₀H₁₉³⁵Cl₂O₄ [M+H]⁺: 393.0655; found 393.0654; **IR** (neat) 2969, 1757, 1665, 1585, 1498, 1468, 1439, 1384, 1339, 1293, 1259, 1190, 1122, 1078, 1001, 946, 893, 804, 753, 697, 634.

3. Cyclic Voltammetry


The cyclic voltammetry (CV) measurements were conducted at room temperature using an Autolab PGSTAT204 potentiostat (Metrohm, The Netherlands). Experiments were performed using a standard three-electrode setup, comprising a glassy carbon working electrode (diameter 3.0 mm, CH Instrument), an Ag/AgNO₃ (0.01 M) reference electrode and a Pt wire counter electrode. Before each measurement, the working electrode was mechanically polished with alumina slurries in the size 1.0 μ m, 0.3 μ m and 0.05 μ m (purchased from Buehler Ltd, USA) respectively. All CV experiments were carried out at a concentration of 3 mM in anhydrous CH₃CN with an electrolyte LiClO₄ (0.1 M) at 100 mV/s scan rate. Solutions containing the compound of interest were thoroughly degassed with argon to remove oxygen prior to any measurement. The reduction potentials were measured against a ferrocene/ferrocenium (Fc/Fc⁺) internal reference, and then converted to V vs. SCE (saturated calomel electrode) using the conversion $E^{\circ}_{1/2}$ (Fc/Fc⁺) = + 0.400 V vs. SCE.

Background:


Figure S1. Voltammetric response of 0.1 M LiClO₄ in anhydrous CH₃CN.

Fluoroiodomethane: E (V vs. SCE) = -2.19 V

Figure S2. Voltammetric response of 3 mM fluoroiodomethane in anhydrous CH₃CN and 0.1M LiClO₄.

Iodomethane: E (V vs. SCE) = -2.39 V

Figure S3. Voltammetric response of 3 mM methyl iodide in anhydrous CH₃CN and 0.1M LiClO₄.

4. Optimization of the reaction conditions

4.1 Hydrofluoromethylation of the electron-deficient alkenes

Procedure for the optimization studies:

To a 7 mL vial equipped with a stir bar was added photocatalyst (0.5 mol%), *N*-phenylacrylamide (14.7 mg, 0.1 mmol, 1.0 equiv.), solvent (dry; 0.6 mL), hydrogen atom donor (HAD) (given equivalents), fluoroiodomethane (CH₂FI) (given equivalents). The vial was sealed with a septum, degassed with nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. α , α , α -Trifluorotoluene (internal standard, 123 μ L, 1.0 mmol) was added, and the reaction mixture was analyzed by quantitative ¹⁹F NMR.

Table S1: Screening of photocatalysts

entry	photocatalyst	yield (2a)
1	Eosin Y	56%
2	fac-Ir(ppy) ₃	75%
3	MesAcrBF ₄	73%
4	Benzophenone	75%
5	-	71%

We initially investigated our hydrofluoromethylation protocol of **1a** using the reaction conditions we developed previously. Employing Eosin Y as the photocatalyst, (TMS)₃SiH as the HAD and MeCN as the solvent, the desired hydrofluoromethylated product **2a** was obtained in 56% yield. Alternative photocatalysts such as MesAcrBF₄, *fac*-Ir(pppy)₃ and benzophenone resulted in higher yields. A control experiment revealed that the reaction is also efficient in absence of photocatalyst.

Table S2: Screening of solvents

entry	solvent	yield (2a)
1	MeCN	71%
2	DCE	60%
3	THF	55%
4	DMF	68%
5	DMSO	0%
6	$MeNO_2$	17%
7	PhCF ₃	6%

The reaction was successful in other polar and non-polar aprotic solvents, such as *N*,*N*-dimethylformamide (DMF), dichloroethane (DCE) or tetrahydrofuran (THF), but in all cases, lower yields were obtained compared to MeCN. The use of DMSO, nitromethane (MeNO₂) or trifluorotoluene (PhCF₃) resulted in low to no conversion towards the desired product. MeCN was chosen as the optimum solvent for this transformation, with DMF being a viable alternative for less soluble substrates.

Table S3: Screening of hydrogen-atom donors

entry	HAD	yield (2a)
1	(TMS)₃SiH	71%
2	Ph ₃ SiH	0%
3	Et ₃ SiH	traces
4	Hantzsch ester	7%
5	Ph ₃ CH	0%

No other silanes or HAD allowed for efficient hydrofluoromethylation of electron-deficient alkenes.

Table S4: Screening of reagent equivalents

entry	(TMS) ₃ SiH (y equiv)	CH ₂ FI (x equiv)	yield (2a)
1	2.0	2.0	71%
2	1.5	2.0	75%
3	1.2	2.0	76%
4	1.2	1.5	68%
5	1.2	1.0	64%

The equivalents of (TMS)₃SiH could be reduced to 1.2 equivalents, with no drop in yield. Furthermore, 2.0 equivalents of CH₂FI were shown to be optimal for this hydrofluoromethylation protocol.

4.2 Hydromethylation of the electron-deficient alkenes

Procedure for the optimization studies:

To a 7 mL vial equipped with a stir bar was added photocatalyst (0.5 mol%), solvent (dry; 3.0 mL), benzyl acrylate (81.1 mg, 0.5 mmol, 1.0 equiv), (TMS)₃SiH (given equivalents) and iodomethane (given equivalents). The vial was sealed with a septum, degassed with nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The reaction mixture was transferred to a flask containing triphenylmethane (122 mg, 0.5 mmol). The mixture was concentrated *in vacuo* and analyzed by quantitative ¹H NMR.

Note I: The yields might be slightly overestimated due to overlapping peaks. Therefore, these yields should be interpreted cautiously. The yields of isolated products are more accurately displaying the efficiency of this reaction.

Note II: Please carefully read the material safety data sheets (MSDS) of solvents and reagents used in this protocol. Iodomethane has been shown to be toxic and carcinogenic.

Table S5. Iodomethane equivalents

OBn +
$$H_3C-I$$
 Eosin Y (0.5 mol%) (TMS)₃SiH (1.0 equiv) H₃C OBn MeCN, N₂, rt, 16 h blue LEDs OSc

entry	MeI (x equiv)	yield (5c)
1	2.0	20%
2	4.0	28%
3	6.0	29%

The amount of iodomethane did not drastically affect the yield of the desired product. On the other hand, we noted extensive gas formation during the reaction. We attributed this to the potential unproductive H-atom transfer from the solvent to the methyl radical resulting in the

formation of methane gas. To circumvent that pathway, an extensive solvent screen was performed.

Table S6. Solvent screen

entry	solvent	yield (5c)
1	Acetonitrile	28%
2	1,2-Dichloroethane	37%
3	Water	21%
4	Tetrahydrofuran	27%
5	Hexane	31%
6	Cyclohexane	31%
7	Benzene	45%
8	Chlorobenzene	41%
9	Fluorobenzene	44%
10	1,2-Dichlorobenzene	46%
11	1,2-Difluorobenzene	48%

As expected, the reaction proceeds best in solvents with poor H-atom donor properties such as benzene derivatives with 1,2-difluorobenzene being superior to other halogenated benzene derivatives. We further screened a range of common photocatalysts to identify the optimal reaction conditions.

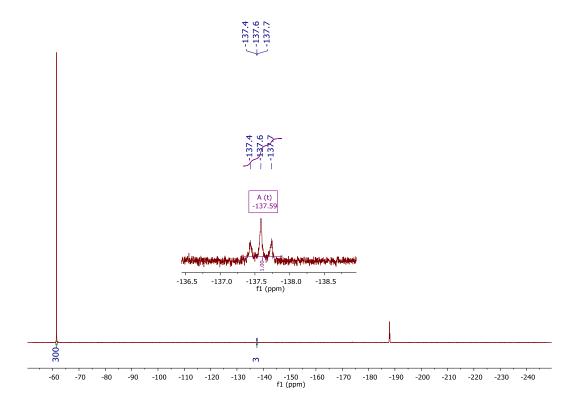
Table S7. Photocatalyst screen in 1,2-difluorobenzene

entry	photocatalyst	yield (5c)
1	none	11%
2	Eosin Y	48%
3	fac-Ir(ppy) ₃	60%
4	$MesAcr \cdot BF_4$	59%
5	$Ir(dF[CF_3]ppy)_2(dtbbpy)\cdot PF_6$	59%

As shown, a range of photocatalysts are suitable for this transformation. We selected the organophotocatalyst MesAcr·BF₄ as a green and inexpensive alternative to iridium-based catalysts.

Table S8. Screen of (TMS)₃SiH equivalents

entry	(TMS) ₃ SiH (x equiv)	yield (5c)
1	1.0 equiv	48%
2	1.2 equiv	55%
3	1.5 equiv	59%
4	2.0 equiv	60%
5	3.0 equiv	79% (67%*)
6	4.0 equiv	64%


^{*}Yield of isolated product is depicted in brackets.

The product yield was further increased by using excess of (TMS)₃SiH. The desired product was isolated in 67% yield when using 3.0 equivalents of (TMS)₃SiH. The discrepancy in quantitative ¹H NMR yield and isolated yield likely stems from overestimation of the NMR yield due to overlapping peaks.

5. Mechanistic investigation

5.1 Radical-trapping experiment with TEMPO

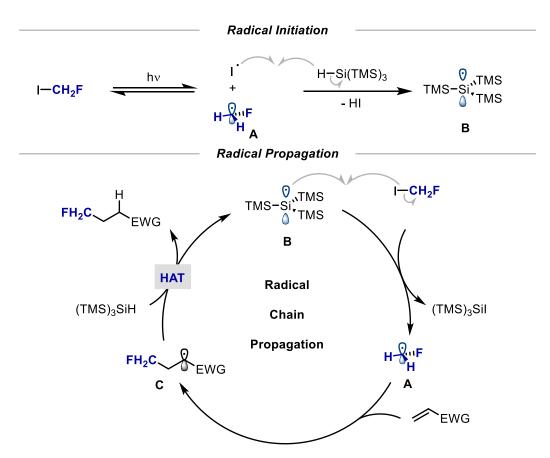
To a 7 mL vial equipped with a stir bar was added *N*-phenylacrylamide (74.0 mg, 0.5 mmol, 0.5 equiv), MeCN (3.0 mL), (TMS)₃SiH (185 μ L, 0.6 mmol, 0.6 equiv), CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv), and TEMPO (313 mg, 2.0 mmol, 4.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. α , α , α -Trifluorotoluene (internal standard, 123 μ L, 1.0 mmol, 1.0 equiv) was added, and the reaction mixture was analyzed by quantitative ¹⁹F NMR (¹⁹F NMR (377 MHz, CDCl₃) δ -137.59 (t, J = 57.0 Hz)).

Figure S4: Quantitative ¹⁹F NMR of the TEMPO experiment.

5.2 Deuteration experiment

To probe the hydrogen source in this transformation, a deuteration experiment in MeCN- d_3 was performed.

To a 7 mL vial equipped with a stir bar was added *N*-phenylacrylamide (74.0 mg, 0.5 mmol, 0.5 equiv), MeCN- d_3 (3.0 mL), (TMS)₃SiH (185 μ L, 0.6 mmol, 1.2 equiv), CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. α , α , α -Trifluorotoluene (internal standard, 123 μ L, 1.0 mmol, 1.0 equiv) was added, and the reaction mixture was analyzed by quantitative ¹⁹F NMR and ¹H NMR.


Addition of deuterated solvents did not result in deuterium incorporation; selective formation of [H]2a was observed over [D]2a. This result suggests that the solvent is not the hydrogen source in the hydrofluoromethylation of electron-deficient alkenes.

5.3 Control experiments with AIBN/Bu₃SnH

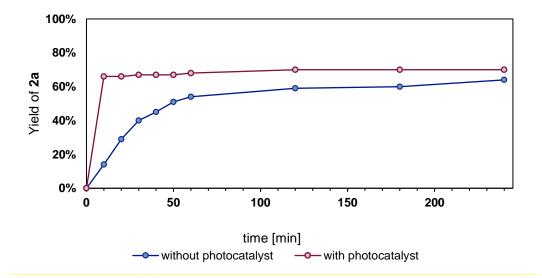
To a 7 mL vial equipped with a stir bar was added *N*-phenylacrylamide (74.0 mg, 0.5 mmol, 0.5 equiv), AIBN (41.1 mg, 0.25 mmol, 0.5 equiv), MeCN (3.0 mL), Bu₃SnH (161 μ L, 0.6 mmol, 1.2 equiv) or (TMS)₃SiH (185 μ L, 0.6 mmol, 1.2 equiv), and CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred at 80° C for 16h. α , α , α -Trifluorotoluene (internal standard, 123 μ L, 1.0 mmol, 1.0 equiv) was added, and the reaction mixture was analyzed by quantitative ¹⁹F NMR.

6. Proposed mechanisms

We propose the following reaction mechanism for the hydrofluoromethylation of electron-deficient alkenes: upon blue-light irradiation, the reaction is initiated by homolytic bond cleavage of the carbon-iodine bond of fluoroiodomethane to generate trace amounts of the fluoromethyl radical **A**, along with an iodine radical. The latter radical can undergo hydrogen atom abstraction with (TMS)₃SiH to afford hydrogen iodide and the corresponding nucleophilic tris(trimethylsilyl)silyl radical **B**. Subsequent iodine atom abstraction from fluoroiodomethane would then yield radical **A**. This fluoroalkyl radical undergoes Giese-addition to the electron-deficient alkene and furnishes an electrophilic carbon-centred radical intermediate **C**. HAT between the carbon-centred radical and (TMS)₃SiH affords the desired hydrofluoromethylated product, along with a new silyl radical **B**, which enters chain propagation.

Scheme S5: Proposed radical chain propagation mechanism for the hydrofluoromethylation of electron-deficient alkenes.

7. Kinetic profile


Experiments were conducted to evaluate the influence of the photocatalyst on the kinetics of the reaction; this was accomplished by monitoring the conversion of **1a** to hydrofluoromethylated product **2a** under our standard reaction conditions in the presence and absence of the photocatalyst *fac*-Ir(ppy)₃ over the course of four hours.

Whilst the final yield of the desired product was not significantly affected by the presence or absence of photocatalyst (see table S1), the hydrofluoromethylation of **1a** was found to take place significantly faster in the presence of *fac*-Ir(ppy)₃, with most conversion of the starting material to the desired product occurring within the first ten minutes of irradiation (Table S9). In contrast, the reaction in absence of photocatalyst is much slower and requires longer reaction time. These observations suggest that the photocatalyst acts as initiator.

Procedure: To a 7 mL vial equipped with a magnetic stir bar, was added *N*-phenylacrylamide (73.6 mg, 0.50 mmol, 1.0 equiv), fac-Ir(ppy)₃ (1.6 mg, 0.0025 mmol, 0.5 mol%), MeCN (dry; 3.0 mL), (TMS)₃SiH (185 μ L, 0.6 mmol, 1.2 equiv), CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv) and α,α,α -Trifluorotoluene as an internal standard (123 μ L, 1.0 mmol). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan). At intervals of ten minutes to four hours, aliquots (50 μ L) of the reaction mixture were removed and analysed by quantitative ¹⁹F NMR.

Table S9: Yield of **2a** measured at regular time intervals with and without photocatalyst (average of two runs).

reaction time	yield (2a) without photocatalyst	yield (2a) with photocatalyst
10 min	14%	66%
20 min	29%	66%
30 min	40%	67%
40 min	45%	67%
50 min	51%	67%
1 h	54%	68%
2 h	59%	70%
3 h	60%	70%
4 h	64%	70%

8. Scale-up experiment

The scale-up experiment was performed on the synthesis of 1-benzyl-3-(fluoromethyl)pyrrolidine-2,5-dione.

Scheme S6: Multigram synthesis of 2n.

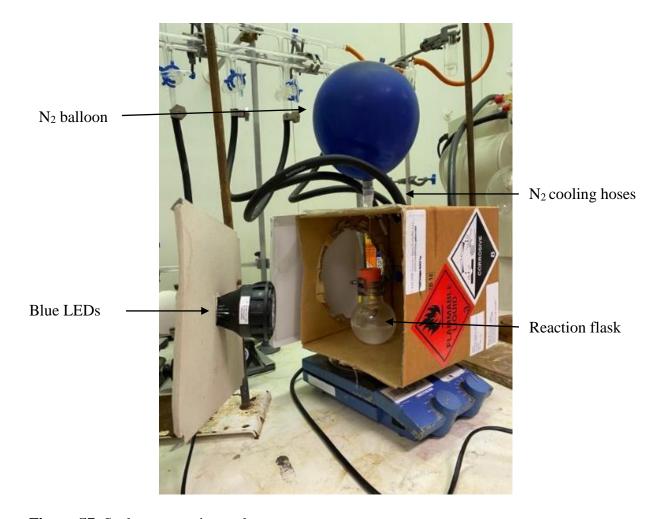


Figure S7: Scale-up experimental set-up.

To a 150 mL oven-dried round-bottomed flask equipped with a magnetic stir bar, N-benzylmaleimide (1.872 g, 10 mmol, 1.0 equiv) was added, followed by dry MeCN (60 mL), (TMS)₃SiH (3.70 mL, 12 mmol, 1.2 equiv) and CH₂FI (1.35 mL, 20 mmol, 2.0 equiv). The flask was equipped with a Teflon septum, degassed by nitrogen bubbling for 1 minute and stirred in a custom-made photoreactor (see figures S8 and S9) with a 12 W blue HepatoChem LED lamp (λ_{max} = 470 nm) at room temperature for 16 hours. Et₂O (100 mL) was then added to the reaction mixture, which was extracted twice with a saturated aqueous solution of NaHCO₃ (2 x 50 mL). The combined aqueous phases were extracted once more with Et₂O (30 mL). The combined organic phases were dried (Na₂SO₄), filtered and the solvent was removed *in vacuo*. The residue was purified by flash chromatography (SiO₂, Et₂O in Pentane, 30/70 to 60/40). The desired fractions were collected and concentrated *in vacuo* to afford the desired hydrofluoromethylated product **20** as a pale yellow oil (1.953 g, 8.8 mmol, 88.0 %).

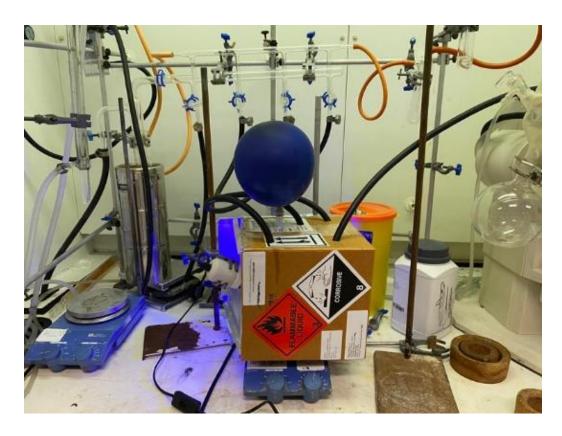
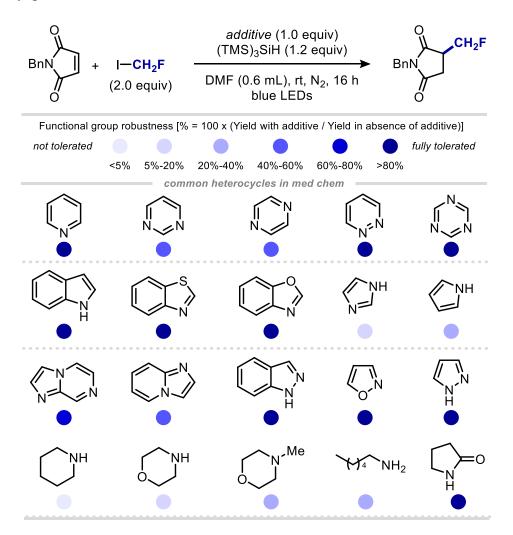


Figure S8: Scale-up experimental set-up.

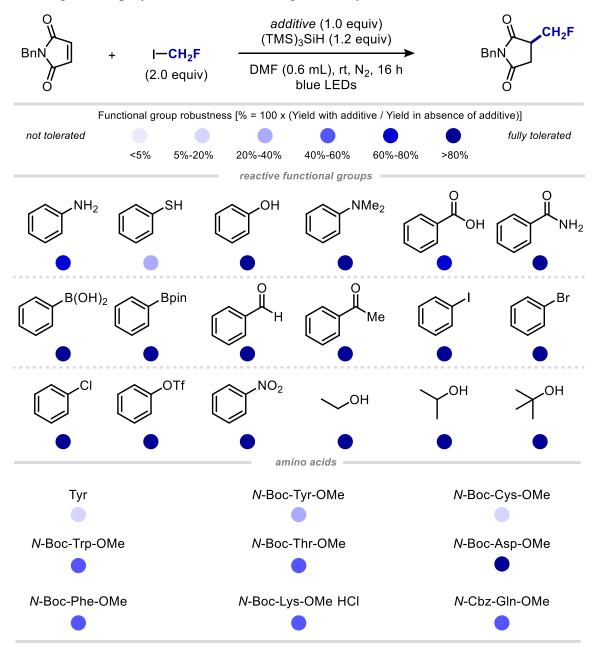
9. Robustness screen


The robustness screening was performed by spiking one equivalent of an additive (heterocycle, molecule containing a specific functional group, or amino acid) under our standard reaction conditions. In contrast to our standard reaction conditions, screenings were performed in DMF to allow for homogenous reaction mixtures. All reactions were performed on 0.1 mmol scale of model substrate **10** and the crude reaction mixtures were analysed by quantitative ¹⁹F NMR using α,α,α -trifluorotoluene as the internal standard.

