Combining palladium and ammonium halide catalysts for Morita–Baylis–Hillman carbonates of methyl vinyl ketone: From 1,4-

carbodipoles to ion pairs

Yang Yang,^a Bo Zhu,^a Lei Zhu,^b Ying Jiang,^a Chun-Ling Guo,^b Jing Gu,^b Qin Ouyang,^{*b} Wei Du,^{*a} and Ying-Chun Chen^{*a,b}

^aKey Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China

^bCollege of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China

E-mail: ouyangq@tmmu.edu.cn; duweiyb@scu.edu.cn; ycchen@scu.edu.cn.

Supplementary Information

Table of Contents

1.	General methods						
2.	Procedures for the synthesis of IPC C4 and bifunctional ligand L4						
3.	Procedures for the synthesis of (E)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-						
yli	dene)acetamides						
4.	4. Condition optimisations						
	4.1 Diverse phosphine ligands investigated in the asymmetric [4+2] annulation with MBH carbonate 1a and α-benzylidene-1 <i>H</i> -indene-1,3(2 <i>H</i>)-dione 2a S8 4.2 Investigation of bifunctional ligands containing an ammonium moiety. S9 4.3 Diverse control experiments S10 4.4 Screenings with diverse phosphoramidite ligands S11 4.5 Solvent screenings. S12 4.6 Screening conditions for asymmetric [4+2] annulations involving 3-olefinic oxindoles S13 4.7 Screening conditions for asymmetric oxa-[4+2] annulation. S15						
5.	General procedure for asymmetric [4+2] annulations						
	 5.1 Asymmetric [4+2] annulations involving α-alkylidene-1<i>H</i>-indene-1,3(2<i>H</i>)-diones.S16 5.2 Regiodivergent asymmetric [4+2] annulations with MBH carbonate 1qS32 5.3 Diastereodivergent asymmetric [4+2] annulations involving 3-olefinic oxindolesS36 5.4 Asymmetric [4+2] annulations involving isatins						

	5.5 Transformations of the [4+2] annulation product 3a5.6 Dimerisation of 11e	
6.	Crystal data for enantiopure products 3s, 6g, 9c and 14	
7.	More unsuccessful attempts	
8.	Bioactivity test	
	8.1 Biological results	S64
	8.2 Biological evaluation methods	
9.	Mechanism study	S66
	9.1 Control experiments	S66
	9.2 UV-Vis absorption analysis	S67
10.	DFT calculations	S85
	10.1 Coordination model	
	10.2 Reaction process	
	10.3 The regioselectivity	
12.	NMR, HRMS spectra and HPLC chromatograms	
13.	Computational methods and data	S269
14.	References	

1. General methods

When the reactions required heating, the heat source was oil bath. ¹H NMR (400 or 600 MHz), ¹³C NMR (100 or 150 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, dt = double triplet; td = triple doublet; m = multiplet, br = broad, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker APEX-II CCD diffractometer. Ultraviolet-visible spectra were recorded on a GENESYS 180 using ethyl acetate as the solvent. In each case, diastereomeric ratio was determined by ¹H NMR or HPLC analysis and enantiomeric excess was determined by HPLC analysis on a chiral stationary phase, using a Daicel Chiralpak IA Column (250×4.6 mm), Chiralpak Column IB (250 × 4.6 mm), Chiralpak Column IC (250 × 4.6 mm), Chiralpak Column ID $(250 \times 4.6 \text{ mm})$, Chiralpak Column IE $(250 \times 4.6 \text{ mm})$, Chiralpak Column IF $(250 \times 4.6 \text{ mm})$ or Chiralpak AD-H Column (250 × 4.6 mm), Chiralcel OD-H Column (250 × 4.6 mm). UV detection was monitored at 254 nm. Optical rotation was measured in CH2Cl2 or CHCl3 solution at 25 °C. Column chromatography was performed on silica gel (200-300 mesh) eluting with ethyl acetate (EtOAc) or acetone and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, solution of potassium permanganate were used to visualize products or the starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether and EtOAc were distilled. Methyl vinyl ketone derived MBH carbonates 1,¹ 2alkylidene-1*H*-indene-1,3(2*H*)-diones **2**,² 3-olefinic oxindoles **5**,³ (*E*)-N,N-diethyl-2-(1-methyl-2oxoindolin-3-ylidene) acetamides 8^4 were prepared according to the literature procedures.

2. Procedures for the synthesis of IPC C4 and bifunctional ligand L4

Benzyl bromide (0.71 g, 2.4 mmol) and cinchonine (0.59 g, 2.0 mmol) were dissolved in dry THF (8 mL). The mixture was refluxed overnight under Ar, and then cooled to room temperature. It was concentrated in vacuum, and purified by column chromatography (DCM/MeOH = 80/1-33/1) to give the desired ion-pair catalyst C4, as a white solid in 8% yield (95 mg). *The yield is low, mainly due to the steric hindrance of 2,4,6-triisopropyl benzyl bromide reagent which might make the formation of quaternary ammonium salt difficult. In addition, the attack by the N atom of quinoline ring also might occur, and a few by-products were obviously observed.*

(1R,2R,4S,5R)-2-((S)-Hydroxy(quinolin-4-yl)methyl)-1-(2,4,6-triisopropylbenzyl)-5-vinylquinuclidin-1-ium bromide (C4): White solid, mp: 133–135 °C; $[\alpha]_D^{25} = +80.0 (c = 0.08, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3): δ (ppm) 8.96 (d, J = 4.5 Hz, 1H), 8.24–8.12 (m, 1H), 8.07 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 4.5 Hz, 1H), 7.74 (ddd, J = 8.2, 6.8, 1.2

Hz, 1H), 7.64 (ddd, J = 8.2, 6.8, 1.4 Hz, 1H), 7.20 (d, J = 1.9 Hz, 1H), 7.13 (d, J = 1.9 Hz, 1H), 7.04– 7.02 (m, 1H), 6.97 (d, J = 5.8 Hz, 1H), 6.15 (d, J = 14.0 Hz, 1H), 6.11–6.03 (m, 1H), 5.28 (d, J = 10.3 Hz, 1H), 5.22 (d, J = 17.1 Hz, 1H), 5.01 (d, J = 13.8 Hz, 1H), 4.73–4.64 (m, 1H), 3.81 (t, J = 9.4 Hz, 1H), 3.73–3.66 (m, 1H), 3.56–3.26 (m, 3H), 3.00–2.90 (m, 1H), 2.81–2.73 (m, 1H), 2.66–2.54 (m, 1H), 2.51–2.39 (m, 1H), 1.94 (s, 1H), 1.88–1.70 (m, 2H), 1.41 (d, J = 6.6 Hz, 3H), 1.37 (d, J = 6.6 Hz, 3H), 1.34 (d, J = 6.5 Hz, 3H), 1.30–1.27 (m, 9H), 1.10–0.99 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.5, 151.9, 150.5, 150.1, 148.1, 144.9, 135.7, 131.0, 129.2, 127.2, 124.6, 123.7, 122.4, 122.1, 120.6, 118.5, 117.8, 69.8, 64.4, 56.8, 55.2, 55.1, 38.9, 34.2, 31.7, 30.6, 28.0, 26.75, 26.68, 24.6, 23.8, 23.7, 22.9, 22.4, 21.7; HRMS (ESI-TOF) m/z: [M – Br]⁺ Calcd for C₃₅H₄₇N₂O⁺ 511.3683; Found 511.3686.

To a mixture of (*S*)-2-((diphenylphosphanyl)methyl)pyrrolidine (54 mg, 0.20 mmol) and K₂CO₃ (83 mg, 0.60 mmol) in CH₃CN (1 mL) and CHCl₃ (1 mL) was added (*S*)-2,2'-bis(bromomethyl)-1,1'binaphthalene (88 mg, 0.20 mmol) at room temperature under Ar. After 24 h, the solution was concentrated and was purified by column chromatography on silica gel (CHCl₃/MeOH = 20/1 as eluent) to afford the desired product L4 (89 mg, 71% yield) as a white solid.

(2'S,11*bS*)-2'-((Diphenylphosphanyl)methyl)-3,5-dihydrospiro [dinaphtho[2,1-*c*:1',2'-e]azepine-4,1'-pyrrolidin]-4-ium bromide (L4). White solid, mp: 133–135 °C; $[\alpha]_{D}^{25} = +93.3$ (*c* = 0.21, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.08–8.00 (m, 2H), 8.00 (d, *J* = 3.0 Hz, 1H), 7.99

(d, J = 3.6 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.54– 7.51 (m, 1H), 7.43–7.29 (m, 7H), 7.29–7.16 (m, 7H), 5.11 (d, J = 14.0 Hz, 1H), 4.80 (d, J = 12.5 Hz, 1H), 4.40 (q, J = 10.4 Hz, 1H), 4.20 (d, J = 12.5 Hz, 1H), 4.00–3.93 (m, 1H), 3.61 (d, J = 14.0 Hz, 1H), 3.26 (t, J = 9.9 Hz, 1H), 2.77 (t, J = 12.2 Hz, 1H), 2.54–2.49 (m, 1H), 2.40 (dd, J = 12.2, 2.6 Hz, 1H), 2.38–2.33 (m, 1H), 2.28–2.22 (m, 1H), 2.14–2.06 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 136.9, 136.6 (d, J = 12.1 Hz), 136.1 (d, J = 13.3 Hz), 135.1, 134.3, 134.0, 132.8, 132.7, 132.5, 131.3, 131.0, 130.5, 129.6, 129.4, 129.3, 128.93, 128.88, 128.8, 128.7, 128.6, 128.5, 128.4, 127.9, 127.8, 127.7, 127.6, 127.33, 127.30, 127.1, 127.00, 126.98, 75.2 (d, J = 25.7 Hz), 65.2, 60.8, 58.9, 30.7 (d, J = 18.6 Hz), 28.5 (d, J = 7.0 Hz), 19.1; **HRMS** (ESI-TOF) m/z: [M – Br]⁺ Calcd for C₃₉H₃₅NP⁺ 548.2502 (³¹P) and 549.2535 (³²P); Found 548.2503 (³¹P) and 549.2543 (³²P).

3. Procedures for the synthesis of (*E*)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-ylidene)acetamides

A solution of isatin (2.0 mmol) and Wittig reagent in dry DCM (8 mL) was stirred at room temperature for 1–2 h. After completion, the solvent was concentrated in vacuum, and the residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 6/1-3/1) to give the desired product.

(*E*)-N,N-Diethyl-2-(1-methyl-2-oxoindolin-3-ylidene)acetamide (8a): Yellow solid, mp: 91–92 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.3 (J = 7.7 Hz, 1H), 7.31 (td, J= 7.7, 1.1 Hz, 1H), 7.22 (s, 1H), 7.00 (td, J = 7.7, 1.1 Hz, 1H), 6.79 (d, J = 7.7 Hz, 1H), 3.56 (q, J = 7.1 Hz, 2H), 3.40 (q, J = 7.1 Hz, 2H), 3.24 (s, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.6, 165.3, 144.7, 132.6, 131.1, 126.1, 125.7, 122.7, 120.1, 108.1, 42.8, 39.8, 26.2, 14.6, 13.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₈N₂O₂Na⁺ 281.1260; Found 281.1260.

 $(E)-2-(1,5-Dimethyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide (8b): Yellow solid, mp: 75-76 °C; ¹H NMR (400 MHz, CDCl₃): <math>\delta$ (ppm) 7.64(s, 1H), 7.19 (s, 1H), 7.11 (dd, J = 7.8, 0.9 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 3.57 (q, J = 7.1 Hz, 2H), 3.40 (q, J = 7.1 Hz, 2H), 3.21 (s, 3H), 2.30 (s, 3H), 1.27 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.6, 165.4, 142.5, 132.8, 132.1, 131.4, 126.3, 125.8, 120.1, 107.9, 42.8, 39.8, 26.2, 21.1, 14.6, 13.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₂₁N₂O₂Na⁺

295.1417; Found 295.1420.

(E)-2-(5-Bromo-1-methyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide (8c):
Yellow solid, mp: 105–107 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81 (d, J = 8.1 Hz, 1H), 7.25 (s, 1H), 7.14 (dd, J = 8.1, 1.8 Hz, 1H), 6.95 (d, J = 1.8 Hz, 1H),

3.54 (q, J = 7.1 Hz, 2H), 3.41 (q, J = 7.1 Hz, 2H), 3.22 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.5, 164.9, 145.9, 132.2, 127.3, 126.4, 125.5, 125.2, 118.9, 111.7, 42.9, 40.1, 26.3, 14.7, 13.1; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₈N₂O₂Br⁺ 337.0546 (⁷⁹Br) and 339.0526 (⁸¹Br); Found 337.0545 (⁷⁹Br) and 339.0525 (⁸¹Br).

(E)-2-(6-Bromo-1-methyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide (8d):Yellow solid, mp: 105–107 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (d, J = 8.1 Hz, 1H), 7.25 (s, 1H), 7.14 (dd, J = 8.1, 1.7 Hz, 1H), 6.95 (d, J = 1.7 Hz, 1H), 3.54 (q, J = 7.1 Hz, 2H), 3.41 (q, J = 7.1 Hz, 2H), 3.22 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 167.5, 164.9, 145.9, 132.2, 127.3, 126.4, 125.6, 125.2, 118.9, 111.7, 42.9, 40.1, 26.3, 14.7, 13.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₇N₂O₂NaBr⁺ 359.0366 (⁷⁹Br) and 361.0345 (⁸¹Br); Found 359.0371 (⁷⁹Br) and 361.0352 (⁸¹Br).

 $\begin{array}{l} \textbf{(E)-2-(7-Chloro-1-methyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide} \\ \textbf{(8e):} \\ \textbf{Yellow solid, mp: 95-96 °C; ^{1}H NMR (400 MHz, CDCl_3): } \delta (ppm) 7.73 (dd, J = 7.6, \\ 1.2 Hz, 1H), 7.26 (s, 1H), 7.23 (dd, J = 8.2, 1.2 Hz, 1H), 6.90 (dd, J = 8.2, 7.6 Hz, 1H), \\ 3.62 (s, 3H), 3.55 (q, J = 7.1 Hz, 2H), 3.38 (q, J = 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 3H), \\ 1.15 (t, J = 7.1 Hz, 3H); ^{13}C NMR (100 MHz, CDCl_3): \delta (ppm) 167.8, 165.0, 140.4, 133.1, 131.2, \\ 127.6, 124.0, 123.4, 122.7, 115.7, 42.8, 39.8, 29.7, 14.6, 13.0; HRMS (ESI-TOF) m/z: [M + Na]^+ \end{array}$

Calcd for $C_{15}H_{17}N_2O_2NaCl^+$ 315.0871 (³⁵Cl) and 317.0841 (³⁷Cl); Found 315.0883 (³⁵Cl) and 317.0861 (³⁷Cl).

tert-Butyl (*E*)-3-(2-(diethylamino)-2-oxoethylidene)-2-oxoindoline-1-carboxylate (8f): Yellow solid, mp: 56–57 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.91–7.85 (m, 2H), 7.36 (td, J = 8.1, 1.2 Hz, 1H), 7.23 (s, 1H), 7.13 (td, J = 7.7, 1.2 Hz, 1H), 3.56 (q, J = 7.1 Hz, 2H), 3.37 (q, J = 7.1 Hz, 2H), 1.65 (s, 9H), 1.26 (t, J = 7.1 Hz, 3H), 1.15 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 165.9, 165.0, 149.1, 140.6, 131.3, 131.1, 127.2, 125.2, 124.5, 120.2, 115.1, 84.6, 42.8, 39.8, 28.1, 14.6, 13.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₉H₂₅N₂O₄⁺ 345.1809; Found 345.1811.

4. Condition optimisations

4.1 Diverse phosphine ligands investigated in the asymmetric [4+2] annulation with MBH carbonate 1a and α-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a

Scheme S1 Diverse phosphine ligands screened

The reaction was conducted with MBH carbonate **1a** (0.75 mmol), enone **2a** (0.05 mmol), $Pd(OAc)_2$ (0.0025 mmol) and ligand (0.00275 mmol) in dry THF (0.5 mL) under Ar, and the mixture was stirred at 40 °C for 36 h.

As outlined in Scheme **S1**, several chiral phosphine ligands were investigated. Most ligands could not promote this [4+2] annulation reaction in combination with Pd(OAc)₂. A few bisphosphine ligands, such as BINAP, showed good catalytic activity, but the enantioselectivity was very poor, indicating that the chiral Pd-complex could not well control the selectivity of the remote addition reaction.

4.2 Investigation of bifunctional ligands containing an ammonium moiety

Scheme S2 Bifunctional phosphine ligands screened

The reaction was conducted with MBH carbonate 1a (0.06 mmol), enone 2a (0.05 mmol), Pd(OAc)₂ (0.0025 mmol) and bifunctional ligand (0.00275 mmol) in dry toluene (0.5 mL) under Ar, and the mixture was stirred at room temperature.

As outlined in Scheme **S2**, the phosphine ligands containing an ammonium or a phosphonium moiety, similar to the ligand developed by Ooi (*Nat. Chem.* **2014**, *6*, 47), were investigated. Unfortunately, no reaction occurred, probably due to the improper assembly of the substrate and the corresponding Pd-complex.

4.3 Diverse control experiments

Scheme S3 The effect of IPCs

Unless other noted, the reaction was conducted with MBH carbonate **1a** (0.6mmol), enone **2a** (0.05 mmol), $Pd(OAc)_2$ (0.0025 mmol), **C4** (0.00275 mmol) and ligand (0.00275 mmol) in dry toluene (0.5 mL) under Ar, and the mixture was stirred at room temperature.

To verify the effect of IPCs, the bulky cinchonine derived ammonium salt C4 was added into the reaction system. It was found that the addition of salt C4 prohibited the reaction when BINAP was used (*in fact, adding simple TBAB also prohibited the reaction*). In contrast, while the phosphoramidite-Pd complex was inert, adding C4 significantly promoted the conversion, and moderate yield and good enantioselectivity were obtained. Notably, the traditional phosphine-catalyzed [3+2] annulation product (shown in the Scheme S3) was also detected when nucleophilic (*S*,*S*)-DIOP or (*R*)-SITCP was used.

4.4 Screenings with diverse phosphoramidite ligands

Scheme S4 More screening results of phosphoramidite ligands

Unless other noted, the reaction was conducted with MBH carbonate 1a (0.6mmol), enone 2a (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), C4 (0.005 mmol) and phosphoramidite ligand (0.005 mmol) in dry toluene (0.5 mL) under Ar, and the mixture was stirred at room temperature.

To improve the stereocontrol of this [4+2] annulation, we tested a number of phosphoramidite ligands in combination with bulky IPC C4. As outlined in Scheme S4, apparent match and mismatch effects for the chiral ligands were observed. In general, the enantioselectivity was dominantly controlled by chiral IPC C4, since a good ee value could be obtained when an achiral ligand was used.

4.5 Solvent screenings

	BocO + (O Pd(OAc) (5 Ph C4 (10 n) L7 (10 n) solvent, F	5 mol%) nol%) nol%) RT, 36 h RT, 36 h RT, 36 h	0
Entry ^a	Solvent	Time (h)	Yield $(\%)^b$	ee (%) ^c
1	Toluene	36	86	93
2	Xylene	36	60	92
3	Ethyl Acetate	36	78	85
4	CH ₂ Cl ₂	36	ND	35
5	DCE	36	ND	37

Table S1 Solvent screenings for the model reaction

^{*a*}Unless otherwise noted, the reactions were conducted with **1a** (0.075 mmol), **2a** (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), C**4** (0.005 mmol) and L**7** (0.005 mmol) in dry solvent (0.5 mL) under Ar. ^{*b*}Isolated yields. ^{*c*}Determined by chiral HPLC analysis on a chiral stationary phase; >19:1 dr. ND = not determined.

4.6 Screening conditions for asymmetric [4+2] annulations involving 3-olefinic oxindoles

Scheme S5 Screening results of phosphoramidite ligands

The reactions were conducted with MBH carbonate 1a (0.06 mmol), 3-olefinic oxindole 5a (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), C4 (0.00375 mmol) and ligand (0.00375 mmol) in dry toluene (0.5 mL) under Ar.

Scheme S6 Screening results by using various ammonium salts

The reactions were conducted with MBH carbonate **1a** (0.06 mmol), 3-olefinic oxindole **5a** (0.05 mmol), $Pd(OAc)_2$ (0.0025 mmol), **IPC** (0.00375 mmol) and **L3** (0.00375 mmol) in dry toluene (0.5 mL) under Ar.

Scheme S7 Diastereoselective results by screening IPCs

The reactions were conducted with MBH carbonate 1a (0.06 mmol), 3-olefinic oxindole 5a (0.05 mmol), $Pd(OAc)_2$ (0.0025 mmol), IPC (0.00375 mmol) and (*R*)-L3 (0.00375 mmol) in dry toluene (0.5 mL) under Ar.

Scheme S8 Screening results of phosphoramidite ligands

The reactions were conducted with MBH carbonate **1a** (0.06 mmol), (*E*)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-ylidene)acetamide **8a** (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), C**4** (0.00375 mmol) and ligand (0.00375 mmol) in dry toluene (0.5 mL) under Ar.

4.7 Screening conditions for asymmetric oxa-[4+2] annulation

Scheme S9 Screening results of oxa-[4+2] annulation

The reactions were conducted with MBH carbonate **1a** (0.06 mmol), isatin **10a** (0.05 mmol), $Pd(OAc)_2$ (0.0025 mmol), IPC (0.00375 mmol) and ligand (0.00375 mmol) in dry toluene (0.5 mL) under Ar.

5. General procedure for asymmetric [4+2] annulations

Ph

5.1 Asymmetric [4+2] annulations involving α-alkylidene-1*H*-indene-1,3(2*H*)-diones

The reaction was conducted with MBH carbonate 1 (0.12 mmol), enone 2 (0.10 mmol), Pd(OAc)₂ (0.0050 mmol), C4 (0.0075 mmol) and L7 (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature for 36 h. After completion, the product was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15-1/10). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

(2*R*,6*S*)-3-Methylene-2,6-diphenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3a): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.1 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075

mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3a** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 32.7 mg, 83% yield; mp: 158–161 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.15 min, t (minor) = 8.16 min]; [α] ²⁵/_D = -25.8 (c = 0.31, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.74–7.71 (m, 1H), 7.68–7.58 (m, 3H), 7.19–7.05 (m, 6H), 7.05–7.00 (m, 2H), 7.00–6.95 (m, 2H), 6.44 (s, 1H), 5.33 (s, 1H), 4.44 (s, 1H), 3.84 (dd, J = 11.6, 4.8 Hz, 1H), 3.59 (dd, J = 17.0, 11.6 Hz, 1H), 3.02 (dd, J = 17.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 201.3, 198.6, 143.3, 141.8, 141.4, 138.1, 136.7, 135.65, 135.56, 130.3, 128.7, 128.33, 128.30, 127.7, 127.5, 125.2, 122.99, 122.97, 62.0, 50.5, 43.0, 41.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₀O₃Na⁺ 415.1305; Found 415.1308.

(2*R*,6*S*)-3-Methylene-6-phenyl-2-(*m*-tolyl)spiro[cyclohexane-1,2'-indene]-1',3',4-trione (3b): *tert*-Butyl (2-methylene-3-oxo-1-(*m*-tolyl)butyl)carbonate 1b (34.8 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and

L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 72 h, and monitored by TLC. Product **3b** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 30.9 mg, 76% yield; mp: 88–89 °C; >19:1 dr; 93% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 13.61 min, t (minor) = 10.30 min]; [α]_D²⁵ = -15.4 (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77–7.71 (m, 1H), 7.70–7.56 (m, 3H), 7.13–7.00 (m, 4H), 6.98–6.96 (m, 2H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.82–6.80 (m, 2H), 6.42 (s, 1H), 5.32 (s, 1H), 4.38 (s, 1H), 3.84 (dd, *J* = 11.5, 4.9 Hz, 1H), 3.58 (dd, *J* = 17.0, 11.5 Hz, 1H), 3.02 (dd, *J* = 17.0, 4.9 Hz, 1H), 2.20 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 201.3, 198.7, 143.4, 141.9, 141.4, 138.2, 137.9, 136.6, 135.6, 135.5, 131.0, 128.7, 128.4, 128.3, 128.2, 127.5, 127.3, 125.2, 123.0, 122.9, 62.0, 50.5, 42.9, 41.7, 21.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂O₃Na⁺ 429.1461; Found 429.1465.

(2R,6S)-3-Methylene-6-phenyl-2-(p-tolyl)spiro[cyclohexane-1,2'-indene]-

1',3',4-trione (3c): *tert*-Butyl (2-methylene-3-oxo-1-(*p*-tolyl)butyl)carbonate **1c** (34.8 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione **2a** (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol)

and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 72 h, and monitored by TLC. Product **3c** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 31.7 mg, 78% yield; mp: 197–199 °C; >19:1 dr; 93% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 13.89 min, t (minor) = 12.53 min]; [α]_D²⁵ = -50.8 (*c* = 0.37, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79–7.71 (m, 1H), 7.71–7.58 (m, 3H), 7.14–7.01 (m, 3H), 6.98–6.94 (m, 4H), 6.93–6.82 (m, 2H), 6.41 (t, *J* = 1.4 Hz, 1H), 5.31 (dd, *J* = 2.0, 1.4 Hz, 1H), 4.38 (t, *J* = 2.0 Hz, 1H), 3.84 (dd, *J* = 11.7, 4.9 Hz, 1H), 3.58 (dd, *J* = 17.1, 11.7 Hz, 1H), 3.01 (dd, *J* = 17.1, 4.9 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (100 MHz,

CDCl₃): δ (ppm) 201.6, 201.2, 198.8, 143.5, 141.8, 141.3, 138.2, 137.3, 135.7, 135.6, 133.8, 130.1, 129.1, 128.7, 128.3, 127.5, 125.2, 123.04, 123.01, 62.0, 50.2, 42.9, 41.7, 21.0; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂O₃Na⁺ 429.1461; Found 429.1465.

(2R,6S)-2-([1,1'-Biphenyl]-4-yl)-3-methylene-6-phenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3d): 1-([1,1'-Biphenyl]-4-yl)-2-methylene-3oxobutyl *tert*-butyl carbonate 1d (42.2 mg, 0.120 mmol), 2-benzylidene-1*H*indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050

mmol), **C4** (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3d** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 37.3 mg, 80% yield; mp: 194–195 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 17.50 min, t (minor) = 14.64 min]; $[\alpha]_D^{25} = -112.5$ (*c* = 0.24, CHCl₃); ¹H **NMR** (400 MHz, CDCl₃): δ (ppm) 7.78–7.72 (m, 1H), 7.70–7.66 (m, 1H), 7.65–7.60 (m, 2H), 7.51–7.45 (m, 2H), 7.43–7.35 (m, 4H), 7.33–7.27 (m, 1H), 7.16–7.07 (m, 5H), 7.01–6.94 (m, 2H), 6.48 (s, 1H), 5.38 (s, 1H), 4.50 (s, 1H), 3.86 (dd, *J* = 11.4, 4.8 Hz, 1H), 3.59 (dd, *J* = 17.0, 11.4 Hz, 1H), 3.05 (dd, *J* = 17.0, 4.8 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ (ppm) 201.41, 201.40, 198.6, 143.3, 141.8, 141.4, 140.3, 140.2, 138.1, 135.74, 135.71, 135.67, 130.7, 128.74, 128.73, 128.3, 127.5, 127.4, 126.92, 126.91, 125.4, 123.1, 123.0, 62.1, 50.0, 43.2, 41.6; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₃H₂₄O₃Na⁺ 491.1618; Found 491.1620.

(2R,6S)-2-(4-Fluorophenyl)-3-methylene-6-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (**3e**): *tert*-Butyl 1-(4-fluorophenyl)-2-methylene-3oxobutyl carbonate **1e** (35.3 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione **2a** (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4

(4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3e** was obtained as a pale yellow solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 38.3 mg, 93% yield; mp: 57–60 °C; >19:1 dr; 94% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, $\lambda = 254 \text{ nm}$, t (major) = 17.77 min, t (minor) = 13.38 min]; $[\alpha]_{D}^{25} = -29.4$ (c = 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80–7.72 (m, 1H), 7.70–7.59 (m, 3H), 7.14–7.04 (m, 3H), 7.03–6.97 (m, 2H), 6.97–6.91 (m, 2H), 6.87–6.77 (m, 2H), 6.47 (dd, J = 2.2, 1.1 Hz, 1H), 5.30 (dd, J = 2.2, 1.1Hz, 1H), 4.47 (t, J = 2.2 Hz, 1H), 3.78 (dd, J = 11.0, 4.8 Hz, 1H), 3.54 (dd, J = 17.0, 11.0 Hz, 1H), 3.02 (dd, J = 17.0, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.6, 201.2, 198.4, 162.0 (d, J = 247.3 Hz), 143.2, 141.7, 141.4, 137.9, 135.83, 135.80, 132.40, 132.37, 132.0 (d, J = 8.1 Hz), 128.7, 128.3, 127.6, 125.3, 123.0 (d, J = 3.0 Hz), 115.3 (d, J = 21.4 Hz), 62.1, 49.2, 43.3, 41.5; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –114.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉FNaO₃⁺ 433.1210; Found 433.1207.

(2R,6S)-2-(3,4-Dichlorophenyl)-3-methylene-6-phenylspiro[cyclohexane-

1,2'-indene]-1',3',4-trione (**3f**): *tert*-Butyl (1-(3,4-dichlorophenyl)-2methylene-3-oxobutyl)carbonate **1f** (41.4 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione **2a** (23.4 mg, 0.100 mmol), Pd(OAc)₂ (0.60 mg,

0.0025 mmol), **C4** (2.2 mg, 0.0038 mmol) and **L7** (1.7 mg, 0.0038 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3f** was obtained as a pale yellow solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 32.6 mg, 70% yield; mp: 166–167 °C; >19:1 dr; 93% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.69 min, t (minor) = 13.28 min]; [α]²⁵ = -63.0 (*c* = 0.24, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.83–7.76 (m, 1H), 7.75–7.65 (m, 3H), 7.23 (d, *J* = 8.3 Hz, 1H), 7.16–7.07 (m, 4H), 6.96–6.86 (m, 3H), 6.49 (dd, *J* = 2.2, 1.0 Hz, 1H), 5.26 (dd, *J* = 2.2, 1.0 Hz, 1H), 4.41 (t, *J* = 2.2 Hz, 1H), 3.74 (dd, *J* = 10.2, 5.2 Hz, 1H), 3.46 (dd, *J* = 17.4, 10.2 Hz, 1H), 3.06 (dd, *J* = 17.4, 5.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.1, 200.5, 197.7, 142.7, 141.4, 141.3, 137.7, 137.2, 136.08, 136.06, 132.5, 132.3, 132.0, 130.3, 129.6, 128.7, 128.4, 127.8, 125.8, 123.3, 123.2, 61.6, 48.5, 43.5, 41.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₁₉Cl₂O₃⁺ 461.0706 (³⁵Cl⁺2) and 463.0676 (³⁵Cl⁺3⁷Cl); Found 461.0700 (³⁵Cl⁺2) and 463.0675 (³⁵Cl + ³⁷Cl).

(2R,6S)-2-(2-Bromophenyl)-3-methylene-6-phenylspiro[cyclohexane-1,2'indene]-1',3',4-trione (3g): 1-(2-Bromophenyl)-2-methylene-3-oxobutyl *tert*butyl carbonate 1g (42.6 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg,

0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 72 h, and monitored by TLC. Product **3g** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 44.0 mg, 94% yield; mp: 198–199 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IC Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.76 min, t (minor) = 17.54 min]; [α]_p²⁵ = +30.7 (*c* = 0.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89 (dt, *J* = 7.5, 1.2 Hz, 1H), 7.74–7.70 (m, 1H), 7.69–7.64 (m, 2H), 7.51 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.34 (td, *J* = 7.8, 1.4 Hz, 1H), 7.18–7.12 (m, 2H), 7.08–6.91 (m, 5H), 6.34 (t, *J* = 1.2 Hz, 1H), 5.27 (t, *J* = 1.2 Hz, 1H), 4.89 (t, *J* = 1.2 Hz, 1H), 3.97 (dd, *J* = 13.2, 5.4 Hz, 1H), 3.66 (dd, *J* = 17.9, 13.2 Hz, 1H), 3.00 (dd, *J* = 17.9, 5.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.0, 198.7, 198.6, 143.6, 142.5, 140.7, 139.0, 137.6, 135.9, 135.5, 132.9, 130.7, 129.1, 128.8, 128.3, 127.6, 127.5, 126.4, 126.2, 123.2, 59.5, 50.0, 42.3, 41.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉BrO₃Na⁺ 493.0410 (⁷⁹Br) and 495.0389 (⁸¹Br); Found 493.0414 (⁷⁹Br) and 495.0399 (⁸¹Br).

indene]-1',3',4-trione (3h): 1-(3-Bromophenyl)-2-methylene-3-oxobutyl *tert*butyl carbonate 1h (42.6 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg,

(2R,6S)-2-(3-Bromophenyl)-3-methylene-6-phenylspiro[cyclohexane-1,2'-

0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3h** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 42.3 mg, 90% yield; mp: 171-172 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IC Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 20.25 min, t (minor) = 17.75 min]; $[\alpha]_{D}^{25} = -19.5$ (c = 0.43, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05–7.63 (m, 4H), 7.36 (t, J = 4.0 Hz, 1H), 7.24–6.95 (m, 8H), 6.57 (s, 1H), 5.39 (s, 1H), 4.49 (s, 1H), 3.88 (dd, J = 10.8, 5.0 Hz, 1H), 3.61 (dd, J = 17.2, 10.8 Hz, 1H), 3.15 (dd, J = 17.2, 5.0 Hz,

1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 201.4, 201.2, 198.4, 143.1, 142.0, 141.6, 139.5, 138.2, 136.2, 133.6, 131.2, 130.2, 129.2, 129.0, 128.7, 128.0, 126.0, 123.5, 123.4, 122.7, 62.1, 49.9, 43.5, 41.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉O₃BrNa⁺ 493.0410 (⁷⁹Br) and 495.0389 (⁸¹Br); Found 493.0408 (⁷⁹Br) and 495.0395 (⁸¹Br).

(2R,6S)-2-(4-Bromophenyl)-3-methylene-6-phenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3i): 1-(4-Bromophenyl)-2-methylene-3-oxobutyl *tert*-butyl carbonate 1i (42.6 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (0.60 mg, 0.0025 mmol),

C4 (2.2 mg, 0.0038 mmol) and L7 (1.7 mg, 0.0038 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3i** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 41.8 mg, 89% yield; mp: 179–181 °C; >19:1 dr; 89% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.13 min, t (minor) = 12.07 min]; $[\alpha]_D^{25} = -66.3$ (c = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80–7.73 (m, 1H), 7.73–7.64 (m, 3H), 7.32–7.25 (m, 2H), 7.12–7.08 (m, 3H), 6.98–6.88 (m, 4H), 6.46 (dd, J = 2.2, 1.0 Hz, 1H), 5.28 (dd, J = 2.2, 1.0 Hz, 1H), 4.43 (t, J = 2.2 Hz, 1H), 3.76 (dd, J = 10.7, 5.0 Hz, 1H), 3.50 (dd, J = 17.2, 10.7 Hz, 1H), 3.04 (dd, J = 17.2, 5.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.3, 200.9, 198.1, 143.0, 141.6, 141.4, 137.9, 135.9, 132.0, 131.5, 128.7, 128.3, 127.6, 125.4, 123.12, 123.09, 121.8, 61.9, 49.2, 43.4, 41.5; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₀BrO₃⁺ 471.0590 (⁷⁹Br) and 473.0570 (⁸¹Br) Found 471.0584 (⁷⁹Br) and 473.0568 (⁸¹Br).

(2R,6S)-3-Methylene-2-(2-nitrophenyl)-6-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3j): *tert*-Butyl (2-methylene-1-(2-nitrophenyl)-3oxobutyl)carbonate 1j (38.5 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg,

0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3j** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum

ether = 1/10–1/8), 35.4 mg, 80% yield; mp: 178–181 °C; >19:1 dr; 88% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 10.46 min, t (minor) = 19.78 min]; $[\alpha]_D^{25}$ = -36.5 (*c* = 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.01 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.76–7.60 (m, 3H), 7.57–7.46 (m, 2H), 7.30 (dd, *J* = 7.8, 1.4 Hz, 1H), 7.04–6.94 (m, 3H), 6.94–6.85 (m, 2H), 6.37 (s, 1H), 5.28 (s, 1H), 5.11 (s, 1H), 3.95 (dd, *J* = 13.4, 5.3 Hz, 1H), 3.63 (dd, *J* = 17.9, 13.4 Hz, 1H), 2.99 (dd, *J* = 17.9, 5.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.1, 199.0, 198.5, 148.4, 143.7, 142.6, 140.7, 137.0, 136.2, 136.0, 135.5, 133.4, 131.6, 128.7, 128.5, 128.3, 127.7, 127.5, 125.5, 123.0, 122.9, 59.0, 45.8, 42.6, 42.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155; Found 460.1154.

(2R,6S)-3-Methylene-2-(4-nitrophenyl)-6-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3k): *tert*-Butyl (2-methylene-1-(4-nitrophenyl)-3-oxobutyl)carbonate **1k** (38.5 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione **2a** (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol),

C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3k** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 42.7 mg, 98% yield; mp: 153-156 °C;>19:1 dr; 95% ee, determined by HPLC analysis [Daicel Chiral IC Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 23.19 min, t (minor) = 19.11 min]; $[\alpha]_{D}^{25} = -69.8$ (c = 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.08–7.98 (m, 2H), 7.82–7.61 (m, 4H), 7.24 (d, J = 8.8 Hz, 2H), 7.16–7.11 (m, 3H), 6.95–6.92 (m, 2H), 6.52 (s, 1H), 5.25 (s, 1H), 4.56 (s, 1H), 3.76 (dd, J = 10.1, 5.3 Hz, 1H), 3.48 (dd, J = 17.5, 10.1 Hz, 1H), 3.11 (dd, J = 17.5, 5.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 200.9, 200.3, 197.5, 147.2, 144.7, 142.4, 141.3, 141.2, 137.5, 136.22, 136.17, 131.3, 128.7, 128.5, 127.9, 126.0, 123.5, 123.32, 123.28, 61.6, 49.1, 43.5, 41.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155; Found 460.1152.

4-((2S,6R)-5-Methylene-1',3',4-trioxo-2-phenyl-1',3'-dihydrospiro [cyclohexane-1,2'-inden]-6-yl)benzonitrile (3l): *tert*-Butyl (2-methylene-1-(4-cycnophenyl)-3-oxobutyl)carbonate 11 (36.1 mg, 0.120 mmol), 2benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂

(1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **31** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 34.8 mg, 83% yield; mp: $173-174 \,^{\circ}C$; >19:1 dr; 95% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, $\lambda = 254 \,$ nm, t (major) = 42.23 min, t (minor) = 26.22 min]; $[\alpha]_{D}^{25} = -87.0 \, (c = 0.20, \text{ CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77–7.74 (m, 1H), 7.74–7.66 (m, 3H), 7.51–7.42 (m, 2H), 7.17–7.15 (m, 2H), 7.13–7.10 (m, 3H), 6.97–6.88 (m, 2H), 6.49 (dd, $J = 2.2, 0.9 \,$ Hz, 1H), 5.24 (dd, $J = 2.2, 0.9 \,$ Hz, 1H), 4.49 (t, $J = 2.2 \,$ Hz, 1H), 3.76 (dd, $J = 10.4, 5.2 \,$ Hz, 1H), 3.49 (dd, $J = 17.4, 10.4 \,$ Hz, 1H), 3.08 (dd, $J = 17.4, 5.2 \,$ Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 200.9, 200.5, 197.6, 142.6, 142.4, 141.3, 141.2, 137.6, 136.2, 136.1, 132.1, 131.1, 128.7, 128.4, 127.8, 125.9, 123.3, 123.2, 118.3, 111.7, 61.6, 49.6, 43.4, 41.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₁₉NO₃Na⁺ 440.1257; Found 440.1257.

(2*R*,6*S*)-3-Methylene-2-(naphthalen-2-yl)-6-phenylspiro[cyclohexane-1,2'indene]-1',3',4-trione (3m): *tert*-Butyl (2-methylene-1-(naphthalen-2-yl)-3oxobutyl)carbonate 1m (39.1 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4

(4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3m** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 37.4 mg, 84% yield; mp: 186–187 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 16.82 min, t (minor) = 12.47 min]; [α]_D²⁵ = -70.0 (*c* = 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.75–7.72 (m, 1H), 7.72–7.67 (m, 2H), 7.65–7.53 (m, 4H), 7.49 (d, *J* = 1.8 Hz, 1H), 7.44–7.35 (m, 2H), 7.19 (dd, *J* = 8.6, 1.8 Hz, 1H), 7.17–7.04 (m, 3H), 7.01–6.93 (m, 2H), 6.49 (dd, *J* = 2.2, 1.2

Hz, 1H), 5.33 (dd, J = 2.2, 1.2 Hz, 1H), 4.65 (t, J = 2.2 Hz, 1H), 3.86 (dd, J = 10.7, 5.0 Hz, 1H), 3.57 (dd, J = 17.2, 10.7 Hz, 1H), 3.11 (dd, J = 17.2, 5.0 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 201.6, 201.2, 198.5, 143.5, 141.7, 141.3, 138.1, 135.71, 135.67, 134.3, 133.0, 132.6, 129.8, 128.8, 128.3, 128.0, 127.8, 127.6, 127.5, 126.2, 126.1, 125.6, 123.1, 123.0, 62.1, 50.0, 43.5, 41.6; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₂O₃Na⁺ 465.1461; Found 465.1465.

