Materials and Methods

All reagents were commercially available and used as supplied without further purification. Compounds 1^[S1], TA^[S2] and TI^[S3] were synthesized according to previous literature reports. Activated crystalline TI was recrystallized from a mixture of chloroform and ethanol and dried under vacuum at 120 °C for one day. Activated crystalline TA was recrystallized from ethanol and dried under vacuum at 120 °C for one day. Activated crystalline MTA was recrystallized from a mixture of chloroform and ethanol and dried under vacuum at 120 °C for one day. Activated crystalline MTA was recrystallized from a mixture of chloroform and ethanol and dried under vacuum at 120 °C for one day.

NMR spectra were recorded with a Bruker Avance DMX 400 and 500 spectrophotometers with TMS as the internal reference.

The crystal data was collected using a Bruker X8 Prospector APEX2 CCD (Cu Ka radiation, $\lambda = 1.54178$ Å) or a D8 Venture with Photon II CPAD diffractometer (Mo Ka radiation, $\lambda = 0.71073$ Å).

Gas chromatography (GC) measurements were carried out using J&W (122-1364) instrument configured with a FID detector and a DB-624 column (60 m × 0.25 mm × 1.4 μ m). The following GC method was used: the oven was programmed from 50 °C, ramped at 15 °C min⁻¹ increments to 200 °C with 15 min hold; the total run time was 25 min; injection temperature 250 °C; detector temperature 300 °C with hydrogen, air, and make-up flow-rates of 35, 350, and 30 mL min⁻¹, respectively; helium (carrier gas) flow-rate 3.0 mL min⁻¹. The powder samples (20 mg) were dissolved in 1 mL dichloromethane and injected in the split mode (4:1).

Thermogravimetric analysis was carried out using an automatic sample loading TA Instruments Q50 analyzer. The samples were heated starting at room temperature to 800 °C using N_2 as the protective gas.

Low-pressure gas adsorption measurements were performed on a Micrometritics Accelerated Surface Area and Porosimetry System (ASAP) 2020 surface area analyzer. Samples were degassed under dynamic vacuum for 12 h at 60 °C prior to each measurement. N₂ isotherms were measured using a liquid nitrogen bath (77 K). Synthesis of MTA

Figure S1. The synthetic route of MTA

A solution of trianglamine **1** (414 mg, 0.5 mmol) and paraformaldehyde (180 mg, 6 mmol) in a mixture of chloroform (10 mL) and ethanol (10 mL) was heated at reflux for 12 h. After cooling, the white product was filtered off and washed with ethanol. Yield: 350 mg (81%).

Figure S2. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of **MTA**. *δ* (ppm): 6.95 (s, 6H), 3.73 (s, 24H), 3.57 (s, 6H), 3.39 (s, 6H), 2.38C (S, 6H), 2.08 (s, 6H), 1.85 (s, 6H), 1.32 (s, 12H).

Figure S3. ¹³C NMR spectrum (100 MHz, CDCl₃, 293 K) of **MTA**. *δ* (ppm): 151.13, 126.61, 112.18, 69.13, 67.99, 56.05, 50.97, 29.47, 25.63.

Figure S4. ESI-Mass spectrum of MTA.

Figure S5. The estimated cavity size of TI (CCDC number: 143138).

Figure S6. The estimated cavity size of TA (CCDC number: 2056802).

Figure S7. The estimated cavity size of MTA (CCDC number: 2056800).

Figure S8. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated TI.

Figure S9. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated TA. The H_2O peak is from CDCl₃.

Figure S10. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated **MTA**. The H₂O peak is from CDCl₃.

Figure S11. Powder X-ray diffraction patterns: (a) activated **TI** crystals; (b) activated **TA** crystals and (c) activated **MTA** crystals.

Figure S12. Thermogravimetric analysis of activated TI.

Figure S13. Thermogravimetric analysis of activated TA.

Figure S14. Thermogravimetric analysis of activated MTA.