These experimental robustness data provide an overview of the heterocycles, functional groups or amino acids that are likely to be tolerated under our reaction conditions. This screening demonstrates that our methodology is robust enough to be considered as a valuable transformation for the chemoselective late-stage hydrofluoromethylation of complex molecules.

Important note: Potential side reactivity of the additive during the reaction was not assessed in this screening. In presence of nucleophilic functional groups (e.g. phenols, thiols), side products resulting from nucleophilic substitution with fluoroiodomethane was observed by ¹⁹F NMR. As a general rule, lowering the amount of fluoroiodomethane to 1.0 equivalent in 1,2-difluorobenzene, allowed to reduce the formation of these side products, however leading also to lower yields of the desired product.

The hydrofluoromethylation of Ibrutinib and *N*-acryloyl *L*-tyrosine methyl ester, which gave the desired products in 58% and 66% respectively, correlate with our robustness screen, as complex fused heterocycles (e.g. 1*H*-pyrazolo[3,4-d]pyrimidin-4-amine), phenols and protected amino acids were shown to be tolerated under our reaction conditions.


Procedure: To an 7 mL vial equipped with a stir bar was added additive (0.1 mmol, 1.0 equiv), *N*-benzylmaleimide (18.7 mg, 0.1 mmol, 1.0 equiv.), DMF (dry; 0.6 mL), (TMS)₃SiH (37 μ L, 0.12 mmol, 1.2 equiv), fluoroiodomethane (CH₂FI) (13.6 μ L, 0.2 mmol, 2.0 equiv.). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. α , α , α -Trifluorotoluene (internal standard, 123 μ L, 1.0 mmol) was added, and the reaction mixture was analysed by quantitative ¹⁹F NMR.

Scheme S9: Robustness screen of common heterocycles in medicinal chemistry.

Common heterocycles in medicinal chemistry, such as pyridine, pyridazine, 1,3,5-triazine, indole or benzothiazole and oxazole were broadly tolerated and did not significantly affect the outcome of the reaction. However, other heteroarenes, such as imidazole and pyrrole prevented partly the hydrofluoromethylation of our model substrate. Other fused and five-membered heteroarenes were well tolerated. However, aliphatic amines, such as piperidine, morpholine, *N*-

methyl morpholine and hexylamine resulted in lower yields. Although cyclic aliphatic amines are not well tolerated, the broad tolerance to the other heterocycles is substantial, particularly considering the ubiquity of these motifs in drug discovery.

Scheme S10: Robustness screen of reactive functional groups and amino acids.

Reactive functional groups commonly found in complex molecules, including primary and secondary amines, alcohol, carboxylic acid, amide, boronic acid, ester, aldehyde, ketone, halogens, as well as triflate and nitro groups were well tolerated, with little to no effect on the reaction yield. Thiols, however, significantly reduced the reaction yield, presumably due to their nucleophilic character. Furthermore, thiols are excellent H-atom donors, and thus might undergo H-atom transfer with the CH₂F radical. Importantly, although alcohol functionalities, including phenols and aliphatic alcohols, did not alter the yield of the desired hydrofluoromethylation reaction, side products arising from nucleophilic attack were observed by ¹⁹F NMR (~ 35%). However, it was found that competitive alkylation could be significantly reduced by using 1.0 equivalent of CH₂FI in 1,2-difluorobenzene as solvent, albeit at the expense of reduced yield for the hydrofluoromethylated product.

BnN + I-CH₂F
$$\frac{i^{2}PrOH (1.0 \text{ equiv})}{(TMS)_{3}SiH (1.2 \text{ equiv})} + i^{2}PrOCH_{2}F$$
1,2-diffluorobenzene (0.6 mL), rt, N₂, 16 h blue LEDs
$$10 (1.0 \text{ equiv}) \qquad (1.0 \text{ equiv})$$

$$52\% \qquad 4\%$$

Finally, we were also interested in investigating the tolerance of amino acids under our reaction conditions. The data collected demonstrated that unprotected amino acids, such as *L*-tyrosine for example, are not well tolerated by the reaction conditions. In contrast, reactions in the presence of fully protected (N- and O-protected) amino acids proceeded in higher yields. Most amino acids, except cysteine derivatives, gave the desired product in moderate to excellent yield.

10. Further functionalizations

1-Benzyl-3-(fluoromethyl)pyrrolidine (2p)

NaBH₄ (7.5 equiv)

$$BF_3-OEt_2$$
 (3.0 equiv)

THF, 45 °C, 7 h

2p, 64%

To a well-stirred solution of 1-benzyl-3-(fluoromethyl)pyrrolidine-2,5-dione (111 mg, 0.5 mmol, 1.0 equiv) in dry THF (1.5 mL), sodium borohydride (142 mg, 3.75 mmol, 7.5 equiv) was added at -20 °C (ice + NaCl). BF₃·Et₂O (185 uL, 213 mg, 1.5 mmol, 3.0 equiv) was added slowly at the same temperature. The reaction mixture was warmed to room temperature and stirred for 7 h at 45 °C. Unreacted NaBH₄ was quenched dropwise with methanol, diluted with water, and extracted with DCM. The combined DCM layers were washed with water and dried over anhydrous sodium sulfate. After evaporation, the desired compound was obtained by flash chromatography (silica, Et₂O in pentane 10/90 to 20/80) to yield the desired product (61 mg, 0.32 mmol, 64%) as a white solid.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.35 (m, 5H), 4.42 – 4.16 (m, 2H), 4.08 (s, 2H), 3.25 – 3.06 (m, 2H), 3.06 – 2.89 (m, 1H), 2.88 – 2.78 (m, 1H), 2.75 – 2.66 (m, 1H), 2.48 – 2.35 (m, 1H), 1.65 – 1.54 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 132.7, 131.4, 129.1, 128.4, 84.2 (d, $J_{\text{C-F}}$ = 170.1 Hz), 66.4, 60.2 (d, $J_{\text{C-F}}$ = 5.1 Hz), 58.2, 37.1 (d, $J_{\text{C-F}}$ = 19.1 Hz), 25.1 (d, $J_{\text{C-F}}$ = 5.9 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -224.9 (td, J = 47.3, 25.7 Hz). HRMS (ESI-TOF) calculated for C₁₂H₁₇NF [M+H]⁺: 194.1340, found 194.1340; IR (neat) 3734, 3066, 2957, 2918, 2850, 2363, 2337, 2282, 1735, 1653, 1541, 1499, 1455, 1388, 1362, 1351, 1312, 1244, 1212, 1177, 1167, 1121, 1107, 1084, 1068, 1031, 1017, 996, 934, 920, 890, 865, 801, 757, 700, 669, 648, 628; m.p.: 75 – 77 °C.

N-(4-fluorobutyl)aniline (2q)

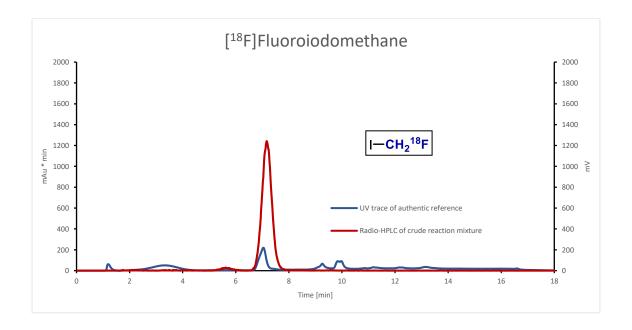
To a well-stirred solution of 4-fluoro-*N*-phenylbutanamide (45 mg, 0.25 mmol, 1.0 equiv) in dry THF (0.75 mL), sodium borohydride (36 mg, 0.94 mmol, 3.5 equiv) was added at -20 °C (ice + NaCl). BF₃·Et₂O (46 uL, 53 mg, 0.38 mmol, 1.5 equiv) was added slowly at the same temperature. The reaction mixture was warmed to room temperature and stirred for 7 h at 45 °C. Unreacted NaBH₄ was quenched dropwise with methanol, diluted with water, and extracted with DCM. The combined DCM layers were washed with water and dried over anhydrous sodium sulfate. After evaporation, the desired compound was obtained by flash chromatography (silica, Et₂O in pentane 0/100 to 20/80) to yield the desired product **2q** (34 mg, 0.2 mmol, 82%) as a pale-yellow oil.

¹H NMR (400 MHz, CDCl₃) δ 7.25 – 7.16 (m, 2H), 6.77 – 6.70 (m, 1H), 6.68 – 6.59 (m, 2H), 4.51 (dt, J = 47.1, 5.8 Hz, 2H), 3.65 (s, 1H), 3.20 (t, J = 6.9 Hz, 2H), 1.92 – 1.71 (m, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 148.3, 129.4, 117.5, 112.9, 83.9 (d, J_{C-F} = 164.9 Hz), 43.7, 28.2 (d, J_{C-F} = 19.9 Hz), 25.6 (d, J_{C-F} = 4.5 Hz); ¹⁹F NMR (377 MHz, CDCl₃) δ -218.2 (tt, J = 47.7, 25.5 Hz). The compound did not ionize; **IR** (neat) 3414, 3052, 2961, 2868, 2161, 2021, 1602, 1506, 1477, 1432, 1389, 1320, 1257, 1180, 1154, 1134, 1042, 991, 947, 894, 870, 838, 747, 692, 618.

4-fluoro-2-methylbutan-1-ol (2r)

DIBAL-H (1.25 mL, 1.25 mmol, 1.0 M in DCM, 2.5 equiv), was added dropwise to a stirred solution of benzyl 4-fluoro-2-methylbutanoate (105 mg, 0.5 mmol, 1.0 equiv) in DCM (5.0 mL) at -78 $^{\circ}$ C under N₂ atmosphere. The reaction mixture was stirred at room temperature for 16 hours. The desired product (30%) was observed by quantitative 1 H NMR analysis of the crude reaction mixture using triphenylmethane as an internal standard.

4-fluoro-2-methylbutanoic acid (2s)


10% Pd/C (11 mg, 0.1 mmol, 5.0 equiv) was added to a solution of benzyl 4-fluoro-2-methylbutanoate (105 mg, 0.5 mmol, 1.0 equiv) in MeOH (3.0 mL). The air was replaced with H₂ (balloon) by three vacuum/H₂ cycles. The reaction mixture was stirred at room temperature for 16 h and filtered over Celite to afford the desired compound as white oil (56 mg, 0.47 mmol, 94%).

¹**H NMR** (400 MHz, MeOD) δ 4.58 – 4.33 (m, 2H), 2.50 – 2.41 (m, 1H), 2.10 – 1.91 (m, 1H), 1.79 – 1.62 (m, 1H), 1.15 (d, J = 7.0 Hz, 3H); ¹⁹**F NMR** (377 MHz, MeOD) δ -221.3 (tt, J = 47.9, 25.1 Hz); **HRMS** (ESI-TOF) calculated for C₅H₈O₂F [M-H]⁻: 119.0514, found 119.0503; **IR** (neat) 2967, 2918, 2850, 2528, 2361, 2342,2160, 1973, 1770, 1701, 1570, 1461, 1412, 1376, 1292, 1241, 1206, 1138, 1082, 1030, 989, 953, 885, 849, 784, 720, 668, 649. The product decomposed within a few hours after isolation (¹³C NMR was therefore not measured for this compound).

11. ¹⁸F-Hydrofluoromethylation of alkenes

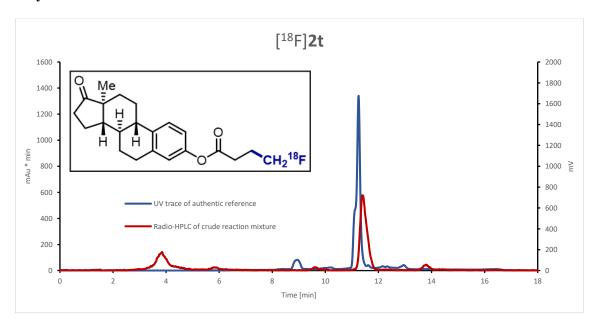
Synthesis and purification of [18F]CH₂FI

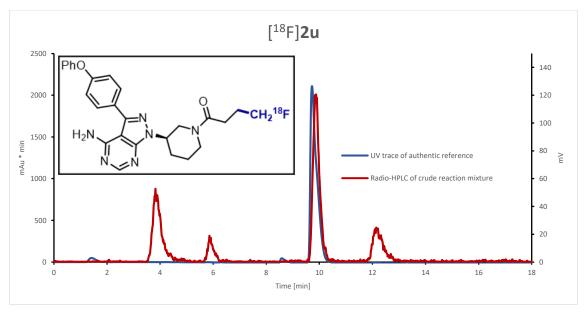
¹⁸F-Fluoride was separated from ¹⁸O-enriched-water using an anion exchange cartridge (Waters Sep-Pak AccellPlus QMA Carbonate Plus Light Cartridge, activated with H₂O (10.0 mL) prior to use) and released with a solution of Kryptofix (17 mg), and K₂CO₃ (3.5 mg) in MeCN/H₂O (0.75 mL, 4:1, v/v), which was concentrated by azeotropic drying. To dry [¹⁸F]fluoride was added a solution of CH₂I₂ (50 μL in 1.0 mL) in dry MeCN. The vial was equipped with a PEEK line leading into a P₂O₅/NaOH* cartridge. The outlet of this cartridge was leading to a v-vial containing DMF (1.0 mL) which was cooled to -20 °C. The reaction vial was heated to 110 °C for 5 minutes and the distilled product was analysed by radioHPLC. [¹⁸F]CH₂FI was isolated in 4.9% \pm 1.4% AY (n = 3).

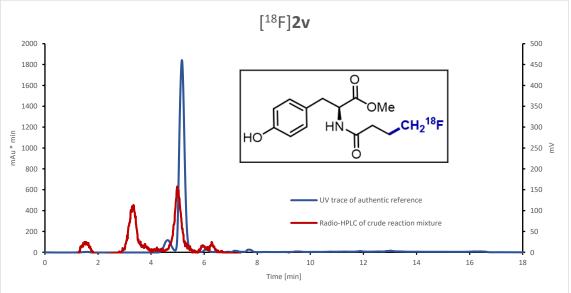
*Note: The $P_2O_5/NaOH$ cartridge was prepared according to the following procedure:

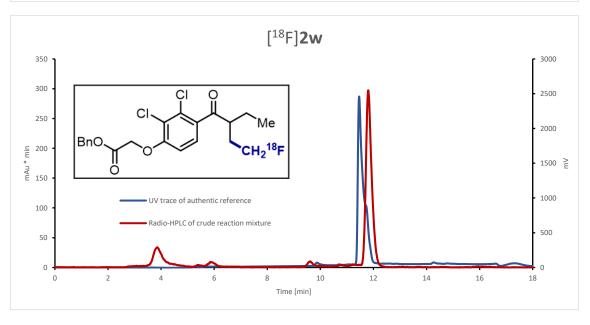
The plunger of a 3.0 mL syringe was removed, and a piece of cotton wool was placed in the neck of the syringe. The syringe was cut at the 1.5 mL mark and P_2O_5 (250 mg) and finely grinded NaOH (250 mg) were added as solids (careful; reacts violently in presence of water). The cartridge was then sealed with a rubber septum and used within 18 hours. Unused cartridges were quenched in an ice bath.

General procedure for the ¹⁸F-Hydrofluoromethylation of electron-deficient alkenes


EWG + I-CH₂¹⁸F
$$\frac{\text{fac-Ir(ppy)}_3 (0.8 \text{ mol\%})}{\text{CMS)}_3\text{SiH } (1.2 \text{ equiv})}$$


$$\frac{\text{DMF, 20 min, rt}}{\text{blue LEDs}}$$


To a 1.75 mL vial containing alkene (0.1 mmol), (TMS)₃SiH (37 μ L, 0.12 mmol, 1.2 equiv), *fac*-Ir(ppy)₃ (0.5 mg) and DMF (300 μ L) was added freshly distilled [¹⁸F]CH₂FI (8 – 10 MBq) in DMF (300 μ L). The mixture was placed in a photoreactor and left under blue LED irradiation for 20 min without stirring. An aliquot of this mixture was filtered and analysed by radioHPLC.


Note: The reaction performed better in absence of stirring leading to a cleaner reaction profile.

Overlay of radiotraces

12. Competition experiments

General Procedure 1: To a 7 mL vial equipped with a magnetic stir bar, was added *N*-benzylmaleimide (93.5 mg, 0.50 mmol, 1.0 equiv), dry MeCN (3.0 mL), (TMS)₃SiH (185 uL, 0.6 mmol, 1.2 equiv), CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv), and alkyl iodide (1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, Et₂O in pentane 40/60) to yield the desired product(s).

1-benzyl-3-methylpyrrolidine-2,5-dione (5a)

General procedure 1 was followed to obtain **5a** (25 mg, 0.12 mmol, 25%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 7.22 – 7.12 (m, 1H), 4.52 (d, J = 2.1 Hz, 1H), 2.85 – 2.67 (m, 1H), 2.19 (dd, J = 21.7, 13.6 Hz, 1H), 1.20 (d, J = 7.2 Hz, 1H); **¹³C NMR** (101 MHz, CDCl₃) δ 180.3, 176.1, 136.0, 128.8, 128.7, 128.0, 42.5, 36.5, 34.8, 16.8; **MS** (ESI) m/z = 204.0 [M+H]⁺. All data were in accordance with the literature.⁸

1-benzyl-3-ethylpyrrolidine-2,5-dione (6)

General procedure 1 was followed to obtain **6** (47 mg, 0.22 mmol, 43%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.19 (m, 5H), 4.62 (d, J = 1.5 Hz, 2H), 2.85 – 2.67 (m, 2H), 2.35 (dd, J = 13.6, 3.8 Hz, 1H), 1.95 – 1.81 (m, 1H), 1.56 (ddq, J = 13.7, 8.2, 7.3 Hz, 1H), 0.92 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 179.6, 176.4, 136.0, 128.8, 128.7, 128.0, 42.4, 41.2, 33.9, 24.4, 10.9; **MS** (ESI) m/z = 218.0 [M+H]⁺. All data were in accordance with the literature.⁹

1-benzyl-3-isopropylpyrrolidine-2,5-dione (7)

General procedure 1 was followed to obtain **7** (72 mg, 0.31 mmol, 62%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 5H), 4.58 (s, 2H), 2.72 (dt, J = 8.9, 4.3 Hz, 1H), 2.61 (dd, J = 18.2, 9.2 Hz, 1H), 2.39 (dd, J = 18.3, 4.4 Hz, 1H), 2.24 (hepd, J = 6.9, 4.3 Hz, 1H), 0.91 (d, J = 6.9 Hz, 3H), 0.75 (d, J = 6.8 Hz, 3zH); ¹³**C NMR** (101 MHz, CDCl₃) δ 179.1, 176.6, 136.0, 128.8, 128.6, 127.9, 45.7, 42.3, 30.4, 28.9, 20.0, 17.3; **HRMS** (ESI-TOF) calculated for C₁₄H₁₈NO₂ [M+H]+: 232.1332, found 232.1334; **IR** (neat) 2960, 1773, 1396, 1339, 1166, 1082, 695.

1-benzyl-3-(tert-butyl)pyrrolidine-2,5-dione (8)

General procedure 1 was followed to obtain **8** (89 mg, 0.37 mmol, 73%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.15 (m, 5H), 4.58 (s, 2H), 2.70 – 2.41 (m, 3H), 0.95 (s, 9H); ¹³**C NMR** (101 MHz, CDCl₃) δ 178.2, 176.2, 136.1, 128.7, 128.6, 127.9, 49.8, 42.2, 33.5, 31.8, 27.2; **MS** (ESI) m/z = 246.0 [M+H]⁺. All data were in accordance with the literature. ¹⁰

13. Limitations

This hydrofluoromethylation protocol is best suited for electron-deficient alkenes. When the hydrofluoromethylation protocol was applied to a simple styrene the desired product was obtained in low yield.

Similarly, a simple unactivated alkene only afforded 13% of the desired hydrofluoromethylated product. To be applicable to alkenes with different electronic profiles, we sought to investigate polarity reversal catalysis. We screened different HAD in the hope to further increase the yield of this transformation. However, the use of a thiol catalyst or other potential catalysts only resulted in trace amounts of the desired product.

Table S10: Screening of HAD for the hydrofluoromethylation of N-allyl-4-bromobenzamide.^[a]

entry	HAD	yield ^[b]
1	No HAD, no (TMS) ₃ SiH	0%
2	-	13%
3	Hantzsch ester	0%
4	4-mercaptophenol	traces
5	cyclohexanethiol	traces
6	N-hydroxyphtalimide	9%

[a] Reaction conditions: *N*-allyl-4-bromobenzamide (0.1 mmol), fluoroiodomethane (0.2 mmol), HAD (20 mol%), (TMS)₃SiH (0.12 mmol), MeCN (0.6 mL) under nitrogen atmosphere and blue light ($\lambda_{max} = 470$ nm) irradiation for 16 hours. [b] The yield was determined by quantitative ¹⁹F NMR spectroscopy using α, α, α -trifluorotoluene as internal standard.