(2R,6S)-3-Methylene-2-(4-nitrophenyl)-6-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3n): *tert*-Butyl (1-(furan-2-yl)-2-methylene-3-oxobutyl) carbonate 1n (31.9 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (0.60 mg, 0.0025 mmol), C4 (2.2 mg, 0.0038

mmol) and L7 (1.7 mg, 0.0038 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3n** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10–1/8), 31.0 mg, 81% yield; mp: 68–69 °C; >19:1 dr; 90% ee, determined by HPLC analysis [Daicel Chiral IC Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 14.83 min, t (minor) = 13.22 min]; $[\alpha]_D^{25} = -62.0$ (c = 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86–7.62 (m, 4H), 7.26 (s, 1H), 7.12–6.95 (m, 5H), 6.30 (s, 1H), 6.22 (dd, J = 3.3, 1.9 Hz, 1H), 6.03 (d, J = 3.3 Hz, 1H), 5.31 (s, 1H), 4.43 (s, 1H), 4.00 (dd, J = 12.5, 4.8 Hz, 1H), 3.58 (dd, J = 17.1, 12.5 Hz, 1H), 2.95 (dd, J = 17.1, 4.8 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 201.6, 200.1, 198.9, 150.8, 142.9, 142.1, 142.0, 141.5, 138.2, 136.1, 135.9, 129.0, 128.7, 127.9, 124.8, 123.5, 123.4, 110.7, 109.7, 60.8, 45.2, 43.2, 42.2; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂5H₁₉O₄⁺ 383.1278; Found 383.1277.

(2R,6S)-2-(Furan-3-yl)-3-methylene-6-phenylspiro[cyclohexane-1,2'-indene]- 1',3',4-trione (3o): tert-Butyl (1-(furan-3-yl)-2-methylene-3-oxobutyl)carbonate10 (31.9 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione **2a** (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and

L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **30** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 33.9 mg, 88% yield; mp: 69–71 °C; >19:1 dr; 91% ee, determined by HPLC analysis [Daicel Chiral

IB Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.66 min, t (minor) = 15.71 min]; $[\alpha]_{D}^{25} = -32.9$ (c = 1.67, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (d, J = 7.4 Hz, 1H), 7.73–7.64 (m, 1H), 7.64–7.60 (m, 2H), 7.15 (t, J = 1.8 Hz, 1H), 7.11–7.03 (m, 4H), 6.94–6.91 (m, 2H), 6.43 (dd, J = 2.4, 1.0 Hz, 1H), 6.17 (d, J = 1.8 Hz, 1H), 5.43 (d, J = 1.0 Hz 1H), 4.52 (t, J = 2.4 Hz, 1H), 3.73 (dd, J = 11.7, 4.0 Hz, 1H), 3.55 (dd, J = 16.5, 11.7 Hz, 1H), 2.91 (dd, J = 16.5, 4.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.3, 201.5, 198.6, 143.1, 142.9, 142.0, 141.8, 141.6, 137.7, 135.7, 128.5, 128.3, 127.6, 124.6, 122.94, 122.89, 119.5, 111.2, 61.9, 43.8, 41.3, 40.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₁₈O₄Na⁺ 405.1097; Found 405.1096.

(2*R*,6*S*)-3-Methylene-6-phenyl-2-((*E*)-styryl)spiro[cyclohexane-1,2'-indene]-1',3',4-trione (3p): (*E*)-*tert*-Butyl (4-methylene-5-oxo-1-phenylhex-1-en-3yl)carbonate 1p (36.2 mg, 0.120 mmol), 2-benzylidene-1*H*-indene-1,3(2*H*)-dione 2a (23.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075

mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3p** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10– 1/8), 30.4 mg, 75% yield; mp: 75–76 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 11.18 min, t (minor) = 9.94 min]; [α]_D²⁵ = -164.2 (*c* = 0.32, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.88–7.79 (m, 1H), 7.75–7.60 (m, 3H), 7.26–7.17 (m, 5H), 7.09–6.93 (m, 5H), 6.36 (t, *J* = 1.4 Hz, 1H), 6.39–6.30 (m, 2H), 5.43 (t, *J* = 1.4 Hz, 1H), 4.01–3.91 (m, 1H), 3.81 (dd, *J* = 13.0, 4.3 Hz, 1H), 3.59 (dd, *J* = 16.9, 13.0 Hz, 1H), 2.80 (dd, *J* = 16.9, 4.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.9, 201.3, 199.1, 143.1, 141.82, 141.79, 137.8, 136.3, 135.84, 135.80, 134.8, 128.55, 128.48, 128.4, 128.0, 127.5, 126.6, 124.5, 123.9, 123.1, 123.0, 61.5, 47.4, 43.5, 41.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₉H₂₂O₃Na⁺ 441.1461; Found 441.1463.

(2*R*,6*S*)-3-Methylene-2-phenyl-6-(o-tolyl)spiro[cyclohexane-1,2'-indene]-1',3',4-trione (3q): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), 2-(2-methylbenzylidene)-1*H*-indene-1,3(2*H*)-dione 2b (24.8 mg, 0.100 mmol), Pd₂(dba)₃ (2.3 mg, 0.0025 mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3q** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10– 1/8), 39.2 mg, 96% yield; mp: 144–147 °C; >19:1 dr; 94% ee, determined by HPLC analysis [Daicel Chiral ID Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 22.95 min, t (minor) = 15.39 min]; [α]_D²⁵ = +29.8 (*c* = 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.85–7.74 (m, 2H), 7.74–7.65 (m, 2H), 7.22–7.11 (m, 3H), 7.10–7.04 (m, 1H), 7.04–6.94 (m, 5H), 6.45 (t, *J* = 1.6 Hz, 1H), 5.27 (dd, *J* = 2.0, 1.6 Hz, 1H), 4.41 (t, *J* = 2.0 Hz, 1H), 4.14 (dd, *J* = 9.9, 6.0 Hz, 1H), 3.34 (dd, *J* = 17.8, 9.9 Hz, 1H), 3.06 (dd, *J* = 17.8, 6.0 Hz, 1H), 2.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.1, 200.7, 198.5, 143.8, 141.4, 137.8, 137.5, 136.5, 135.81, 135.79, 130.7, 130.2, 128.2, 127.6, 127.4, 127.2, 126.3, 126.0, 123.20, 123.17, 60.9, 50.6, 42.7, 37.5, 19.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂O₃Na⁺ 429.1461; Found 429.1490.

(2R,6S)-6-(4-Methylphenyl)-3-methylene-2-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3r): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(4-methylbenzylidene)-1*H*-indene-1,3(2*H*)-dione 2c (24.8 mg, 0.100 mmol), Pd(OAc)₂ (0.60 mg, 0.0025 mmol),

C4 (2.2 mg, 0.0038 mmol) and L7 (1.7 mg, 0.0038 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. The product **3r** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 36.7 mg, 90% yield; mp: 172-173 °C; >19:1 dr; 93% ee, determined by HPLC analysis [Daicel Chiral IB Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 10.21 min, t (minor) = 12.20 min]; $[\alpha]_{D}^{25} = -39.5$ (*c* = 0.50, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.77–7.58 (m, 4H), 7.19–7.07 (m, 3H), 7.04–6.97 (m, 2H), 6.94–6.81 (m, 4H), 6.43 (t, *J* = 1.6 Hz, 1H), 5.30 (t, *J* = 1.6 Hz, 1H), 4.41 (t, *J* = 2.1 Hz, 1H), 3.79 (dd, *J* = 11.2, 5.0 Hz, 1H), 3.53 (dd, *J* = 17.1, 11.2 Hz, 1H), 3.02 (dd, *J* = 17.1, 5.0 Hz, 1H), 2.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 201.4, 198.7, 143.4, 141.8, 141.4, 137.1, 136.9, 135.6, 135.5, 135.1, 130.2, 129.0, 128.6, 128.3, 127.6, 125.2, 123.03, 123.00, 62.0, 50.4, 42.6, 41.8, 20.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂O₃Na⁺ 429.1461; Found 429.1460.

(2R,6S)-6-(4-(tert-Butyl)phenyl)-3-methylene-2-phenylspiro[cyclohexane-

1,2'-indene]-1',3',4-trione (3s): *tert*-Butyl (2-methylene-3-oxo-1-phenyl butyl)carbonate **1a** (33.2 mg, 0.120 mmol), 2-(4-(*tert*-butyl)benzylidene)-1*H*-indene-1,3(2*H*)-dione **2d** (29.0 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050

mmol), **C4** (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3s** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10–1/8), 38.5 mg, 90% yield; mp: 174–175 °C; >19:1 dr; 93% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 30/70, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 6.92 min, t (minor) = 8.79 min]; $[\alpha]_D^{25} = -35.6$ (c = 0.75, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81–7.71 (m, 1H), 7.66–7.58 (m, 3H), 7.20–6.98 (m, 7H), 6.92–6.75 (m, 2H), 6.43 (s, 1H), 5.32 (s, 1H), 4.45 (s, 1H), 3.79 (dd, J = 11.3, 4.8 Hz, 1H), 3.55 (dd, J = 17.1, 11.3 Hz, 1H), 3.02 (dd, J = 17.1, 4.8 Hz, 1H), 1.16 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.5, 201.4, 198.8, 150.3, 143.4, 141.9, 141.4, 136.8, 135.5, 135.4, 134.9, 130.3, 128.34, 128.32, 127.6, 125.13, 125.11, 123.0, 62.2, 50.2, 42.8, 41.7, 34.3, 31.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₁H₂₈O₃Na⁺ 471.1931; Found 471.1944.

(2R,6S)-6-(3-Methoxyphenyl)-3-methylene-2-phenylspiro[cyclohexane-

1,2'-indene]-1',3',4-trione (3t): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate **1a** (33.2 mg, 0.120 mmol), 2-(3-methoxybenzylidene)-1*H*-indene-1,3(2*H*)-dione **2e** (26.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol),

C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3t** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 35.7 mg, 82% yield; mp: 120-121 °C; >19:1 dr; 96% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, λ = 254 nm, t (major) = 23.94 min, t (minor) = 21.19 min]; $[\alpha]_D^{25} = -21.3$ (*c* = 0.33, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.75–7.71 (m, 1H), 7.71–7.68 (m, 1H), 7.67–7.61 (m, 2H), 7.19–7.09 (m, 3H), 7.05–6.97 (m, 3H), 6.60 (ddd, *J* = 8.0, 2.4, 0.8 Hz, 1H), 6.56 (dt, *J* = 8.0, 1.2 Hz, 1H), 6.50 (t, *J* = 2.2 Hz, 1H), 6.43 (dd, *J* = 1.6 Hz, 1H), 5.33 (dd, *J* = 2.2 Hz, 1H), 4.43 (t, *J* = 2.0 Hz, 1H)

1H), 3.83 (dd, *J* = 11.8, 4.8 Hz, 1H), 3.63 (s, 3H), 3.58 (dd, *J* = 17.0, 11.8 Hz, 1H), 3.01 (dd, *J* = 17.0, 4.8 Hz, 1H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 201.5, 201.2, 198.6, 159.3, 143.2, 141.8, 141.4, 139.6, 136.8, 135.7, 135.6, 130.2, 129.3, 128.3, 127.7, 125.3, 123.04, 122.99, 121.0, 114.4, 113.1, 61.9, 55.1, 50.6, 43.0, 41.7; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₂O₄Na⁺ 445.1410; Found 445.1419.

(2R,6S)-6-(2-Chlorophenyl)-3-methylene-2-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3u): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(2-chlorobenzylidene)-1*H*-indene-1,3(2*H*)-dione 2f (26.9 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4

(4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3u** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 24.0 mg, 56% yield; mp: 167–168 °C; >19:1 dr; 81% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, λ = 254 nm, t (major) = 15.64 min, t (minor) = 14.71 min]; [α]_D²⁵ = +39.2 (*c* = 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.90 (dt, *J* = 7.5, 1.1 Hz, 1H), 7.78–7.64 (m, 3H), 7.35–7.27 (m, 2H), 7.25–7.15 (m, 2H), 7.12–6.94 (m, 5H), 6.53 (dd, *J* = 2.8, 1.3 Hz, 1H), 5.19 (dd, *J* = 2.8, 1.3 Hz, 1H), 4.48 (t, *J* = 2.8 Hz, 1H), 4.25 (dd, *J* = 7.2, 4.8 Hz, 1H), 3.42 (dd, *J* = 18.1, 7.2 Hz, 1H), 2.99 (dd, *J* = 18.1, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.7, 199.0, 197.8, 144.1, 141.9, 141.0, 137.2, 136.8, 135.9, 135.6, 135.0, 130.6, 129.7, 129.3, 128.9, 128.3, 127.6, 127.2, 126.4, 123.3, 123.2, 60.0, 48.2, 41.6, 39.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉O₃ClNa⁺ 449.0915 (³⁵Cl) and 451.0885 (³⁷Cl); Found 449.0916 (³⁵Cl) and 451.0895 (³⁷Cl).

indene]-1',3',4-trione (3v): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(4-fluorobenzylidene)-1*H*-indene-1,3(2*H*)-dione 2g (25.2 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol),

(2R,6S)-6-(4-Fluorophenyl)-3-methylene-2-phenylspiro[cyclohexane-1,2'-

C4 (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored

by TLC. Product **3v** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 33.1 mg, 80% yield; mp: 124-125 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 40/60, 0.8 mL/min, λ = 254 nm, t (major) = 9.98 min, t (minor) = 9.33 min]; $[\alpha]_D^{25} = -18.5$ (c = 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.76–7.57 (m, 4H), 7.22–7.10 (m, 3H), 7.04–6.90 (m, 4H), 6.80–6.74 (m, 2H), 6.43 (s, 1H), 5.34 (s, 1H), 4.39 (s, 1H), 3.85 (dd, J = 12.0, 4.7 Hz, 1H), 3.58 (dd, J = 17.0, 12.0 Hz, 1H), 2.98 (dd, J = 17.0, 4.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.5, 201.1, 198.3, 161.9 (d, J = 246.7 Hz), 143.1, 141.9, 141.3, 136.6, 135.8, 135.7, 133.9 (d, J = 3.4 Hz), 130.3 (d, J = 8.1 Hz), 130.2, 128.4, 127.8, 125.4, 123.0, 123.0, 115.2 (d, J = 21.4 Hz), 62.0, 50.7, 42.1, 41.8; ¹⁹F NMR (376 MHz, CDCl₃): δ (ppm) –114.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉O₃FNa⁺ 433.1210; Found 433.1237.

(2R,6S)-6-(4-Bromophenyl)-3-methylene-2-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3w): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(4-bromobenzylidene)-1*H*-indene-1,3(2*H*)-dione 2h (31.3 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol),

C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3w** was obtained as a pale yellow solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 36.4 mg, 77% yield; mp: 153-154 °C; >19:1 dr; 95% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 14.20 min, t (minor) = 13.50 min]; $[\alpha]_{D}^{25} = -35.1$ (*c* = 0.29, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.79–7.61 (m, 4H), 7.24–7.09 (m, 5H), 7.04–6.97 (m, 2H), 6.90–6.81 (m, 2H), 6.43 (s, 1H), 5.33 (s, 1H), 4.37 (s, 1H), 3.83 (dd, *J* = 11.8, 4.8 Hz, 1H), 3.56 (dd, *J* = 17.1, 11.8 Hz, 1H), 2.99 (dd, *J* = 17.1, 4.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 200.8, 198.2, 143.0, 141.7, 141.2, 137.2, 136.6, 136.0, 135.8, 131.5, 130.4, 130.1, 128.4, 127.8, 125.6, 123.2, 123.1, 121.6, 61.7, 50.9, 42.0, 41.5; HRMS (ESI-TOF) m/z: [M + K]⁺ Calcd for C₂₇H₁₉O₃BrK⁺ 509.1049 (⁷⁹Br) and 511.0129 (⁸¹Br); Found 509.1048 (⁷⁹Br) and 511.0138 (⁸¹Br).

Ph

(2R,6S)-3-Methylene-6-(3-nitrophenyl)-2-phenylspiro[cyclohexane-1,2'-

indene]-1',3',4-trione (3x): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(3-nitrobenzylidene)-1*H*-indene-1,3(2*H*)-dione 2i (31.3 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4

(4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3x** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/8), 26.7 mg, 61% yield; mp: 86–88 °C; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IC Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 19.43 min, t (minor) = 15.94 min]; $[\alpha]_D^{25} = -16.5$ (*c* = 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96 (dt, *J* = 7.9, 1.9 Hz, 1H), 7.86 (t, *J* = 1.9 Hz, 1H), 7.77–7.66 (m, 4H), 7.40–7.28 (m, 2H), 7.22–7.09 (m, 3H), 7.00–6.96 (m, 2H), 6.46 (s, 1H), 5.37 (s, 1H), 4.38 (s, 1H), 3.98 (dd, *J* = 11.6, 5.1 Hz, 1H), 3.61 (dd, *J* = 17.2, 11.6 Hz, 1H), 3.07 (dd, *J* = 17.2, 5.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.0, 200.4, 197.5, 148.0, 142.7, 141.7, 141.0, 140.5, 136.4, 136.2, 136.0, 134.7, 130.1, 129.4, 128.5, 128.0, 126.1, 123.9, 123.31, 123.26, 122.7, 61.5, 51.0, 42.0, 41.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155; Found 460.1153.

> (2*R*,6*S*)-6-(Furan-3-yl)-3-methylene-2-phenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3y): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 2-(furan-3-ylmethylene)-1*H*-indene-1,3(2*H*)-dione 2j (22.4 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075

mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3y** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10– 1/8), 35.9 mg, 93% yield; mp: 139–140 °C; >19:1 dr; 85% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 13.44 min, t (minor) = 10.93 min]; $[\alpha]_{p}^{25}$ = -12.7 (*c* = 0.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.84– 7.78 (m, 2H), 7.76–7.69 (m, 2H), 7.23–7.14 (m, 3H), 7.13 (t, *J* = 1.6 Hz, 1H), 7.07–7.06 (m, 1H), 7.02–6.95 (m, 2H), 6.36 (t, *J* = 1.3 Hz, 1H), 6.05 (dd, *J* = 2.0, 0.8 Hz, 1H), 5.28 (dd, *J* = 2.0, 1.3 Hz, 1H), 4.30 (t, *J* = 1.6 Hz, 1H), 3.82 (dd, *J* = 11.3, 5.3 Hz, 1H), 3.41 (dd, *J* = 17.4, 11.3 Hz, 1H), 3.04 (dd, *J* = 17.4, 5.3 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 200.7, 198.5, 143.3, 143.0, 141.8, 141.2, 140.5, 137.5, 135.9, 135.8, 129.9, 128.4, 127.7, 125.4, 123.3, 123.2, 122.6, 110.2, 61.1, 50.9, 41.9, 33.2; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₁₄O₄Na⁺ 405.1097; Found 405.1099.

(2*R*,6*S*)-6-Cyclopropyl-3-methylene-2-phenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3z): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), 2-(cyclopropylmethylene)-1*H*-indene-1,3(2*H*)-dione 2k (19.8 mg, 0.100 mmol), Pd(η^3 -allyl)Cp (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075

mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3z** was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10– 1/8), 34.6 mg, 96% yield; mp: 109–110 °C; 15:1 dr; 61% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, λ = 254 nm, t (major) = 12.60 min, t (minor) = 8.12 min]; $[a]_{D}^{25}$ = +14.7 (*c* = 0.43, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86– 7.80 (m, 2H), 7.76–7.67 (m, 2H), 7.18–7.04 (m, 3H), 7.03–6.96 (m, 2H), 6.34 (dd, *J* = 2.3, 1.1 Hz, 1H), 5.23 (dd, *J* = 2.3, 1.1 Hz, 1H), 4.48 (t, *J* = 2.1 Hz, 1H), 3.08 (dd, *J* = 16.6, 10.6 Hz, 1H), 2.91 (dd, *J* = 16.6, 4.8 Hz, 1H), 1.76 (td, *J* = 10.6, 4.8 Hz, 1H), 0.85–0.76 (m, 1H), 0.49–0.39 (m, 1H), 0.21–0.09 (m, 1H), 0.09–0.00 (m, 1H), –0.12–-0.27 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.7, 202.0, 198.9, 143.3, 142.2, 141.6, 136.3, 135.7, 135.6, 130.2, 128.3, 127.6, 124.5, 123.0, 61.3, 50.3, 43.3, 42.1, 13.4, 5.8, 4.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀O₃Na⁺ 379.1305; Found 379.1324.

(2*R*,6*S*)-6-((*S*)-Perill)-3-methylene-2-phenylspiro[cyclohexane-1,2'-indene]-1',3',4-trione (3aa): *tert*-Butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), (*S*)-2-((4-(prop-1-en-2-yl)cyclohex-1-en-1-yl)methylene) -1*H*-indene-1,3(2*H*)-dione 2l (27.8 mg, 0.100 mmol), Pd(η^3 -allyl)Cp (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were

added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **3aa** was obtained as a semi-solid by flash

chromatography on silica gel (EtOAc/petroleum ether = 1/10–1/8), 34.1 mg, 73% yield; 8:1 dr by ¹H NMR analysis; $[\alpha]_D^{25}$ = +8.6 (*c* = 0.07, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.96–7.78 (m, 2H), 7.78–7.67 (m, 2H), 7.16–7.06 (m, 3H), 7.06–6.93 (m, 2H), 6.37–6.35 (m, 1H), 5.53–5.32 (m, 1H), 5.32–5.20 (m, 1H), 4.61 (t, *J* = 1.7 Hz, 1H), 4.53 (s, 1H), 4.46 (d, *J* = 2.3 Hz, 1H), 3.17 (dd, *J* = 16.3, 10.3 Hz, 1H), 3.07 (dd, *J* = 10.3, 4.6 Hz, 1H), 2.86 (dd, *J* = 16.3, 4.6 Hz, 1H), 2.01–1.66 (m, 5H), 1.61 (s, 3H), 1.59–1.54 (m, 1H), 1.20–1.04 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.8, 201.4, 199.2, 149.2, 143.5, 141.7, 141.5, 136.8, 135.71, 135.65, 135.3, 130.4, 128.3, 127.6, 126.9, 124.8, 123.13, 123.08, 108.7, 61.1, 50.1, 44.5, 41.3, 40.3, 30.6, 28.8, 27.4, 20.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₈O₃Na⁺ 459.1931; Found 459.1932.

5.2 Regiodivergent asymmetric [4+2] annulations with MBH carbonate 1q

The reaction was conducted with MBH carbonate 1q (0.12 mmol), enone 2 (0.10 mmol), Pd(OAc)₂ (0.005 mmol), C4 (0.0075 mmol) and L7 (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature for 36 h. After completion, the product was obtained by flash chromatography on silica gel (THF/petroleum ether = 1/15-1/10). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product 4a was obtained as a colorless oil, 30.2 mg, 82% yield; 90% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 27.87 min, t (minor) = 9.01 min]; $[\alpha]_D^{25} = +76.0$ (c = 0.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.87–7.77 (m, 1H), 7.77–7.55 (m, 3H), 7.07–6.96 (m, 5H), 6.76 (dd, J = 3.2, 1.4 Hz, 1H), 4.19–4.10 (m, 2H), 3.88 (d, J = 18.0 Hz, 1H), 3.82 (dd, J = 14.0, 5.0 Hz, 1H), 3.62 (dd, J = 17.6, 14.0 Hz, 1H), 3.14 (dd, J = 18.0, 3.2 Hz, 1H), 2.87 (dd, J = 17.6, 5.0 Hz, 1H), 1.26 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.3, 201.0, 198.0, 165.8, 146.5, 141.5, 141.3, 137.4, 135.9, 128.5, 127.9, 127.8, 124.4, 123.2, 123.0, 60.7, 56.7, 45.7, 41.8, 32.6, 14.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₀O₅Na⁺ 411.1203; Found 411.1206.

Ethyl (*S*,*E*)-2-(2-(4-(*tert*-butyl)phenyl)-1',3',4-trioxo-1',3'-dihydro spiro[cyclohexane-1,2'-inden]-5-ylidene)acetate (4b): Ethyl 2-((*tert*butoxycarbonyl)oxy)-3-methylene-4-oxopentanoate 1q (32.6 mg, 0.120 mmol), 2-(4-(*tert*-butyl)benzylidene)-1*H*-indene-1,3(2*H*)-dione 2d (29.0

mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **4b** was obtained as a white solid, 31.2 mg, 70% yield; mp: 111–113 °C; 93% ee, determined by HPLC analysis [Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 13.74 min, t (minor) = 12.78 min]; $[\alpha]_D^{25} = +61.1$ (c = 0.36, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.81 (dt, J = 7.0, 1.4 Hz, 1H), 7.74–7.57 (m, 3H), 7.02 (d, J = 8.5 Hz, 2H), 6.95–6.83 (m, 2H), 6.76 (dd, J = 3.2, 1.4 Hz, 1H), 4.21–4.09 (m, 2H), 3.87 (dd, J = 17.9, 1.4 Hz, 1H), 3.79 (dd, J = 14.0, 4.9 Hz, 1H), 1.26 (t, J = 7.0 Hz, 3H), 1.09 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 202.3, 201.1, 198.1, 165.7, 150.6, 146.6, 141.5, 141.3, 135.6, 135.5, 134.1, 127.4, 125.2, 124.3, 123.1, 122.9, 60.6, 56.9, 45.4, 41.7, 34.2, 32.2, 30.9, 14.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₈H₂₈O₅Na⁺ 467.1829; Found 467.1827.

Ethyl (*S,E*)-2-(2-(4-(methoxyl)phenyl)-1',3',4-trioxo-1',3'-dihydro spiro[cyclohexane-1,2'-inden]-5-ylidene)acetate (4c): Ethyl 2-((*tert*butoxycarbonyl)oxy)-3-methylene-4-oxopentanoate 1q (32.6 mg, 0.120 mmol), 2-(3-methoxybenzylidene)-1*H*-indene-1,3(2*H*)-dione 2e (26.4

mg, 0.100 mmol), $Pd(OAc)_2$ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL).

The mixture was stirred at rt for 36 h, and monitored by TLC. Product **4c** was obtained as a colorless oil, 27.6 mg, 66% yield; 92% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 26.62 min, t (minor) = 10.60 min]; [α] ²⁵_D = +45.7 (*c* = 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.93–7.80 (m, 1H), 7.79–7.64 (m, 3H), 6.93–6.91 (m, 2H), 6.75 (dd, *J* = 3.2, 1.4 Hz, 1H), 6.58–6.55 (m, 2H), 4.18–4.10 (m, 2H), 3.87 (dd, *J* = 17.8, 1.4 Hz, 1H), 3.77 (dd, *J* = 14.1, 5.0 Hz, 1H), 3.62 (s, 3H), 3.59–3.54 (m, 1H), 3.10 (dd, *J* = 17.8, 3.2 Hz, 1H), 2.84 (dd, *J* = 17.8, 5.0 Hz, 1H), 1.25 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 202.6, 201.3, 198.2, 165.8, 158.8, 146.7, 141.5, 141.4, 135.94, 135.92, 129.5, 129.0, 124.4, 123.3, 123.1, 113.8, 60.7, 56.9, 55.1, 44.9, 42.2, 32.5, 14.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₂O₆Na⁺ 441.1309; Found 441.1306.

Ethyl (*S,E*)-2-(2-(4-(chloro)phenyl)-1',3',4-trioxo-1',3'-dihydrospiro [cyclohexane-1,2'-inden]-5-ylidene)acetate (4d): Ethyl 2-((*tert*butoxycarbonyl)oxy)-3-methylene-4-oxopentanoate 1q (32.6 mg, 0.120 mmol), 2-(4-chlorobenzylidene)-1*H*-indene-1,3(2*H*)-dione 2m (26.9 mg,

0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product 4d was obtained as a colorless oil, 35.2 mg, 83% yield; 90% ee, determined by HPLC analysis [Daicel Chiral IA Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 17.02 min, t (minor) = 8.62 min]; $[\alpha]_D^{25} = +34.5$ (c = 0.29, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86–7.83 (m, 1H), 7.80–7.67 (m, 3H), 7.06–7.00 (m, 2H), 6.99–6.90 (m, 2H), 6.76 (dd, J = 3.2, 1.3 Hz, 1H), 4.20–4.08 (m, 2H), 3.90 (dd, J = 17.9, 1.3 Hz, 1H), 3.81 (dd, J = 14.0, 5.2 Hz, 1H), 3.58 (dd, J = 17.7, 14.0 Hz, 1H), 3.10 (dd, J = 17.9, 3.2 Hz, 1H), 2.85 (dd, J = 17.7, 5.2 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR δ (ppm) (150 MHz, CDCl₃): δ 202.0, 200.7, 197.5, 165.6, 146.1, 141.2, 141.1, 136.1, 135.9, 133.5, 129.2, 128.6, 124.6, 123.3, 123.1, 60.7, 56.4, 44.7, 41.7, 32.6, 14.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₁₉O₅NaCl⁺ 445.0813 (³⁵Cl) and 447.0784 (³⁷Cl); Found 445.0812 (³⁵Cl) and 447.0792 (³⁷Cl).

Ethyl (*S*,*E*)-2-(2-(furan-3-yl)-1',3',4-trioxo-1',3'-dihydrospiro[cyclohexane -1,2'-inden]-5-ylidene)acetate (4e): Ethyl 2-((*tert*-butoxycarbonyl)oxy)-3methylene-4-oxopentanoate 1q (32.6 mg, 0.120 mmol), 2-(furan-3ylmethylene)-1*H*-indene-1,3(2*H*)-dione 2j (22.4 mg, 0.100 mmol), Pd(OAc)₂

(1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) were added into a test tube under Ar, followed by the addition of dry toluene (1.0 mL). The mixture was stirred at rt for 36 h, and monitored by TLC. Product **4e** was obtained as a colorless oil, 32.4 mg, 85% yield; 77% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 45.49 min, t (minor) = 23.49 min]; $[\alpha]_D^{25} = +10.9$ (c = 0.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.03–7.68 (m, 4H), 7.10 (s, 1H), 7.04 (t, J = 1.8, 1H), 6.74 (dd, J = 3.3, 1.3 Hz, 1H), 6.00 (s, 1H), 4.18–4.07(m, 2H), 3.91 (dd, J = 17.9, 1.3 Hz, 1H), 3.79 (dd, J = 13.8, 5.4 Hz, 1H), 3.42 (dd, J = 17.9, 13.8 Hz, 1H), 3.04 (dd, J = 17.9, 3.3 Hz, 1H), 2.88 (dd, J = 17.9, 5.4 Hz, 1H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 202.0, 201.3, 197.4, 165.7, 146.1, 143.2, 141.3, 141.2, 140.0, 136.0, 124.4, 123.3, 123.1, 122.2, 109.1, 60.7, 56.0, 41.6, 36.0, 32.1, 14.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₈NaO₆⁺ 401.0996; Found 401.0996.

5.3 Diastereodivergent asymmetric [4+2] annulations involving 3-olefinic oxindoles

Conditions A: The reaction was conducted with MBH carbonate **1a** (0.12 mmol), 3-olefinic oxindole **5** (0.10 mmol), Pd(OAc)₂ (0.005 mmol), **C4** (0.0075 mmol) and **L8** (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature. After completion, the product was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

Conditions B: The reaction was conducted with MBH carbonate **1a** (0.12 mmol), 3-olefinic oxindole **5** (0.10 mmol), Pd(OAc)₂ (0.005 mmol), **C5** (0.0075 mmol) and (*R*)-**L3** (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature. After completion, the product was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

Conditions C: The reaction was conducted with MBH carbonate **1a** (0.12 mmol), (*E*)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-ylidene)acetamides **8** (0.10 mmol), Pd(OAc)₂ (0.005 mmol), **C4** (0.0075 mmol) and (*S*)-**L3** (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature. After completion, the product was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

Ethyl (1*S*,2*R*,6*R*)-1'-methyl-3-methylene-2',4-dioxo-2-phenylspiro[cyclo hexane-1,3'-indoline]-6-carboxylate (6a): Following Conditions A, a solution of *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(1-methyl-2-oxoindolin-3-ylidene)acetate 5a (23.1 mg,

0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 27.6 mg, 71% yield; 99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 19.64 min, t (minor) = 18.60 min]; [α] $_{D}^{25}$ = +38.9 (*c* = 0.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.29–7.01 (m, 4H), 6.85–6.60 (m, 4H), 6.28 (t, *J* = 1.4 Hz, 1H), 6.05 (d, *J* = 7.4 Hz, 1H), 5.18 (d, *J* = 1.4 Hz, 1H), 4.06 (s, 1H), 3.89–3.75 (m, 2H), 3.48 (dd, *J* = 11.0, 5.8 Hz, 1H), 3.39 (dd, *J* = 17.4, 11.0 Hz, 1H), 3.09 (s, 3H), 2.96 (dd, *J* = 17.4, 5.8 Hz, 1H), 0.87 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.4, 177.4, 171.5, 144.2, 143.9, 139.1, 130.5, 129.2, 128.6, 128.3, 127.9, 126.6, 125.7, 121.9, 108.3, 61.4, 53.1, 51.9, 44.6, 38.2, 26.5, 14.1; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₃O₄NNa⁺ 412.1519; Found 412.1526.

Ethyl (1*S*,2*R*,6*R*)-5'-methoxy-1'-methyl-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-6-carboxylate (6b): Following Conditions A, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(5-methoxy-1-methyl-2-oxoindolin-3-

ylidene)acetate **5b** (26.1 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 26.4 mg, 63% yield; 99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 22.32 min, t (minor) = 20.15 min]; $[\alpha]_{D}^{25}$ = +34.8 (*c* = 0.47, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.26–7.17 (m, 3H), 6.84–6.73 (m, 3H), 6.69 (d, *J* = 8.4 Hz, 1H), 6.34 (s, 1H), 5.65 (d, *J* = 2.5 Hz, 1H), 5.25 (s, 1H), 4.08 (s, 1H), 3.93–3.83 (m, 2H), 3.60–3.42 (m, 2H), 3.52 (s, 3H), 3.14 (s, 3H), 3.01 (dd, *J* = 16.6, 5.0 Hz, 1H), 0.94 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.0,

176.8, 171.0, 154.8, 143.4, 139.0, 137.4, 130.3, 129.4, 128.1, 127.6, 126.3, 113.9, 112.3, 108.3, 61.0, 55.6, 52.9, 51.7, 44.2, 37.8, 26.3, 13.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₅O₅NNa⁺ 442.1625; Found 442.1623.

Ethyl (1*S*,2*R*,6*R*)-5'-chloro-1'-methyl-3-methylene-2',4-dioxo-2-phenyl spiro[cyclohexane-1,3'-indoline]-6-carboxylate (6c): Following Conditions A, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(5-chloro-1-methyl-2-oxoindolin-3-ylidene) acetate 5c

(26.6 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 24.2 mg, 57% yield; 98% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 16.93 min, t (minor) = 13.06 min]; [*a*]_D²⁵ = +101.7 (*c* = 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.35–7.13 (m, 4H), 6.82–6.63 (m, 3H), 6.36 (t, *J* = 1.2 Hz, 1H), 5.91 (d, *J* = 2.0 Hz, 1H), 5.27 (t, *J* = 1.2 Hz, 1H), 4.03 (s, 1H), 3.94–3.85 (m, 2H), 3.57–3.43 (m, 2H), 3.16 (s, 3H), 3.02 (dd, *J* = 17.0, 5.4 Hz, 1H), 0.96 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 196.5, 176.7, 170.8, 142.8, 142.4, 138.5, 129.9, 128.5, 128.1, 128.0, 127.9, 126.8, 126.6, 125.7, 108.7, 61.1, 52.8, 51.4, 43.8, 37.6, 26.2, 13.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂O₄NClNa⁺ 446.1130 (³⁵Cl) and 448.1100 (³⁷Cl); Found 446.1126 (³⁵Cl) and 448.1102 (³⁷Cl).

Ethyl(1S,2R,6R)-1'-methyl-3-methylene-2',4-dioxo-2-phenyl-1',2'-dihydrospiro[cyclohexane-1,3'-pyrrolo[2,3-b]pyridine]-6-carboxylate(6d):

Following **Conditions A**, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate **1a** (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(1-methyl-2-oxo-1,2-dihydro-

3*H*-pyrrolo[2,3-*b*]pyridin-3-ylidene)acetate **5d** (23.2 mg, 0.100 mmol), $Pd(OAc)_2$ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at 5 °C under Ar. After completion, the major product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 24.6 mg, 63% yield; mp: 151–153

°C; 99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 17.02 min, t (minor) = 15.32 min]; $[\alpha]_D^{25} = +33.6$ (c = 0.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.16 (dd, J = 5.3, 1.6 Hz, 1H), 7.31–7.23 (m, 3H), 6.81–6.75 (m, 2H), 6.70 (dd, J = 7.4, 5.3 Hz, 2H), 6.36 (s, 1H), 6.22 (dd, J = 7.4, 1.6 Hz, 1H), 5.29 (s, 1H), 4.07 (s, 1H), 3.98–3.78 (m, 2H), 3.60 (dd, J = 11.8, 6.0 Hz, 1H), 3.48 (dd, J = 17.7, 11.8 Hz, 1H), 3.27 (s, 3H), 3.02 (dd, J = 17.7, 6.0 Hz, 1H), 0.95 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.4, 176.9, 170.7, 157.1, 147.7, 142.8, 138.9, 132.7, 130.1, 128.3, 128.0, 126.9, 123.1, 117.1, 61.3, 52.5, 51.0, 43.9, 37.8, 25.4, 13.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂O₄N₂Na⁺ 413.1472; Found 413.1466.

Ethyl (1S,2R,6R)-5'-bromo-1'-methyl-3-methylene-2',4-dioxo-2-phenyl-1',2'-dihydrospiro[cyclohexane-1,3'-pyrrolo[2,3-b]pyridine]-6carboxylate (6e): Following Conditions A, *tert*-butyl (2-methylene-3-oxo-1phenylbutyl)carbonate 1a (41.4 mg, 0.15 mmol), ethyl (E)-2-(5-bromo-1-

methyl-2-oxo-1,2-dihydro-3*H*-pyrrolo[2,3-*b*]pyridin-3-ylidene)acetate **5e** (31.2 mg, 0.10 mmol), Pd(OAc)₂ (1.1 mg, 0.005 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at 5 °C under Ar. After completion, the major product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 35.7 mg, 76% yield; 99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.31 min, t (minor) = 10.94 min]; [α]_D²⁵ = +90.0 (*c* = 0.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21 (d, *J* = 2.1 Hz, 1H), 7.36–7.28 (m, 3H), 6.83–6.69 (m, 2H), 6.37 (s, 1H), 6.14 (d, *J* = 2.1 Hz, 1H), 5.32 (d, *J* = 1.3 Hz, 1H), 3.99 (s, 1H), 3.98–3.84 (m, 2H), 3.58 (dd, *J* = 12.2, 5.8 Hz, 1H), 3.47 (dd, *J* = 17.5, 12.2 Hz, 1H), 3.26 (s, 3H), 3.03 (dd, *J* = 17.5, 5.8 Hz, 1H), 0.98 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.0, 176.4, 170.5, 155.8, 148.2, 142.3, 138.7, 135.4, 130.0, 128.4, 128.3, 127.2, 124.9, 112.4, 61.4, 52.7, 51.2, 43.6, 37.7, 25.5, 13.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₁O4N₂BrNa⁺ 491.0577 (⁷⁹Br) and 493.0556 (⁸¹Br); Found 491.0577 (⁷⁹Br) and 493.0561 (⁸¹Br).

tert-Butyl (1S,2R,6R)-6-benzoyl-3-methylene-2',4-dioxo-2-phenylspiro [cyclohexane-1,3'-indoline]-1'-carboxylate (6f): Following Conditions A, COPh Ph \cap tert-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), *tert*-butyl (E)-2-oxo-3-(2-oxo-2-phenylethylidene)indoline-1-Boć carboxylate 5f (34.9 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and L8 (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 36.5 mg, 72% yield; mp: 154–156 °C; 99% ee, determined by HPLC analysis [Daicel Chiral ID Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 9.96 min, t (minor) = 8.24 min]; $[\alpha]_D^{25} = +49.3$ (c = 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.82 (d, J = 8.4 Hz, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.52 (t, J = 7.6 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.32–7.27 (m, 3H), 7.18 (t, J = 8.0 Hz, 1H), 6.81 (d, J = 6.8 Hz, 2H), 6.67 (t, J = 7.6Hz, 1H), 6.33 (s, 1H), 5.75 (d, J = 7.6 Hz, 1H), 5.33 (s, 1H), 4.73 (dd, J = 12.7, 6.1 Hz, 1H), 4.07 (s, 1H), 3.44 (dd, J = 17.9, 12.7 Hz, 1H), 3.03 (dd, J = 17.9, 6.1 Hz, 1H), 1.67 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.4, 197.1, 176.0, 149.4, 143.0, 140.0, 139.2, 135.2, 133.8, 130.2, 128.9, 128.7, 128.30, 128.26, 127.8, 127.7, 127.1, 124.2, 123.1, 114.9, 84.4, 54.0, 51.2, 46.3, 38.7, 28.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₉O₅NNa⁺ 530.1938; Found 530.1940.

tert-Butyl (1*S*,2*R*,6*R*)-6-benzoyl-6'-methoxy-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-1'-carboxylate (6g): Following Conditions A, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), *tert*-butyl (*E*)-6-methoxy-2-oxo-3-(2-oxo-2-phenylethylidene)

indoline-1-carboxylate **5g** (37.9 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and **L8** (3.5 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 30.5 mg, 57% yield; mp: 183–184 °C; >99% ee, determined by HPLC analysis [Daicel Chiral IF Column, 1.0 mL/min, λ = 254 nm, eluent (20% V/V isopropanol dissolved in *n*-hexane), t (major) = 13.35 min, t (minor) = 10.10 min]; [α]_D²⁵ = +49.5 (*c* = 0.32, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.72–7.63 (m, 2H), 7.56–7.49 (m, 1H), 7.47 (d, J = 2.4 Hz, 1H), 7.38 (t, J = 7.8 Hz, 2H), 7.31–7.28 (m, 3H), 6.86–6.80 (m, 2H), 6.32 (t, J = 1.1 Hz,

1H), 6.20 (dd, J = 8.4, 2.4 Hz, 1H), 5.61 (d, J = 8.4 Hz, 1H), 5.32 (t, J = 1.1 Hz, 1H), 4.69 (dd, J = 12.8, 6.0 Hz, 1H), 4.04 (s, 1H), 3.74 (s, 3H), 3.41 (dd, J = 17.8, 12.8 Hz, 1H), 3.00 (dd, J = 17.8, 6.0 Hz, 1H), 1.67 (s, 9H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 197.6, 197.2, 176.3, 160.0, 149.3, 143.2, 141.1, 139.4, 135.2, 133.8, 130.2, 128.9, 128.3, 128.2, 127.8, 126.9, 124.9, 119.4, 108.9, 101.4, 84.4, 55.4, 54.1, 50.8, 46.3, 38.8, 28.2; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₃₁O₆NNa⁺ 560.2044; Found 560.2042.