Figure S15. N_2 adsorption isotherm for activated TI. The BET surface area value is 1.67 m²/g. Adsorption, black symbols; desorption, red symbols.

Figure S16. N_2 adsorption isotherm for activated TA. The BET surface area value is 3.65 m²/g. Adsorption, black symbols; desorption, red symbols.

Figure S17. N₂ adsorption isotherm for activated MTA. The BET surface area value is $1.74 \text{ m}^2/\text{g}$. Adsorption, black symbols; desorption, red symbols.

Vapor-phase adsorption measurements

For each single-component 1-CBU or 2-CBU adsorption experiment, an open 5 mL vial containing 0.020 g of activated guest-free TI/TA/MTA adsorbent was placed in a sealed 20 mL vial containing 2 mL of 1-CBU or 2-CBU. Before measurements, the crystals were heated at 30 °C for 30 minutes to remove the surface-physically adsorbed vapor. Uptake in the 1-CBU or 2-CBU crystals was measured by completely dissolving the crystals in CDCl₃ by ¹H NMR.

Figure S18. ¹H NMR spectra (400 MHz, CDCl₃, 293 K) of activated **TI** after exposure to (a) **2-CBU** vapor and (b) **1-CBU** vapor. The results indicated that there is no absorption of the chorobutane isomers.

Figure S19. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated **TA** after adsorption of **1-CBU** vapor. The integration can be calculated as about 0.5 equiv. of **1-CBU** per **TA** molecule.

Figure S20. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated TA after adsorption of 2-CBU vapor. The integration can be calculated as about 1 equiv. of 2-CBU per TA molecule.

Figure S21. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated **MTA** after adsorption of **1-CBU** vapor. The integration can be calculated as about 1.5 equiv. of **1-CBU** per **MTA** molecule.

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃, 293 K) of activated **MTA** after adsorption of **2-CBU** vapor. The integration can be calculated as about 1.5 equiv. of **2-CBU** per **MTA** molecule.

Figure 23. The crystal structure of **2TA** \supset **1-CBU**. C–H···Cl interaction parameters are as follows. H···Cl distance (Angstroms), C–H···Cl angle (degrees): C, 2.96, 167.2; H··· π plane distance (Angstroms): A, 2.70; B, 2.99.

Figure S24. Powder X-ray diffraction patterns: (I) activated **TA**; (II) activated **TA** after adsorption of **1-CBU**; (III) simulated from single crystal structure of **2TA**⊃**1-CBU**.

Figure 25. The crystal structure of **TA** \supset **2-CBU**. H···*π* plane distance (Angstroms): A, 2.96.

Figure S26. Powder X-ray diffraction patterns: (I) activated **TA**; (II) activated **TA** after adsorption of **2-CBU**; (III) simulated from single crystal structure of **TA**⊃**2-CBU**.

Figure 27. The crystal structure of **MTA@1-CBU**. C–H···Cl interaction parameters are as follows. H····Cl distance (Angstroms), C–H····Cl angle (degrees): A, 2.90, 123.6; B, 2.82, 124.4. H··· π plane distance (Angstroms): C, 2.73; D, 2.88.

Figure S28. Powder X-ray diffraction patterns: (I) activated **MTA**; (II) activated **MTA** after adsorption of **1-CBU**; (III) simulated from single crystal structure of **MTA@1-CBU**.

Figure S29. The crystal structure of MTA@2-CBU. C-H··· π interaction parameters are as follows. H··· π plane distance (Angstroms): A, 2.68; B, 3.01; C, 2.84.

Figure S30. The packing structure of MTA@2-CBU. The crystal structure of MTA@2-CBU was very similar to that of MTA@1-CBU. In the crystal structure of MTA@2-CBU, 2-CBU in the extrinsic channel is extremely disordered which can hardly be refined.

Figure S31. Powder X-ray diffraction patterns: (I) activated MTA; (II) activated MTA after adsorption of 2-CBU; (III) simulated from single crystal structure of MTA@2-CBU.