A further screening of solvents and reaction conditions revealed that using 4.0 equivalents of fluoroiodomethane, 2.0 equivalents of (TMS)₃SiH, 4CzIPN as an organophotocatalyst and MeCN/H₂O (1:1) as solvent mixture, allowed to increase the yield to 21-26%.

[a] The yield was determined by quantitative ¹⁹F NMR spectroscopy using α,α,α -trifluorotoluene as internal standard.

14. Isolation of (TMS)₃SiOH

We noticed that (TMS)₃SiOH was consistently formed as a by-product under our reaction conditions (upon purification by silica column chromatography). Considering its commercial value and synthetic utility we set out to recover it and were able to isolate it in high yield.

To a 7mL vial equipped with a stir bar was added *N*-phenylacrylamide (74.0 mg, 0.5 mmol, 1.0 equiv), MeCN (3.0 mL), (TMS)₃SiH (185 μ L, 0.6 mmol, 1.2 equiv), CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The reaction mixture was treated with an aqueous solution of saturated NaHCO₃ and extracted three times with DCM. The organic layers were dried (Na₂SO₄), filtered and concentrated *in vacuo*. The crude product was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product (152 mg, 0.57 mmol, 96%, 114 mol%) as a colourless oil. ¹H NMR (400 MHz, CD₃CN) δ 1.80 (s, 1H), 0.15 (s, 27 H); ¹³C NMR (101 MHz, CD₃CN) δ -0.25. All data were in accordance with the literature. ¹¹

15. General procedures

General procedure A: To a 7 mL vial equipped with a magnetic stir bar, was added alkene (0.50 mmol, 1.0 equiv), MeCN (dry; 3.0 mL), (TMS)₃SiH (185 uL, 0.6 mmol, 1.2 equiv) and CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

General procedure B: To a 7 mL vial equipped with a magnetic stir bar, was added alkene (0.50 mmol, 1.0 equiv), fac-Ir(ppy)₃ (1.6 mg, 0.0025 mmol, 0.5 mol%), MeCN (dry; 3.0 mL), (TMS)₃SiH (185 uL, 0.6 mmol, 1.2 equiv) and CH₂FI (68 μ L, 1.0 mmol, 2.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

General procedure C: To a 7 mL vial equipped with a magnetic stir bar, was added alkene (0.50 mmol, 1.0 equiv), MesAcrBF₄ (1.0 mg, 0.0025 mmol, 0.5 mol%), difluorobenzene (3.0 mL), (TMS)₃SiH (463 uL, 1.5 mmol, 3.0 equiv) and MeI (125 μ L, 2.0 mmol, 4.0 equiv). The vial was sealed with a septum, degassed by nitrogen bubbling for 10 seconds and wrapped with parafilm. The reaction mixture was stirred in a EvoluChemTM PhotoRedOx Box with a 18W blue LED lamp (λ = 450 nm) at room temperature (using a fan) for 16 hours. The solvent was removed *in vacuo* and the residue was purified by column chromatography (silica, EtOAc in heptane 0/100 to 100/0) to yield the desired product(s).

16. Characterization

16.1. Hydrofluoromethylation of electron-deficient alkenes

4-fluoro-N-phenylbutanamide (2a)

$$H_2$$
 CH_2 F

General procedure **A** was followed to obtain **2a** (64 mg, 0.36 mmol, 71%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.57 (s, 1H), 7.50 (d, J = 7.9 Hz, 2H), 7.30 (t, J = 7.9 Hz, 2H), 7.10 (t, J = 7.4 Hz, 1H), 4.52 (dt, J = 47.3, 5.7 Hz, 2H), 2.50 (t, J = 7.3 Hz, 2H), 2.19 – 2.01 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.5, 137.9, 129.1, 124.5, 120.1, 83.3 (d, $J_{C-F} = 164.6$ Hz), 33.1 (d, $J_{C-F} = 4.3$ Hz), 26.3 (d, $J_{C-F} = 20.0$ Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.5 (tt, J = 47.4, 27.0 Hz); **HRMS** (ESI-TOF) calculated for C₁₀H₁₃FNO [M+H]⁺: 182.0976, found 182.0977; **IR** (neat) 1656, 1620, 1597, 1542, 1502, 1489, 1441, 1393, 1374, 1331, 1297, 1258, 1035, 901, 758, 694, 634; **m.p.**: 76 – 78 °C.

N-(4-bromophenyl)-4-fluorobutanamide (2b)

$$H$$
 O
 CH_2F

General procedure **B** was followed to obtain **2b** (109 mg, 0.42 mmol, 84%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.45 – 7.38 (m, 4H), 7.32 (s, 1H), 4.53 (dt, J = 47.3, 5.6 Hz, 2H), 2.51 (t, J = 7.2 Hz, 2H), 2.19 – 2.03 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.4, 136.9, 132.1, 121.5, 117.1, 83.2 (d, J_{C-F} = 164.8 Hz), 33.2 (d, J_{C-F} = 4.1 Hz), 26.2 (d, J_{C-F} = 19.9 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.7 (tt, J = 47.5, 27.3 Hz). **HRMS** (ESI-TOF) calculated for C₁₀H₁₂⁷⁹BrFNO [M+H]⁺: 260.0081, found 260.0083; **IR** (neat) 1653, 1589, 1528, 1488, 1441, 1396, 1336, 1297, 1281, 1254, 1177, 1099, 1072, 1032, 1011, 980, 896, 849, 819, 785, 692, 645; **m.p.**: 87 – 89 °C

N-(4-cyanophenyl)-4-fluorobutanamide (2c)

$$H_{NC}$$
 CH_2F

General procedure **B** was followed to obtain **2c** (53 mg, 0.26 mmol, 51%) as a white solid. ¹**H** NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.71 – 7.66 (m, 2H), 7.61 – 7.56 (m, 2H), 4.53 (dt, J = 47.2, 5.6 Hz, 2H), 2.56 (t, J = 7.3 Hz, 2H), 2.19 – 2.03 (m, 2H); ¹³**C** NMR (101 MHz, CDCl₃) δ 171.1, 142.3, 133.4, 119.7, 119.1, 106.8, 83.1 (d, J_{C-F} = 164.9 Hz), 33.2 (d, J_{C-F} = 4.2 Hz), 26.0 (d, J_{C-F} = 19.9 Hz); ¹⁹**F** NMR (377 MHz, CDCl₃) δ -220.6 (tt, J = 47.3, 27.1 Hz); **HRMS** (ESITOF) calculated for C₁₁H₁₀FN₂O [M-H]⁻: 205.0783, found 205.0777; **IR** (neat) 2237, 2220, 1703, 1677, 1596, 1523, 1437, 1409, 1377, 1324, 1254, 1174, 1174, 1079, 1061, 1035, 967, 899, 842, 733; **m.p.**: 122 – 124 °C.

4-fluoro-*N*-(4-methoxyphenyl)butanamide (2d)

$$H_{N}$$
 $CH_{2}F$

General procedure **B** was followed to obtain **2d** (97 mg, 0.46 mmol, 92%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.42 – 7.35 (m, 2H), 6.87 – 6.80 (m, 2H), 4.52 (dt, J = 47.2, 5.7 Hz, 2H), 3.77 (s, 3H), 2.47 (t, J = 7.3 Hz, 2H), 2.19 – 2.01 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 156.6, 131.0, 122.0, 114.3, 83.3 (d, $J_{C-F} = 164.7$ Hz), 55.6, 32.9 (d, $J_{C-F} = 4.4$ Hz), 26.4 (d, J = 19.9 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.5 (tt, J = 47.3, 27.0 Hz); **HRMS** (ESI-TOF) calculated for C₁₁H₁₅FNO₂ [M+H]⁺: 212.1081, found 212.1084; **IR** (neat) 1650, 1535, 1510, 1412, 1377, 1341, 1304, 1239, 1186, 1169, 1031, 981, 899, 825, 796, 759, 728, 704, 680, 606; **m.p.**: 106 – 108 °C.

4-fluoro-*N*-(pyridin-3-yl)butanamide (2e)

$$\bigcap_{N} \stackrel{H}{\underset{O}{\bigvee}} CH_2F$$

General procedure **A** was followed to obtain **2e** (52 mg, 0.29 mmol, 57%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 8.60 (s, 1H), 8.31 (d, J = 4.2 Hz, 1H), 8.19 (d, J = 8.2 Hz, 1H), 7.28 (dd, J = 8.2, 4.6 Hz, 1H), 4.52 (dt, J = 47.3, 5.7 Hz, 2H), 2.55 (t, J = 7.2 Hz, 2H), 2.18 – 2.03 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 171.4, 144.8, 141.0, 135.4, 127.7, 124.1, 83.2 (d, J_{C-F} = 164.8 Hz), 32.9 (d, J_{C-F} = 4.3 Hz), 26.1 (d, J_{C-F} = 20.0 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ - 220.5 (tt, J = 47.3, 27.1 Hz); **HRMS** (ESI-TOF) calculated for C₉H₁₂FN₂O [M+H]⁺: 183.0928; found 183.0929; **IR** (neat) 1688, 1610, 1584, 1549, 1476, 1422, 1375, 1330, 1271, 1248, 1194, 1172, 1150, 1130, 1103, 1077, 1032, 967, 896, 855, 808, 750, 704, 624; **m.p.**: 70 – 72 °C.

N-(benzo[d]thiazol-2-yl)-4-fluorobutanamide (2f)

$$N \rightarrow N$$
 $N \rightarrow N$
 CH_2F

General procedure **A** was followed to obtain **2f** (82 mg, 0.34 mmol, 69%) as a white solid. ¹**H NMR** (400 MHz, Acetone- d_6) δ 11.17 (s, 1H), 7.95 – 7.90 (m, 1H), 7.73 – 7.68 (m, 1H), 7.45 – 7.39 (m, 1H), 7.33 – 7.27 (m, 1H), 4.56 (dt, J = 47.4, 6.0 Hz, 2H), 2.77 (t, J = 7.3 Hz, 2H), 2.21 – 2.07 (m, 2H); ¹³**C NMR** (101 MHz, Acetone- d_6) δ 172.0, 158.7, 149.9, 133.1, 126.8, 124.4, 122.2, 121.7, 83.8 (d, $J_{C-F} = 163.5$ Hz), 32.1 (d, $J_{C-F} = 5.5$ Hz), 26.4 (d, $J_{C-F} = 20.2$ Hz); ¹⁹**F NMR** (377 MHz, Acetone- d_6) δ -220.5 (tt, J = 47.6, 25.2 Hz); **HRMS** (ESI-TOF) calculated for C₁₁H₁₂FN₂O³²S [M+H]⁺: 239.0649; found 239.0650; **IR** (neat) 1697, 1599, 1548, 1445, 1419, 1380, 1342, 1267, 1254, 1190, 1166, 1097, 1082, 1039, 1022, 994, 939, 906, 867, 782, 758, 683; **m.p.**: 176 – 178 °C.

((3-fluoropropyl)sulfonyl)benzene (2g)

General procedure A was followed to obtain **2g** (71 mg, 0.34 mmol, 68%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 – 7.88 (m, 2H), 7.70 – 7.63 (m, 1H), 7.61 – 7.53 (m, 2H), 4.50 (dt, J = 46.9, 5.7 Hz, 2H), 3.26 – 3.19 (m, 2H), 2.21 – 2.04 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 139.0, 134.0, 129.5, 128.1, 81.6 (d, $J_{\text{C-F}} = 167.8 \text{ Hz}$), 52.6 (d, $J_{\text{C-F}} = 4.2 \text{ Hz}$), 24.2 (d, $J_{\text{C-F}} = 20.8 \text{ Hz}$); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.5 (tt, J = 47.1, 25.9 Hz); **HRMS** (ESI-TOF) calculated for C₉H₁₂FO₂³²S [M+H]⁺: 203.0537; found 203.0539; **IR** (neat) 1477, 1307, 1142, 1087, 1058, 1022, 889, 732, 689, 625.

Benzyl 4-fluorobutanoate (2h)

$$O_{\downarrow}O_{\downarrow}CH_{2}F$$

General procedure A was followed to obtain **2h** (64 mg, 0.33 mmol, 65%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 5.14 (s, 2H), 4.49 (dt, J = 47.1, 5.8 Hz, 2H), 2.52 (t, J = 7.4 Hz, 2H), 2.13 – 1.98 (m, 2H); ¹³C **NMR** (101 MHz, CDCl₃) δ 172.8, 136.0, 128.7, 128.4, 128.4, 83.0 (d, J_{C-F} = 165.4 Hz), 66.5, 30.1 (d, J_{C-F} = 5.1 Hz), 25.9 (d, J_{C-F} = 20.3 Hz); ¹⁹F **NMR** (377 MHz, CDCl₃) δ -220.6 (tt, J = 47.2, 26.0 Hz). **GC-MS** (EI-TOF) calculated for C₁₁H₁₃FO₂ [M]⁺: 196.0894; found 196.0891; **IR** (neat) 1734, 1498, 1456, 1422, 1384, 1351, 1317, 1247, 1213, 1165, 1083, 1037, 909, 839, 738, 697, 622.

The product coeluted with silane by-products (δ : 0.19 ppm).

Benzyl 4-fluorobutanoate-2,3,3- d_3 (2i)

General procedure B was followed to obtain **2i** (77 mg, 0.39 mmol, 77%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.29 (m, 5H), 5.14 (s, 2H), 4.48 (d, J = 47.1 Hz, 2H), 2.49 (s, 1H). **¹3°C NMR** (101 MHz, CDCl₃) δ 172.8, 136.0, 128.7, 128.4, 128.3, 82.9 (d, $J_{\text{C-F}}$ = 165.3 Hz), 66.5, 30.2 – 29.1 (m), 26.0 – 24.2 (m). **¹9°F NMR** (377 MHz, CDCl₃) δ -221.1 (tdt, J = 47.0, 7.8, 3.9 Hz); **HRMS** (ESI-TOF) calculated for C₁₁H₁₀D₃FNaO₂ [M+Na]⁺: 222.0980; found 222.0982; **IR** (neat) 2962, 2904, 2161, 1732, 1498, 1456, 1379, 1328, 1199, 1174, 1110, 1016, 912, 840, 738, 697.

Benzyl 4-fluoro-2-methylbutanoate (2j)

$$O \longrightarrow CH_2F$$

General procedure A was followed to obtain **2j** (66 mg, 0.32 mmol, 63%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 5.13 (s, 2H), 4.61 – 4.36 (m, 2H), 2.72 (dq, J = 14.3, 7.1 Hz, 1H), 2.22 – 2.03 (m, 1H), 1.91 – 1.71 (m, 1H), 1.24 (d, J = 7.0 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 175.9, 136.1, 128.7, 128.4, 128.2, 82.0 (d, $J_{\text{C-F}} = 165.0$ Hz), 66.5, 36.0 (d, $J_{\text{C-F}} = 4.4$ Hz), 34.2 (d, $J_{\text{C-F}} = 19.9$ Hz), 17.2; ¹⁹F **NMR** (377 MHz, CDCl₃) δ 7.3 (tt, J = 47.2, 26.1 Hz); **HRMS** (ESI-TOF) calculated for C₁₂H₁₅FNaO₂ [M+Na]⁺: 233.0948; found 233.0951; **IR** (neat) 2919, 1732, 1498, 1456, 1384, 1257, 1170, 1136, 1046, 992, 849, 751, 698.

N-benzyl-2-(fluoromethyl)cyclobutane-1-carboxamide (2k)

General procedure **B** was followed to obtain **2k** (60 mg, 0.27 mmol, 54%, d.r.: 68/32) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.26 (m, 5H), 5.98 (s, 0.32H), 5.93 (s, 0.63H), 4.72 – 4.28 (m, 4H), 3.24 – 3.15 (m, 0.65H), 3.08 – 2.83 (m, 1.36H), 2.47 – 2.37 (m, 0.64H), 2.18 – 2.03 (m, 2H), 2.00 – 1.77 (m, 1.36H); ¹³**C NMR** (101 MHz, CDCl₃) δ 173.6, 172.4, 138.5, 138.4, 128.8, 128.8, 127.9, 127.7, 127.5, 127.5, 85.9 (d, J = 165.7 Hz), 84.1 (d, J_{C-F} = 166.0 Hz), 43.6 (d, J_{C-F} = 11.9 Hz), 42.0 (d, J_{C-F} = 4.4 Hz), 40.8 (d, J_{C-F} = 5.3 Hz), 38.9 (d, J_{C-F} = 19.0 Hz), 37.5 (d, J_{C-F} = 18.3 Hz), 21.4 (d, J_{C-F} = 17.5 Hz), 20.4 (d, J_{C-F} = 9.6 Hz), 19.2 (d, J_{C-F} = 8.4 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -219.7 (td, J = 47.2, 18.9 Hz), -222.2 (td, J = 47.9, 22.0 Hz); **HRMS** (ESI-TOF) calculated for C₁₃H₁₇FNO [M+H]⁺: 222.1289; found 222.1290; **IR** (neat) 1642, 1539, 1497, 1454, 1381, 1355, 1325, 1247, 1079, 1029, 992, 733, 698.

Cis- and trans- products could not be separated upon purification and were isolated as a mixture of products (d.r.: 68/32).

2-(2-fluoro-1-phenylethyl)malononitrile (2l)

General procedure **B** was followed to obtain **2l** (54 mg, 0.29 mmol, 57%) as a pale yellow oil. 1 **H NMR** (400 MHz, CDCl₃) δ 7.45 (s, 3H), 7.39 – 7.34 (m, 2H), 4.87 (ddd, J = 46.3, 6.2, 2.6 Hz, 2H), 4.29 (d, J = 6.3 Hz, 1H), 3.61 (dddd, J = 17.0, 7.4, 6.4, 5.1 Hz, 1H); 13 **C NMR** (101 MHz, CDCl₃) δ 132.6 (d, J_{C-F} = 6.2 Hz), 129.9, 129.7, 128.3, 111.3 (d, J_{C-F} = 34.8 Hz), 82.3 (d, J_{C-F} = 176.7 Hz), 46.8 (d, J_{C-F} = 18.3 Hz), 26.2 (d, J_{C-F} = 5.0 Hz); 19 **F NMR** (377 MHz, CDCl₃) δ -220.9 (td, J = 46.7, 17.0 Hz); **HRMS** (ESI-TOF) calculated for C₁₁H₈FN [M-H]⁻: 187.0677; found 187.0666; **IR** (neat) 2912, 2630, 1498 1456, 1160, 1068, 1012, 947, 815, 763, 700, 653, 620.

(3-fluoropropane-1,1-diyl)dibenzene (2m)

General procedure B was followed to obtain **2m** (33 mg, 0.16 mmol, 31%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.21 (m, 0H), 4.46 (dt, J = 47.0, 6.0 Hz, 1H), 4.24 (t, J = 8.0 Hz, 1H), 2.51 (ddt, J = 24.0, 7.9, 6.0 Hz, 1H); **¹³C NMR** (101 MHz, CDCl₃) δ 144.0, 128.7, 128.0, 126.6, 82.2 (d, J_{C-F} = 164.7 Hz), 46.6 (d, J_{C-F} = 5.1 Hz), 36.2 (d, J_{C-F} = 19.8 Hz); **¹°F NMR** (377 MHz, CDCl₃) δ -220.8 (tt, J = 47.4, 24.0 Hz). All data were in accordance with the literature. ¹²

Note: The product was purified by column chromatography with an alternative eluent to facilitate separation (silica, toluene in pentane, 0/100 to 20/80).

4-(3-fluoropropyl)pyridine (2n)

General procedure B was followed to obtain **2n** (29 mg, 0.21 mmol, 42%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 8.53 (s, 2H), 7.15 (d, J = 4.4 Hz, 2H), 4.46 (dt, J = 47.1, 5.8 Hz, 2H), 2.80 – 2.72 (m,2H), 2.11 – 1.93 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 150.1, 150.0, 124.0, 82.8 (d, J = 165.7 Hz), 31.0 - 30.8 (m); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.4 (tt, J = 46.9, 25.7 Hz) All data were in accordance with the literature. ¹³

Note: The product was purified by column chromatography with an alternative eluent to facilitate separation (silica, methanol in DCM, 2/98 + 1% NEt₃).