Ethyl (1*R*,2*R*,6*R*)-1'-methyl-3-methylene-2',4-dioxo-2-phenylspiro[cyclo hexane-1,3'-indoline]-6-carboxylate (7a): Following Conditions B, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(1-methyl-2-oxoindolin-3-ylidene)acetate 5a (23.1 mg, 0.100 mmol),

Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C7** (3.7 mg, 0.0075 mmol) and (*R*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10–1/7); 21.4 mg, 55% yield; -82% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 12.09 min, t (minor) = 15.92 min]; [α] $^{25}_{p}$ = +38.0 (*c* = 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.19–7.13 (m, 2H), 7.07–6.96 (m, 4H), 6.94–6.89 (m, 2H), 6.52 (d, *J* = 7.8 Hz, 1H), 6.35 (dd, *J* = 2.7, 1.2 Hz, 1H), 5.10 (dd, *J* = 2.7, 1.2 Hz, 1H), 4.71 (t, *J* = 2.7 Hz, 1H), 4.15–4.02 (m, 2H), 3.64 (dd, *J* = 17.2, 6.4 Hz, 1H), 3.2 (dd, *J* = 6.4, 5.2 Hz, 1H) 2.97 (s, 3H), 2.86 (dd, *J* = 17.2, 5.2 Hz, 1H), 1.09 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.4, 176.6, 172.3, 143.8, 143.1, 136.1, 130.1, 129.5, 128.7, 127.6, 127.3, 124.8, 123.7, 122.3, 108.0, 61.2, 52.6, 51.8, 44.9, 37.6, 25.9, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₃O₄NNa⁺ 412.1519; Found 412.1518.

Ethyl (1*R*,2*R*,6*R*)-5'-methoxy-1'-methyl-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-6-carboxylate (7b): Following Conditions B, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(5-methoxy-1-methyl-2-oxoindolin-3-

ylidene)acetate **5b** (26.1 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C7** (3.7 mg, 0.0075 mmol) and (*R*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature

under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 26.0 mg, 62% yield; -76% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 13.09 min, t (minor) = 18.04 min]; $[\alpha]_D^{25}$ = +91.4 (*c* = 0.30, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.06–7.01 (m, 3H), 6.97–6.89 (m, 2H), 6.80 (d, *J* = 2.5 Hz, 1H), 6.67 (dd, *J* = 8.5, 2.5 Hz, 1H), 6.42 (d, *J* = 8.5 Hz, 1H), 6.33 (dd, *J* = 2.8, 1.4 Hz, 1H), 5.07 (dd, *J* = 2.8, 1.4 Hz, 1H), 4.70 (t, *J* = 2.8 Hz, 1H), 4.17–4.05 (m, 2H), 3.75 (s, 3H), 3.67 (dd, *J* = 17.2, 6.5 Hz, 1H), 3.19 (dd, *J* = 6.5, 4.8 Hz, 1H), 2.94 (s, 3H), 2.82 (dd, *J* = 17.2, 4.8 Hz, 1H), 1.12 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.4, 176.2, 172.4, 155.7, 144.0, 136.6, 136.2, 130.7, 130.2, 127.7, 127.3, 124.8, 112.7, 111.7, 108.2, 61.3, 55.9, 52.8, 51.7, 45.0, 37.6, 26.0, 13.9; HRMS (ESITOF) m/z: [M + Na]⁺ Calcd for C₂₅H₂₅O₅NNa⁺ 442.1625; Found 442.1622.

Ethyl (1*R*,2*R*,6*R*)-5'-chloro-1'-methyl-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-6-carboxylate (7c): Following Conditions B, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4

0.150 mmol), ethyl (E)-2-(5-chloro-1-methyl-2-oxoindolin-3mg, ylidene)acetate 5c (26.6 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C7 (3.7 mg, 0.0075 mmol) and (R)-L3 (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 16.5 mg, 39% yield; -63% ee, determined by HPLC analysis analysis [Daicel Chiral IE Column, iPrOH/n-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 9.26 min, t (minor) = 10.60 min]; $[\alpha]_{D}^{25} = +49.0$ (c = 0.20, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.17–7.11 (m, 2H), 7.08–7.05 (m, 3H), 6.95–6.92 (m, 2H), 6.45 (d, J = 8.2 Hz, 1H), 6.36–6.35 (m, 1H), 5.09–5.08 (m, 1H), 4.70 (t, J = 2.8 Hz, 1H), 4.29–4.04 (m, 2H), 3.64 (ddd, J = 17.2, 6.5, 1.0 Hz, 1H), 3.17 (dd, J = 6.5, 4.6 Hz, 1H), 2.96 (s, 3H), 2.82 (dd, J = 17.2, 4.6 Hz, 1H), 1.16 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.9, 176.1, 172.3, 143.6, 141.7, 135.9, 131.1, 130.1, 128.6, 127.9, 127.7, 127.5, 125.1, 124.3, 108.9, 61.5, 52.7, 51.5, 44.8, 37.4, 26.1, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₂O₄NClNa⁺ 446.1130 (³⁵Cl) and 448.1100 (³⁷Cl); Found 446.1129 (³⁵Cl) and 448.1109 (³⁷Cl).

CO₂Et

Ph''

0:

Ethyl (1*R*,2*R*,6*R*)-1'-methyl-3-methylene-2',4-dioxo-2-phenyl-1',2'dihydrospiro[cyclohexane-1,3'-pyrrolo[2,3-b]pyridine]-6-carboxylate (7d): Following Conditions B, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (41.4 mg, 0.150 mmol), ethyl (*E*)-2-(1-methyl-2-oxo-1,2-dihydro-

3*H*-pyrrolo[2,3-b]pyridin-3-ylidene)acetate **5d** (23.2 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C7** (3.7 mg, 0.0075 mmol) and (*R*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7); 17.6 mg, 45% yield; -70% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.86 min, t (minor) = 12.00 min]; $[\alpha]_D^{25} = +29.3$ (*c* = 0.08, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.05 (dd, *J* = 5.2, 1.6 Hz, 1H), 7.42 (dd, *J* = 7.4, 1.6 Hz, 1H), 7.16–7.02 (m, 3H), 6.99–6.82 (m, 3H), 6.36 (dd, *J* = 2.8, 1.2 Hz, 1H), 5.11 (dd, *J* = 2.8, 1.2 Hz, 1H), 4.71 (t, *J* = 2.8 Hz, 1H), 4.16–4.04 (m, 2H), 3.61 (dd, *J* = 17.4, 6.6 Hz, 1H), 3.24 (dd, *J* = 6.6, 5.2 Hz, 1H), 3.07 (s, 3H), 2.87 (dd, *J* = 17.4, 5.2 Hz, 1H), 1.12 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.9, 176.3, 172.1, 156.4, 147.6, 143.4, 135.7, 131.4, 130.0, 128.0, 127.8, 125.3, 124.2, 117.8, 61.4, 52.3, 51.5, 44.4, 37.6, 25.2, 13.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂O₄N₂Na⁺ 413.1472; Found 413.1471.

(1*R*,2*R*,6*R*)-N,N-Diethyl-1'-methyl-3-methylene-2',4-dioxo-2-phenylspiro [cyclohexane-1,3'-indoline]-6-carboxamide (9a): Following Conditions C, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (41.4 mg, 0.150 mmol), (*E*)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-ylidene)acetamide 8a

(25.8 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and (*S*)-L3 (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 17.9 mg, 43% yield; 98% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 9.69 min, t (minor) = 12.21 min]; $[\alpha]_D^{25} = -65.6$ (*c* = 0.18, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.24 (d, *J* = 1.2 Hz, 1H), 7.12 (td, *J* = 7.8, 1.2 Hz, 1H), 7.02–6.89 (m, 6H), 6.51 (d, *J* = 7.8 Hz, 1H), 6.27 (dd, *J* = 3.0, 1.5 Hz, 1H), 5.09 (t, *J* = 3.0 Hz, 1H), 4.94 (dd, *J* = 3.0, 1.5 Hz, 1H), 3.79 (dd, *J* =

16.6, 6.5 Hz, 1H), 3.64 (dq, *J* = 14.1, 7.1 Hz, 1H), 3.24 (dd, *J* = 6.5, 2.2 Hz, 1H), 3.21–2.14 (m, 1H), 2.98 (s, 3H), 2.77–2.64 (m, 2H), 2.59 (dd, *J* = 16.6, 2.2 Hz, 1H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.80 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 197.9, 177.1, 171.4, 145.0, 142.7, 136.9, 130.3, 129.1, 128.6, 127.4, 126.9, 124.5, 123.3, 122.0, 107.7, 52.8, 51.1, 42.2, 41.0, 40.9, 38.2, 25.8, 14.1, 12.7; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₈O₃N₂Na⁺ 439.1992; Found 439.1993.

(1R,2R,6R)-N,N-Diethyl-1',5'-dimethyl-3-methylene-2',4-dioxo-2-phenyl

 \cap

Ο

Ph`` O: spiro[cyclohexane-1,3'-indoline]-6-carboxamide (9b): Following Conditions C, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), (*E*)-N,N-diethyl-2-(1,5-dimethyl-2-oxoindolin-3-

ylidene)acetamide **8b** (27.2 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and (*S*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a colorless oil by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 22.4 mg, 52% yield; 99% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.19 min, t (minor) = 21.63 min]; $[\alpha]_D^{25} = -96.3$ (c = 0.43, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.07 (d, J = 1.7 Hz, 1H), 7.02–6.97 (m, 3H), 6.95–6.85 (m, 3H), 6.39 (d, J = 7.9 Hz, 1H), 6.27 (dd, J = 3.0, 1.5 Hz, 1H), 5.05 (t, J = 3.0 Hz, 1H), 4.93 (dd, J = 3.0, 1.5 Hz, 1H), 3.81 (dd, J = 16.6, 6.5 Hz, 1H), 3.77–3.69 (m, 1H), 3.23 (dd, J = 6.5, 2.1 Hz, 1H), 3.09 (dq, J = 14.0, 7.1 Hz, 1H), 2.96 (s, 3H), 2.75–2.64 (m, 2H), 2.57 (dd, J = 16.6, 2.1 Hz, 1H), 2.26 (s, 3H), 1.22 (t, J = 7.1 Hz, 3H), 0.81 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 198.1, 177.1, 171.7, 145.3, 140.4, 137.1, 131.6, 130.4, 129.2, 128.9, 127.5, 126.9, 125.2, 123.3, 107.6, 52.9, 51.2, 42.2, 41.2, 40.9, 38.4, 25.9, 21.1, 14.2, 13.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₀O_{3N₂Na⁺ 453.2149; Found 453.2150.}

(1R,2R,6R)-5'-Bromo-N,N-diethyl-1'-methyl-3-methylene-2',4-dioxo-2-phenylspiro[cyclohexane-1,3'-indoline]-6-carboxamide (9c): FollowingCONEt₂Br Conditions C,*tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a(41.4 mg, 0.150 mmol), (E)-2-(5-bromo-1-methyl-2-oxoindolin-3-ylidene)-

N,N-diethylacetamide 8c (33.7 mg, 0.100 mmol), Pd(OAc)2 (1.1 mg, 0.0050 mmol), C4 (4.4 mg,

0.0075 mmol) and (*S*)-L3 (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 28.3 mg, 57% yield; mp: 214–216 °C; 99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.35 min, t (minor) = 13.14 min]; $[\alpha]_D^{25} = -74.7$ (*c* = 0.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.15–7.06 (m, 2H), 7.06–6.98 (m, 3H), 6.95–6.90 (m, 2H), 6.66 (d, *J* = 2.4 Hz, 1H), 6.28 (dd, *J* = 3.2, 1.6 Hz, 1H), 5.08 (t, *J* = 2.8 Hz, 1H), 4.94 (dd, *J* = 2.8, 1.6 Hz, 1H), 3.75 (dd, *J* = 16.7, 6.6 Hz, 1H), 3.63 (dq, *J* = 14.1, 7.1 Hz, 1H), 3.30–3.09 (m, 2H), 2.96 (s, 3H), 2.83–2.66 (m, 2H), 2.59 (dd, *J* = 16.7, 2.2 Hz, 1H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.6, 177.0, 171.3, 144.8, 144.2, 136.7, 130.3, 128.3, 127.7, 127.3, 125.9, 124.9, 123.7, 122.3, 111.4, 52.8, 51.2, 42.4, 41.1, 40.8, 38.2, 26.0, 14.4, 12.9; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₀O₃N₂Na⁺ 517.1097 (⁷⁹Br) and 519.1077 (⁸¹Br); Found 517.1096 (⁷⁹Br) and 519.1078 (⁸¹Br).

(1*R*,2*R*,6*R*)-6'-Bromo-N,N-diethyl-1'-methyl-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-6-carboxamide (9d): Following Conditions C, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), (*E*)-2-(6-bromo-1-methyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide 8d (33.7 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050

mmol), **C4** (4.4 mg, 0.0075 mmol) and (*S*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 30.3 mg, 61% yield; mp: 182–185 °C; 95% *ee*, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 14.14 min, t (minor) = 12.92 min]; [α]_D²⁵ = -76.3 (*c* = 0.16, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.16–7.06 (m, 2H), 7.06–6.98 (m, 3H), 6.94–6.90 (m, 2H), 6.66 (d, *J* = 1.6 Hz, 1H), 6.28 (dd, *J* = 3.0, 1.4 Hz, 1H), 5.08 (t, *J* = 3.0 Hz, 1H), 4.94 (dd, *J* = 2.8, 1.4 Hz, 1H), 3.75 (dd, *J* = 16.8, 6.5 Hz, 1H), 3.63 (dq, *J* = 14.1, 7.1 Hz, 1H), 3.29–3.11 (m, 2H), 2.96 (s, 3H), 2.83–2.66 (m, 2H), 2.59 (dd, *J* = 16.8, 2.2 Hz, 1H), 1.19 (t, *J* = 7.1 Hz, 3H), 0.85 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.6, 177.0, 171.3, 144.8, 144.2, 136.7, 130.3, 128.3, 127.7, 127.3, 125.9, 124.9, 123.7, 122.3, 111.4, 52.8, 51.2, 42.4, 41.1, 40.8, 38.2, 26.0, 14.4,

12.9; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₀O₃N₂Na⁺ 517.1097 (⁷⁹Br) and 519.1077 (⁸¹Br); Found 517.1105 (⁷⁹Br) and 519.1089 (⁸¹Br).

(1*R*,2*R*,6*R*)-7'-Chloro-N,N-diethyl-1'-methyl-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-6-carboxamide (9e): Following Conditions C, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (41.4 mg, 0.150 mmol), (*E*)-2-(7-chloro-1-methyl-2-oxoindolin-3-ylidene)-N,N-diethylacetamide 8e (28.3 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050

mmol), **C4** (4.4 mg, 0.0075 mmol) and (*S*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 25.3 mg, 56% yield; mp: 206–208 °C; 99% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.93 min, t (minor) = 19.06 min]; [α]_D²⁵ = +23.1 (*c* = 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.17 (d, *J* = 7.6 Hz, 1H), 7.11–6.98 (m, 4H), 6.97–6.90 (m, 2H), 6.86 (t, *J* = 7.6 Hz, 1H), 6.29 (dd, *J* = 3.2, 1.4 Hz, 1H), 5.08 (t, *J* = 3.0 Hz, 1H), 4.94 (dd, *J* = 3.0, 1.4 Hz, 1H), 3.74 (dd, *J* = 16.7, 6.6 Hz, 1H), 3.64 (dq, *J* = 14.1, 7.1 Hz, 1H), 3.36 (s, 3H), 3.21 (dd, *J* = 6.6, 2.2 Hz, 1H), 3.19–3.11 (m, 1H), 2.80–2.65 (m, 2H), 2.59 (dd, *J* = 16.7, 2.2 Hz, 1H), 1.18 (t, *J* = 7.1 Hz, 3H), 0.84 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.6, 177.4, 171.3, 144.8, 138.9, 136.7, 132.0, 131.0, 130.3, 127.7, 127.3, 123.7, 123.2, 122.8, 115.2, 52.7, 51.3, 42.3, 41.1, 41.0, 38.3, 29.3, 14.3, 12.7; HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₂₆H₂₈ClO₃N₂⁺ 451.1783 (³⁵Cl) and 453.1753 (³⁷Cl); Found 451.1776 (³⁵Cl) and 453.1767 (³⁷Cl).

tert-Butyl (1*R*,2*R*,6*R*)-6-(diethylcarbamoyl)-3-methylene-2',4-dioxo-2phenylspiro[cyclohexane-1,3'-indoline]-1'-carboxylate (9f): Following Conditions C, *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (41.4 mg, 0.150 mmol), *tert*-butyl (*E*)-3-(2-(diethylamino)-2-oxoethylidene)-

2-oxoindoline-1-carboxylate **8f** (34.4 mg, 0.100 mmol), $Pd(OAc)_2$ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and (*S*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a semi-solid by flash

chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 23.1 mg, 46% yield; 99% ee, determined by HPLC analysis [Daicel Chiral IB Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 17.06 min, t (minor) = 19.43 min]; $[\alpha]_D^{25} = -15.7$ (c = 0.46, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.50 (d, J = 8.0 Hz, 1H), 7.29 (dd, J = 7.6, 1.4 Hz, 1H), 7.15 (td, J = 8.0, 1.4 Hz, 1H), 7.08–6.90 (m, 6H), 6.29 (dd, J = 3.0, 1.5 Hz, 0H), 5.09 (t, J = 2.9 Hz, 1H), 4.97 (dd, J = 2.9, 1.5 Hz, 1H), 3.70 (dd, J = 16.9, 6.5 Hz, 1H), 3.66–3.58 (m, 1H), 3.31 (dd, J = 6.5, 2.0 Hz, 1H), 3.17 (dq, J = 14.1, 7.1 Hz, 1H), 2.82–2.61 (m, 2H), 2.58 (dd, J = 16.9, 2.0 Hz, 1H), 1.59 (s, 9H), 1.19 (t, J = 7.1 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 197.5, 175.7, 171.2, 148.8, 144.8, 138.9, 136.6, 130.4, 129.0, 128.1, 127.8, 127.3, 124.5, 124.0, 123.9, 114.5, 84.7, 53.0, 52.0, 42.3, 41.7, 41.1, 38.4, 28.1, 14.2, 12.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₃₄O₅N₂Na⁺ 525.2360; Found 525.2360.

(*1R*,2*R*,6*R*)-2-([1,1'-Biphenyl]-4-yl)-N,N-diethyl-1'-methyl-3-methylene--CONEt₂ 2',4-dioxospiro[cyclohexane-1,3'-indoline]-6-carboxamide (9g): Following

Conditions C, 1-([1,1'-biphenyl]-4-yl)-2-methylene-3-oxobutyl *tert*-butyl carbonate 1d (52.8 mg, 0.150 mmol), (E)-N,N-diethyl-2-(1-methyl-2-oxoindolin-3-ylidene) acetamide 8a (25.8 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C4 (4.4 mg, 0.0075 mmol) and (S)-L3 (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a pale yellow solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 26.9 mg, 55% yield; mp: 183-185 °C; 98% ee, determined by HPLC analysis [Daicel Chiral AD-H Column, iPrOH/n-hexane = 20/80, 1.0 mL/min, $\lambda = 254 \text{ nm}, \text{ t (major)} = 12.08 \text{ min}, \text{ t (minor)} = 14.88 \text{ min}]; [\alpha]_{D}^{25} = -103.2 (c = 0.54, \text{CHCl}_3); ^{1}\text{H NMR}$ (600 MHz, CDCl₃): δ (ppm) 7.46 (d, J = 7.8 Hz, 2H), 7.36 (t, J = 7.4 Hz, 2H), 7.31–7.21 (m, 4H), 7.13 (t, J = 7.6 Hz, 1H), 7.05–6.99 (m, 2H), 6.97 (t, J = 7.6 Hz, 1H), 6.52 (d, J = 7.8 Hz, 1H), 6.31 (s, 1H), 5.15 (s, 1H), 5.02 (s, 1H), 3.82 (dd, J = 16.7, 6.1 Hz, 1H), 3.66 (dq, J = 14.0, 7.0 Hz, 1H), 3.26 (d, J = 6.1 Hz, 1H), 3.20 (dq, J = 14.0, 7.0 Hz, 1H), 3.00 (s, 3H), 2.77–2.64 (m, 2H), 2.60 (d, J = 16.7 Hz, 1H), 1.21 (t, J = 7.1 Hz, 3H), 0.81 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 198.0, 177.2, 171.5, 145.1, 142.8, 140.4, 139.5, 136.2, 130.8, 129.2, 128.8, 128.7, 127.2, 126.8, 126.0, 124.6, 123.5, 122.2, 108.0, 52.9, 50.9, 42.3, 41.2, 41.0, 38.3, 26.0, 14.3, 12.8; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₂H₃₂O₃N₂Na⁺ 515.2305; Found 515.2300.

(1R,2R,6R)-N,N-Diethyl-1',5'-dimethyl-3-methylene-2-(4-nitrophenyl)-

2',4-dioxospiro[cyclohexane-1,3'-indoline]-6-carboxamide(9h):Following Conditions C, tert-butyl (2-methylene-1-(4-nitrophenyl)-3-

oxobutyl)carbonate **1k** (48.4 mg, 0.150 mmol), (*E*)-2-(1,5-dimethyl-2-oxoindolin-3-ylidene)-N,Ndiethylacetamide **8b** (27.2 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), **C4** (4.4 mg, 0.0075 mmol) and (*S*)-**L3** (2.7 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the major product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5-1/3); 25.0 mg, 53% yield; 97% ec, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 23.03 min, t (minor) = 19.66 min]; [α]₂₅²⁵ = -135.4 (*c* = 0.35, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.00–7.77 (m, 2H), 7.20–7.12 (m, 2H), 7.09 (s, 1H), 6.96 (d, *J* = 7.9 Hz, 1H), 6.44 (d, *J* = 7.9 Hz, 1H), 6.32 (dd, *J* = 3.1, 1.1 Hz, 1H), 5.28 (t, *J* = 3.1 Hz, 1H), 4.83 (d, *J* = 1.6 Hz, 1H), 3.79 (dd, *J* = 16.9, 6.5 Hz, 1H), 3.75–3.67 (m, 1H), 3.23 (dd, *J* = 6.5, 1.9 Hz, 1H), 3.13 (dq, *J* = 14.1, 7.1 Hz, 1H), 2.98 (s, 3H), 2.81–2.63 (m, 2H), 2.57 (dd, *J* = 16.9, 1.9 Hz, 1H), 2.28 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 196.8, 176.4, 171.5, 146.8, 145.3, 144.1, 140.2, 132.1, 131.5, 129.5, 128.4, 125.0, 123.6, 122.7, 108.1, 52.7, 50.7, 42.3, 41.2, 41.0, 38.0, 26.1, 21.1, 14.2, 13.0; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₉O₅N₃Na ⁺ 498.1999; Found 498.1999.

5.4 Asymmetric [4+2] annulations involving isatins

The reaction was conducted with MBH carbonate **1a** (0.12 mmol), isatin **10** (0.10 mmol), Pd(OAc)₂ (0.0050 mmol), **C8** (0.0075 mmol) and **L7** (0.0075 mmol) in dry toluene (1.0 mL) under Ar, and the mixture was stirred at room temperature for 12 h. After completion, the product was obtained by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15). The racemates were obtained similarly by using the combination of achiral tetrabutylammonium bromide (TBAB) and triphenyl phosphite.

(3*R*,6'*R*)-1-Methyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro[indoline-3,2'pyran]-2,4'(3'*H*)-dione (11a): A solution of *tert*-butyl (2-methylene-3-oxo-1phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 1-methylindoline-2,3-dione 10a (16.1 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8 (3.4 mg, 0.0075

mmol) and L7 (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20–1/15); 19.8 mg, 62% yield; >19:1 dr; 87% ee, determined by HPLC analysis [Daicel Chiral IB Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min, λ = 254 nm, t (major) = 13.07 min, t (minor) = 10.72 min]; [α]_D²⁵ = -82.7 (*c* = 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.46–7.29 (m, 7H), 7.11 (td, *J* = 7.8, 1.1 Hz, 1H), 6.82 (d, *J* = 7.8 Hz, 1H), 6.32 (t, *J* = 2.1 Hz, 1H), 6.28 (dd, *J* = 2.1, 1.1 Hz, 1H), 4.87 (dd, *J* = 2.1, 1.1 Hz, 1H), 3.19 (s, 3H), 2.99 (d, *J* = 2.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 194.0, 174.5, 145.3, 143.1, 139.1, 130.4, 128.9, 128.51, 128.48, 128.2, 124.0, 123.5, 123.0, 108.6, 77.1, 76.7, 44.3, 26.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₈O₃N⁺ 320.1281; Found 320.1276.

(3*R*,6'*R*)-1,5-Dimethyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro[indoline-3,2'-pyran]-2,4'(3'*H*)-dione (11b): A solution of *tert*-butyl (2-methylene-3oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), 1,5-dimethylindoline-2,3-dione 10b (17.5 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8

(3.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room

temperature under Ar. After completion, the product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 24.0 mg, 72% yield; >19:1 dr; 90% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 8.86 min, t (minor) = 10.75 min]; $[\alpha]_D^{25} = -40.8$ (c = 0.24, CHCl₃); ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.41–7.31 (m, 5H), 7.18 (s, 1H), 7.13 (d, J = 7.9 Hz, 1H), 6.70 (d, J = 7.9 Hz, 1H), 6.32 (s, 1H), 6.28 (s, 1H), 4.86 (s, 1H), 3.16 (s, 3H), 3.05–2.90 (m, 2H), 2.34 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 194.2, 174.5, 145.4, 140.7, 139.2, 133.3, 130.6, 128.9, 128.6, 128.5, 128.3, 124.9, 123.0, 108.4, 77.2, 76.9, 44.5, 26.1, 21.0; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₁H₂₀O₃N⁺ 334.1438; Found 334.1442.

(3*R*,6'*R*)-5-Chloro-1-methyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro [indoline-3,2'-pyran]-2,4'(3'*H*)-dione (11c): A solutioin of *tert*-butyl (2methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), 1methyl-5-chloroindoline-2,3-dione 10c (19.6 mg, 0.100 mmol), Pd(OAc)₂ (1.1

mg, 0.0050 mmol), **C8** (3.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a semisolid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 30.1 mg, 85% yield; >19:1 dr; 84% ee, determined by HPLC analysis [Daicel Chiral ID Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min, λ = 254 nm, t (major) = 14.91 min, t (minor) = 13.04 min]; [α]_D²⁵ = +18.6 (*c* = 0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.45–7.28 (m, 7H), 6.75 (d, *J* = 8.2 Hz, 1H), 6.31–6.29 (m, 2H), 4.88 (s, 1H), 3.17 (s, 3H), 2.97 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 193.5, 174.2, 145.1, 141.7, 138.8, 130.5, 130.4, 129.0, 128.8, 128.7, 128.3, 124.8, 123.5, 109.8, 77.4, 77.2, 44.2, 26.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃NClNa⁺ 376.0711 (³⁵Cl) and 378.0681 (³⁷Cl); Found 376.0708 (³⁵Cl) and 378.0655 (³⁷Cl).

(3R,6'R)-6-Bromo-1-methyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro [indoline-3,2'-pyran]-2,4'(3'H)-dione (11d): A solution of *tert*-butyl (2methylene-3-oxo-1-phenylbutyl)carbonate 1a (33.2 mg, 0.120 mmol), 1methyl-6-bromoindoline-2,3-dione 10d (24.0 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8 (3.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol)

was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was

obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 24.2 mg, 62% yield; >19:1 dr; 84% ee, determined by HPLC analysis [Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 12.23 min, t (minor) = 9.45 min]; [α] $_{D}^{25}$ = -23.5 (*c* = 0.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.42–7.30 (m, 5H), 7.26–7.20 (m, 2H), 6.98 (d, *J* = 1.6 Hz, 1H), 6.29 (s, 2H), 4.88 (s, 1H), 3.17 (s, 3H), 3.02–2.90 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 193.6, 174.4, 145.2, 144.5, 138.8, 128.7, 128.6, 128.2, 127.9, 126.4, 125.4, 124.3, 123.4, 112.3, 77.3, 76.5, 44.1, 26.2.; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃NBrNa⁺ 398.0386 (⁷⁹Br) and 400.0366 (⁸¹Br); Found 398.0385 (⁷⁹Br) and 400.0350 (⁸¹Br).

(3R,6'R)-1,7-Dimethyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro[indoline-3,2'-pyran]-2,4'(3'H)-dione (11e): A solution of *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 1,7-dimethylindoline-2,3dione 10e (17.5 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8 (3.4 mg,

0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 27.0 mg, 81% yield; >19:1 dr; 92% ee, determined by HPLC analysis [Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 18.36 min, t (minor) = 9.83 min]; $[\alpha]_D^{25} = -68.5$ (c = 0.47, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.43–7.28 (m, 5H), 7.21 (dd, J = 7.4, 1.4 Hz, 1H), 7.07 (d, J = 7.7 Hz, 1H), 6.99 (t, J = 7.4 Hz, 1H), 6.30 (s, 1H), 6.27 (s, 1H), 4.85 (t, J = 1.4 Hz, 1H), 3.46 (s, 3H), 3.19–2.80 (m, 2H), 2.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 194.3, 175.2, 145.4, 140.8, 139.3, 134.2, 129.6, 128.57, 128.56, 128.3, 123.5, 123.1, 122.1, 120.4, 77.2, 76.2, 44.7, 29.5, 18.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₉O₃NNa⁺ 356.1257; Found 356.1248.

For the reaction on a 1.0 mmol scale: *tert*-butyl (2-methylene-3-oxo-1-phenylbutyl)carbonate 1a (332 mg, 1.20 mmol), 1,7-dimethylindoline-2,3-dione 10e (175 mg, 1.00 mmol), Pd(OAc)₂ (11.2 mg, 0.0500 mmol), C8 (34.0 mg, 0.0750 mmol) and L7 (34.0 mg, 0.0750 mmol) were stirred in dry toluene (10.0 mL) at room temperature under Ar. After completion, the product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 240 mg, 72% yield; >19:1 dr, 91% ee.

(3R,6'R)-7-Chlorl-1-methyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro [indoline-3,2'-pyran]-2,4'(3'H)-dione (11f): A solution of *tert*-butyl (2methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 1-methyl-7-chloroindoline-2,3-dione 10f (19.6 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8 (3.4 mg, 0.0075 mmol) and L7 (3.4 mg, 0.0075 mmol) was stirred in

dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a semi-solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 23.7 mg, 67% yield; >19:1 dr; 80% ee, determined by HPLC analysis [Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 15.89 min, t (minor) = 7.93 min]; $[\alpha]_D^{25} = -72.5$ (c = 0.32, CH₂Cl₂); ¹H NMR (400 MHz, Acetone-*d*6): δ (ppm) 7.57–7.30 (m, 7H), 7.13 (dd, J = 8.3, 7.3 Hz, 1H), 6.22 (t, J = 2.1 Hz, 1H), 6.16–6.11 (m, 1H), 5.27–4.60 (m, 1H), 3.52 (s, 3H), 3.21 (d, J = 16.6 Hz, 1H); ¹³C NMR (150 MHz, Acetone-*d*6): δ (ppm) 193.9, 175.5, 147.0, 141.0, 140.4, 133.4, 133.1, 129.39, 129.36, 129.2, 125.3, 124.2, 122.3, 116.3, 78.1, 77.3, 45.0, 29.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃NClNa⁺ 376.0711 (³⁵Cl) and 378.0681 (³⁷Cl); Found 376.0706 (³⁵Cl) and 378.0667 (³⁷Cl).

(3*R*,6'*R*)-1-Benzyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro[indoline-3,2'pyran]-2,4'(3'*H*)-dione (11g): A solution of *tert*-butyl (2-methylene-3-oxo-1phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 1-benzylindoline-2,3-dione 10g (23.7 mg, 0.100 mmol), Pd(OAc)₂ (1.1 mg, 0.0050 mmol), C8 (3.4 mg, 0.0075

mmol) and L7 (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20–1/15); 30.9 mg, 78% yield; mp: 116–118 °C; >19:1 dr; 80% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 9.81 min, t (minor) = 9.17 min]; $[\alpha]_D^{25} = -46.7$ (c = 0.33, CHCl₃); ¹H NMR (600 MHz, Acetone- d_6): δ (ppm) ¹H NMR (600 MHz,) δ 7.57 (dd, J = 7.4, 1.3 Hz, 1H), 7.55–7.51 (m, 2H), 7.48–7.27 (m, 8H), 7.15 (t, J = 7.4 Hz, 1H), 6.95 (d, J = 7.9 Hz, 1H), 6.35 (t, J = 2.2 Hz, 1H), 6.20 (t, J = 1.7 Hz, 1H), 5.03–4.97 (m, 2H), 4.83 (t, J = 1.7 Hz, 1H), 3.31 (d, J = 16.6 Hz, 1H), 2.99 (d, J = 16.6 Hz, 1H), 2.84–2.81 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 194.1, 174.7, 145.3, 142.3, 139.3, 135.1, 130.4, 129.0, 128.9, 128.7, 128.6, 128.3, 127.9, 127.3, 124.2, 123.6, 123.4, 109.8, 77.2, 77.0, 44.7, 43.7; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₂O₃N⁺ 396.1594; Found 396.1590.

(3R,6'R)-5-Chloro-1-benzyl-5'-methylene-6'-phenyl-5',6'-dihydrospiro [indoline-3,2'-pyran]-2,4'(3'H)-dione (11h): A solution of *tert*-butyl (2methylene-3-oxo-1-phenylbutyl) carbonate 1a (33.2 mg, 0.120 mmol), 1benzyl-5-chloroindoline-2,3-dione 10h (27.2 mg, 0.100 mmol), Pd(OAc)₂ (1.1

mg, 0.0050 mmol), **C8** (3.4 mg, 0.0075 mmol) and **L7** (3.4 mg, 0.0075 mmol) was stirred in dry toluene (1.0 mL) at room temperature under Ar. After completion, the product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/20-1/15); 28.0 mg, 65% yield; mp: 138–139 °C; >19:1 dr; 80% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 7.42 min, t (minor) = 8.42 min]; [α]_p²⁵ = -7.1 (*c* = 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.47–7.27 (m, 9H), 7.25–7.23 (m, 2H), 7.18 (dd, *J* = 8.4, 2.1 Hz, 1H), 6.61 (d, *J* = 8.4 Hz, 1H), 6.35 (t, *J* = 2.1 Hz, 1H), 6.32 (dd, *J* = 2.1, 1.0 Hz, 1H), 4.98–4.90 (m, 2H), 4.78 (d, *J* = 15.7 Hz, 1H), 3.01 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 193.5, 174.4, 145.0, 140.8, 139.0, 134.7, 130.5, 130.3, 129.1, 129.0, 128.8, 128.7, 128.3, 128.0, 127.2, 124.8, 123.7, 110.9, 77.5, 76.9, 44.5, 43.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₂₀O₃NClNa⁺ 452.1024 (³⁵Cl) and 454.0994 (³⁷Cl); Found 452.1008 (³⁵Cl) and 454.0995 (³⁷Cl).

5.5 Transformations of the [4+2] annulation product 3a

(2'S,3'R,6'S)-2',2'',5'',6'-Tetraphenyl-2'',4''-dihydrodispiro[indene-2,1'-cyclohexane-3',3''-pyrazole]-1,3,4'-trione (12): A mixture of 3a (9.9 mg, 0.025 mmol, >99% ee (after recrystallization)), (Z)-N-phenyl benzohydrazonoyl chloride (7.8 mg, 0.030 mmol), Ag₂CO₃ (1.4 mg,

0.0050 mmol) and DIPEA (0.05 mmol, 6 mg) in toluene (0.25 mL) was stirred at 50 °C overnight.⁵ After completion, product **12** was obtained as a pale yellow solid by flash chromatography on silica gel (acetone/petroleum ether = 1/20-1/15), 13.5 mg, 92% yield; mp 267–269 °C; >19:1 dr; >99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm, t (major) = 9.04 min, t (minor) = 10.41 min]; [α]_D²⁵ = -387.7 (*c* = 0.26, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.89–7.72 (m, 2H), 7.62–7.53 (m, 1H), 7.51–7.33 (m, 6H), 7.15 (t, *J* = 7.7 Hz, 2H), 7.10–6.95 (m, 5H), 6.86–6.75 (m, 4H), 6.66 (t, *J* = 7.7 Hz, 2H), 6.58 (d, *J* = 7.7 Hz, 2H), 5.39 (d, *J* = 17.4 Hz, 1H), 4.89 (s, 1H), 4.28 (dd, *J* = 16.7, 15.0 Hz, 1H), 4.11 (dd, *J* = 15.0, 2.2 Hz, 1H), 3.72 (d, *J* = 17.4 Hz, 1H), 2.96 (dd, *J* = 16.7, 2.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 208.1, 203.3, 202.5, 145.0, 142.5, 142.3, 141.6, 136.1, 135.6, 132.8, 132.4, 129.9, 128.7, 128.61, 128.58, 128.4, 128.3, 127.8, 127.74, 127.71, 125.8, 122.6, 122.5, 120.1, 115.4, 76.4, 63.2, 48.0, 44.8, 43.0, 40.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₄₀H₃₀N₂NaO₃⁺ 609.2149; Found 609.2136.

(5R,7S)-2-Amino-1',3'-dioxo-5,7-diphenyl-1',3',7,8-tetrahydro-4H,5H-spiro[chromene-6,2'-indene]-3-carbonitrile (13):A solution of 3a (14.9 mg, 0.0375 mmol, >99% ee), malononitrine (3.0 mg, 0.045 mmol), and TEA (0.045 mmol, 6.0 μ l) in toluene (0.4 mL) was stirred at

50 °C overnight.⁶ After completion, product **13** was obtained as a white solid by flash chromatography on silica gel (petroleum ether/EtOAc/dichloromethane = 6/1/1), 14.2 mg, 83% yield; mp 164–167 °C; >99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 10.10 min, t (minor) = 7.75 min]; $[\alpha]_{D}^{25} = -42.1$ (*c* = 0.28, CHCl₃); ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 7.95 (d, J = 7.6 Hz, 1H), 7.75 (td, J = 7.4, 1.2 Hz, 1H), 7.68 (td, J = 7.4, 1.2 Hz, 1H), 7.61 (d, J = 7.6 Hz, 1H), 7.43–7.30 (m, 3H), 7.16–6.99 (m, 7H), 4.44 (s, 2H), 3.71 (dd, J = 11.1, 6.4 Hz, 1H), 3.32 (s, 1H), 3.26–3.17 (m, 1H), 2.66 (dd, J = 17.6, 6.4 Hz, 1H), 2.56–2.45 (m, 2H); ¹³**C NMR** (100 MHz, CDCl₃): δ (ppm) 201.3, 198.7, 159.6, 144.5, 141.7, 141.0, 138.9, 137.1, 135.7, 135.5, 129.0, 128.6, 128.3, 128.1, 127.3, 123.5, 123.1, 120.3, 105.0, 60.5, 54.2, 50.5, 39.8, 30.6, 24.5; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₀H₂₂ NaN₂O₃⁺ 481.1523; Found 481.1520.

5.6 Dimerisation of 11e

(3*R*,5'*S*,5''*R*,6'*R*,7''*R*)-1,1''',7,7'''-Tetramethyl-5'',6'-diphenyl-3'',4'',5'',8''-tetrahydro-6'H-trispiro[indoline-3,2'-pyran-5',2''pyrano[4,3-*b*]pyran-7'',3'''-indoline]-2,2''',4'(3'*H*)-trione (14): A

solution of compound **11e** (239 mg, 0.720 mmol) in CHCl₃ was concentrated and let stand for 5 days. The dimer product was obtained as a white solid by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10-1/7), 172 mg, 72% yield; mp: 264–266 °C; >19:1 dr; >99% ee, determined by HPLC analysis [Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, $\lambda = 254$ nm, t (major) = 11.23 min, t (minor) = 15.92 min]; $[\alpha]_D^{25} = -138.6$ (c =0.14, CHCl₃); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.47–7.45 (m, 2H), 7.37 (d, J = 6.9 Hz, 1H), 7.32–7.17 (m, 9H), 7.10–7.00 (m, 3H), 6.96 (t, J = 7.5 Hz, 1H), 5.75 (s, 1H), 5.52 (s, 1H), 3.70 (d, J =13.1 Hz, 1H), 3.43 (s, 3H), 3.39 (s, 3H), 2.93 (d, J = 16.8 Hz, 1H), 2.55 (s, 3H), 2.52 (s, 3H), 2.50– 2.42 (m, 2H), 2.15 (dd, J = 13.4, 7.1 Hz, 1H), 1.94–1.85 (m, 1H), 1.52 (dd, J = 16.8, 6.0 Hz, 1H), 1.41–1.33 (m, 1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 202.8, 175.1, 175.0, 141.0, 140.8, 139.5, 139.4, 135.7, 134.1, 133.7, 130.6, 129.22, 129.17, 128.6, 128.5, 128.3, 128.2, 127.9, 123.3, 123.0, 122.10, 122.06, 120.3, 119.7, 107.6, 81.5, 81.2, 77.5, 76.9, 74.9, 43.5, 33.1, 29.2, 22.6, 18.9, 18.8, 18.4; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C4₂H₃₉O₆N₂⁺ 667.2803; Found 667.2802.