Figure S32. Powder X-ray diffraction patterns: (I) activated TA after adsorption of 1-CBU; (II) 1-CBU-loaded TA after exposure to 2-CBU vapor. The PXRD patterns of 1-CBU-loaded TA before and after exposure to 2-CBU vapors were almost same, indicating that the crystal to crystal phase transformation from TA \supset 2-CBU into 2TA \supset 1-CBU didn't happen.

Selective adsorption experiments of activated MTA/TA toward 1-CBU/2-CBU mixture

For the selective adsorption experiments, an open 5 mL vial containing 0.020 g of activated guest-free TA/MTA was placed in a sealed 20 mL vial containing 2 mL of the 1-CBU and 2-CBU mixture (v:v = 1:1). Before measurements, the crystals were heated at 30 °C for 30 minutes to remove the surface physically adsorbed vapor. Uptake in the 1-CBU or 2-CBU crystals was measured by completely dissolving the crystals in CDCl₃ by ¹H NMR. For cycling performance investigation, 1-CBU-loaded TA powders were heated under vacuum at 120 °C overnight to release 1-CBU from TA.

Figure S33. Magnified ¹H NMR spectra of activated MTA after adsorption of (a)1-CBU/2-CBU mixture, (b) 2-CBU (pure) and (c) 1-CBU (pure).

Figure S34. Time-dependent solid-vapor sorption plot of activated MTA for 1-CBU/2-CBU mixture vapor.

Figure S35. Relative 1-CBU/2-CBU uptake in crystalline MTA measured by gas chromatography.

Figure S36. Magnified ¹H NMR spectra of activated **TA** after adsorption of (a) **1-CBU** (pure), (b) **2-CBU** (pure) and (c) **1-CBU/2-CBU** mixture.

Figure S37. Relative 1-CBU/2-CBU uptake in crystalline TA measured by gas chromatography.

Figure S38. PXRD spectra of (I) activated **TA** and (II) activated **TA** immersed in water for 7 days.

Figure S39. Partial ¹H NMR spectra of activated **TA** after adsorption of (a) **1-BBU** (pure), (b) **2-BBU** (pure) and (c) **1-BBU/2-BBU** mixture.

Figure S40. PXRD patterns of: (I) activated TA; (II) activated TA after exposure to 1bromobutane (1-BBU) vapor; (III) activated TA after exposure to 2-bromobutane (2-BBU) vapor; (IV) activated TA after exposure to the mixture vapor of 1-BBU and 2-BBU (1:1).

Figure S41. Time-dependent solid-vapor sorption plot of activated TA for 1-BBU/2-BBU mixture vapor.

Figure S42. Relative 1-BBU/2-BBU uptake in crystalline TA measured by gas chromatography.

Figure S43. Relative uptake of 1-BBU and 2-BBU for five cycles.

Figure S44. Ball-stick views of the crystal structure of 2TA⊃1-CP.

Figure S45. Partial ¹H NMR spectra of activated TA after adsorption of (a) 1-CP (pure), (b) 2-CP (pure) and (c) 1-CP/2-CP mixture.

Figure S46. PXRD patterns of: (I) activated TA; (II) activated TA after exposure to 1chloropentane (1-CP) vapor; (III) activated TA after exposure to 2-chloropentane (2-CP) vapor; (IV) activated TA after exposure to the mixture vapor of 1-CP and 2-CP (1:1).

Figure S47. Relative 1-CP/2-CP uptake in crystalline TA measured by gas chromatography.