1-benzyl-3-(fluoromethyl)pyrrolidine-2,5-dione (20)

General procedure A was followed to obtain **2o** (99 mg, 0.45 mmol, 90%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.09 (m, 5H), 4.75 (ddd, J = 46.4, 9.3, 3.5 Hz, 1H), 4.59 – 4.36 (m, 2H), 4.54 (d, J = 5.5 Hz, 1H), 2.98 – 2.83 (m, 1H), 2.79 – 2.58 (m, 2H); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -230.1 (td, J = 46.8, 33.3 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.2 (d, J_{C-F} = 5.4 Hz), 175.4, 135.6, 128.8, 128.6, 128.1, 81.3 (d, J_{C-F} = 172.4 Hz), 42.8, 41.6 (d, J_{C-F} = 21.4 Hz), 30.9 (d, J = 4.0 Hz), 28.3; Mass not found, **HRMS** (ESI-TOF) calculated for C₁₂H₁₃FNO₂ [M+H]⁺: 222.0925; found 222.0927; **IR** (neat) 1698, 1431, 1401, 1342, 1168, 1022, 938, 900, 755, 708, 696, 634. (8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-3-yl 4-fluorobutanoate (2t)

General procedure **A** was followed to obtain **2t** (91 mg, 0.26 mmol, 51%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.28 (d, J = 9.7 Hz, 1H), 6.85 (dd, J = 8.5, 2.6 Hz, 1H), 6.82 – 6.80 (m, 1H), 4.56 (dt, J = 47.1, 5.7 Hz, 2H), 2.94 – 2.88 (m, 2H), 2.71 (t, J = 7.3 Hz, 2H), 2.51 (dd, J = 19.0, 8.4 Hz, 1H), 2.45 – 2.23 (m, 2H), 2.21 – 1.93 (m, 6H), 1.69 – 1.40 (m, 6H), 0.91 (s, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 220.9, 171.9, 148.6, 138.2, 137.6, 126.6, 121.6, 118.8, 83.0 (d, $J_{C-F} = 165.5$ Hz), 50.6, 48.1, 44.3, 38.1, 36.0, 31.7, 30.3 (d, $J_{C-F} = 4.9$ Hz), 29.5, 26.5, 25.9 (d, $J_{C-F} = 20.3$ Hz), 25.9, 21.7, 14.0; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.7 (tt, J = 47.1, 26.3 Hz); **HRMS** (ESI-TOF) calculated for C₂₂H₂₇FNaO₃ [M+Na]⁺: 381.1836; found 381.1838; **IR** (neat) 2919, 2853, 1740, 1603, 1491, 1452, 1438, 1377, 1315, 1251, 1223, 1555, 1141, 1086, 1055, 1036, 1007, 953, 9090, 875, 824, 784, 719; **m.p.**: 94 – 96 °C.

(R)-1-(3-(4-amino-3-(4-phenoxyphenyl)-1H-pyrazolo[3,4-d]pyrimidin-1-yl)piperidin-1-yl)-4-fluorobutan-1-one (2u)

General procedure **B** was followed to obtain 2u (137 mg, 0.29 mmol, 58%) as a yellow oil. 1 H NMR (400 MHz, CDCl₃) δ 8.33 (d, J = 15.2 Hz, 1H), 7.63 (dd, J = 8.4, 4.0 Hz, 2H), 7.38 (t, J = 7.7 Hz, 2H), 7.20 – 7.11 (m, 3H), 7.07 (d, J = 8.0 Hz, 2H), 6.04 (s, 2H), 4.89 – 4.76 (m, 1.5H), 4.62 – 4.51 (m, 1.5H), 4.44 (dt, J = 12.6, 5.7 Hz, 1H), 4.07 (dd, J = 13.4, 4.2 Hz, 0.5H), 3.91 (d, J = 13.6 Hz, 0.5H), 3.69 (dd, J = 13.2, 10.5 Hz, 0.5H), 3.23 (dt, J = 61.6, 12.5 Hz, 2H), 2.79 (t, J = 11.7 Hz, 0.5H), 2.57 – 2.18 (m, 3H), 2.13 – 1.90 (m, 3H), 1.78 – 1.60 (m, 1H); 13 C NMR (101 MHz, CDCl₃) δ 170.7, 170.6, 158.8, 158.8, 157.7, 157.4, 156.4, 156.4, 155.0, 154.3, 154.2, 153.9, 144.4, 130.1, 130.0, 127.6, 127.5, 124.2, 124.2, 119.7, 119.2, 98.6, 98.4, 83.6 (d, J_{C-F} = 163.9 Hz), 53.5, 52.8, 49.8, 45.9, 45.6, 41.9, 30.3, 30.1, 28.8 (d, J_{C-F} = 4.0 Hz), 26.2 (dt, J_{C-F} = 19.7 Hz), 26.1 (d, J_{C-F} = 19.8 Hz), 25.2, 24.1; 19 F NMR (377 MHz, CDCl₃) δ -220.2 (dtt, J = 128.4, 47.3, 27.3 Hz); HRMS (ESI-TOF) calculated for C₂₆H₂₈FN₆O₂ [M+H]⁺: 475.2252; found 475.2249; IR (neat) 2924, 2856, 1626, 1587, 1567, 1521, 1489, 1440, 1285, 1236, 1167, 1135, 1104, 1070, 1025, 869, 803, 803, 757, 696.

Methyl (4-fluorobutanoyl)-L-tyrosinate (2v)

General procedure **B** was followed to obtain **2v** (93 mg, 0.33 mmol, 66%) as a pale yellow oil; ¹**H NMR** (400 MHz, CDCl₃) δ 6.93 (d, J = 8.5 Hz, 2H), 6.72 (d, J = 8.5 Hz, 2H), 6.20 (br d, J = 8.1 Hz, 1H), 4.91 – 4.82 (m, 1H), 4.52 – 4.27 (m, 2H), 3.73 (s, 3H), 3.07 (dd, J = 14.1, 5.5 Hz, 1H), 2.95 (dd, J = 14.1, 6.6 Hz, 1H), 2.31 (dd, J = 7.9, 6.7 Hz, 2H), 2.06 – 1.86 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 172.4, 155.7, 130.3, 127.0, 115.7, 83.1 (d, J = 164.9 Hz), 53.4, 52.6, 37.3, 32.0 (d, J = 4.6 Hz), 26.2 (d, J = 20.0 Hz) (carbonyl peaks overlapping); ¹⁹F NMR (377 MHz, CDCl₃) δ -220.1 – -220.9 (m); HRMS (ESI-TOF) calculated for C₁₄H₁₇FNO₄ [M+H]⁺: 284.1293; found 282.1292; IR (neat) 3297, 2956, 2361, 1736, 1649, 1614, 1596, 1537, 1515, 1440, 1369, 1219, 1174, 1124, 1105, 1033, 905, 829, 802, 668.

Benzyl 2-(2,3-dichloro-4-(2-ethyl-4-fluorobutanoyl)phenoxy)acetate (2w)

$$\mathsf{BnO} \underbrace{\mathsf{CI}}_{\mathsf{CH}_2\mathsf{F}} \mathsf{Me}$$

General procedure B was followed to obtain **2w** (62 mg, 0.29 mmol, 57%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.32 (m, 5H), 7.30 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 5.25 (s, 2H), 4.79 (s, 2H), 4.68 – 4.33 (m, 1H), 3.49 – 3.35 (m, 1H), 2.31 – 2.09 (m, 1H), 2.00 – 1.80 (m, 1H), 1.76 (ddd, J = 14.1, 7.7, 6.6 Hz, 1H), 1.65 – 1.47 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 204.2, 167.6, 156.2, 134.9, 134.5, 131.9, 128.9, 128.8, 128.7, 127.4, 124.2, 110.8, 82.3 (d, J = 164.5 Hz), 67.5, 66.3, 47.8 (d, J = 3.6 Hz), 30.9 (d, J = 19.7 Hz), 24.8, 11.3; ¹⁹F NMR (377 MHz, CDCl₃) δ -219.1 (tdd, J = 47.4, 30.8, 22.7 Hz); **HRMS** (ESI-TOF) calculated for C₂₁H₂₂³⁵Cl₂FO₄ [M+H]⁺: 427.0874; found 427.0873; **IR** (neat) 2965, 1757, 1694, 1583, 1498, 1466, 1385, 1303, 1264, 1191, 1121, 1076, 996, 894, 811, 751, 698, 645.

16.2. Hydro(poly)fluoroalkylation of alkenes

1-benzyl-3-(2-fluoroethyl)pyrrolidine-2,5-dione (3a)

General procedure **A** was followed to obtain **3a** (86 mg, 0.37 mmol, 73%) as a pale-yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.27 – 7.17 (m, 3H), 4.66 – 4.38 (m, 4H), 2.96 – 2.79 (m, 2H), 2.51 – 2.36 (m, 1H), 2.34 – 2.12 (m, 1H), 1.94 – 1.73 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 178.9, 175.8, 135.8, 128.7, 128.7, 128.0, 81.8 (d, J_{C-F} = 166.5 Hz), 42.5, 37.1 (d, J_{C-F} = 3.5 Hz), 34.5, 31.8 (d, J_{C-F} = 19.6 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -220.6 (tdd, J_{C-F} = 47.1, 28.7, 24.3 Hz); **HRMS** (ESI-TOF) calculated for C₁₃H₁₅FNO₂ [M+H]⁺: 236.1081; found 236.1084; **IR** (neat) 1174, 1696, 1497, 1431, 1397, 1342, 1314, 1168, 1081, 1032, 1001, 949, 929, 897, 857, 707, 635.

1-benzyl-3-(2,2-difluoroethyl)pyrrolidine-2,5-dione (3b)

General procedure **A** was followed to obtain **3b** (38 mg, 0.15 mmol, 30%) as a pale-yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 5H), 6.06 (tdd, J = 55.9, 4.8, 3.1 Hz, 1H), 4.66 (s, 2H), 3.10 – 2.92 (m, 2H), 2.62 – 2.41 (m, 2H), 2.10 – 1.92 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 178.1, 175.4, 135.6, 129.0, 128.9, 128.3, 115.6 (t, J_{C-F} = 240.0 Hz), 42.8, 35.2 (t, J_{C-F} = 21.7 Hz), 35.0, 34.5 (t, J_{C-F} = 4.0 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -115.2 (dddd, J = 285.1, 55.7, 18.7, 12.4 Hz), -118.0 (ddt, J = 285.0, 56.1, 19.3 Hz); **HRMS** (ESI-TOF) calculated for C₁₃H₁₄F₂NO₂ [M+H]⁺: 254.0987; found 254.0987; **IR** (neat) 2937, 1777, 1698, 1586, 1456, 1432, 1399, 1344, 1314, 1292, 1170, 1122, 1088, 1053, 978, 964, 930, 906, 864, 825, 755, 708, 696, 650, 631.

2-(3-fluoro-1-phenylpropyl)malononitrile (3d)

General procedure **A** was followed to obtain **3d** (50 mg, 0.25 mmol, 50%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.49 – 7.30 (m, 5H), 4.54 (ddt, J = 46.3, 9.2, 4.5 Hz, 1H), 4.28 (dtd, J = 47.4, 9.6, 3.4 Hz, 1H), 4.04 (d, J = 6.2 Hz, 1H), 3.51 (dt, J = 10.8, 5.6 Hz, 1H), 2.57 – 2.42 (m, 1H), 2.36 – 2.17 (m, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 135.6, 129.6, 129.4, 128.0, 111.8, 111.7, 80.7 (d, J_{C-F} = 167.2 Hz), 43.0 (d, J_{C-F} = 3.5 Hz), 33.0 (d, J_{C-F} = 20.0 Hz), 30.0 (d, J_{C-F} = 1.8 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -221.4 (tdd, J = 46.8, 34.7, 17.0 Hz); **HRMS** (ESI-TOF) calculated for C₁₂H₁₀FN₂ [M-H]⁻: 201.0834; found 201.0826; **IR** (neat) 2909, 2256, 1497, 1456, 1435, 1393, 1220, 1025, 897, 877, 761, 701, 619.

2-(4-fluoro-1-phenylbutyl)malononitrile (3e)

General procedure **A** was followed to obtain **3e** (77 mg, 0.36 mmol, 71%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.27 (m, 5H), 4.43 (dtd, J = 47.2, 5.8, 2.3 Hz, 2H), 3.92 (d, J = 6.3 Hz, 1H), 3.33 – 3.19 (m, 1H), 2.28 – 1.97 (m, 2H), 1.71 – 1.53 (m, 2H); ¹³**C NMR** (101 MHz, CDCl₃) δ 136.2, 129.5, 129.2, 127.9, 111.9, 111.9, 83.2 (d, J = 166.1 Hz), 46.3, 30.4, 28.3 (d, J = 4.2 Hz), 27.9 (d, J = 20.2 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -219.20 (tt, J = 47.3, 26.4 Hz). **HRMS** (ESI-TOF) calculated for C₁₃H₁₂FN₂ [M-H]⁻: 215.0990; found 215.0984; **IR** (neat) 2256, 1979, 1604, 1498, 1456, 1391, 1261, 1184, 1039, 1003, 914, 847, 801, 762, 737, 701, 618.

Benzyl 5-fluoro-2-methylpentanoate (3f)

$$O \longrightarrow CH_2CH_2F$$

General procedure **A** was followed to obtain **3f** (45 mg, 0.20 mmol, 40%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.13 (s, 2H), 4.54 – 4.30 (m, 2H), 2.55 (h, J = 7.0 Hz, 1H), 1.88 – 1.51 (m, 4H), 1.21 (d, J = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.2, 136.2, 128.7, 128.3, 128.2, 83.8 (d, J_{C-F} = 165.0 Hz), 66.3, 39.2, 29.5 (d, J_{C-F} = 5.2 Hz), 28.2 (d, J_{C-F} = 19.8 Hz), 17.2; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -218.7 (tt, J = 47.4, 24.7 Hz). **HRMS** (ESI-TOF) calculated for C₁₃H₁₇FNaO₂ [M+Na]⁺: 247.1105; found 247.1107; **IR** (neat) 2968, 1731, 1498, 1456, 1385, 1351, 1212, 1166, 1138, 1079, 1055, 1029, 997, 895, 842, 751, 697.

Benzyl 6-fluoro-2-methylhexanoate (3g)

$$\begin{array}{c} \text{Me} \\ \text{CH}_2\text{CH}_2\text{CH}_2\text{F} \end{array}$$

General procedure **A** was followed to obtain **3g** (49 mg, 0.21 mmol, 41%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 5.13 (s, 2H), 4.40 (dt, J = 47.3, 6.1 Hz, 2H), 2.51 (h, J = 7.0 Hz, 1H), 1.80 – 1.58 (m, 3H), 1.54 – 1.31 (m, 3H), 1.19 (d, J = 7.0 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.5, 136.3, 128.7, 128.3, 83.9 (d, J = 164.7 Hz), 66.2, 39.6, 33.4, 30.4 (d, J = 19.6 Hz), 23.1 (d, J = 5.3 Hz), 17.2; ¹⁹**F NMR** (377 MHz, CDCl₃) δ -218.4 (tt, J = 47.4, 25.3 Hz); **HRMS** (ESI-TOF) calculated for C₁₄H₂₀FO₂ [M+H]⁺: 239.1442; found 239.1443; **IR** (neat) 3035, 2941, 2160, 1978, 1732, 1607, 1498, 1456, 1385, 1354, 1246, 1161, 1138, 1081, 1066, 1041, 1029, 1003, 931, 826, 737, 697.

((4-fluorobutyl)sulfonyl)benzene (3h)

General procedure **A** was followed to obtain **3h** (45 mg, 0.20 mmol, 38%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.88 (m, 2H), 7.69 – 7.63 (m, 1H), 7.61 – 7.54 (m, 2H), 4.42 (dt, J = 47.4, 5.5 Hz, 2H), 3.19 – 3.10 (m, 2H), 1.94 – 1.69 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 139.1, 133.9, 129.5, 128.2, 83.3 (d, J_{C-F} = 166.0 Hz), 55.9, 29.1 (d, J_{C-F} = 19.9 Hz), 19.4 (d, J_{C-F} = 4.6 Hz); ¹⁹**F NMR** (377 MHz, CDCl₃) δ -219.5 (tt, J = 47.0, 26.3 Hz); **HRMS** (ESI-TOF) calculated for C₁₀H₁₃FNaO₂³²S [M+Na]⁺: 239.0512; found 239.0519; **IR** (neat) 2969, 1447, 1405, 1297, 1222, 1141, 1086, 1043, 1023, 927, 813, 750, 729, 689.

((5-Fluoropentyl)sulfonyl)benzene (3i)

General procedure **A** was followed to obtain **3i** (51 mg, 0.22 mmol, 44%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.93 – 7.87 (m, 2H), 7.69 – 7.62 (m, 1H), 7.61 – 7.52 (m, 2H), 4.39 (dt, J = 47.2, 5.9 Hz, 2H), 3.15 – 3.04 (m, 2H), 1.84 – 1.56 (m, 4H), 1.55 – 1.42 (m, 2H); 13C NMR (101 MHz, CDCl₃) δ 139.2, 133.8, 129.4, 128.1, 83.5 (d, J_{C-F} = 165.1 Hz), 56.2, 29.9 (d, J_{C-F} = 19.9 Hz), 24.3 (d, J_{C-F} = 5.0 Hz), 22.5; 19F NMR (377 MHz, CDCl₃) δ -219.0 (tt, J = 47.1, 25.8 Hz); **HRMS** (ESI-TOF) calculated for C₁₁H₁₆FO₂³²S [M+H]⁺: 231.0851; found 231.0850; **IR** (neat) 2948, 2160, 1977, 1586, 1479, 1447, 1405, 1304, 1214, 1142, 1086, 1055, 1036, 999, 975, 950, 888, 854, 792, 746, 729, 689.

16.3. Hydrohalomethylation of electron-deficient alkenes

1-benzyl-3-(iodomethyl)pyrrolidine-2,5-dione (4a)

This product was purified by PREP TLC (Pentane/Et₂O, 70/30) due to instability on silica gel column chromatography. **General procedure A** was followed to obtain **4a** (102 mg, 0.27 mmol, 62%) as a waxy solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.17 (m, 5H), 4.66 – 4.54 (m, 2H), 3.50 (dd, J = 10.3, 5.6 Hz, 1H), 3.32 (dd, J = 10.3, 3.7 Hz, 1H), 3.04 (dtd, J = 8.9, 5.2, 3.6 Hz, 1H), 2.82 (dd, J = 18.4, 8.9 Hz, 1H), 2.57 (dd, J = 18.4, 4.8 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 177.0, 175.5, 135.3, 128.9, 128.7, 128.1, 42.9, 41.1, 35.7, 4.9; **HRMS** (ESI-TOF) calculated for C₁₂H₁₃INO₂ [M+H]⁺: 329.9985, found 329.9985; **IR** (neat) 2922, 1775, 1697, 1605, 1586, 1496, 1455, 1429, 1396, 1342, 1312, 1290, 1243, 1208, 1167, 1080, 1029, 977, 929, 870, 838, 758, 707, 695, 634.

1-benzyl-3-(bromomethyl)pyrrolidine-2,5-dione (4b)

This product was purified by PREP TLC (Pentane/Et₂O, 70/30). **From CH₂Br₂: General procedure A** was followed to obtain **4b** (73 mg, 0.26 mmol, 52%) as a waxy solid. **From CH₂BrI: General procedure A** was followed to obtain **4b** (87 mg, 0.31 mmol, 62%) as a waxy solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 5H), 4.60 (dd, J = 14.2 Hz, 2H), 3.77 (dd, J = 10.5, 4.9 Hz, 1H), 3.53 (dd, J = 10.5, 3.5 Hz, 1H), 3.20 (dtd, J = 8.6, 5.0, 3.4 Hz, 1H), 2.79 (dd, J = 18.3, 8.9 Hz, 1H), 2.68 (dd, J = 18.3, 5.1 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.4, 175.1, 135.5, 128.8, 128.7, 128.1, 42.8, 41.3, 33.3, 31.8; **HRMS** (ESI-TOF) calculated for C₁₂H₁₃⁷⁹BrNO₂ [M+H]⁺: 282.0124, found 282.0104; **IR** (neat) 2917, 2849, 1777, 1698, 1586, 1497, 1455, 1430, 1397, 1342, 1312, 1292, 1254, 1235, 1167, 1081, 1029, 984, 933, 869, 822, 761, 708, 695, 634.

1-benzyl-3-(chloromethyl)pyrrolidine-2,5-dione (4c)

This product was purified by PREP TLC (Pentane/Et₂O, 70/30) due to instability on silica gel column chromatography. **General procedure A** was followed to obtain **4c** (64 mg, 0.27 mmol, 54%) as a waxy solid. **¹H NMR** (400 MHz, CDCl₃) δ 7.33 – 7.17 (m, 5H), 4.61 (dd, J = 14.8, 13.4 Hz, 2H), 3.95 (dd, J = 11.3, 4.6 Hz, 1H), 3.68 (dd, J = 11.3, 3.4 Hz, 1H), 3.16 (dtd, J = 8.6, 4.8, 3.4 Hz, 1H), 2.80 (dd, J = 18.3, 8.7 Hz, 1H), 2.72 (dd, J = 18.3, 5.3 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 176.3, 175.3, 135.5, 128.7, 128.7, 128.1, 43.4, 42.8, 41.8, 32.0; **HRMS** (ESITOF) calculated for C₁₂H₁₃³⁵ClNO₂ [M+H]⁺: 238.0629, found 238.0630; **IR** (neat) 2918, 1777, 1698, 1586, 1497, 1455, 1432, 1398, 1341, 1313, 1244, 1168, 1082, 1029, 991, 940, 886, 790, 764, 709, 696, 673, 633, 608.