6. Crystal data for enantiopure products 3s, 6g, 9c and 14

Preparation of the single crystals of enantiopure 3s: Compound **3s** (20.0 mg, 93% ee) was dissolved in *i*PrOH (1.0 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by parafilm with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 72 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **3s**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 289.62(18) K. CCDC 2073270 (**3s**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table S2 Crystal data and structur	re refinement for 3s
Identification code	35
Empirical formula	C31H28O3
Formula weight	448.53
Temperature/K	289.62(18)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.4508(3)
b/Å	10.5895(3)
c/Å	24.6688(6)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	2468.84(12)
Ζ	4
$\rho_{cale}g/cm^3$	1.207
μ/mm^{-1}	0.602
F(000)	952.0
Crystal size/mm ³	0.7 imes 0.5 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	9.088 to 134.102
Index ranges	$\textbf{-7} \leq h \leq 11, \textbf{-10} \leq k \leq 12, \textbf{-26} \leq \textbf{l} \leq 29$

Reflections collected	10698
Independent reflections	4401 [$R_{int} = 0.0418$, $R_{sigma} = 0.0453$]
Data/restraints/parameters	4401/21/310
Goodness-of-fit on F ²	1.033
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0632, wR_2 = 0.1676$
Final R indexes [all data]	$R_1 = 0.0668, wR_2 = 0.1746$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.32
Flack parameter	0.1(2)

The absolute structures of two diastereomers from 3-olefinic oxindoles were confirmed by X-ray crystal diffraction analysis.

Preparation of the single crystals of enantiopure 6g: Compound **6g** (20.0 mg, >99% ee) was dissolved in EtOAc (1.0 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by parafilm with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 48 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **6g**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 296.2(4) K. CCDC 2073271 (**6g**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table S3 Crystal data and structure refinement for 6g Identification code 6g Empirical formula C33H31NO6 Formula weight 537.59 Temperature/K 296.2(4) Crystal system orthorhombic P212121 Space group a/Å 17.1259(4) b/Å 16.6316(3) c/Å 9.8931(2) $\alpha/^{\circ}$ 90 β/° 90

$\gamma/^{o}$	90
Volume/Å ³	2817.86(10)
Z	4
$\rho_{calc}g/cm^3$	1.267
μ/mm^{-1}	0.707
F(000)	1136.0
Crystal size/mm ³	0.45 imes 0.15 imes 0.15
Radiation	$CuK\alpha \ (\lambda = 1.54184)$
2Θ range for data collection/°	7.41 to 142.812
Index ranges	$-20 \le h \le 20, 15 \le k \le 20, 11 \le l \le 12$
Reflections collected	15409
Independent reflections	5384 [$R_{int} = 0.0539, R_{sigma} = 0.0397$]
Data/restraints/parameters	5384/0/365
Goodness-of-fit on F ²	1.061
Final R indexes [I>=2 σ (I)]	$R_1 = 0.1316, wR_2 = 0.3236$
Final R indexes [all data]	$R_1 = 0.1356, wR_2 = 0.3259$
Largest diff. peak/hole / e Å $^{-3}$	0.39/-0.38
Flack parameter	0.05(18)

Preparation of the single crystals of enantiopure 9c: Compound **9c** (20.0 mg, 99% ee) was dissolved in EA (1.0 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by parafilm with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 48 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **9c**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 296.8(5) K. CCDC 2073272 (**9c**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table S4 Crystal data and structure refinement for 9cIdentification code9cEmpirical formulaC26H27BrN2O3

Formula weight	495.40
Temperature/K	296.8(5)
Crystal system	hexagonal
Space group	P62
a/Å	19.5054(4)
b/Å	19.5054(4)
c/Å	10.8702(2)
α/°	90
β/°	90
$\gamma/^{\circ}$	120
Volume/Å ³	3581.62(16)
Ζ	6
$\rho_{cale}g/cm^3$	1.378
μ/mm^{-1}	2.582
F(000)	1536.0
Crystal size/mm ³	0.6 imes 0.2 imes 0.2
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	9.068 to 142.586
Index ranges	$-23 \le h \le 12, -20 \le k \le 23, -13 \le l \le 11$
Reflections collected	20115
Independent reflections	4217 [$R_{int} = 0.0564, R_{sigma} = 0.0328$]
Data/restraints/parameters	4217/1/292
Goodness-of-fit on F ²	1.056
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0458, wR_2 = 0.1230$
Final R indexes [all data]	$R_1 = 0.0482, wR_2 = 0.1269$
Largest diff. peak/hole / e Å ⁻³	0.52/-0.28
Flack parameter	-0.020(12)

The absolute configuration of the dimerisation product **14** from **11e** was determined by X-ray crystal diffraction analysis.

Preparation of the single crystals of enantiopure 14: Compound **14** (20.0 mg, >99% ee) was dissolved in DCM (1.0 mL) in a 10 mL tube and *n*-hexane (3.0 mL) was added. The tube was sealed by parafilm with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 48 h, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of **14**. The data were collected by an Agilent Gemini equipped with a Cu radiation source (K α = 1.54184 Å) at 150.00(10) K. CCDC 2073273 (**14**) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

Table S5 Crystal data and struct	ure refinement for 14
Identification code	14
Empirical formula	C42H38N2O6
Formula weight	666.74
Temperature/K	150.00(10)
Crystal system	orthorhombic
Space group	P212121
a/Å	9.66433(13)
b/Å	12.43414(15)
c/Å	28.7610(4)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	3456.14(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.281
μ/mm^{-1}	0.691
F(000)	1408.0
Crystal size/mm ³	0.6 imes 0.5 imes 0.3
Radiation	$CuK\alpha (\lambda = 1.54184)$
2 Θ range for data collection/°	7.746 to 143.004

$-11 \le h \le 11, -15 \le k \le 11, -35 \le l \le 35$
18584
6621 [$R_{int} = 0.0431$, $R_{sigma} = 0.0379$]
6621/0/455
1.037
$R_1 = 0.0480, wR_2 = 0.1242$
$R_1 = 0.0501, wR_2 = 0.1274$
0.19/-0.35
-0.06(10)

7. More unsuccessful attempts

Scheme S10 Unsuccessful attempts with differently substituted MBH carbonates Unless other noted, the reaction was conducted with MBH carbonate 1 (0.6mmol), enone 2a (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), C4 (0.005 mmol)and L7 (0.005 mmol) in dry toluene (0.5 mL) under Ar, and the mixture was stirred at room temperature for 36 h.

8. Bioactivity test

8.1 Biological results

The antiproliferative effects of some products were tested over cisplatin-resistant gastric cancer cell line MGC803 cell line to evaluate their biological activities. Except **11g** and **11h**, other compounds showed high cytotoxicity under 50 μ M (Figure **S1**). Next, these products were further evaluated in a dose-dependent manner with IC₅₀ values calculated (Table **S6**). Among them, **3q** and **3s** showed the best activities, with IC₅₀ values of $4.51 \pm 0.09 \ \mu$ M and $5.14 \pm 0.19 \ \mu$ M, therefore they were selected as representatives for further investigation. We also evaluated their cytotoxicity towards GES-01, an immortalized gastric epithelial cell line, and found **3s** showed moderate selectivity between cancer cell line and normal cell line (IC₅₀ for GES-01 was 12.94 ± 0.58 μ M), suggesting **3s** might be a potential lead compound.

Figure S1 Inhibition rate of some products to the proliferation of MGC803 cells (n = 3)

Table S6 Evaluation of the antiproliferative effects of the indicated products and respective IC50 (n

= 3)					
Entry	Compound	Structure	\mathbb{R}^1	R ²	$\mathrm{IC}_{50}(\mu\mathrm{M})^a$
1	3a		Ph	Ph	8.73 ± 0.62
2	3b		3-CH ₃ C ₆ H ₄	Ph	12.15 ± 1.22
3	3d		4-PhC ₆ H ₄	Ph	42.21 ± 1.80
4	3e		4-FC6H4	Ph	21.35 ± 0.55
5	3f		3,4-Cl ₂ C ₆ H ₃	Ph	11.61 ± 0.46

^{*a*}IC₅₀ was tested based on the proliferation of MGC803 cells.

^{*b*}Cytotoxicity for normal cell was tested based on anti-proliferative experiments over an immortalized gastric epithelial cell line, GES-01. IC₅₀ value for 3q was $4.33 \pm 0.57 \mu$ M.

^cCytotoxicity for normal cell was tested based on GES-01 cell line with IC₅₀ value of $12.94 \pm 0.58 \,\mu$ M.

8.2 Biological evaluation methods

Cell culture

Cis-platin resistant cell line MGC803 was constructed and provided by Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Chongqing, China), and was cultured in DMEM (Gbico, USA, C11995599bt) medium containing 10% fetal bovin serum (Lonsera, URY), 100 U/mL penicillin, 100 μ g/mL streptomycin. Cells were incubated at 37 °C under 5% CO₂ atmosphere, and was passaged when the cell confluence reached 80%.

Anti-proliferative assay

The anti-proliferative activity of the selected annulation products against MGC803 cell line was evaluated using cell counting kit-8 (CCK-8, Beyotime, China). Cells were plated on 96-well plates at density of 5000 cells/well and cultured overnight. After the cells have reattached the plate, administrate the compounds and incubate for 24 h. Then 10% CCK-8 reagent was added and incubated for 2 h. The absorbance at 450 nm was then read on a Multi-Mode Detection Platform (Spectra Max Paradigm, Molecular Devices, USA) to calculate the cell viability. IC₅₀ values were calculated by Graph Pad Prism software.

9. Mechanism study

9.1 Control experiments

 Table S7 Evaluation of ammonium halides

Boco + 1a	Pd(OAc) ₂ (5 mol%) L8 (7.5 mol%) PTC (7.5 mol%) toluene, RT, 36 h 2a Ph	$\begin{array}{c} \begin{array}{c} \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \begin{array}{c} P \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} O \\ \end{array} \\$
Entry ^a	IPC	yield $(\%)^b$
1	None	NR
2	TBAC	78
3	TBAB	71
4	TBAI	<10
^a Unless otherwise noted, the reac	tions were conducted with 1	a (0.075 mmol), 2a (0.05 mmol),
Pd(OAc) ₂ (0.0025 mmol), IPC ((0.005 mmol) and L8 (0.003	5 mmol) in dry solvent (0.5 mL)
under Ar. ^{<i>b</i>} Isolated yield. NR = n	o reaction.	

To gain more insight into the catalytic mechanism, several control experiments were conducted. Pd(OAc)₂ in combination of achiral phosphoramidite **L8** was utilized for the [4+2] annulation between **1a** and **2a**, and different IPCs were tested. As summarized in Table S7, no reaction occurred without IPC. Remarkably, both TBAB and TBAC significantly enhanced the conversion, but TBAI delivered poor results, demonstrating that halide anion also affected the reaction apparently.

9.2 UV-Vis absorption analysis

Figure S2 The UV-Vis spectra of various catalytic species

Method of UV-Vis spectrum measurement: To deduct the background UV absorption of the solvent and promote the reaction process smoothly, EtOAc was chosen as the measurement solvent. The 0.0025 mmol reactant (or metal or ligand or IPC, all with 1.0 equiv) was weighted accurately, and dissolved in 0.5 mL dry EtOAc. After stirred at room temperature for 15 min under Ar, a 50 μ L solution was diluted to 3.0 mL by adding dry EtOAc. The UV-Vis absorption curve of the reaction solution was obtained accordingly.

To further investigate the effect of IPCs, UV-Vis absorption experiments were carried out. As outlined above, a slightly different absorption spectrum was observed after adding MBH carbonate **1a** into the mixture of Pd(OAc)₂ and **L8**, while apparent changes were observed by adding TBAC, TBAB, and TBAI, featuring a stronger absorption at 320–380 nm. These results supported that the previously formed 1,4-carbodipole-type complex would be converted to a new type of species after an ammonium halide was added.

Wava	Absorption/Au									
longth	1 a	L8	Pd(OAc) ₂	Pd(OAc) ₂	Pd(OAc) ₂	$Pd(OAc)_2$	Pd(OAc) ₂	TBAI		
(nm)			+ L8	+ L 8 +1a	+ L 8 +1a	+ L8 +1a	+ L8 +1a			
(IIIII)					+TBAB	+TBAC	+TBAI			
600	0.020	0.012	0.004	0.010	0.004	0.015	-0.008	0.035		
598	0.020	0.012	0.007	0.010	0.006	0.015	-0.008	0.034		
596	0.019	0.012	0.006	0.010	0.005	0.013	-0.008	0.035		
594	0.018	0.012	0.007	0.011	0.006	0.015	-0.007	0.035		

UV-Visible absorption data

592	0.015	0.013	0.007	0.012	0.004	0.013	-0.007	0.032
590	0.018	0.011	0.004	0.010	0.006	0.014	-0.007	0.034
588	0.017	0.010	0.007	0.011	0.003	0.015	-0.008	0.036
586	0.020	0.012	0.007	0.009	0.004	0.014	-0.005	0.034
584	0.017	0.012	0.005	0.009	0.005	0.012	-0.007	0.033
582	0.018	0.011	0.006	0.010	0.007	0.014	-0.007	0.035
580	0.018	0.011	0.006	0.010	0.007	0.014	-0.008	0.034
578	0.017	0.012	0.007	0.010	0.005	0.014	-0.007	0.035
576	0.021	0.014	0.007	0.011	0.006	0.015	-0.008	0.035
574	0.019	0.012	0.007	0.011	0.007	0.015	-0.008	0.035
572	0.018	0.012	0.005	0.010	0.006	0.014	-0.008	0.035
570	0.019	0.012	0.007	0.011	0.006	0.017	-0.010	0.036
568	0.018	0.013	0.006	0.010	0.006	0.016	-0.007	0.034
566	0.019	0.011	0.008	0.010	0.006	0.015	-0.010	0.033
564	0.016	0.013	0.008	0.008	0.007	0.016	-0.007	0.035
562	0.020	0.011	0.007	0.012	0.007	0.015	-0.008	0.035
560	0.019	0.013	0.006	0.011	0.008	0.015	-0.008	0.033
558	0.018	0.011	0.006	0.011	0.006	0.015	-0.008	0.035
556	0.020	0.014	0.007	0.011	0.007	0.014	-0.009	0.036
554	0.020	0.013	0.008	0.012	0.006	0.015	-0.008	0.035
552	0.019	0.014	0.007	0.011	0.007	0.016	-0.007	0.037
550	0.018	0.012	0.008	0.012	0.008	0.017	-0.008	0.036
548	0.019	0.013	0.008	0.011	0.006	0.016	-0.008	0.035
546	0.019	0.012	0.007	0.012	0.005	0.016	-0.008	0.034
544	0.019	0.013	0.008	0.011	0.006	0.016	-0.008	0.035
542	0.020	0.013	0.008	0.011	0.006	0.016	-0.008	0.035
540	0.019	0.013	0.008	0.011	0.006	0.017	-0.008	0.034
538	0.020	0.012	0.008	0.011	0.006	0.018	-0.008	0.035
536	0.019	0.013	0.008	0.012	0.007	0.017	-0.007	0.036
534	0.020	0.013	0.008	0.012	0.006	0.017	-0.008	0.035
532	0.020	0.013	0.008	0.011	0.006	0.017	-0.007	0.035
530	0.020	0.013	0.007	0.011	0.007	0.017	-0.007	0.036
528	0.020	0.013	0.008	0.011	0.007	0.018	-0.007	0.036
526	0.020	0.013	0.008	0.012	0.007	0.018	-0.006	0.036
524	0.020	0.014	0.010	0.013	0.007	0.019	-0.007	0.036
522	0.018	0.014	0.008	0.012	0.008	0.018	-0.007	0.037
520	0.020	0.013	0.007	0.012	0.007	0.018	-0.006	0.036
518	0.020	0.013	0.008	0.012	0.008	0.019	-0.005	0.036
516	0.019	0.012	0.009	0.013	0.008	0.018	-0.005	0.035
514	0.020	0.013	0.009	0.011	0.008	0.019	-0.005	0.037
512	0.020	0.013	0.009	0.013	0.008	0.019	-0.005	0.035
510	0.020	0.013	0.008	0.012	0.007	0.019	-0.004	0.037
508	0.020	0.014	0.008	0.011	0.009	0.019	-0.004	0.035
506	0.021	0.013	0.009	0.012	0.008	0.020	-0.003	0.035

504	0.020	0.014	0.008	0.012	0.008	0.019	-0.003	0.035
502	0.020	0.014	0.009	0.012	0.009	0.020	-0.002	0.035
500	0.020	0.014	0.010	0.012	0.008	0.021	-0.002	0.036
498	0.021	0.014	0.009	0.013	0.009	0.021	-0.001	0.037
496	0.021	0.014	0.009	0.013	0.009	0.021	0.000	0.037
494	0.021	0.014	0.010	0.012	0.009	0.022	0.001	0.036
492	0.021	0.014	0.009	0.013	0.009	0.022	0.002	0.036
490	0.021	0.014	0.010	0.013	0.010	0.022	0.002	0.036
488	0.021	0.014	0.009	0.013	0.010	0.023	0.003	0.037
486	0.021	0.014	0.010	0.013	0.010	0.023	0.005	0.037
484	0.021	0.014	0.010	0.013	0.011	0.023	0.005	0.037
482	0.021	0.014	0.010	0.014	0.011	0.024	0.006	0.037
480	0.021	0.014	0.010	0.014	0.012	0.025	0.007	0.037
478	0.021	0.015	0.010	0.014	0.012	0.025	0.008	0.037
476	0.021	0.015	0.011	0.014	0.012	0.025	0.009	0.037
474	0.021	0.015	0.011	0.014	0.013	0.026	0.011	0.037
472	0.022	0.015	0.011	0.015	0.013	0.027	0.011	0.037
470	0.022	0.015	0.011	0.015	0.014	0.027	0.013	0.037
468	0.021	0.015	0.011	0.015	0.014	0.028	0.014	0.037
466	0.022	0.014	0.012	0.015	0.015	0.029	0.015	0.037
464	0.022	0.015	0.012	0.016	0.016	0.030	0.017	0.037
462	0.022	0.015	0.012	0.016	0.017	0.030	0.018	0.038
460	0.022	0.015	0.012	0.016	0.018	0.031	0.020	0.038
458	0.022	0.015	0.012	0.017	0.018	0.032	0.021	0.038
456	0.022	0.015	0.013	0.017	0.019	0.033	0.023	0.037
454	0.022	0.015	0.013	0.017	0.020	0.035	0.025	0.038
452	0.022	0.015	0.013	0.018	0.021	0.036	0.026	0.038
450	0.022	0.016	0.014	0.018	0.022	0.037	0.028	0.038
448	0.022	0.016	0.014	0.018	0.024	0.039	0.030	0.038
446	0.022	0.016	0.014	0.018	0.025	0.040	0.032	0.038
444	0.022	0.016	0.014	0.019	0.027	0.042	0.034	0.038
442	0.023	0.016	0.015	0.020	0.029	0.044	0.036	0.039
440	0.023	0.016	0.015	0.020	0.030	0.045	0.038	0.039
438	0.023	0.016	0.016	0.021	0.032	0.048	0.041	0.039
436	0.023	0.016	0.016	0.021	0.034	0.050	0.043	0.038
434	0.023	0.016	0.016	0.022	0.036	0.052	0.046	0.039
432	0.023	0.016	0.017	0.022	0.039	0.055	0.048	0.039
430	0.023	0.017	0.017	0.023	0.041	0.057	0.050	0.039
428	0.024	0.017	0.018	0.024	0.044	0.060	0.053	0.039
426	0.024	0.017	0.018	0.024	0.047	0.063	0.056	0.039
424	0.024	0.017	0.019	0.025	0.050	0.066	0.059	0.039
422	0.024	0.017	0.019	0.026	0.053	0.069	0.062	0.040
420	0.024	0.017	0.020	0.026	0.056	0.073	0.064	0.040
418	0.024	0.017	0.020	0.027	0.060	0.077	0.068	0.040

416	0.024	0.018	0.021	0.028	0.064	0.081	0.071	0.040
414	0.025	0.018	0.022	0.029	0.068	0.085	0.073	0.040
412	0.025	0.018	0.023	0.030	0.072	0.089	0.077	0.040
410	0.025	0.018	0.023	0.031	0.076	0.093	0.080	0.041
408	0.025	0.018	0.024	0.031	0.081	0.097	0.083	0.041
406	0.025	0.018	0.025	0.032	0.085	0.102	0.086	0.041
404	0.025	0.018	0.025	0.033	0.090	0.107	0.089	0.041
402	0.025	0.019	0.025	0.034	0.095	0.111	0.092	0.041
400	0.026	0.019	0.026	0.035	0.100	0.116	0.095	0.041
398	0.026	0.019	0.026	0.036	0.106	0.121	0.098	0.041
396	0.026	0.019	0.028	0.037	0.111	0.126	0.102	0.041
394	0.026	0.019	0.028	0.038	0.116	0.131	0.105	0.041
392	0.026	0.019	0.029	0.040	0.122	0.136	0.108	0.042
390	0.026	0.019	0.030	0.041	0.127	0.141	0.112	0.042
388	0.026	0.019	0.030	0.042	0.133	0.146	0.116	0.042
386	0.026	0.019	0.031	0.044	0.139	0.151	0.119	0.042
384	0.026	0.019	0.032	0.045	0.144	0.156	0.123	0.042
382	0.027	0.020	0.032	0.046	0.150	0.161	0.128	0.042
380	0.027	0.019	0.033	0.048	0.155	0.166	0.132	0.042
378	0.027	0.020	0.034	0.050	0.161	0.171	0.137	0.042
376	0.027	0.020	0.035	0.052	0.166	0.176	0.142	0.043
374	0.027	0.019	0.036	0.054	0.171	0.181	0.148	0.043
372	0.027	0.020	0.037	0.056	0.177	0.186	0.154	0.043
370	0.028	0.020	0.037	0.059	0.184	0.192	0.161	0.043
368	0.028	0.020	0.039	0.062	0.190	0.199	0.168	0.043
366	0.028	0.020	0.040	0.064	0.196	0.205	0.176	0.043
364	0.028	0.020	0.041	0.067	0.203	0.212	0.185	0.043
362	0.028	0.020	0.042	0.070	0.209	0.219	0.191	0.043
360	0.028	0.020	0.043	0.073	0.215	0.227	0.200	0.044
358	0.029	0.021	0.045	0.077	0.222	0.235	0.209	0.044
356	0.029	0.021	0.046	0.080	0.229	0.243	0.218	0.044
354	0.029	0.021	0.048	0.084	0.236	0.251	0.227	0.044
352	0.030	0.021	0.049	0.088	0.242	0.260	0.236	0.044
350	0.030	0.021	0.052	0.092	0.249	0.268	0.245	0.044
348	0.030	0.021	0.054	0.096	0.255	0.277	0.254	0.044
346	0.031	0.021	0.057	0.102	0.260	0.284	0.262	0.044
344	0.031	0.022	0.059	0.106	0.266	0.291	0.269	0.044
342	0.031	0.022	0.063	0.111	0.271	0.298	0.277	0.044
340	0.032	0.022	0.066	0.117	0.276	0.305	0.284	0.045
338	0.032	0.022	0.070	0.122	0.281	0.312	0.292	0.044
336	0.032	0.022	0.074	0.128	0.287	0.319	0.300	0.045
334	0.033	0.023	0.079	0.134	0.292	0.325	0.309	0.045
332	0.033	0.023	0.083	0.140	0.298	0.331	0.317	0.045
330	0.033	0.024	0.089	0.147	0.305	0.339	0.328	0.045

328	0.034	0.024	0.094	0.153	0.312	0.346	0.338	0.046
326	0.034	0.024	0.100	0.161	0.320	0.355	0.351	0.046
324	0.035	0.024	0.106	0.168	0.329	0.364	0.365	0.047
322	0.035	0.025	0.112	0.175	0.337	0.373	0.378	0.047
320	0.036	0.026	0.119	0.183	0.349	0.386	0.395	0.047
318	0.037	0.027	0.126	0.191	0.360	0.399	0.413	0.048
316	0.037	0.029	0.134	0.199	0.375	0.416	0.434	0.048
314	0.038	0.030	0.142	0.208	0.391	0.434	0.457	0.049
312	0.038	0.034	0.151	0.217	0.412	0.459	0.487	0.049
310	0.039	0.039	0.159	0.228	0.437	0.484	0.521	0.050
308	0.040	0.045	0.168	0.239	0.468	0.514	0.565	0.051
306	0.042	0.054	0.177	0.251	0.506	0.549	0.620	0.052
304	0.043	0.065	0.185	0.264	0.549	0.587	0.684	0.053
302	0.044	0.082	0.195	0.279	0.601	0.629	0.757	0.054
300	0.046	0.106	0.204	0.296	0.655	0.673	0.836	0.056
298	0.048	0.139	0.216	0.314	0.714	0.718	0.922	0.056
296	0.050	0.182	0.230	0.335	0.778	0.765	1.010	0.058
294	0.052	0.234	0.249	0.361	0.848	0.815	1.106	0.060
292	0.055	0.299	0.275	0.394	0.929	0.875	1.213	0.062
290	0.058	0.359	0.307	0.432	1.011	0.934	1.313	0.063
288	0.061	0.419	0.351	0.478	1.106	1.006	1.427	0.065
286	0.063	0.458	0.392	0.521	1.190	1.069	1.527	0.067
284	0.064	0.487	0.434	0.564	1.275	1.135	1.624	0.068
282	0.067	0.506	0.466	0.601	1.347	1.186	1.703	0.069
280	0.068	0.520	0.492	0.634	1.407	1.228	1.765	0.070
278	0.071	0.532	0.516	0.667	1.459	1.265	1.821	0.072
276	0.078	0.542	0.541	0.699	1.502	1.300	1.862	0.074
274	0.090	0.552	0.569	0.731	1.544	1.338	1.880	0.077
272	0.097	0.556	0.591	0.760	1.576	1.373	1.907	0.080
270	0.102	0.558	0.610	0.785	1.588	1.395	1.900	0.083
268	0.112	0.575	0.645	0.825	1.605	1.435	1.883	0.089
266	0.118	0.613	0.692	0.871	1.625	1.479	1.873	0.096
264	0.126	0.688	0.761	0.938	1.655	1.545	1.873	0.107
262	0.129	0.794	0.852	1.020	1.700	1.628	1.887	0.121
260	0.132	0.936	0.973	1.126	1.770	1.738	1.921	0.137
258	0.138	1.085	1.102	1.235	1.842	1.844	1.928	0.157
256	0.139	1.238	1.238	1.349	1.909	1.949	1.918	0.183
254	0.143	1.360	1.363	1.452	1.942	2.005	1.832	0.222
252	0.147	1.364	1.382	1.471	1.843	1.896	1.615	0.241
250	0.146	0.974	0.991	1.072	1.302	1.313	1.051	0.236
248	0.097	0.476	0.477	0.588	0.737	0.799	0.605	0.118
246	0.081	0.369	0.374	0.468	0.640	0.652	0.538	0.090
244	0.078	0.342	0.348	0.454	0.626	0.611	0.508	0.086
242	0.075	0.308	0.349	0.402	0.595	0.552	0.494	0.097

240	0.071	0.264	0.329	0.372	0.557	0.552	0.485	0.065
238	0.072	0.246	0.308	0.382	0.496	0.494	0.485	0.068
236	0.055	0.246	0.273	0.380	0.504	0.481	0.435	0.085
234	0.043	0.214	0.286	0.329	0.467	0.507	0.424	0.091
232	0.038	0.286	0.256	0.320	0.464	0.473	0.449	0.070
230	0.028	0.231	0.278	0.290	0.465	0.469	0.435	0.043
228	-0.001	0.202	0.256	0.317	0.483	0.454	0.403	0.067
226	0.030	0.223	0.234	0.316	0.410	0.438	0.401	0.075
224	0.025	0.214	0.239	0.319	0.442	0.431	0.423	0.065
222	0.025	0.201	0.220	0.287	0.404	0.436	0.345	0.089
220	0.037	0.221	0.236	0.255	0.420	0.444	0.373	0.057
218	0.031	0.204	0.240	0.331	0.460	0.460	0.337	0.057
216	0.031	0.191	0.187	0.285	0.426	0.418	0.384	0.074
214	0.040	0.193	0.251	0.252	0.410	0.407	0.359	0.065
212	0.038	0.178	0.248	0.245	0.432	0.459	0.362	0.083
210	0.025	0.160	0.243	0.265	0.431	0.401	0.378	0.053
208	0.030	0.158	0.235	0.282	0.349	0.456	0.329	0.040
206	-0.004	0.147	0.213	0.256	0.382	0.383	0.351	0.058
204	0.024	0.162	0.231	0.247	0.410	0.429	0.355	0.058
202	0.012	0.161	0.198	0.252	0.378	0.391	0.317	0.074
200	0.027	0.156	0.200	0.252	0.406	0.414	0.368	0.075
198	0.032	0.163	0.206	0.271	0.436	0.381	0.317	0.058
196	0.031	0.156	0.241	0.249	0.392	0.378	0.324	0.055
194	0.020	0.168	0.213	0.229	0.339	0.355	0.292	0.062
192	0.015	0.130	0.220	0.211	0.328	0.370	0.321	0.078
190	0.036	0.155	0.199	0.251	0.355	0.349	0.326	0.070
We have monitored the UV absorption of the mixture of $Pd(OAc)_2 + L8$ with/without TBAB or **1a**. The results indicated that the sole addition of TBAB or **1a** did slightly change the UV absorption, while the addition of both of them significantly changed UV spectra. The control experiments have been carried out with other ammonium salts, and similar results were obtained.

Wave	Absorption/Au				
length	$\mathbf{D}d(\mathbf{O} \mathbf{A}_{\mathbf{a}})_{\mathbf{a}} + \mathbf{I} \mathbf{Q}$	$Pd(OAc)_2 +$	$Pd(OAc)_2 +$	$Pd(OAc)_2 + L8 + 1a$	
(nm)	$Pd(OAC)_2 + L\delta$	L8 +1a	L8 + TBAB	+TBAB	
600	0.004	0.010	-0.002	0.004	
598	0.007	0.010	-0.004	0.006	
596	0.006	0.010	-0.004	0.005	
594	0.007	0.011	-0.003	0.006	
592	0.007	0.012	-0.004	0.004	
590	0.004	0.010	-0.005	0.006	
588	0.007	0.011	-0.002	0.003	
586	0.007	0.009	-0.002	0.004	
584	0.005	0.009	-0.003	0.005	
582	0.006	0.010	-0.001	0.007	
580	0.006	0.010	-0.003	0.007	
578	0.007	0.010	-0.002	0.005	
576	0.007	0.011	-0.001	0.006	
574	0.007	0.011	-0.003	0.007	
572	0.005	0.010	-0.001	0.006	
570	0.007	0.011	-0.001	0.006	

UV-Visible absorption data

568	0.006	0.010	0	0.006
566	0.008	0.010	-0.001	0.006
564	0.008	0.008	-0.001	0.007
562	0.007	0.012	0	0.007
560	0.006	0.011	-0.001	0.008
558	0.006	0.011	0	0.006
556	0.007	0.011	0.001	0.007
554	0.008	0.012	0.001	0.006
552	0.007	0.011	0.001	0.007
550	0.008	0.012	0.001	0.008
548	0.008	0.011	0.001	0.006
546	0.007	0.012	0.002	0.005
544	0.008	0.011	0.002	0.006
542	0.008	0.011	0.003	0.006
540	0.008	0.011	0.003	0.006
538	0.008	0.011	0.002	0.006
536	0.008	0.012	0.002	0.007
534	0.008	0.012	0.003	0.006
532	0.008	0.011	0.004	0.006
530	0.007	0.011	0.004	0.007
528	0.008	0.011	0.004	0.007
526	0.008	0.012	0.005	0.007
524	0.010	0.013	0.005	0.007
522	0.008	0.012	0.007	0.008
520	0.007	0.012	0.006	0.007
518	0.008	0.012	0.008	0.008
516	0.009	0.013	0.007	0.008
514	0.009	0.011	0.007	0.008
512	0.009	0.013	0.007	0.008
510	0.008	0.012	0.008	0.007
508	0.008	0.011	0.009	0.009
506	0.009	0.012	0.011	0.008
504	0.008	0.012	0.009	0.008
502	0.009	0.012	0.010	0.009
500	0.010	0.012	0.011	0.008
498	0.009	0.013	0.011	0.009
496	0.009	0.013	0.012	0.009
494	0.010	0.012	0.013	0.009
492	0.009	0.013	0.014	0.009
490	0.010	0.013	0.015	0.010
488	0.009	0.013	0.016	0.010
486	0.010	0.013	0.017	0.010
484	0.010	0.013	0.017	0.011
482	0.010	0.014	0.019	0.011

480	0.010	0.014	0.020	0.012
478	0.010	0.014	0.021	0.012
476	0.011	0.014	0.022	0.012
474	0.011	0.014	0.024	0.013
472	0.011	0.015	0.025	0.013
470	0.011	0.015	0.026	0.014
468	0.011	0.015	0.028	0.014
466	0.012	0.015	0.029	0.015
464	0.012	0.016	0.031	0.016
462	0.012	0.016	0.033	0.017
460	0.012	0.016	0.034	0.018
458	0.012	0.017	0.036	0.018
456	0.013	0.017	0.039	0.019
454	0.013	0.017	0.040	0.020
452	0.013	0.018	0.042	0.021
450	0.014	0.018	0.044	0.022
448	0.014	0.018	0.046	0.024
446	0.014	0.018	0.048	0.025
444	0.014	0.019	0.050	0.027
442	0.015	0.020	0.052	0.029
440	0.015	0.020	0.054	0.030
438	0.016	0.021	0.056	0.032
436	0.016	0.021	0.057	0.034
434	0.016	0.022	0.059	0.036
432	0.017	0.022	0.061	0.039
430	0.017	0.023	0.062	0.041
428	0.018	0.024	0.064	0.044
426	0.018	0.024	0.066	0.047
424	0.019	0.025	0.067	0.050
422	0.019	0.026	0.068	0.053
420	0.020	0.026	0.070	0.056
418	0.020	0.027	0.071	0.060
416	0.021	0.028	0.072	0.064
414	0.022	0.029	0.073	0.068
412	0.023	0.030	0.075	0.072
410	0.023	0.031	0.076	0.076
408	0.024	0.031	0.077	0.081
406	0.025	0.032	0.078	0.085
404	0.025	0.033	0.079	0.090
402	0.025	0.034	0.080	0.095
400	0.026	0.035	0.081	0.100
398	0.026	0.036	0.082	0.106
396	0.028	0.037	0.083	0.111
394	0.028	0.038	0.084	0.116
				•

392	0.029	0.040	0.084	0.122
390	0.030	0.041	0.086	0.127
388	0.030	0.042	0.087	0.133
386	0.031	0.044	0.087	0.139
384	0.032	0.045	0.089	0.144
382	0.032	0.046	0.089	0.150
380	0.033	0.048	0.091	0.155
378	0.034	0.050	0.092	0.161
376	0.035	0.052	0.093	0.166
374	0.036	0.054	0.095	0.171
372	0.037	0.056	0.096	0.177
370	0.037	0.059	0.098	0.184
368	0.039	0.062	0.100	0.190
366	0.040	0.064	0.102	0.196
364	0.041	0.067	0.105	0.203
362	0.042	0.070	0.108	0.209
360	0.043	0.073	0.111	0.215
358	0.045	0.077	0.114	0.222
356	0.046	0.080	0.118	0.229
354	0.048	0.084	0.122	0.236
352	0.049	0.088	0.126	0.242
350	0.052	0.092	0.132	0.249
348	0.054	0.096	0.137	0.255
346	0.057	0.102	0.143	0.260
344	0.059	0.106	0.148	0.266
342	0.063	0.111	0.155	0.271
340	0.066	0.117	0.163	0.276
338	0.070	0.122	0.171	0.281
336	0.074	0.128	0.181	0.287
334	0.079	0.134	0.190	0.292
332	0.083	0.140	0.200	0.298
330	0.089	0.147	0.212	0.305
328	0.094	0.153	0.223	0.312
326	0.100	0.161	0.236	0.320
324	0.106	0.168	0.249	0.329
322	0.112	0.175	0.261	0.337
320	0.119	0.183	0.276	0.349
318	0.126	0.191	0.289	0.360
316	0.134	0.199	0.304	0.375
314	0.142	0.208	0.319	0.391
312	0.151	0.217	0.334	0.412
310	0.159	0.228	0.350	0.437
308	0.168	0.239	0.366	0.468
306	0.177	0.251	0.382	0.506

304	0.185	0.264	0.398	0.549
302	0.195	0.279	0.414	0.601
300	0.204	0.296	0.431	0.655
298	0.216	0.314	0.449	0.714
296	0.230	0.335	0.467	0.778
294	0.249	0.361	0.489	0.848
292	0.275	0.394	0.516	0.929
290	0.307	0.432	0.549	1.011
288	0.351	0.478	0.592	1.106
286	0.392	0.521	0.639	1.190
284	0.434	0.564	0.685	1.275
282	0.466	0.601	0.725	1.347
280	0.492	0.634	0.754	1.407
278	0.516	0.667	0.782	1.459
276	0.541	0.699	0.809	1.502
274	0.569	0.731	0.840	1.544
272	0.591	0.760	0.872	1.576
270	0.610	0.785	0.899	1.588
268	0.645	0.825	0.936	1.605
266	0.692	0.871	0.991	1.625
264	0.761	0.938	1.065	1.655
262	0.852	1.020	1.165	1.700
260	0.973	1.126	1.304	1.770
258	1.102	1.235	1.449	1.842
256	1.238	1.349	1.608	1.909
254	1.363	1.452	1.748	1.942
252	1.382	1.471	1.753	1.843
250	0.991	1.072	1.273	1.302
248	0.477	0.588	0.692	0.737
246	0.374	0.468	0.530	0.640
244	0.348	0.454	0.482	0.626
242	0.349	0.402	0.463	0.595
240	0.329	0.372	0.461	0.557
238	0.308	0.382	0.439	0.496
236	0.273	0.380	0.438	0.504
234	0.286	0.329	0.382	0.467
232	0.256	0.320	0.403	0.464
230	0.278	0.290	0.396	0.465
228	0.256	0.317	0.373	0.483
226	0.234	0.316	0.366	0.410
224	0.239	0.319	0.348	0.442
222	0.220	0.287	0.373	0.404
220	0.236	0.255	0.383	0.420
218	0.240	0.331	0.353	0.460

216 214 212 210 208	0.187 0.251 0.248 0.243 0.235	0.285 0.252 0.245 0.265 0.282	0.368 0.317 0.313 0.342	0.426 0.410 0.432 0.431
214 212 210 208	0.251 0.248 0.243 0.235	0.252 0.245 0.265 0.282	0.317 0.313 0.342	0.410 0.432 0.431
212 210 208	0.248 0.243 0.235	0.245 0.265 0.282	0.313 0.342	0.432 0.431
210 208	0.243 0.235	0.265	0.342	0.431
208	0.235	0.282		
		0.282	0.361	0.349
206	0.213	0.256	0.316	0.382
204	0.231	0.247	0.334	0.410
202	0.198	0.252	0.341	0.378
200	0.200	0.252	0.294	0.406
198	0.206	0.271	0.312	0.436
196	0.241	0.249	0.318	0.392
194	0.213	0.229	0.324	0.339
192	0.220	0.211	0.291	0.328
190	0.199	0.251	0.320	0.355

	Ph O BocO + () 1a	Pd(OAc) ₂ (5 mol%) (<i>R</i>)-BINAP (5 mol%) PTC (7.5 mol%) solvent, rt, 36 h >19:1 dr	Ph Ph 3a	
Entry ^a	IPC	Solvent	Yield $(\%)^b$	ee (%) ^c
1	None	Toluene	86	-3
2	TBAB	Toluene	trace	/
3	TBAB	EtOAc	trace	/

Table S8 Evaluation of the Pd-BINAP catalytic system

^{*a*}Unless otherwise noted, the reactions were conducted with **1a** (0.075 mmol), **2a** (0.05 mmol), Pd(OAc)₂ (0.0025 mmol), TBAB (0.005 mmol) and **L8** (0.005 mmol) in dry solvent (0.5 mL) under Ar. ^{*b*}Isolated yield. ^{*c*}Determined by chiral HPLC analysis on a chiral stationary phase; >19:1 dr.

Figure S4 The UV-Vis spectra of catalytic species involving (R)-BINAP

Method of UV-Vis spectrum measurement: To deduct the background UV absorption of the solvent and promote the reaction process smoothly, EtOAc was chosen as the measurement solvent. The 0.0025 mmol reactant (or metal or ligand or IPC, with 1.0 equiv) was weighted accurately, and dissolved in 0.5 mL dry EtOAc. After stirred at room temperature for 15 min under Ar, a 50 μ L solution was diluted to 3.0 mL by adding dry EtOAc. The UV-Vis absorption curve of the reaction solution was obtained accordingly.

It was found that the combination of Pd(OAc)₂-BINAP could well promote the reaction of **1a** and **2a**, but adding TBAB resulted in no reaction. The UV-Vis absorption experiments with Pd(OAc)₂ and BINAP with/without TBAB were also conducted. As outlined above, a different absorption spectrum was also observed after adding TBAB, but with apparently decreased absorption potency. Although

we have no reasonable elucidation for the apparent changes of the catalytic activity at the current stage, the structure of the previously formed Pd-BINAP-allyl complex of **1a** would also be converted to a new intermediate after adding TBAB, probably even involving the diassociation of the π -allylpalladium complex (based on the decreased absorption potency). In fact, we could observe the consumption of MBH carbonate **1a** when stoichiometric TBAB was used, probably via the substitution of Pd-BINAP-allyl complex of **1a** by nucleophilic species (such as Br⁻ or others) in the reaction.