	2TA⊃1-CBU	TA⊃2-CBU	2TA⊃1-CP
Collection Temperature	120 K	120 K	120K
Sum Formula	$C_{47}H_{64.5}Cl_{0.5}N_6$	C49H69ClN6	$C_{95}H_{119}ClN_{12}$
Mr	731.27	777.55	1464.46
Crystal System	orthorhombic	triclinic	monoclinic
Space Group	P21212	P1	C2
<i>a</i> [Å]	17.8982(5)	10.9057(15)	34.933(2)
<i>b</i> [Å]	41.8156(12)	14.2504(17)	11.7740(6)
<i>c</i> [Å]	5.6166(2)	16.844(2)	22.6543(13)
α [°]	90	107.383(7)	90
β [°]	90	104.681(8)	114.401(3)
γ [°]	90	104.350(7)	90
V [Å3]	4203.6(2)	2263.4(5)	8485.4(8)
Ζ	4	2	4
Dcalcd [g cm-3]	1.155	1.141	1.146
μ[mm-1]	0.802	0.124	0.098
F(000)	1588.0	844.0	3160.0
2θ range [°]	5.37-133.158	4.122-52.742	4.426–56.822
Reflections collected	21071	82923	85840
Independent reflections, Rint	7304, 0.0338	18192, 0.0271	20836,0.1378
Data /restraints /parameters	7304/1100/764	18192/618/1157	20836/1/975
Final R1 values $(I > 2\sigma(I))$	0.0616	0.0496	0.0865
Final <i>R</i> 1 values (all data)	0.0678	0.0528	0.1702
Final $wR(F_2)$ values (all data)	0.1612	0.1423	0.2764
Goodness-of-fit on F^2	1.091	1.028	1.017
Largest difference peak and hole [e.A-3]	0.18/-0.26	0.75/-0.42	1.23/-0.61
CCDC	2056801	2056802	2079899

X-ray crystal data

	MTA@1-CBU	MTA@2-CBU
 Collection Temperature	120.04 K	120.0 K
Mr	3920.30	957.70
Crystal System	Monoclinic	Monoclinic
Space Group	P2 ₁	P2 ₁
<i>a</i> [Å]	9.9529(3)	9.8761(2)
<i>b</i> [Å]	49.9513(16)	49.9783(10)
<i>c</i> [Å]	12.3951(3)	12.5730(3)
α [°]	90	90

β[°]	113.5250(10)	113.0610(10)
γ [°]	90	90
V [Å3]	5650.2(3)	5710.0(2)
Ζ	1	4
Dcalcd [g cm-3]	1.152	1.114
μ[mm-1]	0.131	0.998
F(000)	2119.0	2072.0
2θ range [°]	4.464 - 49.992	7.074–136.612
Reflections collected	44278	44398
Independent reflections, Rint	18680, 0.0605	18565, 0.0324
Data /restraints /parameters	18680/2030/2040	18565/1698/1643
Final R1 values $(I > 2\sigma(I))$	0.0944	0.0814
Final <i>R</i> 1 values (all data)	0.1260	0.0866
Final $wR(F_2)$ values (all data)	0.2798	0.2251
Goodness-of-fit on F^2	1.051	1.018
Largest difference peak and hole [e.A-3]	1.02/-0.42	0.58/-0.723
CCDC	2056799	2056800

Crystallization methods: 5 mg of dry **TA** or **MTA** powders were put in small vials where 2 mL of **1-CBU**, **1-CP** or **2-CBU** were added, respectively. The resultant transparent solutions were allowed to evaporate slowly to give colorless crystals in 2 to 3 days.

References

- S1. N. Kuhnert, C. Straßnig, and M.Lopez-Periago, Tetrahedron: Asymmetry 2002, 13, 123-128.
- S2. J. Gawronski, K. Gawronska, J. Grajewski, M. Kwit, A. Plutecka and U. Rychlewska *Chem. Eur. J.* 2006, **12**, 1807–1817.
- S3. M. Chadim, M. Budesinsky, J. Hodacova, J. Zavada and P. C. Junk, *Tetrahedron: Asymmetry* 2001, 12, 127–133.
- S4. Y. Zhou, K. Jie, R. Zhao, E. Li and F. Huang, J. Am. Chem. Soc. 2020, 142, 6957–6961.