1-benzyl-3-(bromofluoromethyl)pyrrolidine-2,5-dione (4d)

This product was purified by PREP TLC (Pentane/Et₂O, 70/30). **General procedure A** was followed to obtain **4d** (66 mg, 0.26 mmol, 51%, d.r: 1/1) as a colourless oil. The compound coeluted with traces of a vinyl fluoride side product, likely stemming from HBr elimination of the desired product. ¹H NMR (400 MHz, CDCl₃) δ 6.92 – 6.88 (m, 5H), 6.93 – 6.87 (m, 0.5H), 6.81 – 6.75 (m, 0.5H), 4.64 – 4.52 (m, 2H), 3.59 – 3.49 (m, 0.5H), 3.35 (dddd, J = 31.7, 9.3, 5.6, 1.8 Hz, 0.5H), 3.07 – 2.70 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 174.1, 173.2, 172.9 (d, J_{C-F} = 14.4 Hz), 135.2, 135.1, 128.9, 128.8, 128.7, 128.7, 128.2, 93.2 (d, J_{C-F} = 256.2 Hz), 90.1 (d, J_{C-F} = 254.1 Hz), 49.8 (d, J_{C-F} = 21.4 Hz), 47.5 (d, J_{C-F} = 22.6 Hz), 42.9 (d, J_{C-F} = 6.9 Hz), 30.7, 29.8; ¹⁹F NMR (377 MHz, CDCl₃) δ -139.5 (dd, J = 48.0, 7.1 Hz), -147.0 (dd, J = 49.3, 31.8 Hz); The compound did not ionize; **IR** (neat) 1180, 1705, 1497, 1432, 1399, 1345, 1249, 1170, 1119, 1083, 1028, 951; **m.p.**: 64 – 66 °C. 5% of elimination product (1-benzyl-3-(fluoromethylene)pyrrolidine-2,5-dione) was observed by quantitative ¹⁹F NMR.

4-chloro-*N*-phenylbutanamide (4e)

$$\bigcap_{N} \bigcap_{O} CH_2CI$$

General procedure A was followed to obtain **4e** (32 mg, 0.16 mmol, 32%) as a white solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.50 (d, J = 7.8 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 3.65 (t, J = 6.1 Hz, 1H), 2.55 (t, J = 7.1 Hz, 1H), 2.20 (p, J = 6.6 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 137.8, 129.2, 124.6, 120.0, 44.6, 34.3, 28.1. All data were in accordance with the literature. ¹⁴

Benzyl 4-chloro-2-methylbutanoate (4f)

$$\bigcap_{O} \operatorname{Me}_{\operatorname{CH}_2\operatorname{Cl}}$$

General procedure A was followed to obtain **4f** (50 mg, 0.22 mmol, 44%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5H), 5.14 (d, J = 1.0 Hz, 2H), 3.55 (td, J = 6.6, 1.1 Hz, 2H), 2.79 (h, J = 7.1 Hz, 1H), 2.27 – 2.15 (m, 1H), 1.92 – 1.80 (m, 1H), 1.23 (d, J = 7.1 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 175.6, 136.1, 128.7, 128.4, 128.2, 66.5, 42.6, 36.9, 36.1, 16.9. The compound did not ionize. **IR** (neat) 2973, 2161, 1731, 1498, 1455, 1384, 1355, 1284, 1236, 1155, 1123, 1091, 1058, 1029, 1004, 966, 890, 839, 789, 749, 697, 659.

Benzyl 2-(2,3-dichloro-4-(4-chloro-2-ethylbutanoyl)phenoxy)acetate (4g)

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure A** was followed to obtain **4g** (56 mg, 0.13 mmol, 50%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 6H), 6.73 (d, J = 8.7 Hz, 1H), 5.25 (s, 2H), 4.80 (s, 2H), 3.70 – 3.62 (m, 1H), 3.59 – 3.45 (m, 2H), 2.33 (ddt, J = 14.2, 8.6, 5.6 Hz, 1H), 1.90 (dddd, J = 14.4, 8.4, 6.1, 4.8 Hz, 1H), 1.81 – 1.66 (m, 1H), 1.59 – 1.45 (m, 1H), 0.90 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 203.8, 167.5, 156.3, 134.9, 134.4, 132.0, 128.9, 128.8, 128.7, 127.4, 124.3, 110.8, 67.5, 66.3, 48.8, 43.3, 32.6, 24.6, 11.3; **HRMS** (ESI-TOF) calculated for C₂₁H₂₂³⁵Cl₃O₄ [M+H]⁺: 443.0578, found 443.0579; **IR** (neat) 1757, 1693, 1583, 1466, 1386, 1191, 1077, 811, 751, 697, 666.

15.4. Hydromethylation of electron-deficient alkenes

1-benzyl-3-methylpyrrolidine-2,5-dione (5a)

General procedure C was followed to obtain **5a** (94 mg, 0.46 mmol, 93%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.26 – 7.22 (m, 1H), 7.22 – 7.12 (m, 1H), 4.52 (d, J = 2.1 Hz, 1H), 2.85 – 2.67 (m, 1H), 2.19 (dd, J = 21.7, 13.6 Hz, 1H), 1.20 (d, J = 7.2 Hz, 1H); ¹³**C NMR** (101 MHz, CDCl₃) δ 180.3, 176.1, 136.0, 128.8, 128.7, 128.0, 42.5, 36.5, 34.8, 16.8; **MS** (ESI) m/z = 204.0 [M+H]⁺. All data were in accordance with the literature.⁸

2-(1-phenylethyl)malononitrile (5b)

General procedure C was followed to obtain **5b** (53 mg, 0.31 mmol, 62%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.48 – 7.27 (m, 5H), 3.85 (d, J = 6.1 Hz, 1H), 3.46 (p, J = 6.9 Hz, 1H), 1.66 (d, J = 7.0 Hz, 3H); **¹³C NMR** (101 MHz, CDCl₃) δ 138.3, 129.4, 129.0, 127.4, 112.1, 111.8, 41.4, 31.4, 17.9. All data were in accordance with the literature. ¹⁵

Benzyl butyrate (5c)

General procedure C was followed to obtain **5c** (60 mg, 0.34 mmol, 67%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 5.13 (s, 2H), 2.35 (t, J = 7.4 Hz, 2H), 1.69 (h, J = 7.4 Hz, 2H), 0.96 (t, J = 7.4 Hz, 3H); **¹³C NMR** (101 MHz, CDCl₃) δ 173.7, 136.3, 131.2, 128.7, 128.3, 66.2, 36.4, 29.9, 18.6, 13.8. All data were in accordance with the literature. ¹⁶

(Propylsulfonyl)benzene (5d)

General procedure C was followed to obtain **5d** (53 mg, 0.31 mmol, 55%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.95 – 7.87 (m, 2H), 7.69 – 7.62 (m, 1H), 7.60 – 7.54 (m, 2H), 3.10 - 3.03 (m, 2H), 1.81 - 1.68 (m, 2H), 0.99 (t, J = 7.5 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 139.4, 133.7, 129.4, 128.2, 58.1, 16.7, 13.1. All data were in accordance with the literature. ¹⁷

Benzyl 2-methylbutanoate (5e)

$$O \longrightarrow CH_3$$

General procedure C was followed to obtain **5e** (52 mg, 0.27 mmol, 54%) as a colourless oil. **¹H NMR** (400 MHz, CDCl₃) δ 7.42 – 7.28 (m, 5H), 5.13 (s, 2H), 2.44 (h, J = 7.0 Hz, 1H), 1.78 – 1.63 (m, 1H), 1.57 – 1.43 (m, 1H), 1.18 (d, J = 7.0 Hz, 3H), 0.91 (t, J = 7.5 Hz, 3H); ¹³C **NMR** (101 MHz, CDCl₃) δ 176.7, 136.4, 128.6, 128.2, 128.2, 66.1, 41.2, 26.9, 16.7, 11.7. All data were in accordance with the literature. ¹⁸

N-benzyl-2-methylcyclobutane-1-carboxamide (5f)

General procedure C was followed to obtain **5f** (16 mg, 0.08 mmol, 16%, d.r.: 60/40) as a white solid (mixture of both diastereoisomers). ¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.25 (m, 5H), 5.60 (s, 1H), 4.49 – 4.42 (m, 2H), 3.07 (q, J = 8.2 Hz, 0.6H), 2.77 – 2.67 (m, 0.6H), 2.65 – 2.55 (m, 0.4H), 2.54 – 2.46 (m, 0.4H), 2.43 – 2.30 (m, 0.6H), 2.19 – 2.07 (m, 1H), 2.06 – 1.94 (m, 1.4H), 1.68 – 1.58 (m, 0.6H), 1.57 – 1.45 (m, 0.4H), 1.12 (d, J = 6.6 Hz, 1.2H), 1.08 (d, J = 7.1 Hz, 1.8H); ¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 173.1, 138.7, 138.6, 128.9, 128.8, 128.1, 127.9, 127.6, 48.1, 43.7, 43.2, 35.1, 32.9, 29.8, 26.4, 26.3, 21.6, 21.5, 20.5, 16.7; **HRMS** (ESI-TOF) calculated for C₁₃H₁₈NO [M+H]⁺: 204.1383, found 204.1385; **IR** (neat) 3289, 3065, 2951, 2865, 1643, 1540, 1497, 1454, 1356, 1241, 1029, 845, 730, 697; **m.p.**: 41 – 42 °C.

N-benzyl-2-(methyl-*d*₃)cyclobutane-1-carboxamide (5g)

General procedure C was followed to obtain **5g** (20 mg, 0.10 mmol, 19%, d.r.: 60/40) as a white solid (mixture of both diastereoisomers). ¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.24 (m, 5H), 5.63 (s, 1H), 4.45 (dd, J = 8.1, 5.5 Hz, 2H), 3.07 (q, J = 8.1 Hz, 0.6H), 2.73 – 2.65 (m, 0.6H), 2.64 – 2.55 (m, 0.4H), 2.54 – 2.47 (m, 0.4H), 2.44 – 2.31 (m, 0.6H), 2.19 – 2.06 (m, 1.0H), 2.05 – 1.94 (m, 1.4H), 1.67 – 1.57 (m, 0.6H), 1.56 – 1.46 (m, 0.4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 174.3, 173.1, 138.7, 138.6, 128.8, 128.8, 128.1, 127.9, 127.6, 48.0, 43.6, 43.6, 43.1, 34.9, 32.7, 29.8, 26.3, 26.1, 21.6, 20.5, 16.3 – 15.5 (m); **HRMS** (ESI-TOF) calculated for C₁₃H₁₅D₃NO [M+H]⁺: 207.1571, found 207.1572; **IR** (neat) 2936, 2863, 2360, 2212, 1636, 1538, 1498, 1454, 1380, 1354, 1325, 1255, 1238, 1226, 1158, 1130, 1080, 1049, 1029, 952, 817, 744, 695; **m.p.**: 41 – 42 °C.

Benzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl)phenoxy)acetate (5h)

$$\mathsf{BnO} \underbrace{\mathsf{CI}}_{\mathsf{CH}_3}^{\mathsf{CI}} \mathsf{Me}$$

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure C** was followed to obtain **5h** (47 mg, 0.11 mmol, 45%) as a colourless oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 7.23 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 5.24 (s, 2H), 4.79 (s, 2H), 3.10 (ddd, J = 12.8, 7.1, 5.8 Hz, 1H), 1.77 (dt, J = 13.8, 7.3 Hz, 2H), 1.59 – 1.44 (m, 2H), 0.91 (t, J = 7.5 Hz, 6H); ¹³**C NMR** (101 MHz, CDCl₃) δ 205.4, 167.6, 156.0, 135.4, 135.0, 131.7, 128.9, 128.8, 128.7, 127.1, 124.0, 110.8, 67.5, 66.3, 53.5, 23.7, 11.7; **HRMS** (ESITOF) calculated for C₂₁H₂₃³⁵Cl₂O₄ [M+H]⁺: 409.0968, found 409.0968; **IR** (neat) 2964, 2933,

2876, 2159, 1758, 1693, 1583, 1559, 1498, 1459, 1383, 1303, 1264, 1192, 1123, 1076, 1028, 894, 837, 810, 739, 697, 644.

Benzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl-4,4,4-d3)phenoxy)acetate (5i)

$$\mathsf{BnO} \underbrace{\mathsf{Cl}}_{\mathsf{CD}_3}^{\mathsf{Cl}} \underbrace{\mathsf{Cl}}_{\mathsf{CD}_3}^{\mathsf{Me}}$$

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure C** was followed to obtain **5i** (62 mg, 0.15 mmol, 59%) as a colourless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.30 (m, 5H), 7.23 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 5.24 (s, 2H), 4.79 (s, 2H), 3.09 (ddd, J = 12.8, 7.1, 5.8 Hz, 1H), 1.82 – 1.70 (m, 2H), 1.57 – 1.45 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 205.4, 167.6, 156.0, 135.3, 134.9, 131.7, 128.9, 128.8, 128.7, 127.1, 124.0, 110.9 – 110.7 (m), 67.7 – 67.3 (m), 66.6 – 66.1 (m), 53.6 – 53.3 (m), 23.9 – 23.1 (m), 11.9 – 11.6 (m), 11.3 – 10.3 (m); **HRMS** (ESI-TOF) calculated for C₂₁H₂₀D₃³⁵Cl₂O₄ [M+H]⁺: 412.1156, found 412.1156; **IR** (**neat**) 2931, 2219, 1758, 1692, 1582, 1559, 1498, 1465, 1383, 1302, 1259, 1190, 1118, 1076, 1025, 887, 809, 738, 697, 661, 639.

Benzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl-4-¹³C)phenoxy)acetate (5j)

$$\mathsf{BnO} \underbrace{\mathsf{CI}}_{\mathsf{O}} \underbrace{\mathsf{CI}}_{\mathsf{13}\mathsf{CH}_3} \mathsf{Me}$$

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure C** was followed to obtain **5j** (46 mg, 0.11 mmol, 44%) as a colourless oil. ¹**H NMR** (500 MHz, CDCl₃) δ 7.40 – 7.31 (m, 5H), 7.23 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 5.25 (s, 2H), 4.79 (s, 2H), 3.13 – 3.06 (m, 1H), 1.83 – 1.70 (m, 2H), 1.59 – 1.46 (m, 2H), 0.91 (t, J = 7.4 Hz, 3H), 0.91 (dt, J = 125.6, 7.4 Hz, 3H); ¹³**C NMR** (126 MHz, CDCl₃) δ 205.4 – 205.4 (m), 167.7, 156.0, 135.4, 135.0, 131.7, 128.9, 128.8, 128.7, 127.2, 124.0, 110.8, 67.5, 66.3, 53.5, 29.8, 24.0 – 23.5 (m), 11.7 (br); **HRMS** (ESI-TOF) calculated for C_{20}^{13} CH₂₃³⁵Cl₂O₄ [M+H]⁺: 410.1001,

found 410.1001; **IR** (**neat**) 2934, 2872, 2362, 2342, 2158, 2020, 1976, 1760, 1695, 1584, 1559, 1498, 1466, 1385, 1303, 1263, 1194, 1121, 1078, 1025, 893, 810, 753, 698, 668, 652.

Benzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl-4-d)phenoxy)acetate (5k)

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure C** was followed to obtain **5k** (71 mg, 0.17 mmol, 68%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 7.23 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 5.24 (s, 2H), 4.78 (s, 2H), 3.09 (tt, J = 7.1, 5.7 Hz, 1H), 1.82 – 1.69 (m, 2H), 1.59 – 1.45 (m, 2H), 0.95 – 0.85 (m, 5H); ¹³**C NMR** (101 MHz, CDCl₃) δ 205.3, 167.6, 155.9, 135.3, 134.9, 131.6, 128.8, 128.8, 128.6, 127.1, 123.9, 110.8, 67.5, 66.3, 53.5, 23.7, 23.6, 11.7, 11.6 – 11.2 (m); **HRMS** (ESI-TOF) calculated for C₂₁H₂₂D³⁵Cl₂O₄ [M+H]⁺: 410.1015, found 410.1031; **IR** (neat) 2963, 2934, 2875, 2361, 2174, 1757, 1693, 1583, 1559, 1498, 1465, 1384, 1302, 1263, 1190, 1120, 1076, 1022, 962, 891, 810, 752, 697, 643.

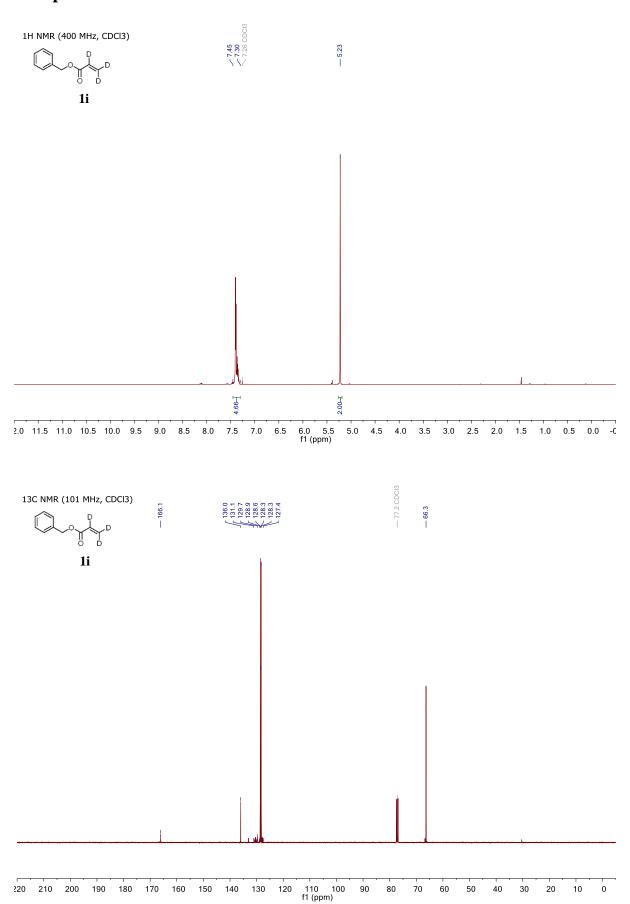
Benzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl-4,4-d₂)phenoxy)acetate (5l)

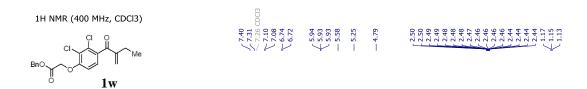
$$CI$$
 CI
 CI
 Me
 CD_2H

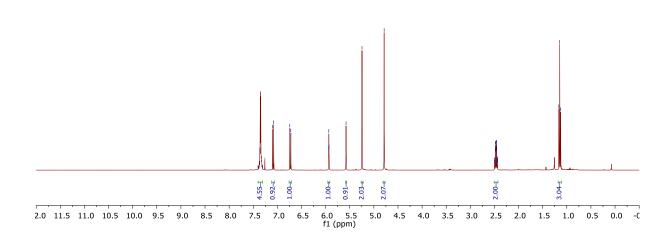
The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure D** was followed to obtain **5l** (62 mg, 0.15 mmol, 59%) as a pale yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 7.22 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 5.24 (s, 2H), 4.79 (s, 2H), 3.14 – 3.04 (m, 1H), 1.84 – 1.69 (m, 2H), 1.58 – 1.45 (m, 2H), 0.97 – 0.83 (m, 4H); ¹³**C NMR** (101 MHz, CDCl₃) δ 205.3, 167.6, 155.9, 135.3, 134.9, 131.6, 128.8, 128.8, 128.6, 127.1, 123.9, 110.8, 67.5, 66.3, 53.4, 23.7, 23.5, 11.7, 11.1 (p, J = 19.2 Hz); **HRMS** (ESI-TOF) calculated for $C_{21}H_{21}D_2^{35}Cl_2O_4$ [M+H]⁺: 411.1093, found 410.1094; **IR** (neat) 2935, 2875, 2216,

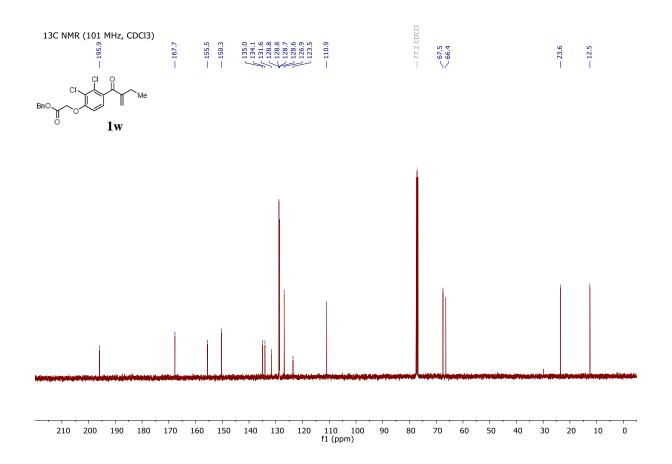
1757, 1693, 1583, 1559, 1498, 1465, 1384, 1302, 1263, 1190, 1119,1076, 1026, 994, 887, 810, 752, 697, 641.

enzyl 2-(2,3-dichloro-4-(2-ethylbutanoyl-4-¹³C-4,4,4-d₃)phenoxy)acetate (5m)

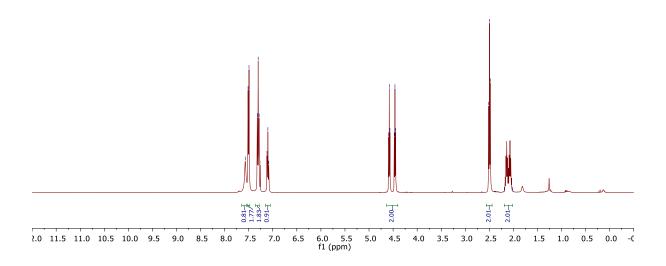

$$\mathsf{BnO} \underbrace{\mathsf{CI}}_{\mathsf{O}} \underbrace{\mathsf{CI}}_{\mathsf{13}\mathsf{CD}_3} \mathsf{Me}$$

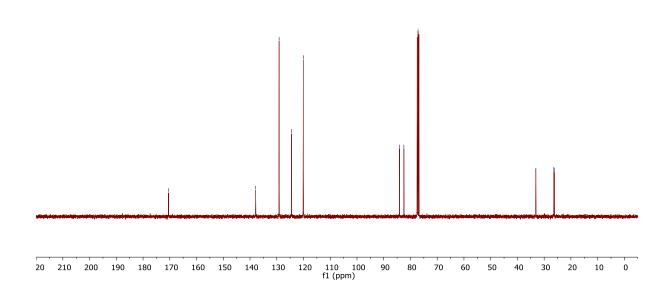

The reaction was performed on 100 mg of ethacrynic acid benzyl ester. **General procedure D** was followed to obtain **5m** (55 mg, 0.13 mmol, 52%) as a pale yellow oil. ¹**H**] **NMR** (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 4H), 7.23 (d, J = 8.6 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 5.24 (s, 2H), 4.79 (s, 2H), 3.15 – 3.04 (m, 1H), 1.83 – 1.69 (m, 2H), 1.58 – 1.46 (m, 2H), 0.91 (t, J = 7.5 Hz, 3H); ¹³**C NMR** (101 MHz, CDCl₃) δ 205.4 – 205.3 (m), 167.6, 155.9, 135.3, 134.9, 131.7, 128.8, 128.8, 128.6, 127.1, 124.0, 110.8, 67.5, 66.3, 53.4, 23.9 – 23.1 (m), 23.7 – 23.2 (m), 11.7, 11.5 – 10.1 (m); **HRMS** (ESI-TOF) calculated for C₂₀¹³CH₂₀D₃³⁵Cl₂O₄ [M+H]⁺: 413.1190, found 413.1190; **IR** (neat) 2963, 2932, 2875, 2203, 2032, 1758, 1692, 1582, 1559, 1498, 1465, 1384, 1302, 1259, 1190, 1119, 1076, 1025, 887, 809, 753, 738, 697, 660, 638.