		Absorption/Au	
Wavelength(nm)	$Pd(OAc)_2 + (R)-BINAP$	$Pd(OAc)_2 + (R)-BINAP + 1a$	$Pd(OAc)_2 + (R)-BINAP + 1a + TBAB$
600	-0.009	0.011	-0.002
598	-0.010	0.013	0
596	-0.011	0.010	-0.001
594	-0.011	0.010	0
592	-0.010	0.010	0
590	-0.012	0.011	0
588	-0.010	0.011	-0.001
586	-0.012	0.011	-0.002
584	-0.008	0.010	-0.004
582	-0.012	0.011	-0.001
580	-0.012	0.011	0
578	-0.011	0.011	-0.002
576	-0.012	0.011	-0.003
574	-0.012	0.010	-0.001
572	-0.011	0.010	-0.002
570	-0.014	0.011	-0.002
568	-0.012	0.008	-0.002
566	-0.013	0.009	-0.001
564	-0.012	0.009	-0.004
562	-0.013	0.010	-0.003
560	-0.013	0.012	-0.002
558	-0.014	0.009	-0.004
556	-0.014	0.009	-0.003
554	-0.014	0.010	-0.005
552	-0.015	0.010	-0.006
550	-0.015	0.009	-0.003

UV-Visible absorption data

548	-0.015	0.009	-0.003
546	-0.015	0.009	-0.004
544	-0.015	0.009	-0.004
542	-0.015	0.008	-0.004
540	-0.017	0.008	-0.005
538	-0.016	0.008	-0.004
536	-0.016	0.007	-0.005
534	-0.016	0.007	-0.005
532	-0.016	0.007	-0.005
530	-0.016	0.007	-0.005
528	-0.017	0.007	-0.005
526	-0.017	0.006	-0.006
524	-0.017	0.006	-0.006
522	-0.017	0.005	-0.005
520	-0.019	0.006	-0.006
518	-0.018	0.006	-0.006
516	-0.018	0.005	-0.006
514	-0.019	0.006	-0.007
512	-0.019	0.006	-0.007
510	-0.019	0.004	-0.005
508	-0.019	0.004	-0.006
506	-0.019	0.005	-0.006
504	-0.019	0.004	-0.007
502	-0.020	0.005	-0.006
500	-0.020	0.004	-0.006
498	-0.020	0.004	-0.006
496	-0.020	0.004	-0.006
494	-0.020	0.004	-0.006
492	-0.020	0.004	-0.005
490	-0.020	0.003	-0.005
488	-0.020	0.003	-0.005
486	-0.020	0.003	-0.004
484	-0.021	0.003	-0.004
482	-0.021	0.003	-0.004
480	-0.021	0.003	-0.003
478	-0.02	0.003	-0.003
476	-0.020	0.003	-0.002
474	-0.020	0.003	-0.002
472	-0.020	0.003	-0.001
470	-0.020	0.003	0
468	-0.020	0.003	0
466	-0.020	0.003	0.001

464	-0.019	0.003	0.002
462	-0.019	0.004	0.002
460	-0.019	0.004	0.003
458	-0.018	0.004	0.004
456	-0.017	0.004	0.005
454	-0.016	0.005	0.006
452	-0.016	0.005	0.007
450	-0.015	0.006	0.008
448	-0.014	0.006	0.009
446	-0.013	0.007	0.010
444	-0.011	0.008	0.011
442	-0.010	0.009	0.012
440	-0.009	0.010	0.014
438	-0.007	0.011	0.015
436	-0.005	0.012	0.017
434	-0.003	0.013	0.018
432	-0.001	0.014	0.020
430	0.001	0.016	0.021
428	0.004	0.017	0.023
426	0.006	0.019	0.025
424	0.008	0.021	0.027
422	0.011	0.022	0.029
420	0.013	0.024	0.031
418	0.017	0.026	0.033
416	0.020	0.028	0.035
414	0.023	0.030	0.038
412	0.026	0.033	0.041
410	0.029	0.034	0.042
408	0.032	0.037	0.045
406	0.036	0.039	0.047
404	0.039	0.041	0.049
402	0.042	0.043	0.051
400	0.046	0.045	0.053
398	0.049	0.047	0.055
396	0.052	0.050	0.057
394	0.056	0.051	0.059
392	0.059	0.053	0.061
390	0.063	0.056	0.063
388	0.067	0.058	0.066
386	0.071	0.061	0.068
384	0.076	0.064	0.071
382	0.082	0.068	0.074

380	0.089	0.072	0.079
378	0.096	0.077	0.084
376	0.104	0.083	0.090
374	0.115	0.090	0.098
372	0.128	0.099	0.108
370	0.143	0.109	0.119
368	0.161	0.121	0.133
366	0.182	0.135	0.149
364	0.207	0.153	0.169
362	0.232	0.170	0.189
360	0.263	0.193	0.212
358	0.296	0.217	0.238
356	0.327	0.241	0.262
354	0.360	0.267	0.287
352	0.389	0.291	0.310
350	0.412	0.314	0.330
348	0.431	0.336	0.348
346	0.445	0.357	0.363
344	0.452	0.375	0.374
342	0.459	0.397	0.386
340	0.465	0.420	0.400
338	0.474	0.451	0.417
336	0.486	0.489	0.438
334	0.504	0.531	0.462
332	0.525	0.570	0.486
330	0.550	0.608	0.511
328	0.575	0.650	0.535
326	0.602	0.704	0.560
324	0.630	0.762	0.585
322	0.656	0.817	0.606
320	0.683	0.882	0.629
318	0.703	0.935	0.645
316	0.717	0.987	0.657
314	0.727	1.033	0.668
312	0.743	1.091	0.686
310	0.764	1.151	0.710
308	0.793	1.215	0.744
306	0.830	1.282	0.786
304	0.875	1.351	0.837
302	0.932	1.430	0.900
300	1.002	1.509	0.971
298	1.091	1.605	1.055

296	1.189	1.700	1.140
294	1.300	1.807	1.234
292	1.438	1.926	1.342
290	1.577	2.048	1.447
288	1.742	2.192	1.573
286	1.899	2.313	1.686
284	2.069	2.441	1.809
282	2.219	2.575	1.929
280	2.371	2.672	2.041
278	2.525	2.768	2.170
276	2.636	2.866	2.266
274	2.738	2.924	2.362
272	2.871	3.035	2.483
270	2.907	3.071	2.554
268	2.990	3.122	2.646
266	3.018	3.143	2.729
264	3.081	3.159	2.826
262	3.178	3.311	2.937
260	3.295	3.485	3.013
258	3.180	3.235	2.952
256	2.914	2.979	2.840
254	2.687	2.741	2.617
252	2.244	2.362	2.247
250	1.458	1.483	1.475
248	0.894	0.962	0.912
246	0.749	0.869	0.699
244	0.679	0.715	0.658
242	0.652	0.668	0.622
240	0.619	0.653	0.630
238	0.586	0.619	0.601
236	0.585	0.601	0.571
234	0.564	0.566	0.561
232	0.527	0.629	0.567
230	0.574	0.532	0.520
228	0.493	0.523	0.489
226	0.484	0.527	0.510
224	0.496	0.523	0.494
222	0.450	0.538	0.507
220	0.485	0.469	0.466
218	0.517	0.494	0.456
216	0.474	0.493	0.465
214	0.432	0.483	0.450

212	0.475	0.495	0.462
210	0.426	0.451	0.445
208	0.469	0.501	0.402
206	0.436	0.525	0.481
204	0.418	0.482	0.460
202	0.426	0.460	0.444
200	0.473	0.402	0.441
198	0.372	0.443	0.378
196	0.363	0.470	0.374
194	0.331	0.460	0.414
192	0.407	0.424	0.439
190	0.416	0.430	0.386

10. DFT calculations

10.1 Coordination model

Scheme S11 Control experiments using Pd(OAc)₂ and P(OPh)₃

To gain more insight into the mechanism, control experiments using Pd(OAc)₂ and P(OPh)₃ was first carried out. As outlined in Scheme **S11**, similar results were obtained in the presence or absence of TBAB. Therefore, P(OPh)₃ could be used as a simpler ligand for calculations. To explain the role of TBAB, DFT calculations were carried out at the B3LYP-D3/6-31(d) // B3LYP-D3/6-311++G(d,p) SDD for Pd (toluene) level.

Firstly, the conformation of the complex model of the intermediates **(INT1)** formed by **1a** and Pd(0) was calculated, as shown in Figure **S5**. We tried to use molecular mechanics based software such as SYBYL 2.0X and Amber 2.0 to initially screen these conformations, while the results were not consistent with the energy calculated by DFT, because energy of coordinated bond formed by metal atom Pd might be not able to be correctly evaluated by molecular mechanics. Thus, the structures and energies of conformations were calculated by DFT. For both models with Pd coordinating with one P(OPh)₃ ligand and two ligands, the conformations employing two Pd-C σ bonds (**INT1-B** and **DL**-

INT1-B) had the lower energies. On the other side, the formation of charge separation model proposed as the precursor for addition, in which Pd was coordinated with π -allyl by η^3 -model, was quit hard, since the lowest energies among charge separation models for **INT1-D'** was 23.1 kcal/mol higher than that of **INT1-B**. Similarly, **DL-INT1-C'** was 18.4 kcal/mol higher than that of **DL-INT1-B**.

Figure S5 The structures and energies of the conformations for the complexes in which Pd is coordinating with one/two ligands at the B3LYP-D3/6-31(d)// B3LYP-D3/6-311++G(d,p) SDD for Pd (toluene) level. The energies are given in kcal/mol relative to energy of **INT1-B/DL-INT1-B**

Figure S6 The structures and energies of the conformations for the complexes in which Pd is coordinating with $P(OPh)_3$ and bromide anion at the B3LYP-D3/6-31(d)// B3LYP-D3/6-311++G(d,p) SDD for Pd (toluene) level. The energies are given in kcal/mol relative to energy of **PB-INT1-B1**

When TMAB was added (in order to simplify the calculation work, tetramethylammonium bromide, TMAB, was used instead of very flexible TBAB), the coordination model might be different and more complex. To generate the energy difference between stable conformation and charge separation model, we firstly calculated the conformations of **PB-INT1** in which Pd was coordinated with P(OPh)₃ and bromide anion. The energies of **PB-INT1-B1** and **PB-INT1-D1** were the lowest among the η^4 -model and η^3 -model, respectively (Figure S6). The energy difference of them was 15.0 kcal/mol. Because the ammonium motif may locate at different positions, the computation work is too large to calculate each pose for different conformations with ammonium salt. Thus, to evaluate the coordination model with TMAB, **PB-INT1-B1** and **PB-INT1-D1** were selected as the representative conformations for η^4 -model and η^3 -model, respectively. More than 6 poses started form **PB-INT1-B1** and **PB-INT1-D1** were shown in Figure S7. The energies of **INT1-B1-TMA1** and **INT1-D1-TMA1** were the lowest among the η^4 -

model and η^3 -model, respectively, and the energy of INT1-D1-TMA1 was 10.6 kcal/mol higher than that of INT1-B1-TMA1. To conform the results of this simplified model, the lowest energy among the poses started form INT1-C1 (INT1-C1-TMA1) was also calculated and it is higher than that of INT1-D1-TMA1, suggesting generating the pose of η^3 -model PB-INT1 and tetramethylammonium with the lowest energy from PB-INT1-D1 might be reasonable. Similarly, the energy of INT-B2-TMA1 was 1.7 kcal/mol higher than that of INT-B1-TMA1.

Figure S7 The structures and energies of the conformations for the complexes PB-INT1 at the B3LYP-D3/6-31(d)//B3LYP-D3/6-311++G(d,p) SDD for Pd (toluene) level. The energies are given in kcal/mol relative to energy of PB-INT1-B1-TMA1

10.2 Reaction process

To rationalize the mechanism of this reaction, the reaction process was calculated as shown in Figure S8. The formation of charge separation model was proposed as the precursor for addition. After the formation of INT1-D1-TMA1 from the stable conformation INT1-B1-TMA1, the addition of carbanion to 2a would lead to INT2 via TS1 with a value of 20.4 kcal/mol. The resulting INT2 would be easily converted to the ion-pairing intermediate INT3, which would undergo allylic substitution via TS2 with an energy barrier of 8.8 kcal/mol, finally affording the intermediate INT4. We also compared the possible formation of regioisomer via TS2' from ion-pair INT3', which had a higher energy barrier of 10.6 kcal/mol, also in good accordance to a predicted ratio (21:1) (pathway B).

In contrary, the energy barrier of the rate-limiting addition step for the reaction without ammonium salt was quit high. The energy of **DL-TS1** was much higher than that of **TS1** (**pathway A**), suggesting

the addition might not be promoted in the absence of TMAB, which was consistent with our experiments.

Figure S8 Computed potential energy surface of the reaction of **1a** and **2a** with TMAB at the B3LYP-D3/6-31(d)// B3LYP-D3/6-311++G(d,p) SDD for Pd (toluene) level and is given in kcal/mol relative to energy sum of **PB-INT1-B1-TMA1** and **2a**

The optimized structures of **INT3** and **TS2** were also outlined in Figure **S9**. Structure analysis showed that in intermediate **INT3** the dihedral angles of C1-C2-C3-C4 and O-C5C6-C7 were 159° and -3.9°, respectively, while the corresponding dihedral angles in **TS2** were determined to be 135.0° and 32.0°, respectively. These results clearly exhibited the sp³ hybridization trend of the C3 and C6 centers in C-C bond formation. Moreover, the intrinsic reaction coordinate analysis (IRC) of **TS2** also proved this C-C bond formation (see below for details).

Figure S9 The optimized structures of INT3 and TS2

Theoretically, to explain the role of TMAB, more rigorous calculations should be carried out. We have tried but the calculation work was too large to finish. Thus, a simplified model was used. We confirmed the role of TMAB in reducing the energy difference of η^4 -model and η^3 -model, which further led to the reduced energy barrier of the rate-limiting addition step.

10.3 The regioselectivity

When using different MBH carbonates 1, the regiodivergent [4+2] annulations were observed. As the regioselectivity was determined by the second step, to clarify the mechanism for the regioselectivity, the TSs for these steps were calculated. Since the energy barrier of TS2' was 1.8 kcal/mol higher than TS2, suggesting 3a was the main product and predicted regio-isomer radio value was 21:1.

Comparing the structure of these TSs, we found there was an obvious π - π interaction between the benzene ring and indane ring, which might be the main reason to reduce the energy of TS2 and to produce regioisomer 3a.

Figure S10 The energy of TS2 and TS2' at the B3LYP-D3/6-311++G(d,p) // B3LYP-D3/6-31(d) SDD for Pd (toluene) level and is given in kcal/mol relative to energy of TS2.

On the other side, the energy barrier of **1q-TS2** was 7.3 kcal/mol higher than that of **1q-TS2'**, suggesting **4a** was the main product. These results were consistent with the experimental results.

Figure S11 The energy of TS2 and TS2' at the B3LYP-D3/6-311++G(d,p) // B3LYP-D3/6-31(d) SDD for Pd (toluene) level and is given in kcal/mol relative to energy of 1q-TS2'

Figure S12 Intrinsic reaction coordinate analysis (IRC) for transition state **TS2 (a)** and **TS2' (b)**. The values are given in angstrom and represent bond length.

12.NMR, HRMS spectra and HPLC chromatograms

HRMS (ESI-TOF) m/z: $[M - Br]^+$ Calcd for $C_{35}H_{47}N_2O^+$ 511.3683; Found 511.3686.

8.039 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.005 8.006 8.007 7.992 7.992 7.993 7.993 7.556 7.332 7.332 7.333 7.334 7.335 7.336 7.338

HRMS (ESI-TOF) m/z: $[M - Br]^+$ Calcd for C₃₉H₃₅NP⁺ 548.2502 (³¹P) and 549.2535 (³²P); Found 548.2503 (³¹P) and 549.2543 (³²P).

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{18}N_2O_2Na^+$ 281.1260; Found 281.1260.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{16}H_{21}N_2O_2Na^+$ 295.1417; Found 295.1420.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₁₈N₂O₂Br⁺ 337.0546 (⁷⁹Br) and 339.0526 (⁸¹Br); Found 337.0545 (⁷⁹Br) and 339.0525 (⁸¹Br).

 3.570

 73.552

 73.552

 73.552

 73.552

 73.554

 73.555

 73.555

 73.555

 73.555

 73.555

 73.555

 73.556

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.557

 73.

¹H NMR (400 MHz, CDCl₃)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₁₅H₁₇N₂O₂NaBr⁺ 359.0366 (⁷⁹Br) and 361.0345 (⁸¹Br); Found 359.0371 (⁷⁹Br) and 361.0352 (⁸¹Br).

316.0919

316.2

316.4

316.6

316.8

316

315.8

315.6

0.2 0

314.8

315.2

315.4

315

317.0861

317.2

317

317.4

317.6

317.8

318.0885

318

318.2

318.6

318.4

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{15}H_{17}N_2O_2NaCl^+ 315.0871$ (³⁵Cl) and 317.0841 (³⁷Cl); Found 315.0883 (³⁵Cl) and 317.0861 (³⁷Cl).

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₉H₂₅N₂O₄⁺ 345.1809; Found 345.1811.
$\begin{array}{c} 7.731\\ 7.717\\ 7.716\\ 7.717\\ 7.758\\ 7.7662\\ 7.658\\ 7.662\\ 7.658\\ 7.651\\ 7.6536\\ 7.6536\\ 7.6513\\ 7.661\\ 7.653\\ 7.661\\ 7.153\\ 7.661\\ 7.113\\ 7.653\\ 7.007\\ 7.113\\ 7.607\\ 7.113\\ 7.607\\ 7.107\\ 7.102\\ 7.007\\ 7.102\\ 7.007\\ 7.102\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.007\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.002\\ 7.022\\ 7.002\\ 7.022\\ 7.002\\ 7.022\\ 7.012\\ 7.022\\ 7.022\\ 7.002\\ 7.022$

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral AD-H Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min) mAU -8-20 200 -С 175 -11.258 Ph'' Ph 150 -0⁄ ò 125 *rac-*3a 100 -75 -50 -25 -0 -12 14 2 4 6 8 10 min Ò Time Area (%) 8.201 49.9 11.258 50.1 mAU 11.145 700 -Ph'' Ph 600 -0 ò 500 3a 400 300 200 100 8.163 0 -2 10 12 14 8 6 4 min Time Area (%) 8.163 4.0 96.0 11.145

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{27}H_{20}O_3Na^+$ 415.1305; Found 415.1308.

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.301	BB	0.26	121.6093	2009.4531	49.1494
13.628	BB	0.34	94.0892	2079.0024	50.8506
			Totals:	4088.4556	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.298	BB	0.25	8.0437	130.7146	3.2699
13.610	MM	0.38	171.6996	3866.8374	96.7301
			Totals:	3997.5520	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{22}O_3Na^+$ 429.1461; Found 429.1465.

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{22}O_3Na^+$ 429.1461; Found 429.1465.

7.759 7.745 7.745 7.649 7.643 7.643 7.643 7.643 7.643 7.643 7.633 7.643 7.633 7.633 7.613 7.633 7.613 7.633 7.709 7.7077

Daicel Chiral IA Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
14.766	BB	0.36	60.6653	1431.9075	50.1354
17.605	FM	0.43	55.7125	1424.1742	49.8646
			Totals:	2856.0817	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
14.643	BB	0.36	16.4071	387.8263	4.1790
17.502	BB	0.40	342.8974	8892.6143	95.8210
			Totals:	9280.4406	100.0000

HRMS (ESI-TOF) m/z: [M + Na]⁺Calcd for C₃₃H₂₄O₃Na⁺ 491.1618; Found 491.1620.

'**H NMR** (400 MHz, CDCI₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉FNaO₃⁺ 433.1210; Found 433.1207.

Daicel Chiral IA Column (*i*PrOH/ *n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₇H₁₉Cl₂O₃⁺ 461.0706 (³⁵Cl*2) and 463.0676 (³⁵Cl + ³⁷Cl); Found 461.0700 (³⁵Cl*2) and 463.0675 (³⁵Cl + ³⁷Cl).

3g ¹H NMR (400 MHz, CDCl₃)

Daicel Chiral IC Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.119	BB	0.53	38.5068	1329.6179	50.1740
20.418	BB	0.69	29.2005	1320.3956	49.8260
			Totals:	2650.0135	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.539	BB	0.60	5.4962	209.9604	4.0145
20.760	BB	0.75	102.5790	5020.1069	95.9855
			Totals:	5230.0674	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉BrO₃Na⁺ 493.0410 (⁷⁹Br) and 495.0389 (⁸¹Br); Found 493.0414 (⁷⁹Br) and 495.0399 (⁸¹Br).

$\begin{array}{c} 7.883\\ 7.868\\ 7.861\\ 7.863\\ 7.863\\ 7.863\\ 7.766\\ 7.7863\\ 7.7800\\ 7.7800\\ 7.7800\\ 7.7958\\ 7.775\\ 7.775\\ 7.775\\ 7.7358\\ 7$

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
17.750	BB	0.52	4.4152	150.3494	3.7861
20.245	BB	0.63	92.2033	3820.7161	96.2139
			Totals:	3971.0655	100.0000

HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₉O₃BrNa⁺ 493.0410 (⁷⁹Br) and 495.0389 (⁸¹Br); Found 493.0408 (⁷⁹Br) and 495.0395 (⁸¹Br).

7.7537.7697.6937.6877.6887.6887.6887.6767.6767.6767.6767.6777.6707.6006.9256.9456.9256.94656.9256.9256.94656.9256.94656.9256.94656.9256.94656.9256.94656.9256.94656.9256.9256.94656.9256.94656.9256.9256.9256.9256.9256.9256.9256.9256.9256.94656.9256.94656.9256.94656.9256.94656.9256.94656.94656.9256.94656.

Daicel Chiral IA Column, (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{27}H_{20}BrO_3^+ 471.0590$ (⁷⁹Br) and 473.0570 (⁸¹Br); Found 471.0584 (⁷⁹Br) and 473.0568 (⁸¹Br).

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral IA Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.503	BB	0.31	298.7657	6314.8315	50.4759
19.586	BB	0.51	180.3753	6195.7510	49.5241
			Totals:	12510.5825	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.456	BBA	0.30	393.3174	8128.3730	94.0611
19.783	BBA	0.50	15.2203	513.2161	5.9389
			Totals:	8641.5892	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155; Found 460.1154.

Daicel Chiral IC Column (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
19.247	BB	0.72	48.2004	2272.5864	50.0733
23.402	BB	0.89	38.8323	2265.9341	49.9267
			Totals:	4538.5205	100.0000

r				
L	π	٧	n	1
۰.	**	۰	٠	. *

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
19.108	BB	0.70	5.3157	249.3024	2.3881
23.187	BB	0.88	177.9464	10190.2285	97.6119
			Totals:	10439.5309	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155 ; Found 460.1152.

S142

Daicel Chiral AD-H Column (n-hexane/iPrOH = 80/20, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
26.155	BB	0.69	55.9674	2475.9138	49.7806
42.260	BB	1.10	34.8499	2497.7432	50.2194
			Totals:	4973.6570	100.0000

Ret Time	Peak	Width	Height	Area	Area
[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
26.219	BB	0.68	8.5985	380.1435	2.5230
42.225	BB	1.13	202.4628	14686.9131	97.4770
			Totals:	15067.0566	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{19}NO_3Na^+$ 440.1257 ; Found 440.1257.
$\begin{array}{c} 7.727\\ 7.727\\ 7.690\\ 7.685\\ 7.682\\ 7.682\\ 7.645\\ 7.645\\ 7.645\\ 7.629\\ 7.629\\ 7.629\\ 7.629\\ 7.623\\ 7.629\\ 7.623\\ 7.629\\ 7.623\\ 7.623\\ 7.623\\ 7.649\\ 7.623\\ 7.623\\ 7.669\\ 7.669\\ 7.7332\\ 7.7322\\ 7.7332\\ 7.7322\\$

Daicel Chiral IE Column (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

16.816	BBA	0.61	1042.6466	43320.0898	95.8035
			Totals:	45217.6437	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{31}H_{22}O_3Na^+$ 465.1461 ; Found 465.1465.

$\begin{array}{c} 7.790\\ 7.775\\ 7.775\\ 7.776\\ 7.775\\ 7.776\\ 7.774\\ 9.7,701\\ 7.749\\ 7.774\\ 7.701\\ 7.769\\ 6.77\\ 7.678\\ 7.767\\ 7.679\\ 7.767\\ 7.679\\ 7.705\\ 7.705\\ 7.703\\ 7.679\\ 7.703\\ 7.679\\ 7.703\\ 7.673\\ 7.703\\ 7.673\\ 7.703\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.673\\ 7.662\\ 7.662\\ 7.033\\ 7.033\\ 7.662\\ 7.033\\ 7.033\\ 7.662\\ 7.033\\ 7.033\\ 7.662\\ 7.033\\ 7.033\\ 7.662\\ 7.033\\ 7.033\\ 7.662\\ 7.033\\ 7$

Daicel Chiral IC Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
13.051	BV	0.41	272.4947	7306.7109	50.0801
14.671	VB	0.47	239.8722	7283.3398	49.9199
			Totals:	14590.0508	100.0000

4.8723

14.826	BB	0.46	149.3270	4496.4780	95.1277
			Totals:	4726.7802	100.0000

8.4319

230.3022

13.224

BB

0.42

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₅H₁₉O₄⁺ 383.1278 ; Found 383.1277.

Daicel Chiral IB Column (*i*PrOH/*n*-hexane = 10/90, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.498	BV	0.33	51.8397	1100.7234	49.7966
16.548	VB	0.34	50.8790	1109.7161	50.2034
			Totals:	2210.4395	100.0000

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
15.714	MF	0.42	13.2275	329.6733	4.6444
16.658	$\mathbf{F}\mathbf{M}$	0.43	260.1070	6768.6870	95.3556
			Totals:	7098.3603	100.0000

HRMS (ESI-TOF) m/z: $[M+Na]^+$ Calcd for $C_{25}H_{18}O_4Na^+$ 405.1097; Found 405.1096.

×10 ⁴ _	+ESI Scan (rt: 0.563 min) Frag=175.0V CYC-20190	830-8.d
2.1-	405.	1096
2-		
1.9-		
1.8-		
1.7-		
1.6-		
1.5-		
1.4-		
1.3-		
1.2		
1-		
0.9-		
0.8-		
0.7-		
0.6-		
0.5-		
0.4-		
0.3-		
0.2-		
0.1-		
0-4		

405.105 405.106 405.107 405.108 405.109 405.11 405.111 405.112 405.113 405.114 405.115 405.116 405.117 405.118 405.119 405.12 405.121 405.122 405.123 405.124

S154

Daicel Chiral IF Column (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.004	FM	0.26	429.4279	6650.0313	50.1699
11.249	VB	0.27	384.5505	6605.0024	49.8301
			Totals:	13255.0337	100.0000

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Daicel Chiral ID Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

[min]	геак Туре	[min]	[mAU]	mAU*s]	Area [%]
14.714	BB	0.39	212.4359	5418.5640	49.2575
22.049	BB	0.74	112.6765	5581.9253	50.7425
			Totals:	11000.4893	100.0000

[min]	Реак Туре	wiath [min]	Height [mAU]	Area [mAU*s]	Area [%]
15.391	BB	0.42	9.2687	253.1785	2.8725
22.947	BB	0.79	164.1081	8560.6797	97.1275
			Totals:	8813.8581	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{22}O_3Na^+$ 429.1461; Found 429.1490.

Daicel Chiral IB Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{28}H_{22}O_3Na^+$ 429.1461; Found 429.1460.

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 30/70, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.937	BB	0.18	103.9956	1197.3231	50.2877
8.791	BBA	0.23	80.1533	1183.6246	49.7123
			Totals:	2380.9478	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
6.924	MF	0.20	911.7954	10873.9873	96.5194
8.794	BB	0.23	26.1442	392.1301	3.4806
			Totals:	11266.1174	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{31}H_{28}O_3Na^+$ 471.1931; Found 471.1944.

80 70 fl (ppm)

Daicel Chiral IA Column (*i*PrOH/*n*-hexane = 10/90, 1.0 mL/min)

Ret Time	Peak	Width	Height	Area	Area
[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
21.088	BB	0.49	159.3876	5134.3203	50.4081
23.793	BB	0.58	132.7708	5051.1821	49.5919
			Totals:	10185.5024	100.0000

[min]	г еак Туре	[min]	[mAU]	[mAU*s]	[%]
21.192	BB	0.50	4.8386	158.2449	2.0632
23.935	BBA	0.60	192.3088	7511.7407	97.9368
			Totals:	7669.9856	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₈H₂₂O₄Na⁺ 445.1410; Found 445.1419.

7.908 7.788 7.788 7.733 7.714 7.714 7.690 7.693 7.690 7.693 7.690 7.693 7.690 7.292 7.292 7.293

100.0000

7732.8270

Totals:

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉O₃ClNa⁺ 449.0915 (³⁵Cl) and 451.0885 (³⁷Cl); Found 449.0916 (³⁵Cl) and 451.0895 (³⁷Cl).

x106 +ESI Scan (rt: 0.672 min) Frag=175.0V CYC-20191025-8.d

¹H NMR (400 MHz, CDCl₃)

fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

--114.549

Daicel Chiral IA Column (*i*PrOH/*n*-hexane = 40/60, 0.8 mL/min)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
8.516	BB	0.19	6.3749	78.9041	3.1030
9.398	BV	0.22	83.3714	1173.4047	46.1454
10.010	VV R	0.22	83.0753	1208.2971	47.5176
10.607	VB E	0.22	5.7075	82.2358	3.2340
			Totals:	2542.8417	100.0000

Totals:

3306.2292

100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉O₃FNa⁺ 433.1210; Found 433.1237.

Daicel Chiral IA Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

14.202

0.34

81.2030

Totals:

1833.4836

1882.3328

97.4049

100.0000

HRMS (ESI-TOF) m/z: $[M + K]^+$ Calcd for C₂₇H₁₉O₃BrK⁺ 509.1049 (⁷⁹Br) and 511.0129 (⁸¹Br); Found 509.1048 (⁷⁹Br) and 511.0138 (⁸¹Br).

x105 +ESI Scan (rt: 1.113 min) Frag=175.0V CYC-20191208-16.d

$\begin{array}{c} 7.973\\ 7.958\\ 7.7958\\ 7.7958\\ 7.7958\\ 7.79549\\ 7.7954\\ 7.7854\\ 7.7854\\ 7.779\\ 7.7746\\ 7.7735\\ 7.7713\\ 7.7713\\ 7.7713\\ 7.7713\\ 7.7713\\ 7.7713\\ 7.7756\\ 7.7713\\ 7.7713\\ 7.7713\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7735\\ 7.7356\\ 7$

Daicel Chiral IC Column (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
16.115	BB	0.58	12.3632	464.6705	50.0420
19.624	BB	0.76	9.2111	463.8903	49.9580
			Totals:	928.5607	100.0000

	Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
	15.936	BB	0.58	3.4850	132.3162	4.2331
	19.432	BB	0.78	58.9245	2993.4478	95.7669
				Totals:	3125.7640	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₁₉NO₅Na⁺ 460.1155 ; Found 460.1153.

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₅H₁₄O₄Na⁺ 405.1097; Found 405.1099.

Daicel Chiral AD-H Column (*i*PrOH/*n*-hexane = 10/90, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
8.302	MM	0.24	81.8294	1159.5342	52.1519
12.973	\mathbf{BB}	0.30	54.9037	1063.8427	47.8481
			Totals:	2223.3768	100.0000

12.597	BB	0.31	948.2735	18774.3750	80.4910
			Totals:	23324.8086	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₀O₃Na⁺ 379.1305; Found 379.1324.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₀H₂₈O₃Na⁺ 459.1931; Found 459.1932.

Daicel Chiral AD-H Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
9.098	$\mathbf{F}\mathbf{M}$	0.24	47.4678	688.1624	4.8934
27.871	BB	0.79	259.8821	13374.9316	95.1066
			Totals:	14063.0940	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₀O₅Na⁺ 411.1203; Found 411.1206.

$\begin{array}{c} 7.823\\ 7.805\\ 7.805\\ 7.805\\ 7.805\\ 7.805\\ 7.805\\ 7.689\\ 7.658\\ 7.658\\ 7.658\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 7.653\\ 8.839\\ 7.653\\ 7.653\\ 7.653\\ 8.833\\ 8.$

Daicel Chiral IF Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₈H₂₈O₅Na⁺ 467.1829; Found 467.1827.

7.846 7.829 7.829 7.7829 7.7829 7.7731 7.7731 7.7733 7.7734 7.7733 7.7733 7.7733 7.7733 7.7733 7.7734 7.7744 7.7744 7.7744 7.77447 7.77447 7.77447 7.77447 7.77447 7.77447 7.7747

¹H NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Given the catalytic systems of generated compound 4c and 3s are exactly same and the stereoselectivity is directly controlled by ion-pair catalyst in the first step of this palladium promoted annulation, combining the 1H-1H NOESY spectrum of 4c, the configuration was supposed to "*trans*".

Daicel Chiral AD-H Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
9.925	MF	0.28	161.0131	2665.7849	50.2545
24.644	BB	0.70	58.9427	2638.7834	49.7455
			Totals:	5304.5684	100.0000

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
10.600	BV	0.27	23.2621	413.2669	3.8613
26.617	BB	0.74	216.8391	10289.4336	96.1387
			Totals:	10702.7005	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₂O₆Na⁺ 441.1309; Found 441.1306.

Daicel Chiral IA Column, (iPrOH/n-hexane = 40/60, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₁₉O₅NaCl⁺ 445.0813 (³⁵Cl) and 447.0784 (³⁷Cl); Found 445.0812 (³⁵Cl) and 447.0792 (³⁷Cl).

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral IE Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

Ret Time [min]	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
23.286	BB	0.86	124.1702	7191.7593	50.0355
46.922	BB	1.72	60.6972	7181.5435	49.9645
			Totals:	14373.3027	100.0000

Ket Time [min]	Реак Туре	(min)	[mAU]	Area [mAU*s]	Area [%]
23.490	MM	0.92	36.1954	1993.6246	11.4641
45.486	BB	1.71	131.5221	15396.5537	88.5359
			Totals:	17390.1783	100.0000
	Ref Time [min] 23.490 45.486	Ref Time Peak [min] Type 23,490 MM 45,486 BB	Ket Time Peak Width [min] Type [min] 23.490 MM 0.92 45.486 BB 1.71	Ref Time Peak Width Height [min] Type [min] [mAU] 23.490 MM 0.92 36.1954 45.486 BB 1.71 131.5221 Totals: Totals: Totals	Ref Time Peak Width Height Area [min] Type [min] [mAU] [mAU*s] 23.490 MM 0.92 36.1954 1993.6246 45.486 BB 1.71 131.5221 15396.5537 Totals: 17390.1783

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{22}H_{18}NaO_6^+$ 401.0996; Found 401.0996.

×10 ⁵	+ESI Scan (rt: 0.508 min) Frag=175.0V CYC-20200824-2.d		
2.2	401	0996	
2.1-			
2-1			
1.9-			
1.8-			
1.7-			
1.6-			
1.5-			
1.4-			
1.3-			
1.2-			
1.1-			
1-			
0.9-			
0.8-			
0.7-			
0.6-			
0.5-			
0.4-			
0.3-			
0.2-			
0.1-			

401.088 401.09 401.092 401.094 401.096 401.098 401.1 401.102 401.104 401.106 401.108 401.11 401.112 401.114 401.116 401.118 401.12 401.122 401.122 401.124 401.126

Daicel Chiral IE Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₃O₄NNa⁺ 412.1519; Found 412.1526.

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

By using Pd(OAc)₂, triphenyl phosphite and TBAB system, *rac-*6b was formed as the minor diastereomer, whereas using Pd(OAc)₂, L8

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₅H₂₅O₅NNa⁺ 442.1625; Found 442.1623.

¹H NMR (400 MHz, CDCl₃)

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₂O₄NClNa⁺ 446.1130 (³⁵Cl) and 448.1100 (³⁷Cl); Found 446.1126 (³⁵Cl) and 448.1102 (³⁷Cl).

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

By using Pd(OAc)₂, triphenyl phosphite and TBAB system, *rac-*6d was formed as the minor diastereomer, whereas using Pd(OAc)₂, L8

HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂O₄N₂Na⁺ 413.1472; Found 413.1466.

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min, λ = 254 nm,

By using Pd(OAc)₂, triphenyl phosphite and TBAB system, *rac*-6e was formed as the minor diastereomer, whereas using Pd(OAc)₂, L8 and chiral C4 gave 6e as the major diastereomer. The mixture of diastereomers were tested.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₁O₄N₂BrNa⁺ 491.0577 (⁷⁹Br) and 493.0556 (⁸¹Br); Found 491.0577 (⁷⁹Br) and 493.0561 (⁸¹Br).

S214

Daicel Chiral ID Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

By using Pd(OAc)₂, triphenyl phosphite and TBAB system, *rac*-6f was formed as the minor diastereomer, whereas using Pd(OAc)₂, L8 and chiral C4 gave 6f as the major diastereomer. The mixture of diastereomers were tested.

HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₃₂H₂₉O₅NNa⁺ 530.1938; Found 530.1940.

Daicel Chiral IF Column, eluent (20% V/V isopropanol dissolved in *n*-hexane)

By using Pd(OAc)₂, triphenyl phosphite and TBAB system, *rac*-6g was formed as the minor diastereomer, whereas using Pd(OAc)₂, L8

and chiral C4 gave 6g as the major diastereomer. The mixture of diastereomers were tested.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{32}H_{31}O_6NNa^+$ 560.2044; Found 560.2042.

7.260 7.1151 7.1151 7.1151 7.1167 7.1167 7.1167 7.1167 7.1167 7.1167 7.1167 7.1011 7.0111 7.0234 6.9929 6.9929 6.9233 6.9239 6.9239 6.9239 6.92335 6.92335 6.9235 6.9235 6.9235 6.9235 6.5235 7.529 7.529 7.5277

Daicel Chiral IE Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₃O₄NNa⁺ 412.1519; Found 412.1518. Vi0217-4649 (0.228) 412.1518 412

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₄H₂₂O₄NClNa⁺ 446.1130 (³⁵Cl) and 448.1100 (³⁷Cl); Found 446.1129 (³⁵Cl) and 448.1109 (³⁷Cl).

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₃H₂₂O₄N₂Na⁺ 413.1472; Found 413.1471.

S227

Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₈O₃N₂Na⁺ 439.1992; Found 439.1993.

1.0

12.21

7.076 7.071 7.000 6.992 6.992 6.988 6.927 6.928 6.928 6.928 6.928 6.928 6.928 6.923 6.928 6.923 6.928 6.923 6.925 6.923 6.925 6.923 6.525 6.523 6.5255 6.5255 6.5255 6.5255 6.5255 6.5255 6.5255 6.5255 6.52556 6.525556 6.52556 6.52556 6.525556 6.525566 6.52556 6.525566 6.525566 6.525566 6.525566 6.52566 6.525566 6.525566 6

Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min.

HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₃₀O₃N₂Na⁺ 453.2149; Found 453.2150.

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₃₀O₃N₂Na⁺ 517.1097 (⁷⁹Br) and 519.1077 (⁸¹Br); Found 517.1096 (⁷⁹Br) and 519.1078 (⁸¹Br).

7.109 7.095 7.095 7.095 7.026 7.025 7.025 7.025 7.025 6.011 6.6666 6.6911 6.6666 6.6274 6.6274 6.6273 6.2742 6.2742 6.2742 6.2742 6.2742 6.2774 6.2774 6.2774 6.2774 6.27735 6.2774 6.27735 6.27735 6.27774 6.27735 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 6.27774 1.2.959 1.2.25604 1.2.756044 1.2.75604 1.2.756044 1.2.75604 1.2.7560441.2.756

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₇H₃₀O₃N₂Na⁺ 517.1097 (⁷⁹Br) and 519.1077 (⁸¹Br); Found 517.1105 (⁷⁹Br) and 519.1089 (⁸¹Br).

fl (ppm)

Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 10/90, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₆H₂₈ClO₃N₂⁺ 451.1783 (³⁵Cl) and 453.1753 (³⁷Cl); Found 451.1776 (³⁵Cl) and 453.1767 (³⁷Cl).

Daicel Chiral IB Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min.

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₃₀H₃₄O₅N₂Na⁺ 525.2360; Found 525.2360.

Daicel Chiral AD-H Column, *i*PrOH/*n*-hexane = 20/80, 1.0 mL/min

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{32}H_{32}O_3N_2Na^+$ 515.2305; Found 515.2300.

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

$\begin{array}{c} 7,406\\ 7,338\\ 7,338\\ 7,338\\ 7,338\\ 7,338\\ 7,336\\ 7,336\\ 7,335\\ 7,345\\ 7,335\\ 7,345\\ 7,335\\ 7,35\\$

Daicel Chiral IB Column, (*i*PrOH/*n*-hexane = 10/90, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₀H₁₈O₃N⁺ 320.1281; Found 320.1276.

f 3.164 3.004 2.977 2.966 12.938 - 2.339

¹H NMR (600 MHz, CDCl₃)

Daicel Chiral IE Column, (*i*PrOH/*n*-hexane = 40/60, 1.0 mL/min)

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{20}O_3N^+$ 334.1438; Found 334.1442; $[M + Na]^+$ Calcd. for $C_{21}H_{19}O_3NNa^+$ 356.1257; Found 356.1243.

Daicel Chiral ID Column, (*i*PrOH/*n*-hexane = 20/80, 1.0 mL/min)

HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₀H₁₆O₃NClNa⁺ 376.0711 (³⁵Cl) and 378.0681 (³⁷Cl); Found 376.0708 (³⁵Cl) and 378.0655 (³⁷Cl).

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{20}H_{16}O_3NBrNa^+$ 398.0386 (⁷⁹Br) and 400.0366 (⁸¹Br), Found 398.0385 (⁷⁹Br) and 400.0350 (⁸¹Br).

$\begin{bmatrix} 7,400\\ 7,335\\ 7,378\\ 7,378\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,376\\ 7,332\\ 7,310\\ 7,332\\ 7,310\\ 7,332\\ 7,310\\ 7,326\\ 7,332\\ 7,310\\ 7,326\\ 7,332\\ 7,310\\ 7,332\\ 7,310\\ 7,332\\ 7,332\\ 7,310\\ 7,332\\ 7,332\\ 7,310\\ 7,332\\ 7,332\\ 7,310\\ 7,332\\ 7,322\\ 7,332$

11e ¹H NMR (400 MHz, CDCl₃) .09₁ 3.05≖ -3.00H 224 0.93 .12 g 00 86 <u>ci</u> ..5 6.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 fl (ppm)

145.442

140.834

139.302

139.187

129.617

129.570

129.571

128.571

128.571

128.571

128.571

128.571

128.571

128.571

128.571

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

128.557

<td -194.308-175.18877.166 76.192 -18.84844.707 -29.477Ρh \cap 11e ¹³C NMR (100 MHz, CDCl₃) 0 79 78 77 76 75 74 $200 \ 190 \ 180 \ 170 \ 160 \ 150 \ 140 \ 130 \ 120 \ 110 \ 100 \ 90$ 80 70 60 50 40 30 20 10 0 -10

fl (ppm)

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₁H₁₉O₃NNa⁺ 356.1257; Found 356.1248.

¹H NMR (400 MHz, Acetone-*d*6)

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{fl}^{fl}$ (ppm)

Daicel Chiral IF Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₀H₁₆O₃NClNa⁺ 376.0711 (³⁵Cl) and 378.0681 (³⁷Cl); Found 376.0706 (³⁵Cl) and 378.0667 (³⁷Cl).

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₂O₃N⁺ 396.1594; Found 396.1590.

$\begin{array}{c} 7,426\\ 7,411\\ 7,405\\ 7,389\\ 7,389\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,382\\ 7,333\\ 7,332\\ 7,333\\ 7,333\\ 7,332\\ 7,332\\ 7,332\\ 7,332\\ 7,333\\ 7,$

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₂₆H₂₀O₃NClNa⁺ 452.1024 (³⁵Cl) and 454.0994 (³⁷Cl); Found 452.1008 (³⁵Cl) and 454.0995 (³⁷Cl).

$\begin{array}{c} 7.792\\ 7.775\\ 7.775\\ 7.778\\ 7.775\\ 7.776\\ 7.776\\ 7.776\\ 7.7457\\ 7.449\\ 7.449\\ 7.449\\ 7.449\\ 7.449\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.443\\ 7.423\\ 7.443\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.423\\ 7.743\\ 7.703\\ 7$

1.246

- 4.882

To confirm the stereoselectivity of this dipolar cycloaddition between **3a** and (*Z*)-N-phenylbenzohydrazonoyl chloride, the NOESY of H_a ($\delta = 4.88$ ppm) was detected. The H_a showed sole relevant with H_b .

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

Ret Time	Peak Type	Width [min]	Height [mAU]	Area [mAU*s]	Area [%]
0.040	- 7	0.00			
9.042	BB	0.29	524.5488	9963.3438	99.6629
10.406	MM	0.33	1.6906	33.7049	0.3371
			Totals:	9997.0487	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for C₄₀H₃₀N₂NaO₃⁺ 609.2149; Found 609.2136.

S263

7.958 7.775 7.775 7.775 7.773 7.775 7.773 7.773 7.773 7.7695 7.7695 7.661 7.676 7.676 7.676 7.676 7.676 7.676 7.676 7.676 7.676 7.673 7.676 7.673 7.673 7.676 7.673 7.676 7.673 7.676 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.670 7.673 7.673 7.673 7.673 7.703 7.013 7.703 7.013 7.703 7.013 7.703 7.013 7.027 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.013 7.022 7.022 7.013 7.022 7.023 7.022 7.023 7.022 7.023 7.033 7.032 7.02

Daicel Chiral IE Column, *i*PrOH/*n*-hexane = 40/60, 1.0 mL/min.

[min]	Туре	[min]	[mAU]	[mAU*s]	[%]
7.751	MM	0.36	1.6782	36.1109	0.2922
10.095	MF	0.63	324.8903	12320.1855	99.7078
			Totals:	12356.2965	100.0000

HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{30}H_{22} NaN_2O_3^+ 481.1523$; Found 481.1520.

7.4697.4657.4547.4547.4557.4557.2827.2827.2827.2827.2227.0127.0277.0277.0277.0277.02507.2287.0277.0277.0277.0277.0277.0277.0277.02507.2285.5183.34323.34522.290555.52002.52005.5200

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{42}H_{39}O_6N_2^+$ 667.2803; Found 667.2802.

13.Computational methods and data

All calculations were carried out with the GAUSSIAN 09 packages.⁷ The geometries of all intermediates and transition states were optimized using B3LYP-D3⁸ functional together with SDD basis set for Pd atom and the standard 6-31G(d) basis set for the others.⁹All the optimized structures were calculated after considering various conformations and confirmed by frequency calculations to be either minima or transition states using the same level of theory. For transition states, intrinsic reaction coordinate analysis (IRC) was done to verify that they connect the corresponding reactants and products.¹⁰ To take solvent effects into account, solution-phase single-point calculations were performed on the gas-phase geometries. The solution-phase single point energy calculations were done using B3LYP-D3 at SDD for Pd atom and 6-31++G(d, p) level for the others. Solvent effect was accounted for using self-consistent reaction field (SCRF) method, using SMD model.¹¹ Toluene was used as the solvent. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics. All of these energies correspond to the reference state of 1 mol/L, 298 K. All energetics reported throughout the text are in kcal/mol, and the bond lengths are in angstroms (Å). Structures were generated using Gauss View 5.0.8 and CYL view.

Computational data:

INT1-A

Zero-point	correction=			0.467626 (Hartree/Particle)
Thermal correction to Energy=			(0.499184
Thermal co	orrection to Enthal	oy=	0	0.500128
Thermal co	orrection to Gibbs l	Free Energy=	0.4	401058
E(solv) =	-1890.93300443	A.U.		
С	-3.158523	-1.316678	-0.674901	
С	-3.565168	-2.677665	-0.237962	
С	-4.844624	-3.100407	-0.203017	
Н	-5.652902	-2.446195	-0.506776	
Н	-5.088180	-4.105360	0.124048	
С	-3.805722	-0.187277	-0.291335	
Н	-4.648724	-0.304920	0.386793	
С	-3.475981	1.185700	-0.689766	
С	-3.524390	2.224374	0.257953	
С	-3.148974	1.517725	-2.018667	

С	-3.225194	3.536065	-0.098353
Н	-3.777115	1.986457	1.285879
С	-2.858965	2.833139	-2.378852
Н	-3.160557	0.739747	-2.775431
С	-2.893877	3.847903	-1.420170
Н	-3.253609	4.318162	0.655246
Н	-2.615897	3.067190	-3.411446
Н	-2.678238	4.874497	-1.703175
0	-2.504783	-3.442320	0.093366
Pd	-0.755347	-2.448891	-0.054244
С	0.630028	1.834867	2.173642
С	0.330265	0.489761	1.972234
С	-1.794744	0.762834	3.058936
С	-1.513539	2.113917	3.265309
С	-0.299751	2.645172	2.823275
Н	1.570078	2.230737	1.807194
Н	-2.734433	0.338260	3.399149
Н	-2.235644	2.749813	3.768952
Н	-0.073971	3.696300	2.976171
С	1.475271	1.320998	-1.018721
С	0.637198	3.565772	-0.875260
С	2.783640	1.770488	-0.860931
С	1.938997	4.037687	-0.698607
Н	-0.205143	4.248764	-0.877977
С	3.007927	3.138731	-0.695913
Н	3.605915	1.068066	-0.866218
Н	2.121124	5.100324	-0.567668
Н	4.025043	3.497153	-0.566747
0	1.314247	-0.299640	1.360012
0	1.210263	-0.046649	-1.200295
Р	1.059728	-1.165854	-0.015463
С	-1.861532	-1.336200	-1.389931
Н	-1.808747	-2.021217	-2.240800
Н	-1.411179	-0.373240	-1.612848
С	-0.870639	-0.062347	2.415431
Н	-1.085289	-1.113376	2.252627
С	0.397705	2.201451	-1.035276
Н	-0.611637	1.826138	-1.149983
С	3.725934	-1.431079	-0.100645
С	4.390693	-1.430731	-1.324281
С	4.303947	-0.894431	1.047534
С	5.663973	-0.864398	-1.401233
Н	3.903226	-1.858319	-2.193611
С	5.576086	-0.328043	0.955355

Н	3.754548	-0.909103	1.980660
С	6.255699	-0.307495	-0.264937
Н	6.189079	-0.854421	-2.351619
Н	6.034696	0.099679	1.841916
Н	7.244538	0.136319	-0.329247
0	2.453853	-2.010596	-0.046010

INT1-B

Zero-point c	orrection=		0.467544 (Hartree/Particle)
Thermal correction to Energy=			0.499022
Thermal correction to Enthalpy=			0.499967
Thermal cor	rection to Gibbs	Free Energy=	0.401798
E(solv) = -	-1890.94210698	A.U.	
С	3.257234	1.387567	-0.797840
С	3.515851	2.808111	-0.399761
С	2.284861	3.713276	-0.373303
Н	2.102196	4.246574	-1.312701
Н	2.459444	4.440628	0.425346
С	4.236001	0.475252	-0.668409
Н	5.184844	0.867612	-0.303269
С	4.153022	-0.960520	-0.857480
С	5.063491	-1.778721	-0.168928
С	3.199859	-1.583697	-1.685352
С	4.996659	-3.161741	-0.266460
Н	5.819156	-1.310106	0.455310
С	3.139585	-2.968407	-1.787435
Н	2.528067	-0.980049	-2.277535
С	4.028697	-3.763876	-1.071895
Н	5.703033	-3.773347	0.282427
Н	2.400376	-3.426936	-2.436767
Н	3.975917	-4.844682	-1.148928
Ο	4.607806	3.167718	0.004768
Pd	0.729674	2.478751	-0.066852
С	-0.372108	-2.190846	2.152769
С	-0.091704	-0.840286	1.965427
С	2.202461	-1.215259	2.598279
С	1.939596	-2.568185	2.772064
С	0.646793	-3.049508	2.558476
Н	-1.379698	-2.543167	1.963842
Н	3.201206	-0.824772	2.764665
Н	2.733168	-3.243925	3.074294
Н	0.429376	-4.101834	2.703519
С	-2.060612	-1.079568	-1.176611
С	-2.349191	-3.446821	-0.954404

С	-3.225837	-0.991732	-1.940111
С	-3.536009	-3.371189	-1.682995
Н	-1.995823	-4.400987	-0.577609
С	-3.966405	-2.142221	-2.182997
Н	-3.538900	-0.028458	-2.320092
Н	-4.120444	-4.265473	-1.872091
Н	-4.881760	-2.077054	-2.763753
0	-1.162954	-0.038896	1.569325
0	-1.293859	0.067952	-0.992138
Р	-1.101481	1.025158	0.293977
С	1.842737	1.121827	-1.126165
Н	1.590524	1.340132	-2.170501
Н	1.503358	0.115221	-0.875066
С	1.185708	-0.337601	2.212739
Н	1.396653	0.717719	2.096529
С	-1.598263	-2.299062	-0.702279
Н	-0.663636	-2.347505	-0.159760
С	-3.784830	1.192753	0.486110
С	-4.638225	1.677202	-0.493897
С	-4.184228	0.208195	1.378686
С	-5.919746	1.146484	-0.598683
Н	-4.288341	2.454841	-1.162095
С	-5.466916	-0.317300	1.257706
Н	-3.490544	-0.136869	2.129842
С	-6.334829	0.142640	0.270279
Н	-6.591404	1.516851	-1.364011
Н	-5.790824	-1.092293	1.941634
Н	-7.332548	-0.273957	0.184419
0	-2.523256	1.769642	0.553385

INT1-C

Zero-point	correction=		0.465157 (Hartree/Partic)	le)
Thermal co	orrection to Energy=	=	0.497327	
Thermal correction to Enthalpy=			0.498271	
Thermal co	orrection to Gibbs F	Free Energy=	0.397595	
E(solv) =	-1890.89657920	A.U.		
С	2.936030	0.826875	-1.338490	
С	2.867021	2.342734	-1.273719	
С	4.097096	2.950105	-1.127945	
Н	5.017180	2.375430	-1.118792	
Н	4.171520	4.033155	-1.111573	
С	3.592572	0.124362	-0.288070	
Н	3.990442	0.757455	0.501470	
С	4.022821	-1.282645	-0.265583	

С	4.161869	-1.925884	0.980993
С	4.320025	-2.013709	-1.430606
С	4.542146	-3.262073	1.058679
Н	3.955752	-1.362013	1.887379
С	4.702066	-3.350457	-1.350734
Н	4.278947	-1.517445	-2.394451
С	4.806058	-3.982780	-0.109149
Н	4.636143	-3.741899	2.028663
Н	4.933619	-3.897790	-2.260103
Н	5.106468	-5.024806	-0.051083
0	1.709624	2.867919	-1.344365
Pd	1.386878	-0.076053	-0.042253
С	0.091548	2.908439	1.156438
С	-0.124412	1.623175	1.621793
С	2.101962	1.547004	2.561921
С	2.332780	2.839453	2.087152
С	1.329097	3.514368	1.388538
Н	-0.659849	3.389294	0.542031
Н	2.871640	1.019070	3.117726
Н	3.300143	3.307478	2.230166
Н	1.523430	4.494384	0.971159
С	-3.039376	-1.569886	0.901016
С	-4.765955	-1.148220	2.511115
С	-3.948184	-2.196380	0.053634
С	-5.698165	-1.749481	1.664164
Н	-5.079886	-0.744250	3.469152
С	-5.285083	-2.276923	0.438605
Н	-3.608622	-2.581628	-0.900699
Н	-6.741499	-1.810239	1.958663
Н	-6.004376	-2.746073	-0.225611
0	-1.284265	0.929818	1.222899
0	-1.697289	-1.498739	0.492430
Р	-0.899163	-0.156375	0.012584
С	1.978515	0.116880	-2.113067
Н	1.291579	0.711824	-2.707117
Н	2.117950	-0.918909	-2.402973
С	0.869868	0.912282	2.324755
Н	0.639302	-0.056404	2.760424
С	-3.424292	-1.057705	2.137039
Н	-2.690771	-0.580070	2.774464
С	-3.081216	0.530973	-1.462623
С	-3.623318	-0.034736	-2.613077
С	-3.872256	1.212587	-0.539959
С	-4.997900	0.057957	-2.830179

Н	-2.967802	-0.543925	-3.311681
С	-5.246737	1.284560	-0.764401
Н	-3.422714	1.648115	0.343110
С	-5.813894	0.707653	-1.902246
Н	-5.429484	-0.383849	-3.723555
Н	-5.875245	1.794882	-0.040899
Н	-6.885130	0.769828	-2.067931
0	-1.698289	0.396163	-1.292091

INT1-D

Zero-point correction=			0.465557 (Hartree/Particle)
Thermal correction to Energy=			0.497586
Thermal correction to Enthalpy=			0.498530
Thermal co	prrection to Gibbs]	Free Energy=	0.398152
E(solv) =	-1890.90070457	A.U.	
С	-2.869947	-0.977513	-1.388811
С	-2.746491	-2.487066	-1.191921
С	-2.029778	-3.187007	-2.139604
Н	-1.595704	-2.721275	-3.015461
Н	-1.948547	-4.265123	-2.051580
С	-3.574122	-0.294154	-0.361905
Н	-3.895658	-0.968185	0.431043
С	-4.109781	1.070129	-0.362973
С	-4.285341	1.725408	0.873941
С	-4.495775	1.749534	-1.534734
С	-4.780256	3.023623	0.933788
Н	-4.013258	1.198872	1.784553
С	-4.995913	3.047978	-1.471661
Н	-4.436981	1.239170	-2.490230
С	-5.130650	3.695180	-0.241270
Н	-4.898753	3.512523	1.896696
Н	-5.295593	3.552012	-2.386263
Н	-5.522098	4.707213	-0.196274
0	-3.317081	-2.950488	-0.152403
Pd	-1.349969	0.062863	-0.193005
С	-0.374260	-2.710432	1.447158
С	0.043508	-1.396848	1.625118
С	-1.961672	-0.890819	2.883185
С	-2.389403	-2.198731	2.703320
С	-1.607370	-3.102528	1.971302
Н	0.226792	-3.383061	0.846478
Н	-2.562125	-0.184961	3.449499
Н	-3.348790	-2.518372	3.095274
Н	-1.969483	-4.105630	1.790105

С	3.035095	1.525616	0.906220
С	4.627060	1.034981	2.632202
С	4.015377	2.160304	0.149325
С	5.629936	1.643643	1.876240
Н	4.860231	0.601653	3.600391
С	5.319412	2.210163	0.637858
Н	3.755551	2.576359	-0.816920
Н	6.648034	1.680691	2.251791
Н	6.093671	2.686689	0.044444
0	1.241319	-0.971728	1.024613
0	1.727655	1.490045	0.394857
Р	0.927224	0.171734	-0.153694
С	-2.019834	-0.203497	-2.226624
Н	-1.306139	-0.701348	-2.872245
Н	-2.279169	0.811016	-2.513235
С	-0.743683	-0.456849	2.321111
Н	-0.345919	0.529794	2.539584
С	3.317031	0.975663	2.154053
Н	2.531229	0.495887	2.724058
С	3.176900	-0.489482	-1.526304
С	3.781371	0.129773	-2.616229
С	3.915617	-1.209645	-0.589885
С	5.166981	0.050504	-2.756119
Н	3.165573	0.669940	-3.327641
С	5.301177	-1.268125	-0.736209
Н	3.416110	-1.685970	0.244221
С	5.930372	-0.638648	-1.812032
Н	5.648120	0.534140	-3.601178
Н	5.889275	-1.808517	-0.000762
Н	7.009779	-0.690124	-1.917168
0	1.784442	-0.370083	-1.426665

INT1-A'

Zero-point	correction=		0.	467522 (Hartree/Particle)
Thermal co	prrection to Energy	=	0.4	499073
Thermal co	orrection to Enthal	oy=	0.5	00017
Thermal co	orrection to Gibbs]	Free Energy=	0.40	0829
E(solv) =	-1890.91943092	A.U.		
С	-2.526928	-0.792464	-0.802278	
С	-2.860149	-2.162429	-0.310323	
С	-3.900648	-2.500553	0.479847	
Н	-4.679184	-1.802182	0.747287	
Н	-3.959824	-3.512063	0.867637	
С	-3.166410	0.399224	-0.682455	

Н	-2.552044	1.272709	-0.902231
С	-4.554032	0.737622	-0.356638
С	-4.824194	1.983809	0.239074
С	-5.644684	-0.077893	-0.708547
С	-6.128884	2.376656	0.527459
Н	-3.993237	2.641181	0.478755
С	-6.949487	0.318442	-0.429247
Н	-5.457306	-1.023161	-1.205406
С	-7.198704	1.541652	0.199226
Н	-6.311970	3.337874	1.000079
Н	-7.777072	-0.326775	-0.710709
Н	-8.218105	1.846788	0.417718
0	-1.907776	-3.063348	-0.639997
Pd	-0.084027	-2.199851	-0.514434
С	-0.030671	1.820971	1.359696
С	0.323361	0.488981	1.556097
С	-1.784325	0.034900	2.620170
С	-2.156062	1.367675	2.437563
С	-1.276481	2.256987	1.817385
Н	0.659531	2.494174	0.864962
Н	-2.471372	-0.670026	3.076024
Н	-3.134475	1.705772	2.762570
Н	-1.559821	3.296345	1.676332
С	2.195417	1.461777	-1.319194
С	1.272494	3.538072	-2.111787
С	3.091326	2.146385	-0.499225
С	2.149033	4.240759	-1.282210
Н	0.568499	4.072745	-2.742481
С	3.058071	3.541698	-0.484736
Н	3.786972	1.598405	0.122967
Н	2.128337	5.326144	-1.261978
Н	3.747778	4.081520	0.157458
0	1.584328	0.056605	1.116635
0	2.188635	0.068358	-1.376743
Р	1.720114	-0.954792	-0.175320
С	-1.195784	-0.759241	-1.472393
Н	-1.184396	-1.235249	-2.458116
Н	-0.739481	0.229962	-1.508845
С	-0.532564	-0.408087	2.193815
Н	-0.227018	-1.438637	2.338070
С	1.293903	2.143335	-2.134547
Н	0.623991	1.577606	-2.773003
С	4.309265	-1.026365	0.412295
С	5.180204	-0.826818	-0.655510

С	4.597949	-0.557607	1.691605
С	6.370791	-0.133915	-0.433312
Н	4.912948	-1.199810	-1.637702
С	5.792480	0.134242	1.899885
Н	3.889486	-0.724471	2.494459
С	6.677284	0.349824	0.840607
Н	7.055460	0.031749	-1.259630
Н	6.028114	0.506599	2.892419
Н	7.603525	0.891111	1.008024
0	3.114156	-1.722755	0.187002

INT1-B'

Zero-point corr	rection=		0.	467661 (Hartre	ee/Particle)
Thermal correction to Energy=			0.4	499131	
Thermal correction to Enthalpy=			0.5	00075	
Thermal correct	tion to Gibbs	Free Energy=	0.40	1016	
E(solv) = -18	390.93217244	A.U.			
С	-2.395918	-1.192605	-1.166966		
С	-2.834763	-2.387510	-0.351664		
С	-1.900027	-3.541079	-0.525702		
Н	-1.942882	-3.986961	-1.525733		
Н	-2.051077	-4.305772	0.242393		
С	-2.854205	0.087537	-1.180794		
Н	-2.215866	0.762174	-1.753327		
С	-3.981867	0.804132	-0.592231		
С	-3.976327	2.206387	-0.751593		
С	-5.047136	0.227586	0.126421		
С	-4.970043	3.006146	-0.197704		
Н	-3.160327	2.668551	-1.302058		
С	-6.044941	1.030352	0.673232		
Н	-5.054655	-0.842406	0.279212		
С	-6.012666	2.419390	0.523016		
Н	-4.932910	4.084351	-0.327930		
Н	-6.854532	0.564967	1.229138		
Н	-6.792552	3.037281	0.959503		
0	-3.737876	-2.379022	0.478945		
Pd	-0.061755	-2.530729	-0.397273		
С	-0.265991	1.717586	1.382662		
С	0.098722	0.385389	1.558868		
С	-2.084910	-0.141875	2.420296		
С	-2.469216	1.187538	2.245107		
С	-1.556137	2.113419	1.739370		
Н	0.447517	2.421944	0.973625		
Н	-2.796546	-0.875737	2.782346		

Н	-3.484491	1.494319	2.472370
Н	-1.856033	3.146505	1.593418
С	1.807613	1.438619	-1.273288
С	0.618844	3.405361	-1.991520
С	2.703297	2.220222	-0.545595
С	1.495341	4.202764	-1.252315
Н	-0.190014	3.859039	-2.556742
С	2.536899	3.606396	-0.538565
Н	3.501924	1.753972	0.015322
Н	1.370765	5.281236	-1.237063
Н	3.227280	4.219251	0.033539
0	1.403781	-0.008122	1.206694
0	1.928015	0.048998	-1.318171
Р	1.647461	-1.007355	-0.080993
С	-1.113345	-1.499972	-1.855166
Н	-1.170243	-2.238443	-2.658982
Н	-0.541938	-0.629915	-2.175466
С	-0.788951	-0.546068	2.094980
Н	-0.473198	-1.573647	2.244437
С	0.773855	2.019746	-2.005543
Н	0.101349	1.385734	-2.572217
С	4.245429	-0.719561	0.463458
С	5.090413	-0.473635	-0.615913
С	4.475262	-0.156002	1.716515
С	6.190492	0.365291	-0.434423
Н	4.870917	-0.925579	-1.576725
С	5.578925	0.682180	1.884029
Н	3.788871	-0.362400	2.529096
С	6.434548	0.946795	0.811852
Н	6.852613	0.568173	-1.270798
Н	5.766232	1.130759	2.855122
Н	7.289646	1.601979	0.947853
0	3.144808	-1.562189	0.273057

INT1-C'

Zero-point	t correction=		0.465481 (Hartr	ee/Particle)
Thermal co	orrection to Energy	y=	0.497680	
Thermal co	orrection to Enthal	py=	0.498624	
Thermal co	orrection to Gibbs	Free Energy=	0.397855	
E(solv)=	-1890.9010301	A.U.		
С	-2.577099	-2.027372	-0.906980	
С	-2.580930	-2.562728	0.516406	
С	-3.202122	-3.745248	0.752569	
Н	-3.674804	-4.296856	-0.054094	

Н	-3.235128	-4.164966	1.753206
С	-3.280226	-0.858871	-1.290597
Н	-3.228572	-0.602585	-2.351187
С	-4.318570	-0.129177	-0.561915
С	-5.118872	0.764417	-1.300534
С	-4.550592	-0.256792	0.823237
С	-6.138329	1.489610	-0.692176
Н	-4.939495	0.876484	-2.367559
С	-5.585642	0.458455	1.421612
Н	-3.882717	-0.867523	1.418191
С	-6.382607	1.329233	0.675037
Н	-6.747596	2.168561	-1.282037
Н	-5.759868	0.344511	2.488109
Н	-7.184289	1.884844	1.154027
0	-1.963724	-1.744161	1.314268
Pd	-1.083481	-0.423760	-0.842364
С	-0.905850	1.319292	2.169126
С	-0.209970	1.446325	0.970571
С	-2.102791	2.568802	-0.045739
С	-2.803059	2.446138	1.148028
С	-2.199404	1.828711	2.250423
Н	-0.451583	0.779445	2.991194
Н	-2.561704	3.044179	-0.906551
Н	-3.824796	2.800784	1.215710
Н	-2.758710	1.707598	3.172507
С	3.378329	1.144658	-1.145087
С	4.613423	2.974165	-0.204652
С	4.556986	0.531838	-1.560087
С	5.807315	2.361833	-0.588470
Н	4.631505	3.926565	0.317056
С	5.775079	1.143648	-1.271078
Н	4.509355	-0.422631	-2.070842
Н	6.758564	2.833371	-0.361059
Н	6.699386	0.661530	-1.574179
0	1.071934	0.896244	0.867102
0	2.162157	0.512737	-1.448973
Р	1.147040	-0.215699	-0.386941
С	-1.475250	-2.345287	-1.749133
Н	-0.801121	-3.139789	-1.444638
Н	-1.497592	-2.108674	-2.813103
С	-0.792453	2.069993	-0.152049
Н	-0.195109	2.266244	-1.037894
С	3.386333	2.371132	-0.485480
Н	2.452802	2.830267	-0.184588

С	3.317765	-1.421464	0.708621
С	4.158341	-2.400818	0.188205
С	3.769130	-0.483745	1.634731
С	5.496074	-2.422113	0.582792
Н	3.759486	-3.120555	-0.518770
С	5.112166	-0.510223	2.009076
Н	3.088430	0.260320	2.028347
С	5.978280	-1.471508	1.484439
Н	6.160880	-3.180287	0.179408
Н	5.480320	0.228546	2.714419
Н	7.022286	-1.483962	1.782384
0	1.987367	-1.436622	0.270034

INT1-D'					
Zero-point	t correction=		0.4	65431 (Hartre	e/Particle)
Thermal correction to Energy=			0.49	97626	
Thermal co	orrection to Enthalp	oy=	0.49	8570	
Thermal co	orrection to Gibbs I	Free Energy=	0.396	690	
E(solv) =	-1890.90025307	A.U.			
С	2.697685	1.976833	-1.008161		
С	3.135603	2.707772	0.256337		
С	2.102659	3.074698	1.116849		
Н	1.054448	3.000934	0.853275		
Н	2.352716	3.518067	2.075478		
С	3.316797	0.823289	-1.548925		
Н	3.010479	0.565215	-2.563362		
С	4.324112	-0.071723	-1.007620		
С	4.638086	-1.213434	-1.782110		
С	4.938368	0.070860	0.256944		
С	5.513417	-2.184863	-1.314453		
Н	4.170221	-1.332739	-2.756820		
С	5.829640	-0.899753	0.708573		
Н	4.746508	0.964105	0.838378		
С	6.113399	-2.032001	-0.058503		
Н	5.734230	-3.055956	-1.924794		
Н	6.306161	-0.769550	1.676489		
Н	6.799467	-2.788250	0.312892		
0	4.373498	2.872537	0.423409		
Pd	1.093877	0.525009	-0.585169		
С	0.341042	-1.060765	2.732762		
С	0.095042	-1.368025	1.398205		
С	2.401160	-2.035428	1.092594		
С	2.657459	-1.719834	2.425100		
С	1.625087	-1.254743	3.244769		

Н	-0.459616	-0.654119	3.340927
Н	3.196454	-2.402583	0.453375
Н	3.661878	-1.830087	2.818849
Н	1.826105	-1.007110	4.282585
С	-3.330652	-1.108481	-1.326720
С	-4.729111	-2.925449	-0.624340
С	-4.433602	-0.416157	-1.817147
С	-5.851386	-2.235408	-1.084947
Н	-4.840176	-3.903890	-0.166193
С	-5.699483	-0.983622	-1.685743
Н	-4.293912	0.561782	-2.262720
Н	-6.839819	-2.672529	-0.980825
Н	-6.567572	-0.441341	-2.047662
0	-1.172607	-1.116979	0.862656
0	-2.064135	-0.518017	-1.471755
Р	-1.124408	0.104418	-0.290127
С	1.462515	2.317707	-1.649746
Н	0.894875	3.165841	-1.279898
Н	1.312054	2.076817	-2.702158
С	1.110658	-1.873381	0.566297
Н	0.871519	-2.215076	-0.437264
С	-3.455304	-2.367951	-0.746843
Н	-2.575339	-2.883768	-0.383224
С	-3.366196	1.288643	0.717635
С	-4.129782	2.342381	0.223715
С	-3.925407	0.290237	1.512888
С	-5.494701	2.380995	0.508394
Н	-3.650677	3.105951	-0.380045
С	-5.293860	0.335204	1.777125
Н	-3.306897	-0.516362	1.885160
С	-6.081560	1.373419	1.276103
Н	-6.098572	3.197566	0.123652
Н	-5.743968	-0.450246	2.376558
Н	-7.146138	1.399859	1.487664
0	-2.003849	1.295539	0.395089

PB-INT1-A1

Zero-point	correction=		0.467960 (Hartree/Particle))
Thermal co	orrection to Energy	=	0.501562	
Thermal co	orrection to Enthalp	oy=	0.502506	
Thermal co	orrection to Gibbs I	Free Energy=	0.398224	
E(solv) =	-4465.27360820	A.U.		
С	-1.065025	-2.510987	-1.573138	
С	-0.170014	-3.698290	-1.426645	

С	-0.411373	-4.895398	-2.009516
Н	-1.291256	-5.043277	-2.625674
Н	0.264349	-5.731978	-1.861656
С	-2.407179	-2.610435	-1.403017
Н	-2.804215	-3.620971	-1.314282
С	-3.407343	-1.542726	-1.341591
С	-4.707980	-1.790023	-1.827646
С	-3.163783	-0.283284	-0.757214
С	-5.704679	-0.819416	-1.772242
Н	-4.924604	-2.763508	-2.262237
С	-4.163100	0.686613	-0.697367
Н	-2.202297	-0.083292	-0.302216
С	-5.436274	0.432318	-1.211887
Н	-6.694858	-1.040489	-2.165317
Н	-3.944590	1.639103	-0.223939
Н	-6.212990	1.191585	-1.161307
0	0.882677	-3.419189	-0.657424
Pd	0.990711	-1.423445	-0.117787
С	4.174614	0.492372	-0.396676
С	3.258418	1.542866	-0.394184
С	4.299636	2.525198	-2.325534
С	5.228617	1.482513	-2.345817
С	5.160772	0.471318	-1.384050
Н	4.084160	-0.289578	0.351726
Н	4.343139	3.312142	-3.073906
Н	5.999494	1.455856	-3.111416
Н	5.874528	-0.347541	-1.401245
С	-0.957064	0.642865	2.224149
С	-3.288701	1.022583	2.667192
С	-1.091868	-0.712587	2.526292
С	-3.451743	-0.335569	2.944951
Н	-4.139624	1.696500	2.715654
С	-2.353859	-1.195275	2.875977
Н	-0.224549	-1.362720	2.475995
Н	-4.432277	-0.723272	3.206074
Н	-2.472642	-2.253708	3.088189
0	2.279979	1.609679	0.600063
0	0.283661	1.168553	1.851178
Р	0.918190	0.701977	0.407662
С	-0.257933	-1.285846	-1.761506
Н	0.477425	-1.407588	-2.565951
Н	-0.812705	-0.360290	-1.888594
С	3.302914	2.557659	-1.348776
Н	2.563585	3.351436	-1.317158

С	-2.038433	1.519847	2.296569
Н	-1.891192	2.565895	2.051340
С	-0.485669	2.878707	-0.483528
С	-1.655115	3.155347	-1.196481
С	0.095642	3.849618	0.338264
С	-2.255220	4.406904	-1.077640
Н	-2.086409	2.372984	-1.810931
С	-0.520530	5.098321	0.448141
Н	0.998757	3.623872	0.889535
С	-1.692925	5.384878	-0.252742
Н	-3.169242	4.613247	-1.628044
Н	-0.074064	5.850795	1.092867
Н	-2.164160	6.359079	-0.157104
0	0.036607	1.615137	-0.665154
Br	2.534813	-1.847698	1.921929

PB-INT1-A2

PB-INTI-A	.2		
Zero-point	0.4		
Thermal co	0.5		
Thermal co	0.50		
Thermal co	0.396		
E(solv) =	-4465.26568173	A.U.	
С	2.792690	0.842589	-1.576925
С	1.848684	1.830740	-2.190290
С	2.177869	3.093891	-2.540380
Н	3.191607	3.456726	-2.415227
Н	1.439371	3.764142	-2.970353
С	3.572442	1.200721	-0.521414
Н	3.590434	2.263537	-0.285780
С	4.358730	0.365362	0.380618
С	5.402261	0.965043	1.117682
С	4.084102	-0.996159	0.638500
С	6.155066	0.244590	2.040592
Н	5.613972	2.019720	0.954640
С	4.839196	-1.714446	1.563274
Н	3.239728	-1.483385	0.166848
С	5.882456	-1.107208	2.267421
Н	6.953941	0.739946	2.588628
Н	4.591395	-2.757338	1.746228
Н	6.464308	-1.673313	2.990681
0	0.630006	1.296964	-2.338139
Pd	0.580962	-0.627784	-1.495557
С	2.550234	-0.501101	-2.128970
Н	2.417511	-0.497679	-3.215340

0.467460 (Hartree/Particle) 501155 02099 5840

Н	3.206609	-1.304791	-1.809161
Р	-1.536039	-0.438709	-0.578523
0	-2.540556	-1.737984	-0.610419
0	-1.569340	-0.110483	1.044777
0	-2.639669	0.690722	-1.123043
С	-2.641825	1.995842	-0.646194
С	-1.594752	2.864003	-0.952898
С	-3.722298	2.400759	0.137907
С	-1.637003	4.164488	-0.448476
Н	-0.760048	2.498787	-1.551240
С	-3.754667	3.708872	0.624879
Н	-4.504579	1.684431	0.367538
С	-2.710333	4.592293	0.337291
Н	-0.813855	4.838786	-0.667817
Н	-4.591116	4.032116	1.239654
Н	-2.732351	5.606370	0.728141
С	-3.706081	-1.801463	0.138761
С	-4.899125	-1.303287	-0.385294
С	-3.667294	-2.407403	1.393977
С	-6.070558	-1.416073	0.365697
Н	-4.889267	-0.830965	-1.360375
С	-4.844519	-2.516194	2.133476
Н	-2.718234	-2.775677	1.767026
С	-6.047751	-2.020671	1.624479
Н	-7.003160	-1.029483	-0.037138
Н	-4.819287	-2.986013	3.113084
Н	-6.962137	-2.105603	2.205500
С	-0.514416	0.525175	1.706075
С	0.697445	-0.134003	1.907390
С	-0.732836	1.812206	2.194896
С	1.714968	0.523989	2.601496
Н	0.845210	-1.129224	1.502342
С	0.291695	2.454495	2.890357
Н	-1.685563	2.296259	2.016610
С	1.517217	1.815535	3.091411
Н	2.668334	0.025627	2.737778
Н	0.130099	3.462722	3.263174
Н	2.319531	2.323745	3.619568
Br	0.915165	-2.942572	-0.617113

PB-INT1-B1

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= 0.467905 (Hartree/Particle) 0.501373 0.502317

Thermal co	orrection to Gibbs	Free Energy=	0.399203
E(solv) =	-4465.28420826	A.U.	
С	-1.167944	-2.203206	-1.524692
С	-0.390791	-3.418823	-1.055439
С	1.060908	-3.290758	-1.313714
Н	1.317478	-3.181726	-2.373289
Н	1.667347	-4.048750	-0.819057
С	-2.489295	-2.134717	-1.242854
Н	-2.895904	-2.973087	-0.679993
С	-3.399986	-1.024964	-1.518546
С	-4.461540	-0.755889	-0.631147
С	-3.294426	-0.212739	-2.667156
С	-5.353162	0.288847	-0.860546
Н	-4.555417	-1.365358	0.262044
С	-4.191744	0.827223	-2.901828
Н	-2.508096	-0.418880	-3.385147
С	-5.225211	1.090944	-1.998019
Н	-6.150614	0.481355	-0.146316
Н	-4.084273	1.435831	-3.796675
Н	-5.922280	1.904869	-2.180854
0	-0.916498	-4.319637	-0.398283
Pd	1.292261	-1.315993	-0.582752
С	4.090031	1.388601	-0.346139
С	3.011245	2.209359	-0.016236
С	3.807510	3.928162	-1.501254
С	4.896972	3.122835	-1.841045
С	5.030658	1.857138	-1.264675
Н	4.163186	0.402372	0.104589
Н	3.692579	4.911508	-1.950021
Н	5.635496	3.478781	-2.554663
Н	5.871375	1.222115	-1.530726
С	-0.779318	-0.311918	2.164291
С	-3.097714	-0.621127	2.715906
С	-0.591864	-1.691653	2.080547
С	-2.937139	-2.003702	2.599326
Н	-4.069004	-0.200122	2.962650
С	-1.686381	-2.534661	2.277300
Н	0.388966	-2.089827	1.845484
Н	-3.785842	-2.665803	2.751198
Н	-1.554569	-3.602528	2.142376
0	2.075991	1.789202	0.925337
0	0.286995	0.568756	1.946353
Р	0.934802	0.683781	0.435128
С	-0.267988	-1.113767	-1.975067

Н	0.230894	-1.298887	-2.934102
Н	-0.725046	-0.126111	-1.978716
С	2.854441	3.471303	-0.589688
Н	1.992734	4.073311	-0.320077
С	-2.019905	0.235561	2.488442
Н	-2.130203	1.311862	2.548364
С	-1.051958	2.538767	0.247678
С	-2.375748	2.479242	-0.189361
С	-0.659564	3.451117	1.230473
С	-3.319113	3.341053	0.365012
Н	-2.652580	1.744391	-0.934608
С	-1.617953	4.304808	1.780937
Н	0.367237	3.463677	1.574180
С	-2.946776	4.255973	1.353831
Н	-4.349280	3.277133	0.026938
Н	-1.319470	5.008258	2.554062
Н	-3.685887	4.921787	1.791456
0	-0.168444	1.655357	-0.345806
Br	3.223238	-1.936420	1.002335

PB-INT1-B2

Zero-point correction=			0.467811 (H	Hartree/Particle)
Thermal correction to Energy=			0.501332	
Thermal co	orrection to Enthalp	oy=	0.502277	
Thermal co	orrection to Gibbs H	Free Energy=	0.398378	
E(solv) =	-4465.27813399	A.U.		
С	2.751770	0.268108	-1.623661	
С	1.554436	0.909521	-2.296387	
С	0.564788	-0.087456	-2.756405	
Н	0.948852	-0.782080	-3.510952	
Н	-0.381386	0.352333	-3.072545	
С	3.603452	1.102303	-0.977192	
Н	3.333873	2.155965	-1.033498	
С	4.759705	0.797289	-0.143911	
С	5.194483	1.770593	0.782347	
С	5.501655	-0.400697	-0.214155	
С	6.286577	1.549918	1.616675	
Н	4.643001	2.705665	0.845082	
С	6.596515	-0.619404	0.618042	
Н	5.222583	-1.154817	-0.939953	
С	6.995177	0.348013	1.544227	
Н	6.585976	2.317687	2.326795	
Н	7.145783	-1.554886	0.540518	
Н	7.847022	0.169694	2.195562	