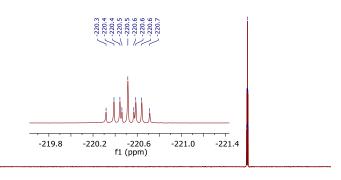

17. References

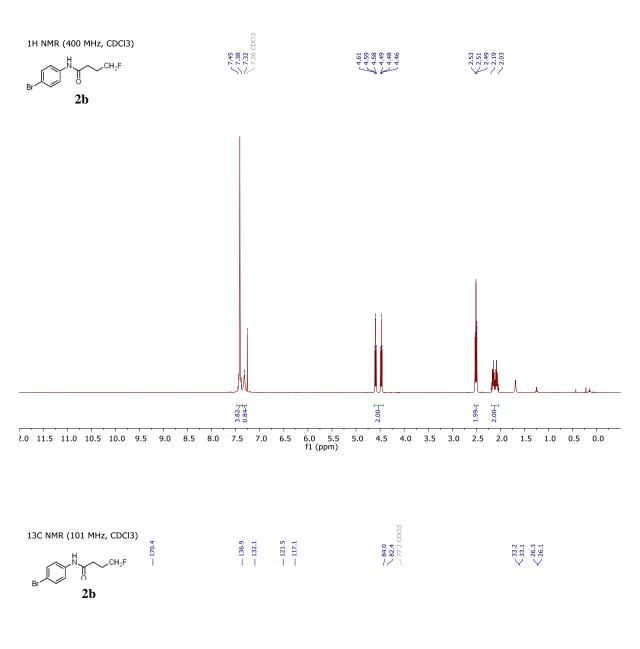

- [1] X. J. Tang, W. R. Dolbier, Angew. Chem. Int. Ed. **2015**, 54, 4246–4249.
- [2] P. Rai, K. Maji, B. Maji, Org. Lett. 2019, 21, 3755–3759.
- [3] J. Eriksson, O. Åberg, B. Långström, Eur. J. Org. Chem. 2007, 455–461.
- [4] O. A. Al-Fulaij, A. Z. A. Elassar, A. F. J. El-Asmy, *Appl. Polym. Sci.* **2015**, *132*, 1–14.
- [5] T. J. Saiegh, H. Chedotal, C. Meyer, J. Cossy, *Org. Lett.* **2019**, *21*, 8364–8368.
- [6] F. Wang, D. Fan, J. Qian, Z. Zhang, J. Zhu, J. Chen, *Medicinal Chemistry*. **2015**, *11*, 649–655.
- [7] S. M. Hell, C. F. Meyer, G. Laudadio, A. Misale, M. C. Willis, T. Noël, A. A. Trabanco, V. Gouverneur, *J. Am. Chem. Soc.* **2020**, *142*, 720–725.
- [8] M. D. Barker, R. A. Dixon, S. Jones, B. J. Marsh, *Chem. Commun.* **2008**, 2218–2220.
- [9] E. Dardennes, S. Labano, N. S. Simpkins, C. Wilson, *Tetrahedron Lett.* **2007**, *48*, 6380–6383.
- [10] Y. X. Li, W. Y. Li, Y. Y. Jiang, L. Yang, Tetrahedron Lett. 2018, 59, 2934–2937.
- [11] P. Zhang, C. C. Le, D. W. C. Macmillan, J. Am. Chem. Soc. **2016**, 138, 8084-8087.
- [12] W. Wang, C. Ding, Y. Li, Z. Li, Y. Li, L. Peng, G. Yin, *Angew. Chem. Int. Ed.* **2019**, *58*, 4612 –4616.
- [13] J. Guo, C. Kuang, J. Rong, L. Li, C. Ni, J. Hu, Chem. Eur. J. 2019, 25, 7259 –7264.
- [14] E. Massolo, M. Pirola, A. Puglisi, S. Rossi, M. Benaglia, *RSC Adv.* **2020**, *10*, 4040-4044.
- [15] G. Laudadio, Y. Deng, K. Van der Wal, D. Ravelli, M. Nuño, M. Fagnoni, D. Guthrie, Y. Sun, T. Noël, *Science* **2020**, *369*, 92–96.
- [16] J. Dong, X. Wang, Z. Wang, H. Song, Y. Liu, Q. Wang, *Chem. Commun.*, **2019**, *55*, 11707-11710.
- [17] Q. Zhu, D. G. Nocera, J. Am. Chem. Soc. 2020, 142, 17913–17918.
- [18] J. Q. Li, X. Quan, P. G. Andersson, *Chem. Eur. J.* **2012**, *18*, 10609 10616.

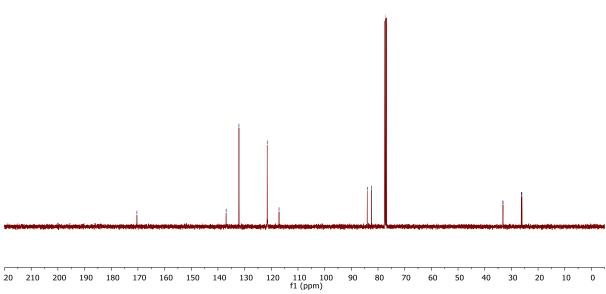
18. Spectra



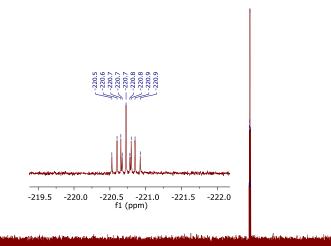


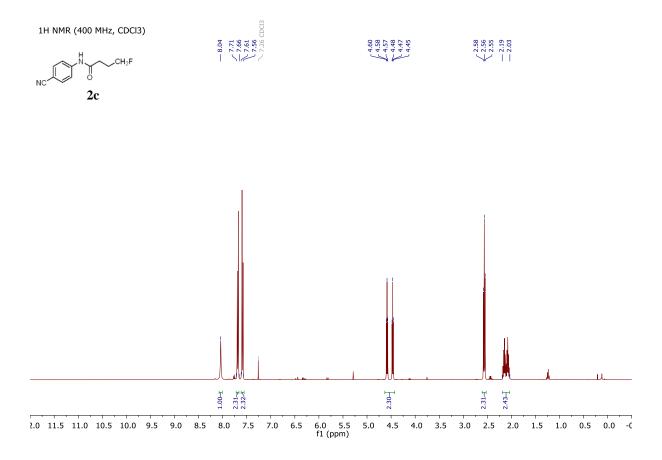


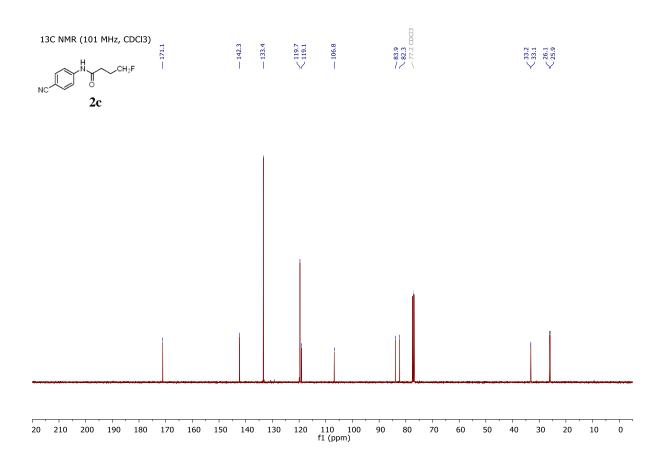


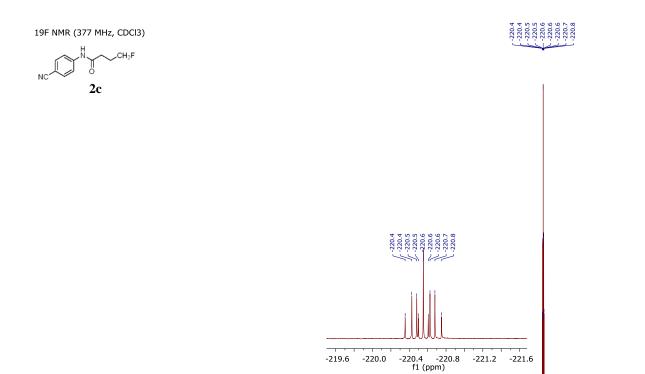


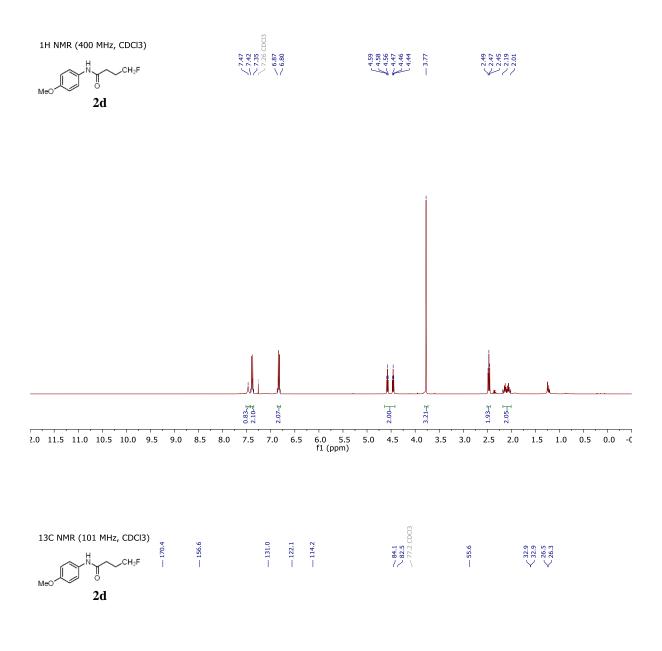
19F NMR (377 MHz, CDCl3)

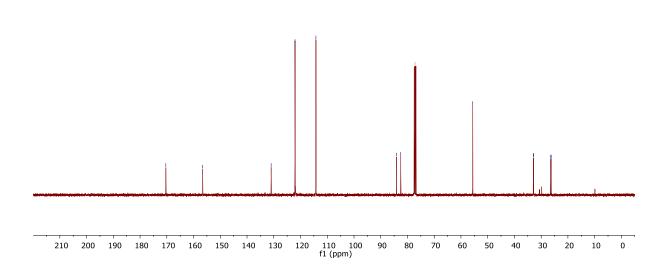

.00 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190 -195 -200 -205 -210 -215 -220 -225 -230 -235 -2 f1 (ppm)

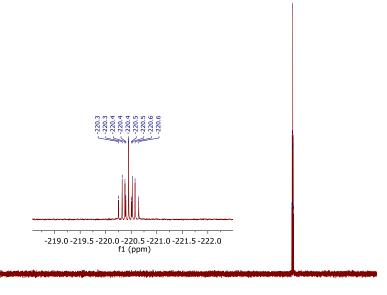


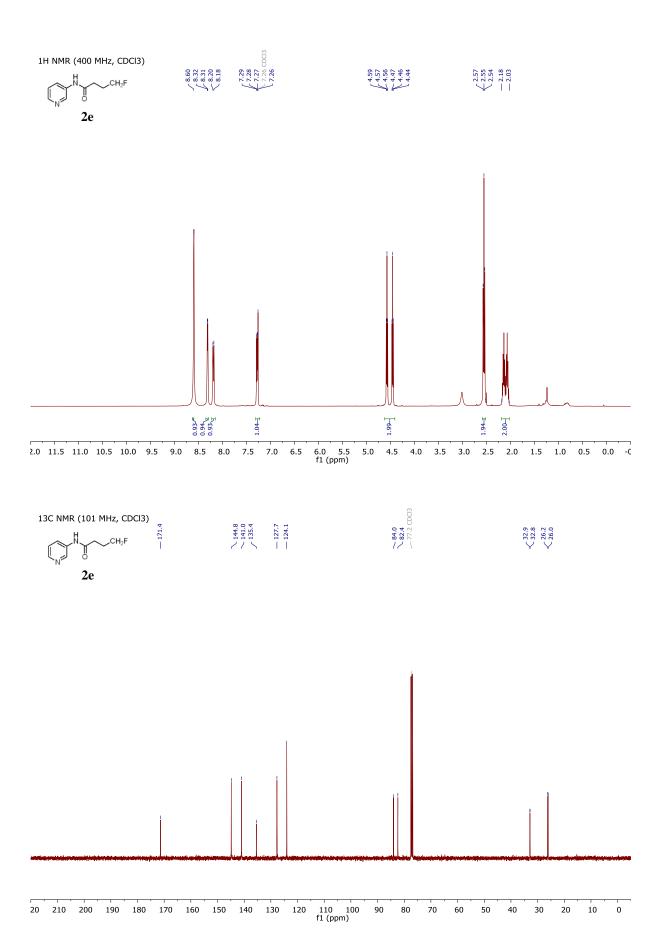



$$\mathbf{br} \overset{\mathsf{H}}{\longrightarrow} \overset{\mathsf{CH}_2\mathsf{F}}{\mathbf{b}}$$


-220.5 -220.7 -220.7 -220.7 -220.8 -220.8 -220.8 -220.8

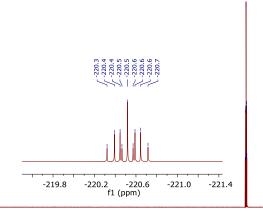


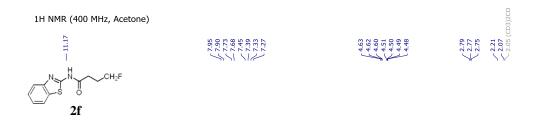


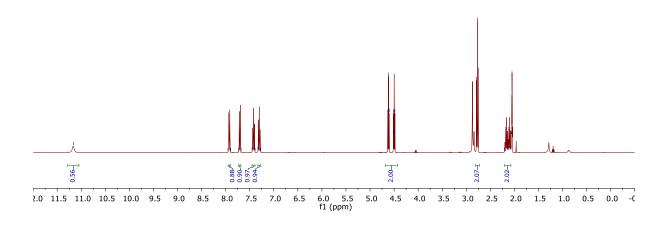


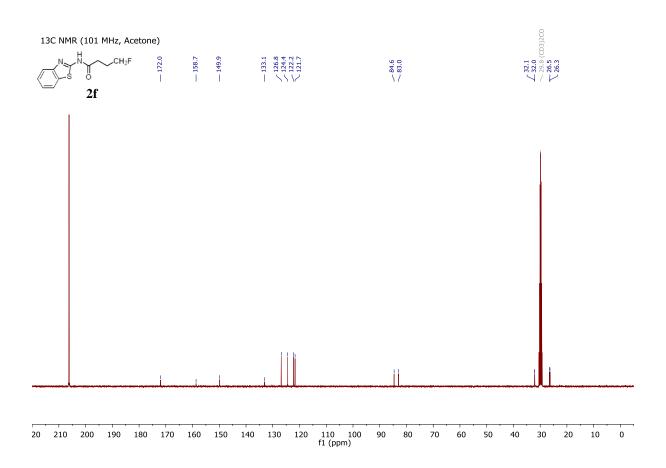
-220.3 -220.4 -220.4 -220.4 -220.5 -220.5 -220.5 -220.5

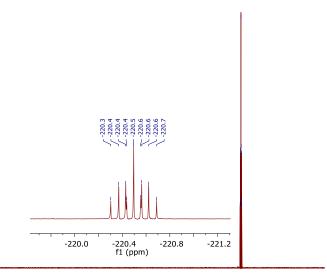
2d

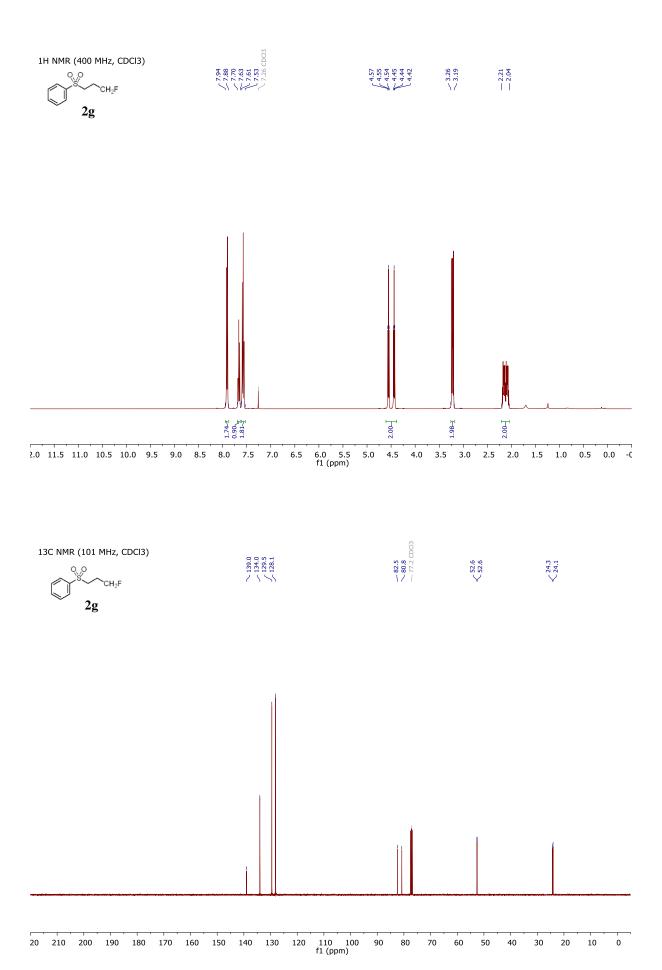


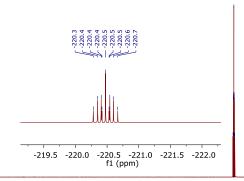


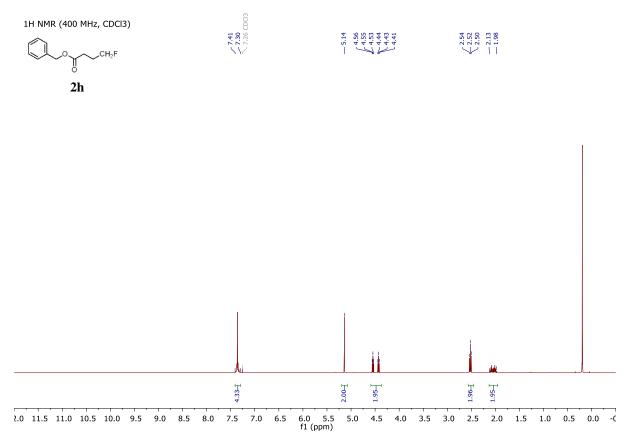

$$\bigcap_{N} \bigvee_{0}^{H} \bigcap_{CH_{2}F}$$

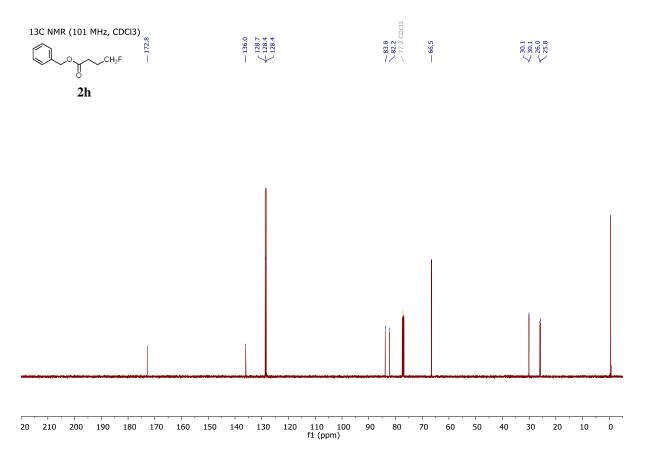

$$2e$$



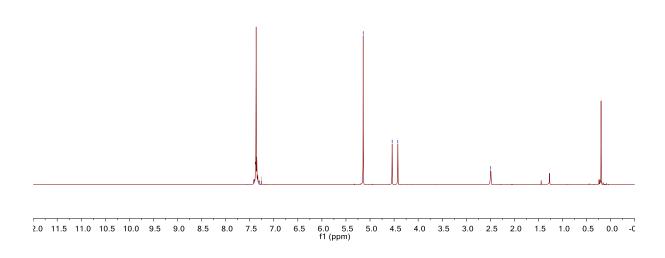


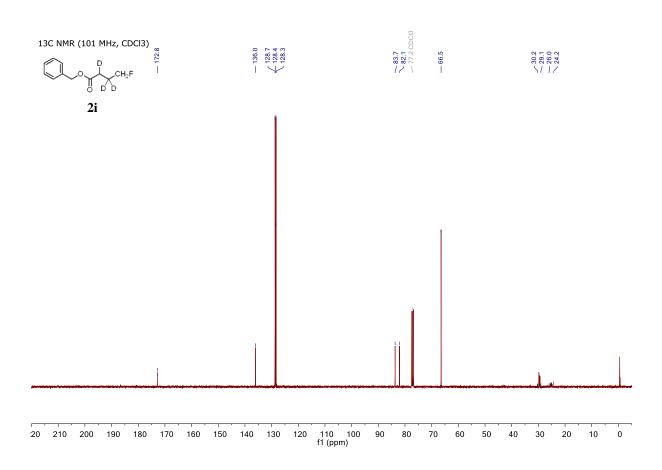

19F NMR (377 MHz, Acetone)