0	1.363569	2.129584	-2.302913
Pd	0.572973	-1.329631	-1.054732
С	2.618837	-1.207740	-1.544065
Н	2.726374	-1.733383	-2.500092
Н	3.210951	-1.693801	-0.771934
Р	-1.508485	-0.772783	-0.317678
0	-2.665605	-1.886877	0.080713
0	-1.504919	0.080746	1.103922
0	-2.425747	0.231916	-1.284881
С	-2.685170	1.572244	-1.029221
С	-1.776777	2.543396	-1.452114
С	-3.869431	1.923255	-0.378749
С	-2.068738	3.887037	-1.213874
Н	-0.837070	2.265333	-1.921061
С	-4.145845	3.271672	-0.147938
Н	-4.549746	1.145196	-0.053882
С	-3.247582	4.258012	-0.563772
Н	-1.352816	4.641680	-1.526957
Н	-5.064477	3.547858	0.363737
Н	-3.463253	5.306765	-0.376212
С	-3.934364	-1.530738	0.502845
С	-4.984189	-1.577108	-0.415362
С	-4.157646	-1.153972	1.828369
С	-6.272396	-1.236575	-0.001937
Н	-4.770920	-1.862395	-1.439578
С	-5.449111	-0.811308	2.229101
Н	-3.319170	-1.118667	2.512760
С	-6.508789	-0.848315	1.319064
Н	-7.090110	-1.265920	-0.717197
Н	-5.625560	-0.509954	3.258214
Н	-7.511738	-0.577110	1.637293
С	-0.472065	0.948900	1.475823
С	0.818495	0.473891	1.705723
С	-0.793868	2.293223	1.656204
С	1.814469	1.381082	2.071953
Н	1.038135	-0.581506	1.590343
С	0.208562	3.184330	2.039269
Н	-1.809377	2.627106	1.480038
С	1.516303	2.734473	2.235565
Н	2.828296	1.021683	2.216044
Н	-0.035808	4.235808	2.166855
Н	2.299623	3.434784	2.514147
Br	0.959931	-3.121283	0.729308

PB-INT1-C1

Zero-point correction=			0.465952 (Hartree/Particl	e)
Thermal correction to Energy=			0.500259	
Thermal correction to Enthalpy=			0.501203	
Thermal correction to Gibbs Free Energy=			0.394289	
E(solv) = -44	465.25278250	A.U.		
С	-3.140224	-1.083363	1.452666	
С	-3.138803	-2.060723	2.629912	
С	-3.111651	-1.447581	3.871461	
Н	-3.115354	-0.368770	3.987541	
Н	-3.194813	-2.052033	4.770524	
С	-2.428240	0.162791	1.483222	
Н	-1.844817	0.334760	2.383307	
С	-2.768826	1.405952	0.747098	
С	-1.844377	2.467858	0.745874	
С	-3.993767	1.601896	0.088560	
С	-2.115261	3.659494	0.083640	
Н	-0.897456	2.332529	1.259340	
С	-4.263214	2.794937	-0.581893	
Н	-4.743860	0.819962	0.121629	
С	-3.325065	3.827405	-0.594689	
Н	-1.371673	4.451062	0.076439	
Н	-5.218172	2.920245	-1.086944	
Н	-3.533566	4.754025	-1.123157	
0	-3.232989	-3.290343	2.340851	
Pd	-1.366618	-1.125478	0.098575	
С	-3.501677	-1.599061	0.186706	
Н	-3.760298	-2.653605	0.175843	
Н	-3.811648	-0.980403	-0.648864	
Р	0.711191	-0.279186	0.330525	
0	2.002055	-1.275463	0.469280	
0	1.356698	0.716774	-0.827030	
0	0.895349	0.622562	1.716838	
С	2.127975	1.059597	2.174899	
С	2.625864	2.292185	1.755192	
С	2.835648	0.267317	3.079222	
С	3.858468	2.730924	2.240244	
Н	2.043634	2.887241	1.061749	
С	4.065661	0.716792	3.559699	
Н	2.418292	-0.686978	3.380128	
С	4.583370	1.944755	3.138352	
Н	4.252400	3.689223	1.912715	
Н	4.622046	0.102036	4.261782	
Н	5.543930	2.288431	3.511804	
С	3.054903	-1.384425	-0.438970	
----	-----------	-----------	-----------	
С	4.300677	-0.883187	-0.068799	
С	2.854366	-2.029568	-1.656930	
С	5.376796	-1.040305	-0.943844	
Н	4.412084	-0.380126	0.884989	
С	3.939245	-2.171729	-2.522146	
Н	1.861118	-2.393951	-1.907978	
С	5.200232	-1.682552	-2.171040	
Н	6.353457	-0.653626	-0.664067	
Н	3.793409	-2.670097	-3.476715	
Н	6.039986	-1.799326	-2.851081	
С	0.609642	1.607508	-1.586930	
С	-0.528602	1.209306	-2.289837	
С	1.086552	2.915721	-1.669564	
С	-1.214915	2.158349	-3.046489	
Н	-0.860769	0.177436	-2.250060	
С	0.399004	3.848539	-2.446664	
Н	1.997372	3.177667	-1.141947	
С	-0.760767	3.475871	-3.127422	
Н	-2.114369	1.856989	-3.574957	
Н	0.770556	4.867901	-2.512996	
Н	-1.306267	4.206294	-3.718243	
Br	-0.828732	-2.601245	-1.899194	

PB-INT1-C2

Zero-point correction=			0.466150 (Hartree/Particle)
Thermal correction to Energy=			0.500276
Thermal c	orrection to Enthalp	oy=	0.501220
Thermal c	orrection to Gibbs I	Free Energy=	0.395204
E(solv) =	-4465.24916867	A.U.	
С	2.967148	1.378882	0.738967
С	2.624149	2.242380	1.941792
С	3.570294	2.214209	2.941227
Н	4.461125	1.599163	2.869121
Н	3.457812	2.848590	3.816077
С	3.506088	0.059158	0.851785
Н	3.609519	-0.328361	1.862023
С	4.347556	-0.604638	-0.175091
С	4.385654	-2.008380	-0.259508
С	5.163124	0.137118	-1.046419
С	5.195580	-2.642690	-1.197263
Н	3.732115	-2.584101	0.388890
С	5.970695	-0.500529	-1.988543
Н	5.171876	1.219568	-0.965591

С	5.990167	-1.893436	-2.070518
Н	5.198686	-3.728535	-1.254624
Н	6.594329	0.094161	-2.652124
Н	6.620551	-2.391235	-2.803379
0	1.552522	2.936746	1.864404
Pd	1.410253	-0.097640	0.229275
С	2.374411	1.699819	-0.511283
Н	1.794151	2.613577	-0.552610
Н	2.782656	1.324467	-1.445611
Р	-0.756510	0.077948	-0.433409
0	-1.703441	0.066406	0.902544
0	-1.443608	1.268573	-1.366052
0	-1.254030	-1.156229	-1.389010
С	-2.429905	-1.881241	-1.265348
С	-3.616895	-1.386883	-1.803265
С	-2.373190	-3.117447	-0.625020
С	-4.780718	-2.144090	-1.675241
Н	-3.617083	-0.412962	-2.279576
С	-3.543895	-3.867764	-0.514146
Н	-1.426716	-3.434520	-0.196869
С	-4.747735	-3.384044	-1.032927
Н	-5.716480	-1.757990	-2.069689
Н	-3.515749	-4.829234	-0.008183
Н	-5.658517	-3.968340	-0.932556
С	-3.086275	0.105465	1.023204
С	-3.700129	-0.992777	1.624849
С	-3.826997	1.217246	0.624080
С	-5.083268	-0.999072	1.782026
Н	-3.084681	-1.831161	1.928050
С	-5.213284	1.196680	0.789240
Н	-3.330604	2.080834	0.201459
С	-5.847298	0.091207	1.357224
Н	-5.564661	-1.863662	2.230397
Н	-5.796156	2.057852	0.473127
Н	-6.927382	0.081523	1.476258
С	-1.312250	2.634897	-1.149960
С	-0.648546	3.182785	-0.053388
С	-1.914321	3.450427	-2.112853
С	-0.557643	4.573400	0.047521
Н	-0.123603	2.600299	0.703069
С	-1.837026	4.836025	-1.981187
Н	-2.428106	2.985224	-2.948476
С	-1.153135	5.404174	-0.901742
Н	0.012581	4.969895	0.881320

Н	-2.305316	5.470181	-2.730090
Н	-1.081626	6.484767	-0.809428
Br	0.967760	-2.425916	1.157975

PB-INT1-D1

Zero-point correction=			0.466194 (Hartree/Particle)
Thermal correction to Energy=			0.500324
Thermal corr	ection to Enthal	py=	0.501269
Thermal corr	rection to Gibbs	Free Energy=	0.395281
E(solv) = -	4465.25642461	A.U.	
С	-2.504833	-2.028079	-0.911675
С	-2.002329	-3.447369	-1.153089
С	-2.636710	-4.121429	-2.169918
Н	-3.421491	-3.663572	-2.761851
Н	-2.390787	-5.161090	-2.366015
С	-2.195051	-1.465380	0.367913
Н	-1.618271	-2.150676	0.985799
С	-2.924003	-0.404618	1.094582
С	-2.300540	0.211949	2.196777
С	-4.237276	-0.017538	0.779139
С	-2.952777	1.192125	2.934956
Н	-1.284287	-0.075292	2.450724
С	-4.888174	0.972337	1.515715
Н	-4.756316	-0.515797	-0.032308
С	-4.249772	1.585518	2.593648
Н	-2.440101	1.666237	3.766018
Н	-5.904627	1.254791	1.251332
Н	-4.756296	2.359041	3.165247
0	-1.107440	-3.873958	-0.343447
Pd	-0.967860	-0.449023	-1.120098
С	-2.862696	-1.132357	-1.948828
Н	-2.834088	-1.480312	-2.975064
Н	-3.453197	-0.238587	-1.765015
Р	0.892956	0.094678	0.056665
0	2.276999	-0.249085	-0.731231
0	1.142962	1.689074	0.381644
0	1.202522	-0.444427	1.598916
С	1.689731	-1.722596	1.874737
С	2.703802	-1.792942	2.832543
С	1.187862	-2.868291	1.260017
С	3.225451	-3.037681	3.187029
Н	3.063759	-0.874027	3.285211
С	1.725357	-4.104629	1.626173
Н	0.376100	-2.865763	0.528106

С	2.738917	-4.199149	2.581501
Н	4.012930	-3.095488	3.934596
Н	1.318184	-4.990329	1.148062
Н	3.145879	-5.168766	2.856806
С	3.428188	0.529026	-0.712420
С	4.452771	0.219379	0.177634
С	3.542696	1.566435	-1.636096
С	5.625988	0.976035	0.139913
Н	4.321290	-0.600795	0.875693
С	4.719439	2.313451	-1.659835
Н	2.710245	1.759067	-2.306454
С	5.761897	2.022496	-0.774436
Н	6.434583	0.743954	0.828256
Н	4.821918	3.126277	-2.373875
Н	6.676689	2.608813	-0.798705
С	0.129051	2.504537	0.872967
С	-0.943908	2.878099	0.063488
С	0.256856	2.979649	2.177058
С	-1.910330	3.736239	0.588567
Н	-1.005574	2.498673	-0.951295
С	-0.707223	3.853951	2.679866
Н	1.106918	2.660217	2.770528
С	-1.795150	4.229534	1.889401
Н	-2.759598	4.016263	-0.027870
Н	-0.611650	4.231870	3.694617
Н	-2.554294	4.896620	2.288433
Br	-0.218699	0.935673	-3.109927

PB-INT1-D2

Zero-point	correction=			0.466221 (Hartree/Particle)
Thermal co	Thermal correction to Energy=			0.500321
Thermal co	orrection to Enthal	oy=	(0.501265
Thermal co	orrection to Gibbs l	Free Energy=	0.	394800
E(solv) =	-4465.25239709	A.U.		
С	-2.166035	-1.985075	-0.350462	
С	-1.634075	-3.058623	0.605452	
С	-0.874020	-4.061925	0.025072	
Н	-0.767225	-4.161138	-1.049472	
Н	-0.538792	-4.891776	0.641318	
С	-3.064886	-1.015328	0.183490	
Н	-3.203631	-1.112115	1.259036	
С	-4.097678	-0.279590	-0.575924	
С	-4.567132	0.961577	-0.105888	
С	-4.680980	-0.811659	-1.739789	

С	-5.562848	1.651786	-0.790221
Н	-4.098957	1.391865	0.773640
С	-5.677467	-0.116509	-2.425193
Н	-4.363807	-1.788916	-2.090051
С	-6.122175	1.120297	-1.956639
Н	-5.898694	2.615881	-0.416096
Н	-6.115031	-0.550298	-3.321485
Н	-6.899938	1.661966	-2.489409
0	-1.948579	-2.918123	1.826736
Pd	-1.107327	-0.050772	-0.221901
С	2.107863	0.547093	2.826254
С	1.704567	-0.288449	1.789032
С	0.463844	-1.669986	3.308790
С	0.860901	-0.848888	4.363965
С	1.689049	0.252081	4.122658
Н	2.712111	1.419518	2.600027
Н	-0.225632	-2.496520	3.440653
Н	0.512715	-1.053500	5.373090
Н	1.990153	0.900465	4.941789
С	2.315102	2.508983	-1.178906
С	2.179614	4.400102	0.296069
С	3.361009	3.119186	-1.874864
С	3.225607	5.023095	-0.386924
Н	1.706158	4.891619	1.141526
С	3.811966	4.376974	-1.477479
Н	3.804309	2.598073	-2.717611
Н	3.578906	6.002328	-0.075448
Н	4.626360	4.848913	-2.021449
0	2.133843	0.051011	0.499276
0	1.922353	1.269413	-1.653153
Р	1.098552	0.124312	-0.769495
С	-1.558278	-1.655859	-1.590886
Н	-0.717728	-2.240196	-1.942720
Н	-2.107738	-1.109011	-2.354573
С	0.905470	-1.403694	2.011114
Н	0.604054	-2.056822	1.198951
С	1.712781	3.142908	-0.090421
Н	0.880552	2.689395	0.442251
С	2.727197	-1.876227	-1.490595
С	3.946559	-1.363124	-1.927983
С	2.631582	-3.126504	-0.882576
С	5.100429	-2.127669	-1.750115
Н	3.976270	-0.381312	-2.386874
С	3.794201	-3.879240	-0.714887

Н	1.656517	-3.480041	-0.547369
С	5.028021	-3.385044	-1.146026
Н	6.058406	-1.736301	-2.082694
Н	3.732314	-4.853811	-0.238224
Н	5.930233	-3.975235	-1.008672
0	1.545913	-1.165348	-1.685284
Br	-1.341785	1.843944	1.437783

PB-INT1-A1'

	Zero-point	correction=		0.467619 (Hartree/Particle)
Thermal correction to Energy=			=	0.501285
Thermal correction to Enthalpy=			oy=	0.502229
	Thermal co	rrection to Gibbs I	Free Energy=	0.397428
	E(solv) =	-4465.26824855	A.U.	
	С	-2.157255	-0.409651	-1.813146
	С	-2.500106	-1.863374	-1.773472
	С	-3.525045	-2.406409	-2.471633
	Н	-4.223635	-1.774442	-3.008134
	Н	-3.689531	-3.479669	-2.468368
	С	-2.938217	0.673521	-1.564025
	Н	-2.430931	1.635837	-1.646890
	С	-4.317131	0.799564	-1.098084
	С	-4.910696	2.078376	-1.130579
	С	-5.064599	-0.243244	-0.511569
	С	-6.180215	2.313297	-0.607704
	Н	-4.344888	2.902691	-1.559433
	С	-6.328788	-0.006267	0.018291
	Н	-4.636648	-1.237044	-0.472061
	С	-6.901036	1.270304	-0.023014
	Н	-6.603636	3.314723	-0.649504
	Н	-6.873757	-0.828878	0.476229
	Н	-7.890135	1.446586	0.392612
	0	-1.625925	-2.557649	-1.047525
	Pd	-0.059478	-1.378099	-0.372581
	С	3.676282	-2.040134	-0.091959
	С	3.771290	-0.686622	0.232162
	С	5.855685	-0.499875	-0.952297
	С	5.774764	-1.850612	-1.298189
	С	4.687289	-2.613139	-0.865272
	Н	2.830711	-2.616176	0.272827
	Н	6.699491	0.100621	-1.282267
	Н	6.556737	-2.306978	-1.899493
	Н	4.620012	-3.666018	-1.125167
	С	-0.636430	1.167318	1.838414

С	-2.463215	2.697426	1.533957
С	-1.510636	0.157625	2.235824
С	-3.357680	1.698827	1.920879
Н	-2.833666	3.676721	1.243292
С	-2.877761	0.434866	2.268515
Н	-1.118490	-0.827354	2.467020
Н	-4.425666	1.891073	1.911377
Н	-3.573204	-0.354534	2.536254
0	2.799916	-0.080341	1.029731
0	0.742890	0.909446	1.777818
Р	1.291273	0.155784	0.418490
С	-0.695050	-0.255270	-1.997058
Н	-0.286512	-0.844976	-2.825639
Н	-0.350974	0.778253	-2.039443
С	4.850122	0.091947	-0.186507
Н	4.888051	1.140161	0.087722
С	-1.092445	2.434118	1.483363
Н	-0.379217	3.187536	1.163656
С	2.437772	2.476210	-0.464913
С	2.995584	2.987576	-1.639841
С	2.761448	3.034199	0.776303
С	3.884989	4.057630	-1.575534
Н	2.727473	2.524490	-2.583667
С	3.659756	4.102096	0.824484
Н	2.327417	2.628968	1.680576
С	4.225467	4.618982	-0.342070
Н	4.317900	4.448488	-2.492596
Н	3.916579	4.530577	1.789692
Н	4.923375	5.450014	-0.291524
0	1.561221	1.424385	-0.626218
Br	0.532868	-2.958495	1.593197

PB-INT1-A2'

Zero-point correction=			0.466901 (Hartree/Partic	le)
Thermal co	prrection to Energy	=	0.500854	
Thermal co	prrection to Enthalp	oy=	0.501798	
Thermal co	prrection to Gibbs H	Free Energy=	0.394840	
E(solv) =	-4465.25936280	A.U.		
С	3.229984	-0.986565	-1.289773	
С	2.776578	0.025885	-2.294024	
С	3.578568	0.589711	-3.227272	
Н	4.647992	0.410254	-3.220281	
Н	3.164247	1.234847	-3.996455	
С	4.068482	-0.828831	-0.229124	

Н	4.129176	-1.696821	0.428857
С	4.793210	0.325407	0.291658
С	5.346009	0.209644	1.587079
С	4.946876	1.569669	-0.359237
С	5.992600	1.272656	2.210196
Н	5.232965	-0.733418	2.116583
С	5.589734	2.633569	0.268736
Н	4.532737	1.697054	-1.351573
С	6.117715	2.500909	1.556408
Н	6.394698	1.143754	3.212896
Н	5.679330	3.581417	-0.257961
Н	6.620127	3.335935	2.038301
0	1.460479	0.215880	-2.222352
Pd	0.535301	-1.339521	-1.172895
С	-0.181559	0.447684	2.879984
С	-0.189936	0.787445	1.528224
С	2.031178	1.686204	1.707009
С	2.056796	1.353810	3.061757
С	0.947977	0.735599	3.645494
Н	-1.052086	-0.046188	3.298975
Н	2.896332	2.146232	1.244328
Н	2.946349	1.561596	3.648862
Н	0.962863	0.464548	4.698215
С	-3.712242	-0.774592	0.444515
С	-4.299769	-1.936806	2.460301
С	-4.778873	0.105847	0.614780
С	-5.378601	-1.068026	2.647854
Н	-4.107152	-2.730388	3.177649
С	-5.614788	-0.050032	1.721935
Н	-4.935418	0.899373	-0.107133
Н	-6.028613	-1.182076	3.511581
Н	-6.448015	0.634116	1.861899
0	-1.357400	0.514105	0.828935
0	-2.916553	-0.643752	-0.688944
Р	-1.359684	-0.093538	-0.710381
С	2.400850	-2.202907	-1.424950
Н	2.324994	-2.582115	-2.450303
Н	2.612186	-2.998089	-0.709171
С	0.906395	1.408981	0.927319
Н	0.905714	1.628688	-0.135492
С	-3.459673	-1.799243	1.355478
Н	-2.609565	-2.455396	1.186446
С	-2.585383	2.178539	-1.388815
С	-3.696374	2.167505	-2.233641

С	-2.495761	3.092133	-0.336623
С	-4.731140	3.078364	-2.019177
Н	-3.734820	1.438636	-3.035834
С	-3.539597	3.993610	-0.127847
Н	-1.621652	3.082096	0.303508
С	-4.659504	3.989820	-0.962623
Н	-5.597662	3.069529	-2.675174
Н	-3.475807	4.700702	0.694815
Н	-5.469394	4.694091	-0.793087
0	-1.562579	1.278813	-1.627049
Br	-0.284233	-3.320961	0.099999

PB-INT1-B1'

Zero-point correction=			0.467529 (Hartree/Par	ticle)
Thermal correction to Energy=			0.501167	
Thermal correction to Enthalpy=			0.502111	
Thermal co	orrection to Gibbs]	Free Energy=	0.396183	
E(solv) =	-4465.27340629	A.U.		
С	-2.624518	-0.353033	-1.342251	
С	-2.796193	-1.800894	-0.928471	
С	-1.815470	-2.690770	-1.585274	
Н	-1.856681	-2.679634	-2.679930	
Н	-1.817716	-3.701958	-1.181070	
С	-3.348573	0.745401	-1.000372	
Н	-2.929289	1.669927	-1.402271	
С	-4.546519	1.017844	-0.205494	
С	-4.928641	2.372813	-0.089511	
С	-5.341469	0.065562	0.465448	
С	-6.031838	2.766108	0.662264	
Н	-4.329900	3.127793	-0.594477	
С	-6.448277	0.461451	1.212685	
Н	-5.044047	-0.973714	0.415434	
С	-6.803832	1.808734	1.323628	
Н	-6.287753	3.821149	0.733478	
Н	-7.037366	-0.296612	1.724675	
Н	-7.665380	2.107410	1.916129	
0	-3.554856	-2.185566	-0.032987	
Pd	-0.056690	-1.584004	-1.203398	
С	4.346656	0.825128	1.388618	
С	3.648749	-0.280077	0.902905	
С	4.156992	-1.519800	2.892426	
С	4.867968	-0.427297	3.394391	
С	4.960837	0.743774	2.638567	
Н	4.390672	1.728650	0.790308	

Н	4.074624	-2.432537	3.476644
Н	5.342132	-0.485251	4.370782
Н	5.505346	1.602016	3.024481
С	-0.132161	0.845869	1.282068
С	-2.024553	2.112039	2.059904
С	-0.733947	-0.344350	1.690790
С	-2.655940	0.928607	2.443334
Н	-2.530344	3.064596	2.190829
С	-2.010706	-0.293805	2.252894
Н	-0.227954	-1.292580	1.543181
Н	-3.660682	0.956686	2.851847
Н	-2.509960	-1.222379	2.507364
0	3.093735	-0.202527	-0.371189
0	1.135372	0.853414	0.700761
Р	1.479460	-0.002971	-0.675601
С	-1.342629	-0.189642	-2.097646
Н	-1.392948	-0.550909	-3.133352
Н	-0.984239	0.842065	-2.102145
С	3.543423	-1.457258	1.640317
Н	2.977273	-2.290584	1.230014
С	-0.761528	2.075251	1.467475
Н	-0.252549	2.980085	1.152325
С	2.273022	2.397868	-1.582726
С	1.535599	3.514393	-1.186537
С	3.649720	2.488917	-1.794865
С	2.185681	4.733037	-0.994065
Н	0.466726	3.408604	-1.037315
С	4.290563	3.713300	-1.597821
Н	4.194927	1.602663	-2.097241
С	3.564280	4.836447	-1.195048
Н	1.612674	5.602594	-0.683365
Н	5.362778	3.786883	-1.759709
Н	4.068690	5.786417	-1.041349
0	1.610594	1.206748	-1.812303
Br	1.160225	-3.577225	-0.151570

PB-INT1-B2'

Zero-point	correction=		0.4671	79 (Hartree/Particle)
Thermal correction to Energy=			0.500971	
Thermal correction to Enthalpy=			0.50191	5
Thermal correction to Gibbs Free Energy=			0.395111	
E(solv) =	-4465.27129930	A.U.		
С	-2.660920	-1.248468	-1.015998	
С	-1.993825	-1.902528	0.167669	

С	-0.547431	-2.186369	-0.103179
Н	-0.423519	-3.098619	-0.701317
Н	-0.007236	-2.304409	0.837456
С	-3.751339	-0.428772	-1.025015
Н	-3.930404	0.031321	-1.998308
С	-4.665393	0.085803	-0.007282
С	-5.377474	1.263271	-0.330493
С	-4.916233	-0.489744	1.256275
С	-6.259525	1.859462	0.565886
Н	-5.208416	1.723129	-1.301620
С	-5.807325	0.103242	2.147165
Н	-4.372166	-1.383230	1.528990
С	-6.480898	1.283485	1.819708
Н	-6.775534	2.775265	0.285338
Н	-5.973378	-0.362588	3.116521
Н	-7.169614	1.742934	2.524815
0	-2.517379	-2.125044	1.257644
Pd	0.030962	-0.690044	-1.468863
С	-1.803179	-1.371721	-2.223588
Н	-1.606338	-2.406838	-2.529395
Н	-2.130554	-0.771820	-3.073033
Р	1.778141	0.038721	-0.217821
Ο	2.690757	1.330769	-0.671196
Ο	1.278693	0.502553	1.302704
Ο	3.051559	-0.915898	0.286591
С	2.790073	-2.198392	0.740500
С	2.730068	-3.252085	-0.170801
С	2.605714	-2.414154	2.106068
С	2.478047	-4.541576	0.296825
Н	2.851181	-3.042150	-1.228140
С	2.356991	-3.708741	2.562529
Н	2.641492	-1.565005	2.779312
С	2.290679	-4.773770	1.661293
Н	2.415941	-5.364432	-0.410037
Н	2.202700	-3.882556	3.624019
Н	2.085981	-5.778684	2.019782
С	3.531131	2.009433	0.196715
С	4.881144	1.664519	0.254689
С	3.025102	3.062532	0.959065
С	5.735510	2.390521	1.084849
Н	5.236446	0.834071	-0.344598
С	3.888322	3.779528	1.787212
Н	1.968870	3.300299	0.899132
С	5.243870	3.448528	1.852828

Н	6.788586	2.125415	1.132230
Н	3.497090	4.598946	2.384332
Н	5.912490	4.010899	2.499088
С	-0.017470	0.978545	1.483686
С	-0.599602	1.881405	0.589838
С	-0.716905	0.516413	2.595755
С	-1.907984	2.309831	0.820692
Н	-0.065821	2.205480	-0.297818
С	-2.017840	0.965074	2.818269
Н	-0.247252	-0.213847	3.246117
С	-2.618711	1.862144	1.933815
Н	-2.379671	2.976095	0.104811
Н	-2.579285	0.579416	3.663983
Н	-3.646627	2.172967	2.086451
Br	0.294345	1.035303	-3.324825

PB-INT1-C1'

Zero-point	0.40		
Thermal co	0.50		
Thermal co	orrection to Enthal	oy=	0.50
Thermal co	orrection to Gibbs]	Free Energy=	0.3955
E(solv) =	-4465.24984875	A.U.	
С	3.245758	0.460749	-1.072980
С	3.187914	0.581012	-2.590598
С	4.355002	0.985765	-3.178749
Н	5.249216	1.161090	-2.587077
Н	4.411257	1.128667	-4.254780
С	2.398332	1.185276	-0.183849
Н	2.672064	1.114244	0.871110
С	1.600363	2.390006	-0.469045
С	1.421634	3.309264	0.582753
С	1.030704	2.681611	-1.723861
С	0.729094	4.503808	0.387352
Н	1.835051	3.078557	1.561124
С	0.335449	3.875222	-1.908154
Н	1.138934	1.945156	-2.519674
С	0.186784	4.794878	-0.866138
Н	0.611277	5.201459	1.213505
Н	-0.104572	4.085448	-2.879743
Н	-0.361149	5.720677	-1.024585
0	2.048551	0.292708	-3.110020
Pd	1.715993	-0.932204	-0.286205
С	3.866113	-0.666761	-0.480596
Н	4.374527	-1.382759	-1.116568

0.466076 (Hartree/Particle) 0.500273 0.501217 395575

Н	4.152190	-0.665210	0.571569
Р	-0.519356	-0.732807	-0.034125
0	-1.378796	-2.127588	-0.177504
0	-1.056603	-0.209747	1.459299
0	-1.370401	0.271196	-1.018667
С	-2.365300	1.178663	-0.680952
С	-2.032657	2.348483	-0.002669
С	-3.671969	0.936161	-1.100711
С	-3.030395	3.281090	0.276161
Н	-1.004831	2.526897	0.280441
С	-4.661824	1.877916	-0.816658
Н	-3.901482	0.020994	-1.632485
С	-4.348440	3.049546	-0.124327
Н	-2.763637	4.198004	0.794603
Н	-5.682552	1.687788	-1.137852
Н	-5.123448	3.779595	0.093837
С	-2.753363	-2.198495	-0.303579
С	-3.271319	-2.635007	-1.523501
С	-3.595936	-1.876404	0.761679
С	-4.653548	-2.736202	-1.682006
Н	-2.582135	-2.875241	-2.325945
С	-4.976290	-1.975189	0.587695
Н	-3.164686	-1.531389	1.693275
С	-5.510498	-2.401062	-0.630165
Н	-5.060228	-3.070645	-2.632591
Н	-5.636451	-1.710916	1.409288
Н	-6.586932	-2.473474	-0.758879
С	-0.165893	0.200942	2.441771
С	0.877460	-0.625311	2.867481
С	-0.368829	1.458144	3.009219
С	1.745848	-0.156123	3.854901
Н	1.021963	-1.604004	2.420482
С	0.498121	1.905985	4.006471
Н	-1.190201	2.068605	2.651951
С	1.564446	1.106192	4.424535
Н	2.568638	-0.789340	4.174656
Н	0.345000	2.888176	4.445906
Н	2.245888	1.462257	5.192343
Br	1.875096	-3.398418	0.250848

PB-INT1-C2'

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= 0.465483 (Hartree/Particle) 0.499868 0.500813

Thermal co	orrection to Gibbs]	Free Energy=	0.392811
E(solv) =	-4465.24791288	A.U.	
С	2.891084	1.338254	-1.252279
С	3.141503	2.362255	-0.149867
С	4.181156	3.217823	-0.362357
Н	4.800279	3.138643	-1.251582
Н	4.428684	3.978690	0.373115
С	3.481636	0.048064	-1.284424
Н	3.408594	-0.503131	-2.225002
С	4.505939	-0.462386	-0.361126
С	5.423091	-1.414801	-0.830721
С	4.581758	-0.057331	0.985174
С	6.411876	-1.935065	0.003240
Н	5.355754	-1.747663	-1.864316
С	5.569257	-0.580556	1.813880
Н	3.845378	0.639494	1.372399
С	6.491095	-1.514765	1.330916
Н	7.113564	-2.670994	-0.382600
Н	5.612954	-0.262961	2.852739
Н	7.256040	-1.920784	1.988946
0	2.325729	2.276497	0.846301
Pd	1.308879	-0.135914	-0.765074
С	1.746204	1.501606	-2.077271
Н	1.170798	2.418426	-1.987188
Н	1.681993	0.997482	-3.043008
Р	-0.898060	0.156046	-0.503429
0	-1.428045	-0.034938	1.037686
0	-1.602831	1.611650	-0.873833
0	-1.826865	-0.816194	-1.448455
С	-3.213490	-0.876458	-1.534391
С	-3.969871	0.205859	-1.986586
С	-3.818447	-2.092334	-1.217437
С	-5.357479	0.072818	-2.069374
Н	-3.473762	1.129246	-2.252211
С	-5.202919	-2.210770	-1.305456
Н	-3.198617	-2.910109	-0.871258
С	-5.979768	-1.127371	-1.723558
Н	-5.951534	0.916470	-2.411281
Н	-5.674757	-3.150964	-1.034428
Н	-7.060669	-1.220225	-1.784025
С	-2.449602	-0.856335	1.484762
С	-2.180785	-2.203021	1.723298
С	-3.706916	-0.303025	1.720350
С	-3.215597	-3.015777	2.187303

Н	-1.180526	-2.578107	1.520167
С	-4.730311	-1.129967	2.181812
Н	-3.864375	0.752754	1.526408
С	-4.489896	-2.486976	2.411123
Н	-3.022891	-4.069521	2.371269
Н	-5.719020	-0.713419	2.354177
Н	-5.291805	-3.128788	2.766505
С	-1.677250	2.672940	0.030263
С	-0.547925	3.150698	0.692317
С	-2.935252	3.249730	0.208603
С	-0.703676	4.241707	1.550021
Н	0.445320	2.700026	0.578377
С	-3.066944	4.344913	1.064156
Н	-3.788324	2.834854	-0.319556
С	-1.950072	4.843851	1.738199
Н	0.175865	4.612028	2.068683
Н	-4.043708	4.801329	1.205111
Н	-2.053038	5.693808	2.408002
Br	1.347885	-2.400654	0.356241

PB-INT1-D1'

Zero-point	correction=			0.465560 (Hartree/Particle)
Thermal correction to Energy=				0.499798
Thermal co	prrection to Enthal	oy=	().500743
Thermal co	prrection to Gibbs l	Free Energy=	0	393825
E(solv) =	-4465.24911178	A.U.		
С	-2.209043	-2.372547	-0.736838	
С	-2.251878	-3.108412	0.606580	
С	-1.068313	-3.218279	1.306358	
Н	-0.126959	-2.857017	0.907121	
Н	-1.046351	-3.780619	2.236178	
С	-3.053221	-1.294668	-1.145399	
Н	-3.172938	-1.167228	-2.223507	
С	-4.024879	-0.519198	-0.358569	
С	-4.616974	0.592114	-0.988505	
С	-4.367871	-0.790363	0.979857	
С	-5.508930	1.416552	-0.310716	
Н	-4.337704	0.824418	-2.011891	
С	-5.263013	0.040435	1.652647	
Н	-3.986130	-1.690040	1.448198	
С	-5.833482	1.147335	1.020559	
Н	-5.939602	2.276501	-0.817866	
Н	-5.526365	-0.190961	2.682540	
Н	-6.527951	1.790364	1.556743	

0	-3.403867	-3.567008	0.887646
Pd	-0.933321	-0.581522	-1.107889
С	1.020078	2.000274	2.049800
С	0.650924	0.703720	1.705136
С	-1.459370	0.952916	2.809375
С	-1.120374	2.262074	3.152992
С	0.124214	2.777754	2.784164
Н	1.978688	2.389732	1.727866
Н	-2.431023	0.545727	3.071821
Н	-1.825115	2.881393	3.701643
Н	0.395847	3.796442	3.049066
С	2.893322	1.632907	-0.912931
С	2.704879	4.011605	-0.651991
С	4.107064	1.632711	-0.225951
С	3.922151	4.034162	0.033194
Н	2.145264	4.930619	-0.802520
С	4.620064	2.842268	0.244897
Н	4.621189	0.692671	-0.058239
Н	4.320496	4.972941	0.409002
Н	5.562444	2.849215	0.786530
0	1.563753	-0.056542	0.952272
0	2.401027	0.428192	-1.403750
Р	1.264964	-0.489598	-0.605651
С	-1.164607	-2.649140	-1.656149
Н	-0.405769	-3.370548	-1.374018
Н	-1.307107	-2.501130	-2.729160
С	-0.567254	0.153572	2.093202
Н	-0.822991	-0.874837	1.839263
С	2.181456	2.810545	-1.131969
Н	1.207769	2.761695	-1.609844
С	3.310700	-2.122790	-0.100165
С	4.440594	-1.972802	-0.903496
С	3.419838	-2.488129	1.241308
С	5.703135	-2.193087	-0.349502
Н	4.315411	-1.676278	-1.938672
С	4.686398	-2.705401	1.782736
Н	2.518054	-2.589062	1.834313
С	5.829669	-2.557054	0.992851
Н	6.587855	-2.076529	-0.969822
Н	4.778735	-2.987991	2.827767
Н	6.813830	-2.726018	1.421234
0	2.050474	-1.940181	-0.654270
Br	-1.352972	1.909724	-1.230633

PB-INT1-D2'

PB-INTI-D	2'			
Zero-point correction=			(0.465972 (Hartree/Particle)
Thermal correction to Energy=			0	.500041
Thermal co	rrection to Enthal	py=	0.	500986
Thermal co	rrection to Gibbs	Free Energy=	0.3	97009
E(solv) =	-4465.25233194	A.U.		
С	-3.307881	-0.771575	-0.949530	
С	-4.208900	-0.290855	0.193664	
С	-4.170855	-1.020604	1.363785	
Н	-3.546753	-1.901663	1.469818	
Н	-4.823795	-0.747049	2.189156	
С	-2.416782	0.086152	-1.669240	
Н	-2.198484	-0.200101	-2.700882	
С	-2.253370	1.529442	-1.414315	
С	-2.039501	2.390086	-2.501658	
С	-2.325404	2.086333	-0.124794	
С	-1.938204	3.771690	-2.321364	
Н	-1.972065	1.969404	-3.502690	
С	-2.198750	3.458729	0.057737	
Н	-2.477170	1.437695	0.727057	
С	-2.020369	4.311595	-1.037218	
Н	-1.786356	4.419617	-3.181261	
Н	-2.245829	3.862659	1.064667	
Н	-1.938386	5.385858	-0.888422	
0	-4.893918	0.728593	-0.122652	
Pd	-1.213156	-1.485756	-0.664332	
С	0.661132	1.812097	2.376222	
С	0.359505	0.501599	2.005874	
С	-1.726665	0.598541	3.190194	
С	-1.443954	1.910490	3.572652	
С	-0.246800	2.510850	3.170640	
Н	1.581098	2.268984	2.032665	
Н	-2.675001	0.133781	3.435655	
Н	-2.160338	2.468954	4.169012	
Н	-0.023886	3.535600	3.456554	
С	1.963104	1.810002	-0.739925	
С	1.620259	4.168595	-0.416696	
С	3.226690	1.893145	-0.153072	
С	2.877330	4.271124	0.183453	
Н	0.978827	5.039393	-0.515022	
С	3.676408	3.131805	0.308460	
Н	3.836048	1.006387	-0.044818	
Н	3.231890	5.229638	0.553164	
Н	4.656174	3.199516	0.774175	

0	1.285944	-0.186140	1.206882
0	1.469656	0.606102	-1.230128
Р	0.874679	-0.654000	-0.322366
С	-3.189197	-2.135056	-1.287624
Н	-3.697832	-2.875423	-0.680859
Н	-2.908341	-2.446982	-2.295366
С	-0.815835	-0.122453	2.414994
Н	-1.034127	-1.137406	2.102165
С	1.160293	2.938176	-0.881642
Н	0.184805	2.835487	-1.334978
С	3.393346	-1.538069	-0.429591
С	4.166136	-1.247233	-1.553762
С	3.967606	-1.618838	0.839748
С	5.534796	-1.023785	-1.401546
Н	3.681164	-1.183628	-2.521472
С	5.336650	-1.389990	0.979207
Н	3.333944	-1.841493	1.689645
С	6.123006	-1.089355	-0.136342
Н	6.139481	-0.788794	-2.273218
Н	5.788854	-1.444139	1.965775
Н	7.188048	-0.908728	-0.020080
0	2.041404	-1.776639	-0.592056
Br	-0.635269	-3.706684	0.394231

INT1-B1-TMA1

Zero-point	correction=		0.636558 (Hartree/Particle)
Thermal correction to Energy=			0.677718
Thermal co	orrection to Enthal	oy=	0.678662
Thermal co	orrection to Gibbs l	Free Energy=	0.559200
E(solv) =	-4679.65815787	A.U.	
С	-1.014620	1.033591	-2.567123
С	-2.333343	0.291666	-2.573952
С	-2.174893	-1.161585	-2.474214
Н	-1.581992	-1.615533	-3.272884
Н	-3.099688	-1.709389	-2.297362
С	-1.040218	2.384232	-2.473429
Н	-2.031793	2.834792	-2.465201
С	0.081558	3.302477	-2.281015
С	-0.143751	4.514707	-1.596509
С	1.386406	3.059506	-2.755852
С	0.890124	5.413649	-1.345720
Н	-1.151252	4.739024	-1.253783
С	2.419385	3.964270	-2.515096
Н	1.581931	2.169570	-3.342512

С	2.183751	5.138286	-1.795348
Н	0.685960	6.334031	-0.804801
Н	3.413899	3.753515	-2.899837
Н	2.992180	5.838466	-1.605686
0	-3.416299	0.894993	-2.465733
Pd	-0.682885	-1.169960	-0.930140
С	1.273352	-4.268922	-0.159245
С	2.179665	-3.266371	0.177221
С	3.839660	-4.199829	-1.285010
С	2.947798	-5.215843	-1.635623
С	1.669430	-5.246842	-1.073140
Н	0.279739	-4.255084	0.275297
Н	4.834196	-4.170642	-1.720734
Н	3.248211	-5.980638	-2.345895
Н	0.970891	-6.032005	-1.347213
С	0.078365	0.837258	2.246895
С	-0.499334	3.118463	1.730082
С	-0.673706	0.905600	3.421991
С	-1.237294	3.207209	2.911870
Н	-0.417700	3.968885	1.061348
С	-1.325591	2.092974	3.753632
Н	-0.721008	0.029385	4.059540
Н	-1.732963	4.136021	3.179147
Н	-1.892422	2.150056	4.679241
0	1.807922	-2.287990	1.112508
0	0.760215	-0.343171	2.030981
Р	1.042506	-0.958178	0.527231
С	0.133613	0.117707	-2.354841
Н	0.361035	-0.534584	-3.205267
Н	1.042946	0.601997	-2.011124
С	3.457260	-3.212354	-0.375250
Н	4.131028	-2.410778	-0.091341
С	0.159119	1.936161	1.385802
Н	0.729501	1.886490	0.467221
С	3.265508	0.610812	0.725886
С	3.620466	1.894971	0.313988
С	3.888685	-0.000588	1.814315
С	4.620449	2.579043	1.002519
Н	3.108498	2.341542	-0.531367
С	4.885843	0.700981	2.495310
Н	3.593369	-0.994617	2.125169
С	5.256477	1.985741	2.095398
Н	4.895373	3.580426	0.683556
Н	5.373652	0.233515	3.345881