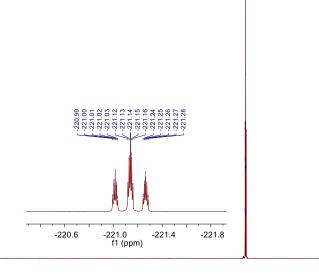


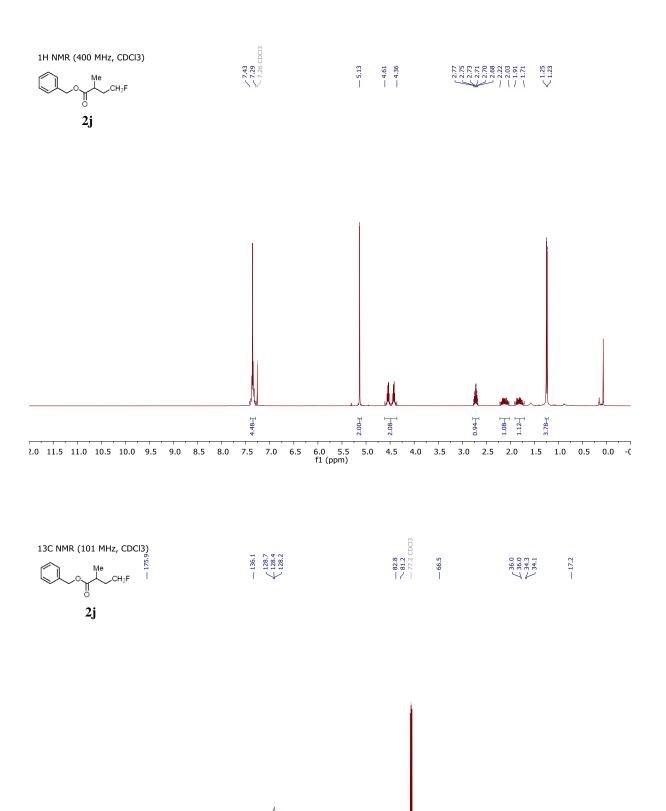
The product coeluted with silane by-products (δ : 0.19 ppm).


2h



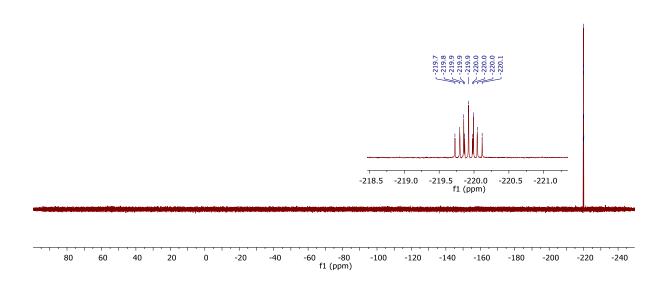
80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 -160 -180 -200 -220 -240 f1 (ppm)

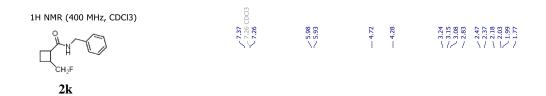


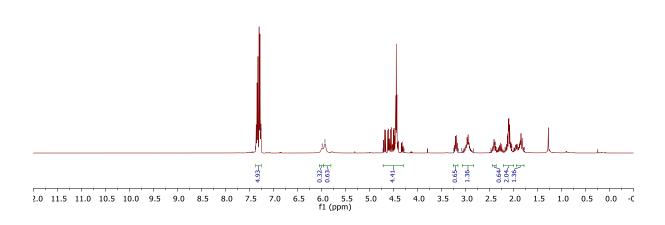


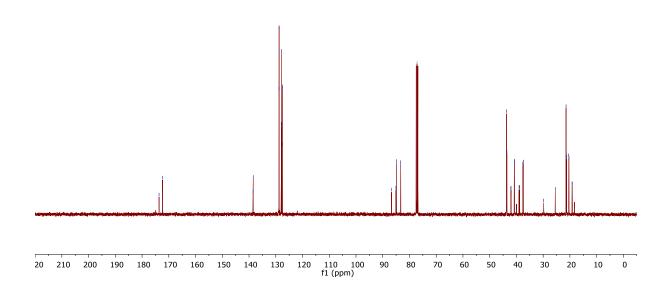
$$\bigcirc \bigcup_{D} \bigcirc \bigcup_{D} \bigcirc \mathsf{CH}_2\mathsf{F}$$

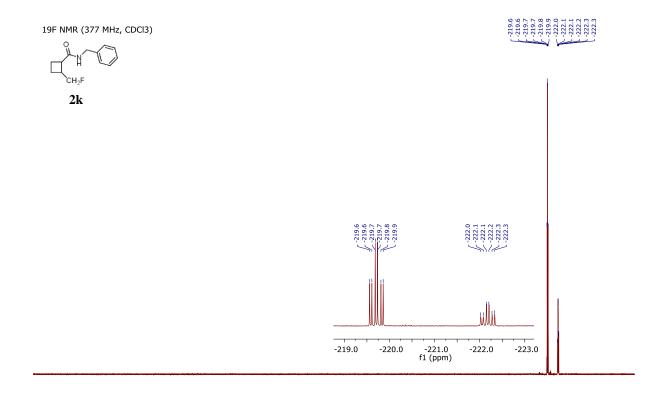
2i

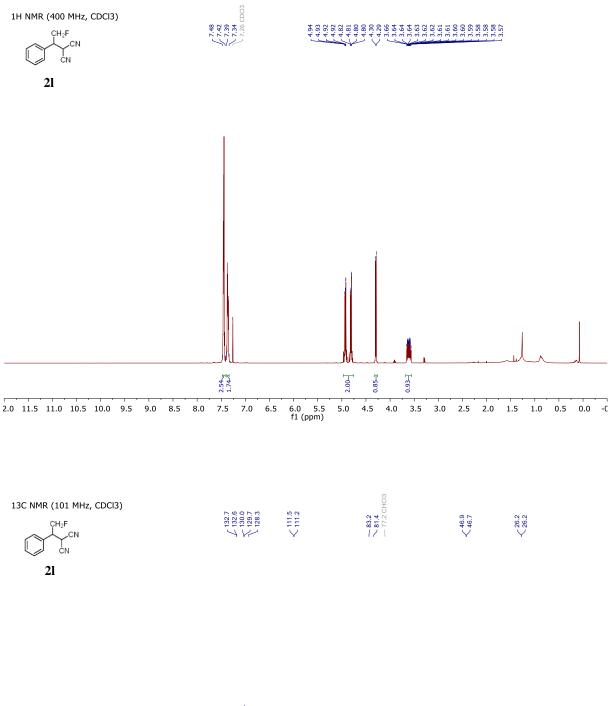


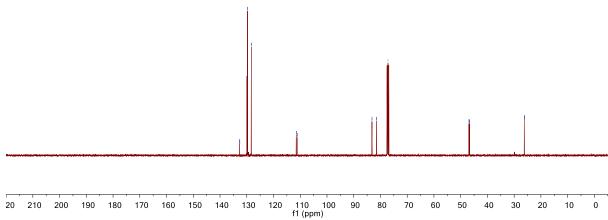


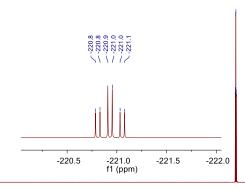


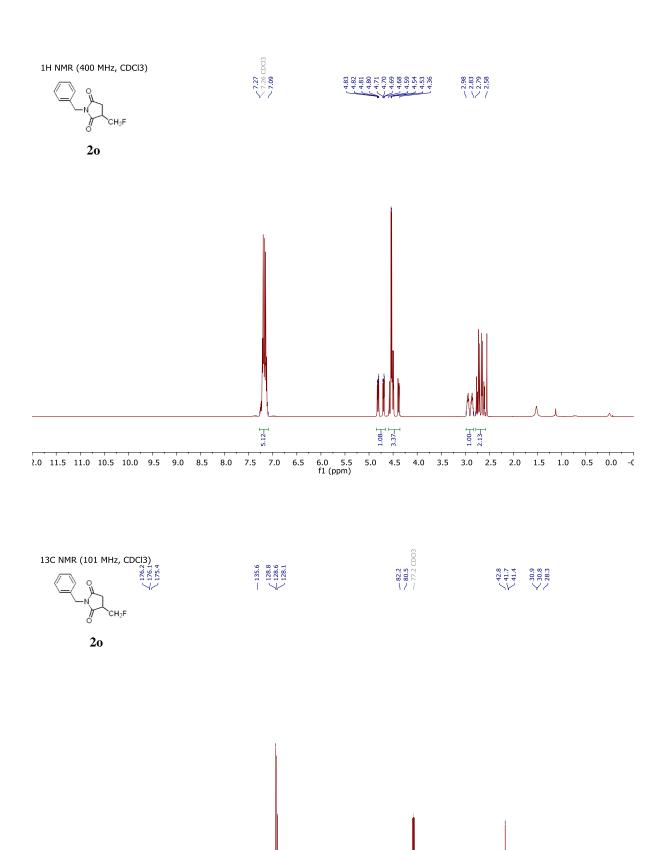




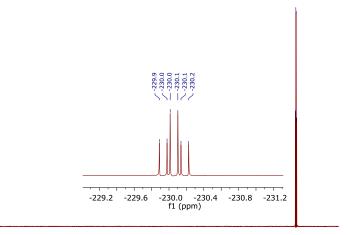


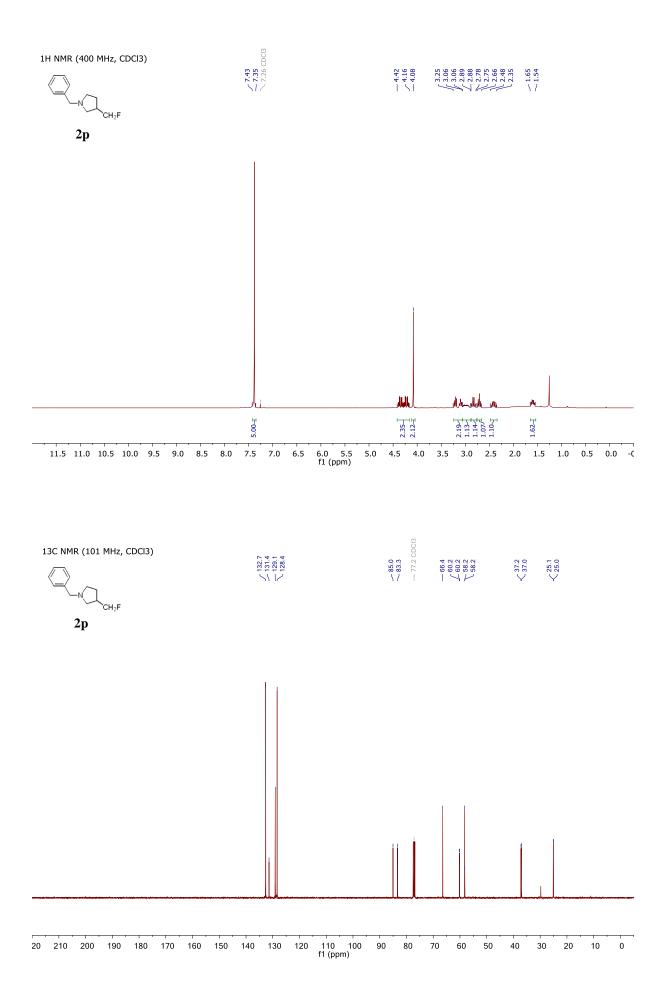




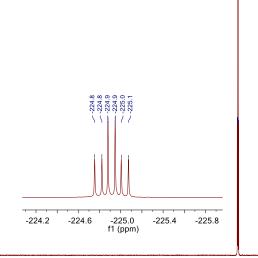


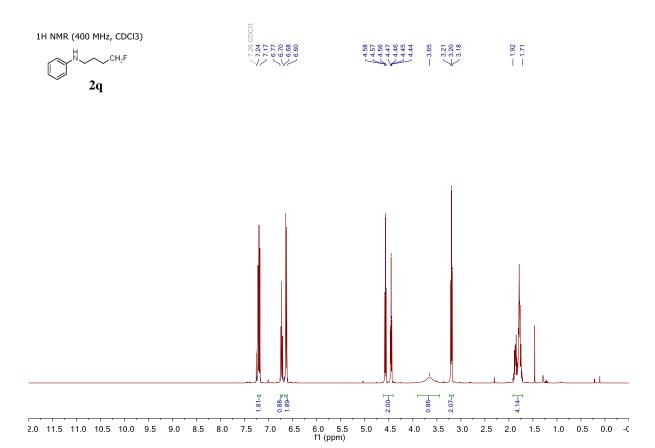
21

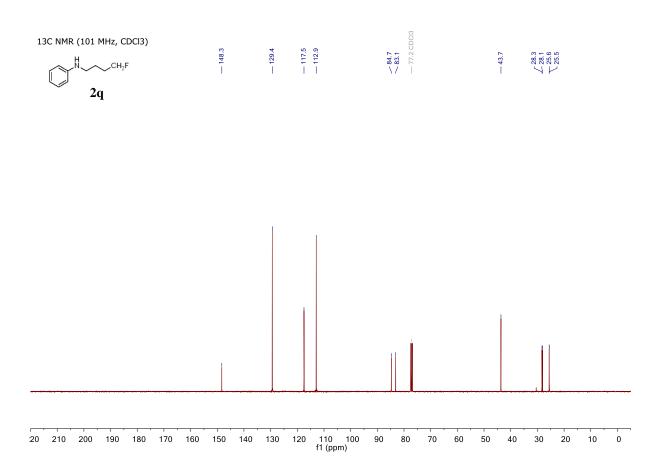




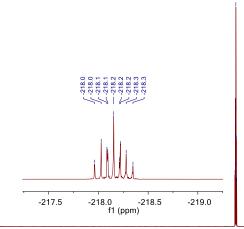
20 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

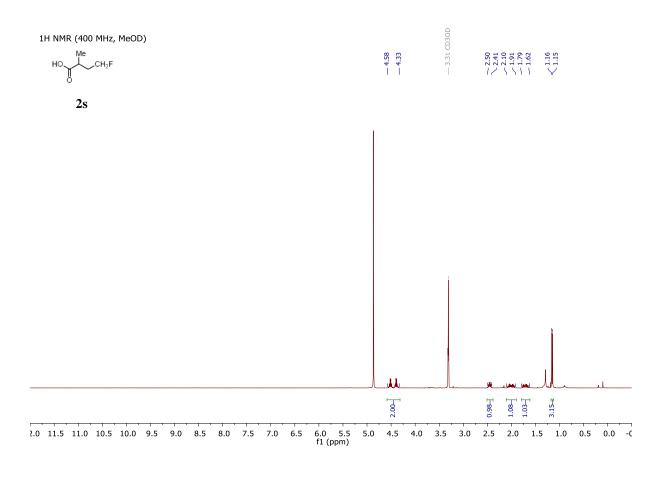

20

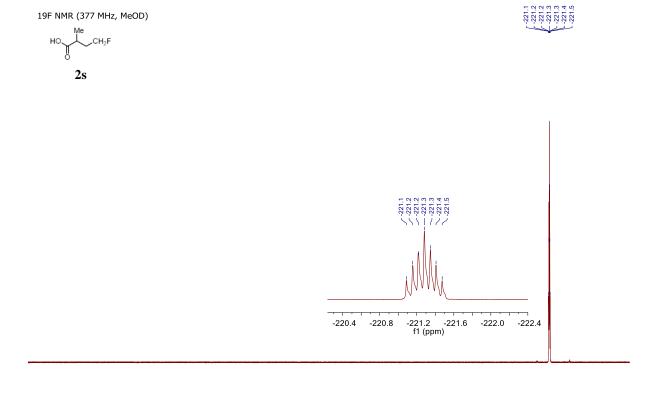


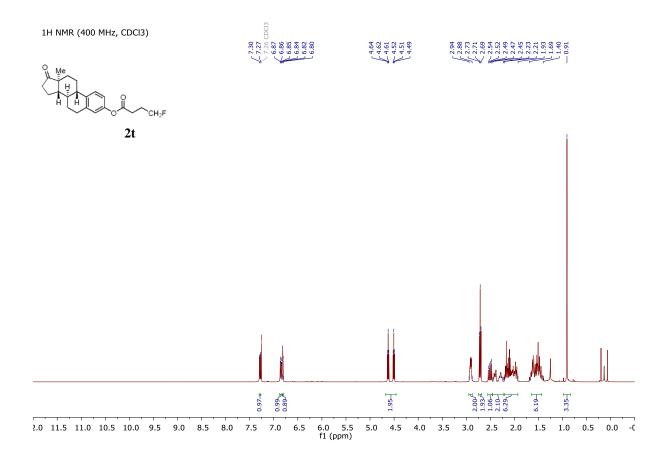


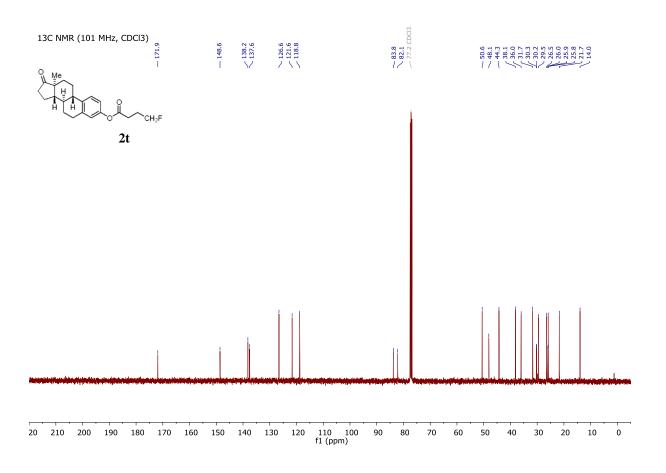
2n

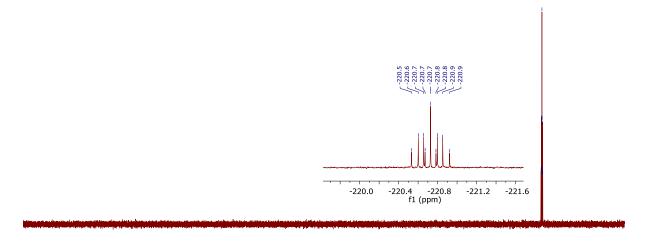


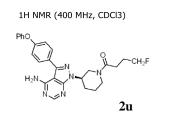


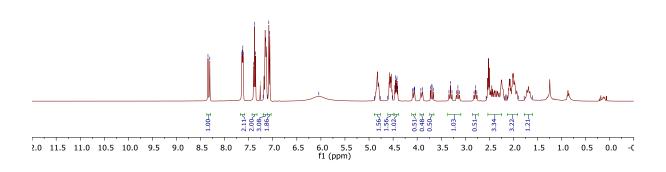


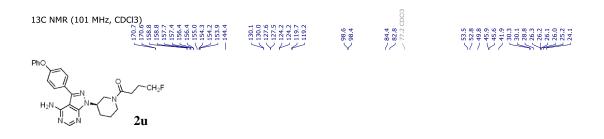

$$\mathbf{Q}^{\mathsf{H}_{\mathsf{2}\mathsf{F}}}$$

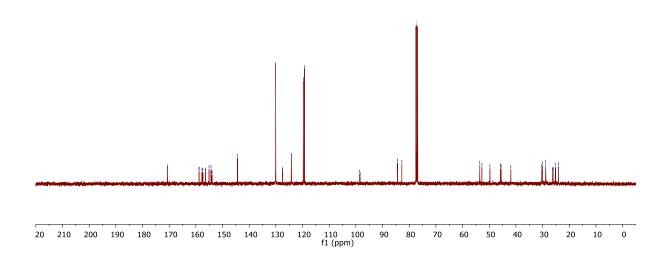


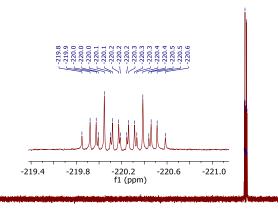


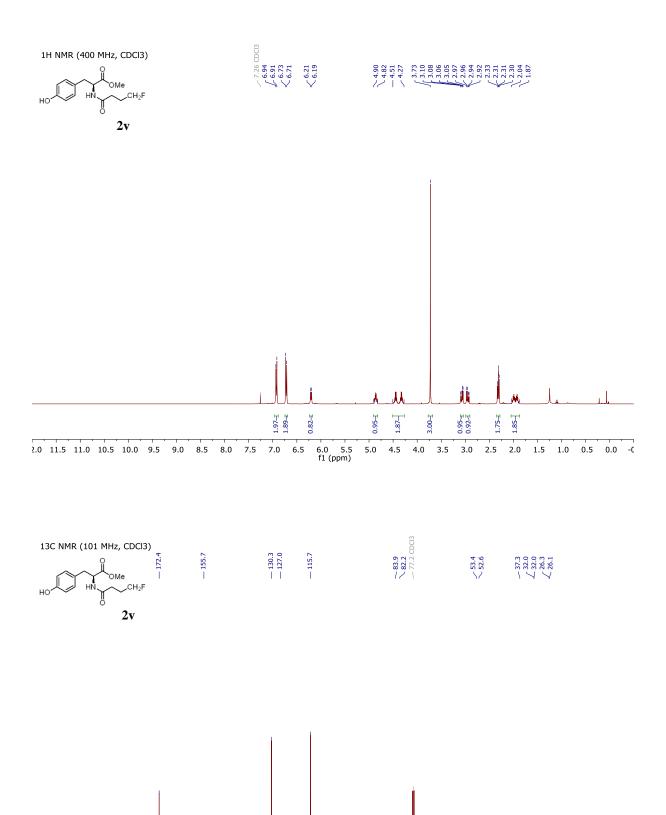


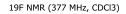


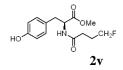


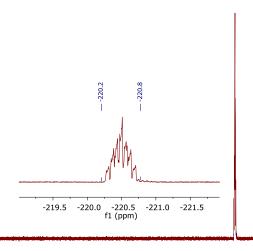


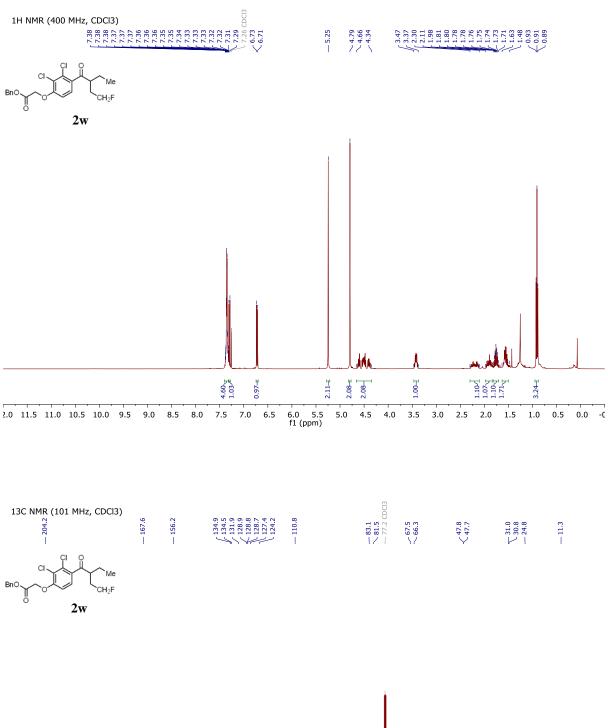


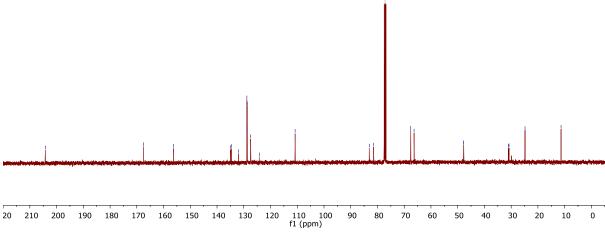


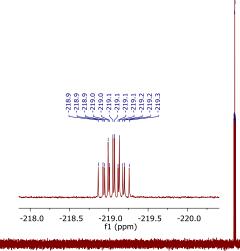


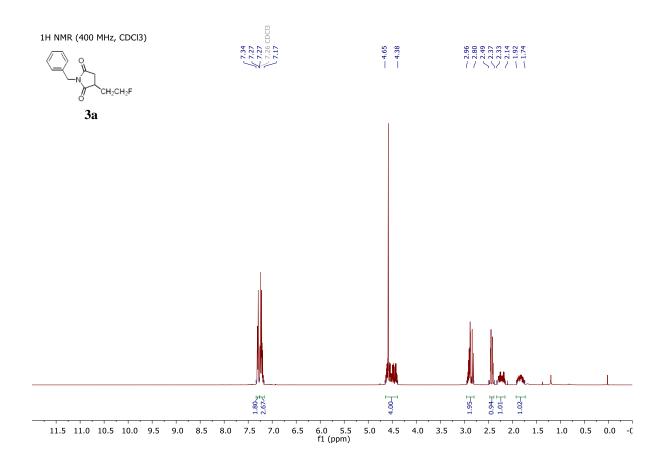


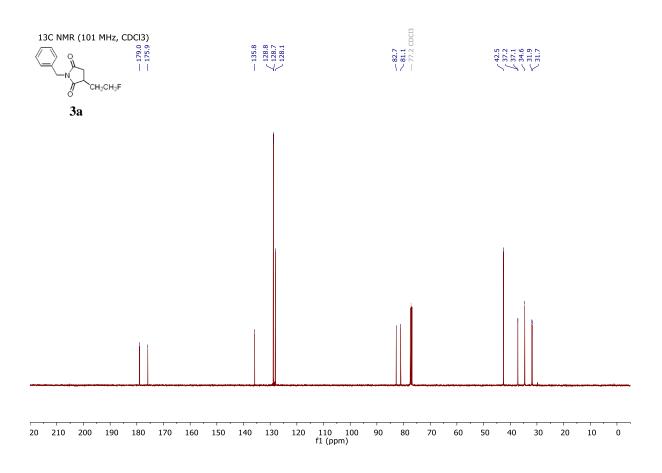




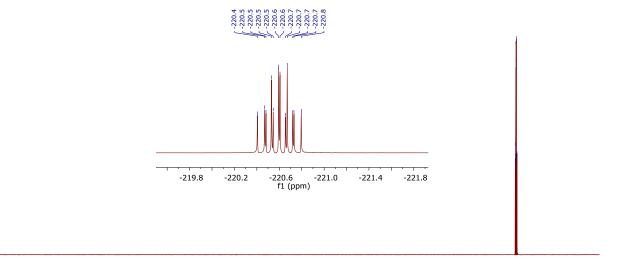


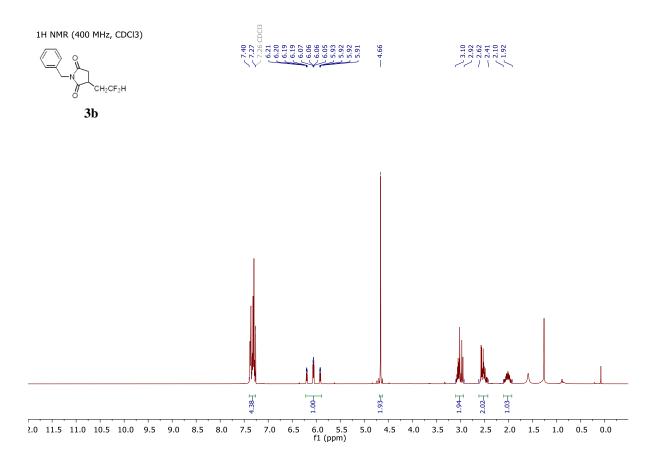


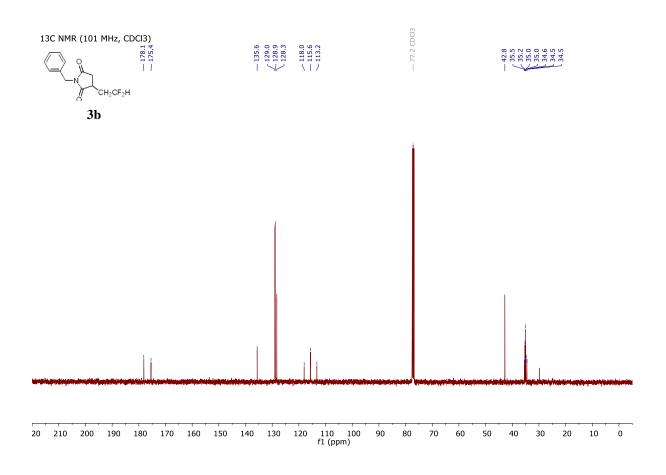




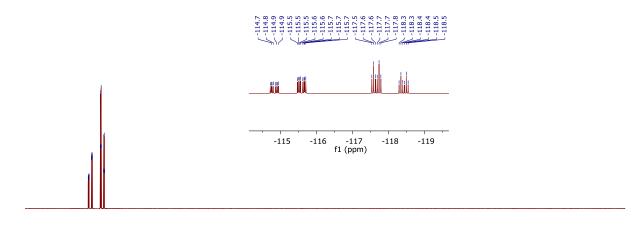
$$\mathsf{BnO} \underbrace{\mathsf{CI}}_{\mathsf{CH}_2\mathsf{F}} \mathsf{Me}$$

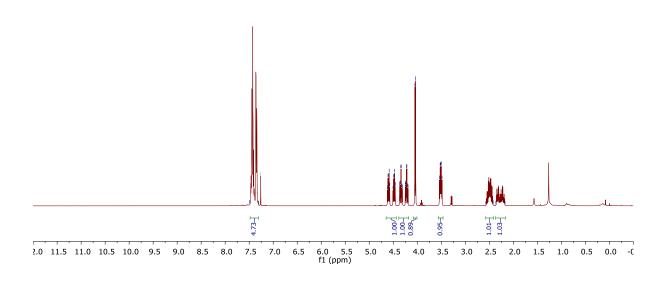


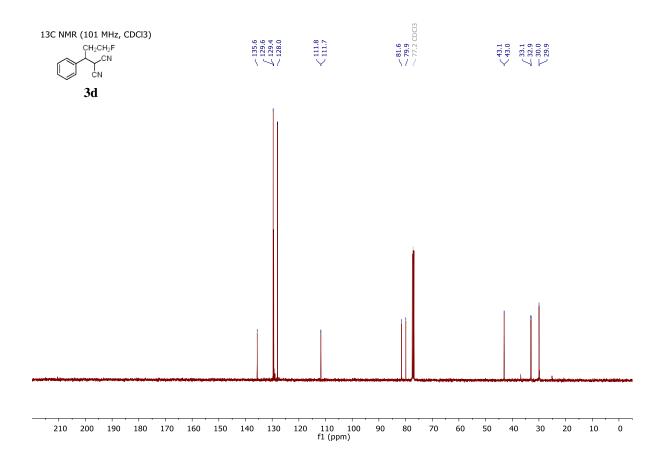




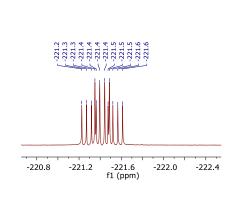
3a

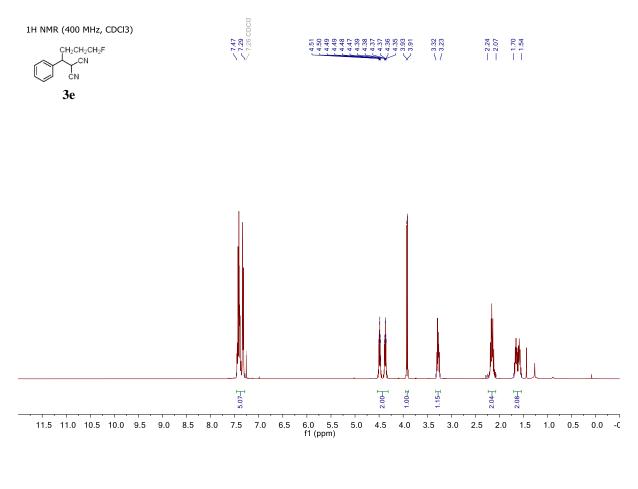


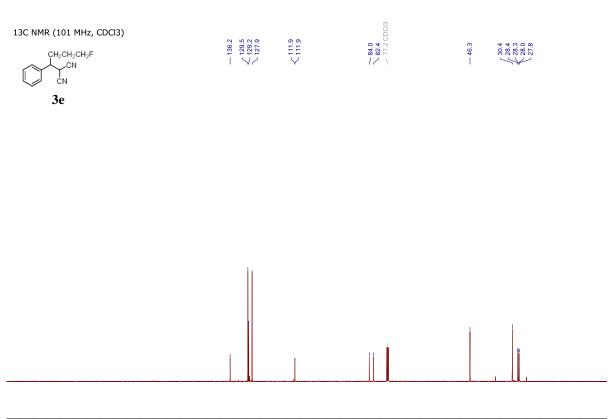




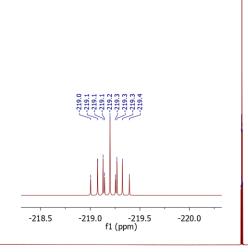
3b

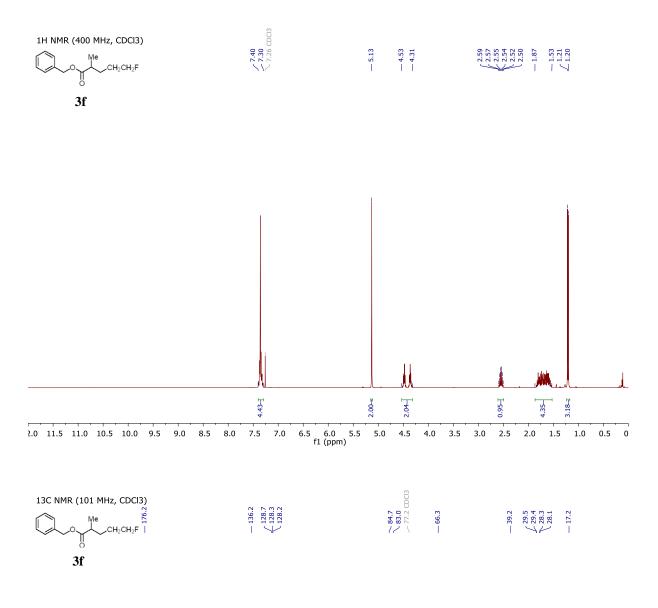


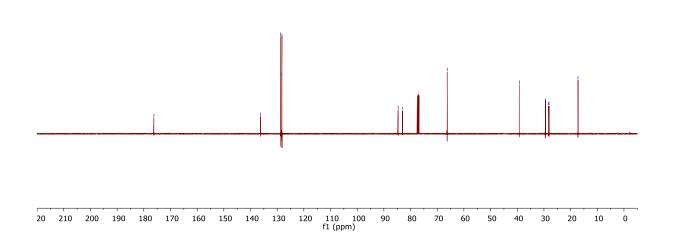




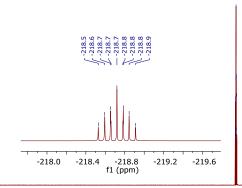
3d

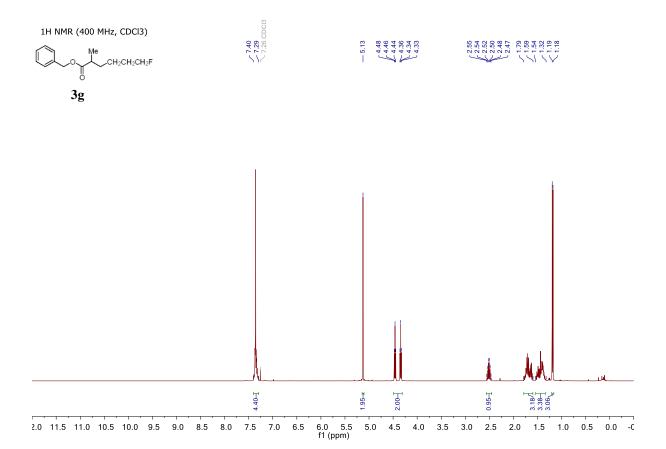

80

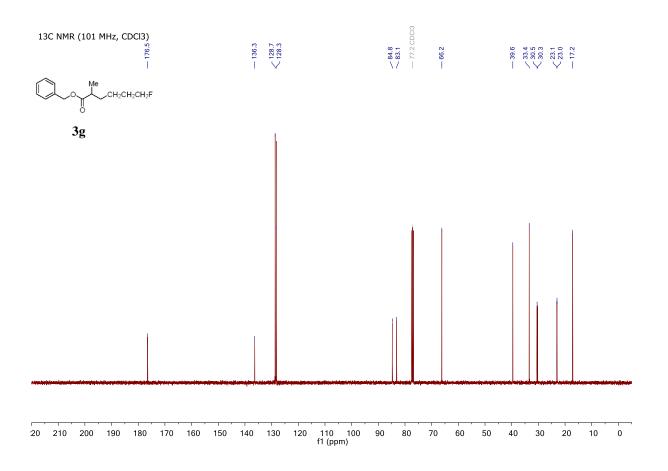

20 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

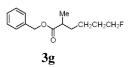


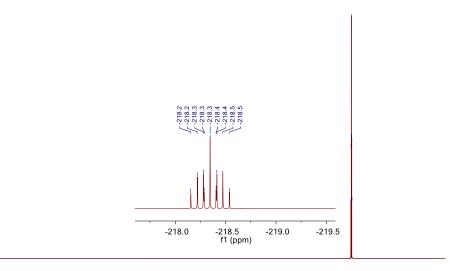
3e

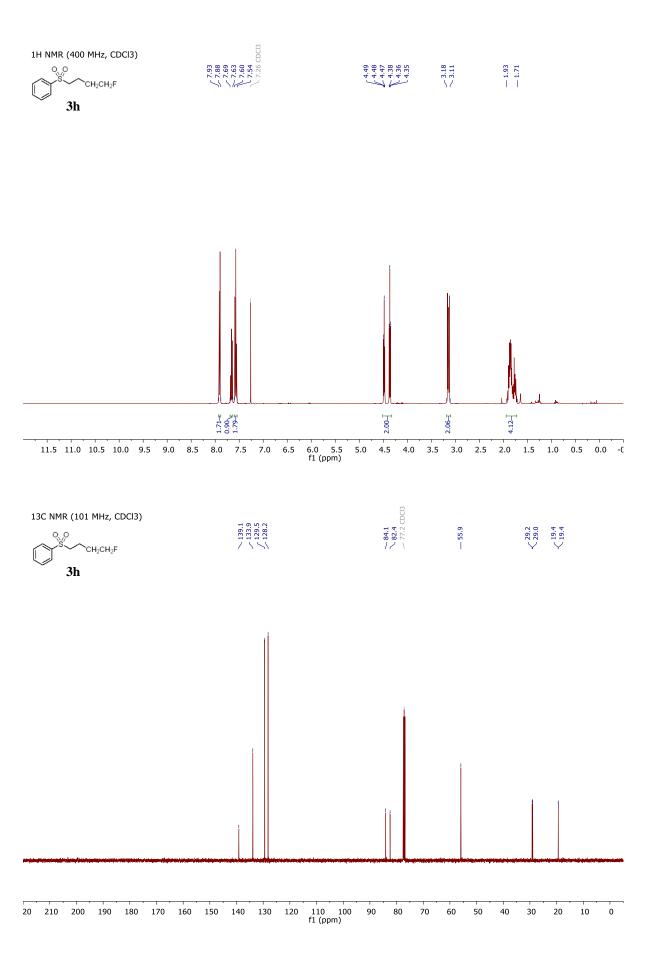


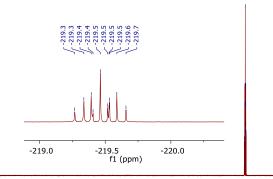


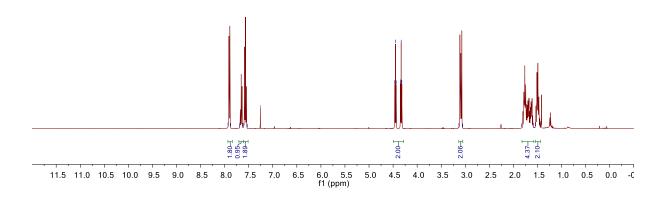











-60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 f1 (ppm)