6.033610	2.521165	2.632645
2.272831	-0.012599	-0.026894
-1.972616	-2.655277	0.769571
-3.025780	1.044678	0.598555
-2.745874	1.753105	1.375307
-2.315950	0.219228	0.557126
-3.093097	1.518236	-0.379137
-4.295170	-0.180090	2.291101
-5.280537	-0.571415	2.552047
-3.565308	-0.990104	2.215930
-3.968101	0.561754	3.021482
-5.372755	1.594189	0.967933
-5.412726	2.036161	-0.028642
-6.351275	1.196427	1.243367
-5.049910	2.338972	1.697758
-4.793620	-0.541414	-0.088072
-5.815607	-0.853266	0.138600
-4.710581	-0.080439	-1.074745
-4.104321	-1.384624	-0.011860
-4.379377	0.478571	0.945212
	6.033610 2.272831 -1.972616 -3.025780 -2.745874 -2.315950 -3.093097 -4.295170 -5.280537 -3.565308 -3.968101 -5.372755 -5.412726 -6.351275 -5.049910 -4.793620 -5.815607 -4.710581 -4.104321 -4.379377	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

INT1-B1-TMA2

Zero-point correction=				0.634772 (Hartree/Particle)
Thermal c	orrection to Energy	/	(0.676383
Thermal c	orrection to Enthal	py=	0	.677327
Thermal c	orrection to Gibbs]	Free Energy=	0.5	557055
E(solv) =	-4679.64810249	A.U.		
С	1.248874	-2.487796	1.109236	
С	0.375434	-3.453485	0.339419	
С	-1.068148	-3.101649	0.444490	
Н	-1.434144	-3.161394	1.477213	
Н	-1.695957	-3.672181	-0.242808	
С	2.590252	-2.618302	1.037634	
Н	2.954889	-3.437970	0.421024	
С	3.598130	-1.728010	1.618025	
С	4.806760	-1.507436	0.931024	
С	3.424918	-1.089652	2.861916	
С	5.784677	-0.659348	1.444805	
Н	4.955942	-1.991574	-0.028428	
С	4.407866	-0.249383	3.382069	
Н	2.520476	-1.278419	3.430432	
С	5.591134	-0.023236	2.673926	
Н	6.702398	-0.495513	0.885858	
Н	4.251976	0.227853	4.346062	

Н	6.356514	0.632256	3.080338
0	0.832093	-4.322696	-0.398262
Pd	-0.865046	-1.033152	0.024541
С	-3.341789	2.633293	-0.954183
С	-2.100295	2.651694	-0.315554
С	-3.118427	3.524021	1.688996
С	-4.363457	3.533131	1.054633
С	-4.468029	3.086849	-0.267894
Н	-3.397417	2.256378	-1.968672
Н	-3.024222	3.876190	2.712518
Н	-5.241048	3.901216	1.578965
Н	-5.430498	3.099808	-0.772815
С	1.808783	0.043419	-2.164855
С	4.124010	-0.501021	-2.477997
С	1.445717	-1.291850	-2.328952
С	3.783701	-1.849329	-2.613310
Н	5.162938	-0.189481	-2.538723
С	2.446758	-2.242842	-2.532226
Н	0.401646	-1.581360	-2.287188
Н	4.559009	-2.592227	-2.778942
Н	2.169736	-3.289107	-2.602163
0	-0.991612	2.287534	-1.051488
0	0.831095	1.029768	-1.946367
Р	-0.044851	1.008525	-0.565827
С	0.468937	-1.324039	1.610208
Н	-0.171570	-1.547070	2.473276
Н	1.069826	-0.441274	1.820415
С	-1.979828	3.085107	1.008176
Н	-1.003739	3.094465	1.480418
С	3.136789	0.456182	-2.242197
Н	3.380900	1.504143	-2.114613
С	2.074766	2.489076	0.252861
С	3.297186	2.080651	0.779937
С	1.961113	3.639743	-0.525321
С	4.434502	2.842366	0.517693
Н	3.349859	1.170236	1.363504
С	3.110880	4.388051	-0.786416
Н	0.998500	3.925753	-0.932800
С	4.346998	3.993985	-0.268702
Н	5.388398	2.517772	0.921672
Н	3.036384	5.281026	-1.400503
Н	5.236417	4.580889	-0.478909
0	0.968473	1.689704	0.545463
Br	-2.632129	-0.949310	-1.894149

С	-4.388446	-2.285518	1.004453
Н	-3.730552	-2.228764	0.134566
Н	-3.845338	-2.677658	1.864428
Н	-5.266813	-2.898197	0.792659
С	-3.669933	-0.030096	1.684812
Н	-4.017396	0.985675	1.871341
Н	-3.192496	-0.451624	2.570110
Н	-2.966619	-0.048964	0.849569
С	-5.539743	-0.306960	0.120961
Н	-6.407223	-0.926637	-0.113629
Н	-5.842591	0.713080	0.357092
Н	-4.819249	-0.315293	-0.702244
С	-5.806507	-0.925412	2.482243
Н	-6.123160	0.094058	2.708722
Н	-6.670300	-1.535549	2.212733
Н	-5.297985	-1.358880	3.344958
Ν	-4.855716	-0.889488	1.329149

INT1-B2-TMA1

Zero-point	correction=		0.635379 (Hartre	e/Particle)
Thermal correction to Energy=			0.676999	
Thermal co	orrection to Enthalp	oy=	0.677944	
Thermal co	orrection to Gibbs I	Free Energy=	0.555712	
E(solv) =	-4679.65199497	A.U.		
С	2.572071	1.747166	1.429629	
С	1.702037	1.375376	2.616821	
С	0.280838	1.757784	2.427106	
Н	0.118752	2.840675	2.391440	
Н	-0.377553	1.297142	3.165370	
С	3.803153	1.176405	1.389041	
Н	4.053867	0.583261	2.268116	
С	4.746545	1.077933	0.280524	
С	5.627822	-0.027947	0.259097	
С	4.815911	1.975664	-0.805566	
С	6.489918	-0.258011	-0.811624	
Н	5.622268	-0.712625	1.104731	
С	5.679280	1.746598	-1.874909	
Н	4.200659	2.866434	-0.800341	
С	6.511523	0.623399	-1.896226	
Н	7.153840	-1.119015	-0.794673	
Н	5.706853	2.456445	-2.697289	
Н	7.181278	0.450491	-2.733654	
0	2.106189	0.665778	3.538035	
Pd	0.016160	1.278568	0.391304	

С	-0.768779	-3.315264	1.345362
С	-0.712449	-2.120454	2.068535
С	1.367438	-2.794963	3.073069
С	1.323270	-3.999419	2.365321
С	0.253341	-4.255570	1.501407
Н	-1.611290	-3.506102	0.690218
Н	2.198010	-2.570709	3.734985
Н	2.111395	-4.736623	2.490917
Н	0.201102	-5.195839	0.958581
С	-3.211858	-1.718428	-0.971300
С	-4.635218	-2.345267	-2.806187
С	-4.073678	-2.332380	-0.061290
С	-5.509499	-2.967998	-1.911608
Н	-4.852890	-2.343019	-3.870409
С	-5.226377	-2.954729	-0.545066
Н	-3.853756	-2.309271	0.999039
Н	-6.408545	-3.454992	-2.277170
Н	-5.905907	-3.429846	0.156623
0	-1.754875	-1.204293	1.963563
0	-2.023804	-1.109824	-0.589954
Р	-1.762692	-0.123095	0.701740
С	1.792772	2.411208	0.363177
Н	1.455082	3.422904	0.613533
Н	2.233881	2.401291	-0.630069
С	0.350192	-1.849439	2.929590
Н	0.404614	-0.909040	3.463896
С	-3.483379	-1.714176	-2.339190
Н	-2.792155	-1.205575	-3.003791
С	-3.667024	1.697311	0.623148
С	-4.388228	2.480175	1.521667
С	-3.393208	2.137190	-0.671386
С	-4.841414	3.734782	1.114771
Н	-4.579647	2.099492	2.519397
С	-3.840430	3.402010	-1.058225
Н	-2.821882	1.524974	-1.360925
С	-4.565375	4.200940	-0.173295
Н	-5.404583	4.350621	1.809999
Н	-3.614689	3.755959	-2.059593
Н	-4.912975	5.181801	-0.483562
0	-3.256153	0.441802	1.074229
Br	-0.046679	1.160733	-2.182553
Ν	2.355760	-1.934735	-1.448763
С	2.206464	-1.379590	-0.059137
Н	1.546363	-0.510245	-0.098654

Н	1.778699	-2.151408	0.574882
Н	3.187508	-1.080378	0.299026
С	3.256958	-3.126142	-1.392737
Н	4.233456	-2.799870	-1.030614
Н	2.824527	-3.856986	-0.707180
Н	3.349586	-3.551436	-2.393765
С	2.957007	-0.884819	-2.346717
Н	2.266205	-0.039326	-2.383081
Н	3.921367	-0.586819	-1.936566
Н	3.079669	-1.318944	-3.341276
С	0.998563	-2.330527	-1.963782
Н	0.384413	-1.428925	-2.030970
Н	1.122890	-2.785507	-2.948599
Н	0.560124	-3.039799	-1.261043

INT1-D1-TMA1

Zero-point	correction=		0.634
Thermal correction to Energy=			0.676
Thermal correction to Enthalpy=			0.677
Thermal co	orrection to Gibbs	Free Energy=	0.55572
E(solv) =	-4679.63785337	A.U.	
С	-0.747061	-2.973845	0.510526
С	0.539329	-3.557501	1.061981
С	0.726734	-4.894929	0.843221
Н	-0.023430	-5.499464	0.346023
Н	1.585368	-5.404121	1.272237
С	-1.369618	-1.894212	1.218979
Н	-0.841713	-1.589044	2.118564
С	-2.806376	-1.533226	1.187761
С	-3.198281	-0.266367	1.657518
С	-3.804156	-2.421794	0.756212
С	-4.536727	0.108734	1.665202
Н	-2.437753	0.429717	1.997616
С	-5.146073	-2.041721	0.759667
Н	-3.529811	-3.423923	0.445146
С	-5.517872	-0.774196	1.207300
Н	-4.813368	1.097763	2.015190
Н	-5.902883	-2.745696	0.424221
Н	-6.563237	-0.478670	1.208847
0	1.338786	-2.735113	1.665681
Pd	-0.453370	-1.078705	-0.571825
С	-1.108232	-3.166951	-0.839020
Н	-0.495494	-3.810944	-1.459538
Н	-2.106298	-2.953910	-1.210253

0.634614 (Hartree/Particle)	
0.676378	
0.677322	
555723	

Р	0.008690	1.055671	0.071704
0	1.540804	1.495112	-0.259749
0	-0.822441	2.239859	-0.685554
0	-0.213722	1.598857	1.620761
С	0.689306	1.366858	2.659286
С	0.951905	2.453583	3.494286
С	1.284157	0.124513	2.875748
С	1.828337	2.294271	4.568105
Н	0.466469	3.402673	3.291353
С	2.163094	-0.014397	3.952757
Н	1.084925	-0.744727	2.252905
С	2.440876	1.059988	4.798870
Н	2.031245	3.137650	5.222165
Н	2.615806	-0.986857	4.123273
Н	3.122349	0.937718	5.635701
С	1.954185	2.778574	-0.632361
С	2.450819	3.644976	0.335657
С	1.912040	3.118737	-1.981818
С	2.918149	4.898010	-0.067218
Н	2.466715	3.336425	1.375497
С	2.380861	4.374246	-2.367457
Н	1.514182	2.401646	-2.693025
С	2.883079	5.264514	-1.414000
Н	3.308988	5.587145	0.675994
Н	2.351627	4.657204	-3.415696
Н	3.245600	6.241286	-1.720650
С	-2.210112	2.142050	-0.848503
С	-2.750472	1.234083	-1.757172
С	-3.011843	3.007472	-0.109894
С	-4.137415	1.184846	-1.905919
Н	-2.092795	0.589437	-2.330454
С	-4.395134	2.961038	-0.286933
Н	-2.545506	3.699313	0.583132
С	-4.959955	2.045166	-1.176912
Н	-4.571543	0.471262	-2.599713
Н	-5.030681	3.635730	0.279658
Н	-6.037814	2.001593	-1.301037
Br	0.436943	-0.682947	-2.923120
Ν	3.762144	-2.331526	-0.670695
С	2.816076	-3.196064	-1.466652
Н	3.396700	-4.008591	-1.909319
Н	2.062039	-3.607402	-0.792363
Н	2.343245	-2.581077	-2.234661
С	3.060444	-1.061627	-0.259821

Н	2.226637	-1.362978	0.378877
Н	3.767588	-0.442973	0.295738
Н	2.707523	-0.550224	-1.152732
С	4.945976	-1.992059	-1.514867
Н	5.470947	-2.911394	-1.781328
Н	4.595641	-1.484246	-2.415116
Н	5.607668	-1.333884	-0.949276
С	4.179952	-3.071385	0.570870
Н	4.602148	-4.034179	0.275534
Н	4.933152	-2.472444	1.087709
Н	3.279048	-3.188648	1.190716

INT1-D1-TMA2

Zero-point correction=			0.633619 (Hartree/Particle)
Thermal correction to Energy=		/=	0.675680
Thermal correction to Enthalpy=		py=	0.676625
Thermal c	orrection to Gibbs]	Free Energy=	0.554598
E(solv) =	-4679.61618325	A.U.	
С	3.148423	1.926000	-0.410151
С	2.900179	3.343509	-0.907716
С	3.798899	3.794905	-1.845339
Η	4.614984	3.178728	-2.204513
Η	3.741462	4.818780	-2.200034
С	2.437221	1.574554	0.783223
Η	1.830007	2.403620	1.143216
С	2.763463	0.534233	1.775912
С	1.789870	0.200857	2.740990
С	4.012889	-0.107295	1.857337
С	2.039567	-0.758147	3.718283
Η	0.832542	0.713250	2.706603
С	4.262030	-1.071402	2.835795
Η	4.803401	0.180983	1.173839
С	3.276620	-1.410739	3.766421
Н	1.272959	-0.990416	4.453439
Н	5.241834	-1.539655	2.887028
Н	3.478769	-2.149540	4.536944
0	1.931305	3.967562	-0.354122
Pd	1.482785	0.569438	-0.913396
С	3.616704	0.865684	-1.227067
Н	3.908657	1.076796	-2.249565
Н	4.015975	-0.052667	-0.803333
Р	-0.679398	0.496824	-0.210814
0	-1.748004	0.974488	-1.348859
0	-1.098845	-1.057881	0.158191

0	-1.226112	1.198275	1.167738
С	-1.625498	2.544264	1.247597
С	-2.819144	2.780955	1.926959
С	-0.857789	3.571691	0.708604
С	-3.262836	4.096474	2.070586
Н	-3.372973	1.941197	2.335470
С	-1.323587	4.880682	0.860306
Н	0.098942	3.413614	0.202143
С	-2.517132	5.148586	1.533080
Н	-4.190049	4.294831	2.601029
Н	-0.724449	5.685759	0.446547
Н	-2.864327	6.171895	1.643303
С	-2.964438	0.348768	-1.607861
С	-4.107958	0.733810	-0.914357
С	-2.992256	-0.643595	-2.586389
С	-5.313478	0.091433	-1.203025
Н	-4.042541	1.519028	-0.168882
С	-4.205645	-1.273507	-2.866323
Н	-2.067757	-0.902376	-3.093930
С	-5.365157	-0.912716	-2.172359
Н	-6.213426	0.378652	-0.667159
Н	-4.244898	-2.046076	-3.629133
Н	-6.306873	-1.406564	-2.393483
С	-2.021507	-1.526819	1.087080
С	-1.739562	-1.443800	2.451754
С	-3.163944	-2.177899	0.624407
С	-2.628149	-2.012024	3.365129
Н	-0.845346	-0.928936	2.780788
С	-4.041593	-2.745440	1.549447
Н	-3.361417	-2.218615	-0.439873
С	-3.780088	-2.663630	2.918606
Н	-2.418612	-1.940427	4.428590
Н	-4.937630	-3.244830	1.192612
Н	-4.470333	-3.101367	3.633456
Br	1.042250	-0.975235	-2.890060
Ν	1.463552	-3.763018	-0.033255
С	2.582017	-3.709827	-1.039481
Н	2.412905	-2.844441	-1.687346
Н	3.525828	-3.618255	-0.499504
Н	2.566113	-4.631544	-1.624103
С	1.600622	-4.981089	0.823507
Н	2.560022	-4.941190	1.341787
Н	0.785737	-4.991024	1.549124
Н	1.550966	-5.869432	0.191573

С	0.142901	-3.797898	-0.759571
Н	0.083273	-2.914283	-1.398737
Н	0.110767	-4.710569	-1.357924
Н	-0.659128	-3.792523	-0.021267
С	1.531776	-2.536901	0.838304
Н	1.467489	-1.656403	0.198026
Н	0.692421	-2.557696	1.530475
Н	2.476674	-2.542052	1.380397

INT1-C1-TMA1

Zero-point	correction=		0.634518 (Hartree/Particle)
Thermal correction to Energy=			0.676460
Thermal correction to Enthalpy=		py=	0.677404
Thermal co	orrection to Gibbs	Free Energy=	0.554417
E(solv) =	-4679.63518712	A.U.	
С	-1.249301	-2.497279	1.467091
С	-0.035722	-2.874986	2.299511
С	0.042420	-2.347199	3.562317
Н	-0.756348	-1.756511	3.994736
Н	0.863392	-2.635661	4.211809
С	-1.895469	-1.225122	1.624649
Н	-1.454329	-0.557803	2.357955
С	-3.296859	-0.903580	1.260743
С	-3.651406	0.436950	1.022957
С	-4.299034	-1.883730	1.178108
С	-4.953369	0.780461	0.674986
Н	-2.889468	1.206478	1.092689
С	-5.604870	-1.538170	0.831940
Н	-4.054676	-2.915726	1.406567
С	-5.935726	-0.207806	0.570284
Н	-5.195626	1.818917	0.474042
Н	-6.366980	-2.310657	0.776019
Н	-6.952928	0.058812	0.297317
0	0.813354	-3.671643	1.737744
Pd	-0.770425	-1.163809	-0.219995
С	-1.508713	-3.190471	0.263172
Н	-0.866874	-4.028698	0.020978
Н	-2.468595	-3.138361	-0.237785
Р	0.079456	0.917146	0.060015
0	1.710019	0.949040	0.052420
0	-0.218594	2.191915	-0.944397
0	-0.233195	1.528445	1.559572
С	0.668934	2.334371	2.253978
С	0.843861	3.671360	1.906455

С	1.375821	1.750609	3.303500
С	1.752440	4.442718	2.634157
Н	0.294866	4.086372	1.069203
С	2.278973	2.533229	4.022831
Н	1.210040	0.700542	3.529870
С	2.470846	3.877664	3.689777
Н	1.899990	5.485731	2.369632
Н	2.835560	2.090201	4.843635
Н	3.175784	4.482250	4.252733
С	2.568021	1.661330	-0.784810
С	3.458900	2.547850	-0.185785
С	2.577585	1.416382	-2.156049
С	4.383697	3.214539	-0.991083
Н	3.414022	2.707086	0.885686
С	3.504768	2.096960	-2.946233
Н	1.877403	0.701902	-2.579341
С	4.407274	2.994305	-2.370053
Н	5.083331	3.910440	-0.536811
Н	3.519636	1.920572	-4.018013
Н	5.125521	3.519577	-2.992772
С	-1.533762	2.365740	-1.397000
С	-2.056110	1.511104	-2.366082
С	-2.283856	3.409355	-0.859760
С	-3.368521	1.711736	-2.796743
Н	-1.448029	0.701307	-2.756058
С	-3.589853	3.606405	-1.311659
Н	-1.845113	4.050331	-0.102448
С	-4.135368	2.755650	-2.275683
Н	-3.789007	1.043991	-3.542589
Н	-4.180268	4.422084	-0.904108
Н	-5.154919	2.905435	-2.618168
Br	0.211368	-1.545668	-2.540964
Ν	3.334981	-3.195677	-0.124737
С	4.511034	-3.038975	-1.028640
Н	5.257837	-2.412772	-0.536735
Н	4.930229	-4.023970	-1.242790
Н	4.177510	-2.563641	-1.952597
С	2.284010	-4.050633	-0.792502
Н	2.738578	-5.014681	-1.032224
Н	1.467817	-4.145366	-0.070150
Н	1.939742	-3.535121	-1.689965
С	2.745680	-1.840366	0.172710
Н	3.515124	-1.222353	0.638195
Н	2.405683	-1.401812	-0.762485

Н	1.904238	-2.011902	0.843643
С	3.733810	-3.840869	1.174092
Н	4.492281	-3.214692	1.649258
Н	2.820844	-3.906299	1.780726
Н	4.145274	-4.829099	0.957015

TS1

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= Thermal correction to Gibbs Free Energy= E(solv) = -5446.10480663 A.U. Imaginary frequency = 459.66 0.851000 (Hartree/Particle) 0.907215 0.908159 0.753597

-1.053649	1.070729	-1.576598
-2.143976	0.093354	-1.195901
-3.410727	0.180808	-1.847199
-3.477278	0.815766	-2.726147
-3.966873	-0.747240	-1.913842
-0.213846	1.601423	-0.544951
-0.470827	1.294050	0.463622
0.512438	2.886229	-0.631848
1.610941	3.117649	0.211563
0.065735	3.922127	-1.467052
2.265894	4.343942	0.198713
1.948052	2.329640	0.875878
0.725245	5.150981	-1.475780
-0.842946	3.788418	-2.041023
1.829695	5.364728	-0.649834
3.119530	4.501693	0.849897
0.358497	5.949737	-2.114345
2.338689	6.324643	-0.655751
-1.936734	-0.670899	-0.226944
0.862344	0.031319	-1.606095
-0.596383	1.102126	-2.902710
-1.111075	0.527243	-3.664825
0.072585	1.880568	-3.255513
2.283315	-0.678793	0.029707
2.223101	-2.283676	0.301703
3.873389	-0.456948	-0.290384
2.284536	-0.026000	1.543189
1.392026	-0.374932	2.561270
1.927725	-0.420702	3.846822
0.051289	-0.665588	2.321099
	-1.053649 -2.143976 -3.410727 -3.477278 -3.966873 -0.213846 -0.470827 0.512438 1.610941 0.065735 2.265894 1.948052 0.725245 -0.842946 1.829695 3.119530 0.358497 2.338689 -1.936734 0.862344 -0.596383 -1.111075 0.072585 2.283315 2.223101 3.873389 2.284536 1.392026 1.927725 0.051289	-1.053649 1.070729 -2.143976 0.093354 -3.410727 0.180808 -3.477278 0.815766 -3.966873 -0.747240 -0.213846 1.601423 -0.470827 1.294050 0.512438 2.886229 1.610941 3.117649 0.065735 3.922127 2.265894 4.343942 1.948052 2.329640 0.725245 5.150981 -0.842946 3.788418 1.829695 5.364728 3.119530 4.501693 0.358497 5.949737 2.338689 6.324643 -1.936734 -0.670899 0.862344 0.031319 -0.596383 1.102126 -1.111075 0.527243 0.072585 1.880568 2.283315 -0.678793 2.223101 -2.283676 3.873389 -0.456948 2.284536 -0.026000 1.392026 -0.374932 1.927725 -0.420702 0.051289 -0.665588

С	1.104120	-0.781494	4.911690
Н	2.979530	-0.197159	3.988586
С	-0.764590	-1.025143	3.397650
Н	-0.380309	-0.602142	1.329241
С	-0.240230	-1.092149	4.689370
Н	1.517666	-0.823136	5.915400
Н	-1.823615	-1.179853	3.217426
Н	-0.882122	-1.363050	5.522544
С	2.992090	-2.972971	1.250405
С	2.352211	-3.451767	2.390994
С	4.340544	-3.219789	1.005978
С	3.089343	-4.193371	3.314529
Н	1.306956	-3.218078	2.559445
С	5.064933	-3.961278	1.940621
Н	4.800047	-2.832728	0.104636
С	4.444324	-4.448179	3.093184
Н	2.601809	-4.562045	4.212104
Н	6.118086	-4.158441	1.763343
Н	5.015025	-5.022994	3.816452
С	4.291574	0.805772	-0.741027
С	4.061244	1.182777	-2.062498
С	4.948773	1.639292	0.159077
С	4.488359	2.445089	-2.479535
Н	3.559822	0.497888	-2.738249
С	5.386764	2.889383	-0.279201
Н	5.101001	1.303509	1.179000
С	5.148793	3.297545	-1.593473
Н	4.304312	2.756975	-3.503232
Н	5.904056	3.548471	0.412074
Н	5.476998	4.277736	-1.925544
Br	1.645722	-1.669730	-3.311388
Ν	-1.571160	-3.843618	-1.299532
С	-1.714907	-3.086581	-2.593698
Н	-2.518935	-3.545625	-3.172128
Н	-1.960752	-2.055061	-2.357659
Н	-0.764119	-3.112792	-3.128599
С	-0.360189	-3.331377	-0.558112
Н	-0.539574	-2.285119	-0.321840
Н	-0.241223	-3.918275	0.353772
Н	0.512331	-3.421197	-1.202591
С	-1.387287	-5.296963	-1.599030
Н	-2.269650	-5.667330	-2.123820
Н	-0.500467	-5.414011	-2.223824
Н	-1.256497	-5.836830	-0.659945

С	-2.801711	-3.631989	-0.455213
Н	-3.675992	-3.959029	-1.020939
Н	-2.698964	-4.224316	0.455875
Н	-2.864789	-2.567443	-0.214866
С	-2.241929	3.153148	1.559018
С	-2.447246	2.139210	2.501132
С	-1.785355	2.152528	3.717866
С	-0.888332	3.203182	3.970137
С	-0.678211	4.210296	3.023300
С	-1.362617	4.197329	1.797870
С	-3.050975	2.815857	0.341643
С	-3.387881	1.099189	1.928249
Н	-1.944879	1.359734	4.440148
Н	-0.343921	3.229626	4.910483
Н	0.030135	5.006928	3.234170
Н	-1.194875	4.961986	1.046339
С	-3.778128	1.587823	0.621033
0	-3.029126	3.441100	-0.728596
0	-3.670896	0.061293	2.548931
С	-4.554654	1.057388	-0.464024
Н	-4.831764	1.864114	-1.141662
С	-5.631272	0.036798	-0.335455
С	-5.564024	-1.046764	0.556611
С	-6.729484	0.118452	-1.207868
С	-6.569215	-2.013951	0.563631
Н	-4.745705	-1.085540	1.267221
С	-7.734574	-0.847106	-1.195296
Н	-6.789813	0.950852	-1.905089
С	-7.655179	-1.924311	-0.310630
Н	-6.510959	-2.837978	1.271176
Н	-8.578805	-0.757489	-1.873899
Н	-8.437201	-2.679035	-0.295767

INT2

Zero-point correction=			0.853081 (Hartree/Particle)	
Thermal correction to Energy=			0.909566	
Thermal correction to Enthalpy=			0.910510	
Thermal correction to Gibbs Free Energy=		0.755490		
E(solv) =	-5446.13014894	A.U.		
С	-1.425480	-0.022789	-0.906909	
С	-2.011923	-1.111389	-0.033148	
С	-3.362007	-1.714010	-0.380581	
Н	-3.286919	-2.399868	-1.239232	
Н	-3.652590	-2.300475	0.493699	

С	-0.627115	1.001008	-0.299044
Н	-0.582163	0.950081	0.783358
С	-0.306527	2.335641	-0.849494
С	0.660509	3.100444	-0.172128
С	-0.945794	2.898112	-1.966165
С	1.001262	4.373091	-0.611857
Н	1.137457	2.691421	0.710593
С	-0.601878	4.176099	-2.402768
Н	-1.780311	2.387475	-2.427028
С	0.376747	4.915164	-1.737317
Н	1.756865	4.940685	-0.077956
Н	-1.124720	4.603342	-3.253715
Н	0.639551	5.911522	-2.081631
0	-1.348356	-1.578274	0.896922
Pd	0.717139	-0.400796	-1.284798
С	-1.284750	-0.284532	-2.280132
Н	-1.709696	-1.188503	-2.703772
Н	-1.041068	0.492692	-2.993640
Р	2.603630	-0.197404	-0.008689
0	3.129855	-1.646229	0.535860
0	3.941375	0.340432	-0.774920
0	2.759639	0.760801	1.323469
С	1.878934	0.849277	2.394910
С	2.129173	1.881429	3.298323
С	0.797896	-0.013888	2.570687
С	1.274946	2.052320	4.387023
Н	2.979887	2.533750	3.131863
С	-0.073978	0.192736	3.642180
Н	0.577523	-0.793658	1.854973
С	0.170123	1.215507	4.558785
Н	1.466419	2.855776	5.092278
Н	-0.967136	-0.420436	3.716862
Н	-0.508286	1.373776	5.390947
С	4.257846	-1.798806	1.352431
С	4.083142	-1.851737	2.732464
С	5.509521	-1.948300	0.762150
С	5.198961	-2.065470	3.543286
Н	3.093318	-1.709440	3.153583
С	6.615970	-2.161972	1.585172
Н	5.599334	-1.889864	-0.316558
С	6.463916	-2.221730	2.972688
Н	5.077050	-2.103395	4.621785
Н	7.599082	-2.279132	1.138880
Н	7.329542	-2.386246	3.607330

С	3.851642	1.567227	-1.456725
С	3.209826	1.628000	-2.691813
С	4.430568	2.688241	-0.870539
С	3.137978	2.859087	-3.345645
Н	2.781108	0.727977	-3.119900
С	4.368069	3.907320	-1.546712
Н	4.914602	2.591585	0.095068
С	3.716455	3.995704	-2.778424
Н	2.625629	2.925364	-4.300414
Н	4.819734	4.790024	-1.103172
Н	3.655084	4.949731	-3.293079
Br	1.776808	-2.064461	-2.886802
Ν	0.042877	-4.652569	0.015083
С	-0.659509	-4.218174	-1.243687
Н	-1.347697	-5.009681	-1.546029
Н	-1.203841	-3.306489	-1.019461
Н	0.086023	-4.006212	-2.012285
С	1.083162	-3.623068	0.382625
Н	0.566752	-2.683111	0.563792
Н	1.600959	-3.960935	1.281444
Н	1.771208	-3.503723	-0.451934
С	0.714131	-5.967970	-0.225064
Н	-0.041495	-6.712527	-0.481491
Н	1.421391	-5.849550	-1.047185
Н	1.241578	-6.265649	0.682460
С	-0.957915	-4.766482	1.131868
Н	-1.726667	-5.484994	0.841367
Н	-0.438644	-5.112698	2.027304
Н	-1.390389	-3.777168	1.299714
С	-3.218081	2.753058	0.788725
С	-3.157897	1.979488	1.955683
С	-2.656984	2.503970	3.133821
С	-2.188427	3.828713	3.123234
С	-2.238965	4.595304	1.956077
С	-2.766374	4.061284	0.768556
С	-3.761975	1.885134	-0.318822
С	-3.644798	0.578650	1.646194
Н	-2.622653	1.895886	4.031597
Н	-1.775631	4.261100	4.031204
Н	-1.862639	5.614865	1.966997
Н	-2.796437	4.639646	-0.149443
С	-3.961495	0.573938	0.246149
0	-3.920995	2.244004	-1.495118
0	-3.672787	-0.342783	2.485204

С	-4.380074	-0.580415	-0.624159
Н	-4.269589	-0.219685	-1.654028
С	-5.807573	-1.068770	-0.454026
С	-6.292231	-1.424354	0.813878
С	-6.655113	-1.191205	-1.559346
С	-7.595913	-1.895066	0.962404
Н	-5.639061	-1.314058	1.675686
С	-7.962027	-1.661049	-1.411088
Н	-6.290466	-0.903816	-2.542997
С	-8.435740	-2.016992	-0.148361
Н	-7.961848	-2.161133	1.951010
Н	-8.609427	-1.742951	-2.280543
Н	-9.453257	-2.379788	-0.028298

INT3

Zero-point	correction=		0.855376 (Hartree/Particle)
Thermal of	correction to Energy=		0.911146
Thermal of	correction to Enthalpy=		0.912091
Thermal of	correction to Gibbs Free Ene	ergy=	0.759467
E(solv) =	-5446.14538204 A.U.		
С	1.06906500	-0.95874600	-1.03220700
С	1.71246000	0.36949800	-1.34312500
С	1.39145700	1.58121300	-0.50986800
С	0.25392200	-1.10490300	0.13048200
Н	0.11005600	-0.23592700	0.75721600
С	-0.02144400	-2.37085300	0.83272000
С	-1.14891600	-2.45065200	1.66764700
С	0.86477000	-3.45802100	0.78356600
С	-1.39892800	-3.60174800	2.40656900
Н	-1.82476300	-1.60530900	1.72604700
С	0.62048700	-4.60353300	1.53673700
Н	1.77509400	-3.37915300	0.19895600
С	-0.51604300	-4.68305400	2.34336700
Н	-2.28420700	-3.65238600	3.03214500
Н	1.32923400	-5.42604100	1.50969200
Н	-0.70535600	-5.57708700	2.93088500
0	2.50945200	0.43755800	-2.27710300
Pd	-0.97811700	-0.93218600	-1.66519200
С	0.94996500	-1.90796500	-2.07645400
Н	1.38948900	-1.67929800	-3.04019300
Н	0.71127400	-2.94604900	-1.87681800
Р	-2.63137300	0.37137500	-0.77255800
0	-2.97467200	1.78678100	-1.51008600

0	-4.18032100	-0.15496200	-0.71128900
0	-2.27456100	0.77732500	0.77159100
С	-2.95892600	1.61468900	1.65755000
С	-4.15608700	2.25954100	1.34020100
С	-2.35084000	1.77145600	2.90289200
С	-4.74228000	3.08806700	2.30128900
Н	-4.61994900	2.12923200	0.37185700
С	-2.95211100	2.60551800	3.84459800
Н	-1.42005300	1.25253900	3.10221600
С	-4.14667700	3.26774200	3.54963100
Н	-5.67207200	3.59571900	2.06121300
Н	-2.47928500	2.73467200	4.81400100
Н	-4.60986400	3.91698900	4.28670000
С	-1.89920300	2.63516000	-1.83019000
С	-1.24644200	2.46903700	-3.04981700
С	-1.52867200	3.62505900	-0.92258500
С	-0.20502300	3.34247900	-3.37078600
Н	-1.55040800	1.66603900	-3.71333600
С	-0.48135500	4.48650600	-1.25452600
Н	-2.04583400	3.70950000	0.02640500
С	0.17504000	4.35016700	-2.47993100
Н	0.31382800	3.22472900	-4.31757400
Н	-0.16372600	5.24030600	-0.54153600
Н	0.99343200	5.01859800	-2.73093800
С	-4.36712300	-1.42045300	-0.12928000
С	-4.12162700	-2.56712800	-0.88186100
С	-4.78975200	-1.48344500	1.19637900
С	-4.30454100	-3.81210900	-0.27732000
Н	-3.78650100	-2.47196800	-1.90971900
С	-4.97859500	-2.73664500	1.78191400
Н	-4.96285100	-0.56479100	1.74667900
С	-4.73120800	-3.90003400	1.04933600
Н	-4.10934900	-4.71418200	-0.84946400
Н	-5.31374100	-2.80000300	2.81325500
Н	-4.87080600	-4.87276000	1.51166800
Br	-2.06693400	-1.28222700	-3.88309400
С	3.55652600	-1.23797200	2.51140000
С	2.29591900	-1.06800300	3.09153600
С	1.76859300	-2.00185000	3.96052500
С	2.54385900	-3.14054900	4.25111000
С	3.80389900	-3.31104700	3.67826800
С	4.32844000	-2.34988700	2.79146100
С	3.78120600	-0.09049800	1.56135300
С	1.68261100	0.18685900	2.51639600
Η	0.77556500	-1.86818900	4.37773800
---	-------------	-------------	-------------
Н	2.15243500	-3.90021800	4.92216000
Н	4.38531100	-4.19829900	3.91585100
Н	5.30762000	-2.47748600	2.33690200
С	2.62782900	0.73511500	1.58285400
0	4.82339800	0.00891200	0.85363900
0	0.52457400	0.54811400	2.79777100
С	2.44972900	1.87441900	0.61099200
Н	3.41371200	1.97713400	0.09952500
С	2.09285500	3.24609000	1.17148700
С	0.93436400	3.44790800	1.93508000
С	2.85740500	4.36174700	0.81262500
С	0.55541600	4.73089300	2.32670600
Н	0.34284900	2.58757700	2.22288100
С	2.48124000	5.64891400	1.20302500
Н	3.75337200	4.22202600	0.21134600
С	1.32406000	5.83909000	1.96013500
Н	-0.34941200	4.86122100	2.91529000
Н	3.09091800	6.50133800	0.91410900
Н	1.02700800	6.83936700	2.26415800
Н	0.40351700	1.51479300	-0.05602700
Н	1.37976200	2.43004800	-1.19496800

INT3-iso

Zero-point	correction=		0.854254 (Hartree/Particle)
Thermal of	correction to Energy=		0.910258
Thermal of	correction to Enthalpy=		0.911202
Thermal of	correction to Gibbs Free Ener	gy=	0.756633
E(solv) =	-5446.13992387 A.U.		
С	-0.91539900	0.44279400	-0.11169500
С	-1.37006100	0.46238800	-1.55782200
С	-2.38728300	1.48127000	-1.99877000
Н	-2.16611400	2.46296500	-1.57347300
Н	-2.31552100	1.56721200	-3.08612000
С	-0.01480300	-0.60782800	0.24742100
Н	0.28284500	-1.23656400	-0.58552200
С	0.15089400	-1.21902200	1.58151700
С	1.27120800	-2.03696200	1.81845900
С	-0.80072800	-1.07186500	2.60391800
С	1.44022700	-2.67835100	3.04175800
Н	2.02617400	-2.13288200	1.04587200
С	-0.62966300	-1.71684900	3.82767800
Н	-1.69685500	-0.49367400	2.42761500
С	0.48960400	-2.52048500	4.05430400

Н	2.32565500	-3.28270300	3.21036700
Н	-1.38037600	-1.58807700	4.60268000
Н	0.62302100	-3.01694100	5.01139500
0	-0.95242800	-0.39745600	-2.32965100
Pd	1.06411900	1.26250700	0.22581900
С	-1.05847400	1.55638600	0.74264900
Н	-1.53825000	2.46153600	0.39703700
Н	-0.98347200	1.45930500	1.81890700
Р	3.06438000	0.51642200	-0.55036800
0	2.98261300	-1.06320300	-1.04437700
0	3.65164700	1.31839100	-1.84846600
0	4.44579200	0.54979200	0.32287500
С	4.38592800	0.01599200	1.62197500
С	3.71780900	0.71271200	2.62768900
С	5.02199600	-1.19928600	1.86329000
С	3.68017500	0.16001100	3.90868400
Н	3.24349400	1.66267000	2.40140900
С	4.98641700	-1.73020400	3.15420900
Н	5.53444200	-1.70551100	1.05307100
С	4.31120400	-1.05682200	4.17480500
Н	3.15509900	0.68825900	4.69870600
Н	5.48700300	-2.67265800	3.35813100
Н	4.27946900	-1.47775200	5.17547500
С	4.05129300	-1.89119500	-1.37395400
С	3.90417800	-3.23872400	-1.04346300
С	5.20660600	-1.42664900	-2.00367200
С	4.93099400	-4.13416900	-1.33840900
Н	2.99259400	-3.56374600	-0.55282000
С	6.22891400	-2.33433200	-2.28637800
Н	5.30524000	-0.37956600	-2.26009900
С	6.09973500	-3.68452900	-1.95666000
Н	4.81829700	-5.18292000	-1.07868200
Н	7.13284400	-1.97653600	-2.77046000
Н	6.90187000	-4.38081300	-2.18135600
С	2.71360200	1.94787500	-2.68620800
С	1.70937800	1.20252900	-3.29930400
С	2.81180800	3.32472400	-2.85204800
С	0.77144500	1.86352800	-4.09544800
Н	1.64509500	0.13188200	-3.14183000
С	1.87828500	3.96940000	-3.66273800
Н	3.58299100	3.87005000	-2.32123200
С	0.85552500	3.24373500	-4.28051200
Н	-0.02606400	1.28923000	-4.55575200
Н	1.93767100	5.04579000	-3.79165800

Н	0.12366900	3.75575700	-4.89819000
Br	1.87736400	3.56033800	0.73863100
Ν	-2.81153100	-3.98796500	-0.38045500
С	-2.39963900	-3.80300100	1.05799800
Н	-2.71612000	-2.80244500	1.35851300
Н	-2.88902500	-4.57487700	1.65564800
Н	-1.31483000	-3.89807100	1.12793000
С	-2.45960000	-5.36188000	-0.84472100
Н	-2.98715500	-6.09350100	-0.22991500
Н	-2.75685200	-5.46780700	-1.88928600
Н	-1.38144200	-5.50158400	-0.74851600
С	-2.10441100	-2.96015800	-1.22793700
Н	-2.40487400	-1.98650000	-0.84593700
Н	-1.02988900	-3.11405200	-1.13428800
Н	-2.42693900	-3.07771500	-2.26159100
С	-4.29682800	-3.76131900	-0.50331500
Н	-4.49685700	-2.74604600	-0.15625600
Н	-4.57793800	-3.85884500	-1.55211700
Н	-4.80967000	-4.50647000	0.10834600
С	-4.41284300	2.05555500	2.08168000
С	-4.15052500	0.68316500	2.20113300
С	-4.12986900	0.06564300	3.43936600
С	-4.36925700	0.85714400	4.57953700
С	-4.62088200	2.22348300	4.45875300
С	-4.64655600	2.84149500	3.19286200
С	-4.35759000	2.40481100	0.60812000
С	-3.89218500	0.12806100	0.82317600
Н	-3.93380200	-1.00019800	3.52525800
Н	-4.35766400	0.39904600	5.56525200
Н	-4.79812300	2.81708900	5.35148100
Н	-4.83926700	3.90482700	3.08410500
С	-4.06565900	1.17372600	-0.09418300
0	-4.49853300	3.53634700	0.13721800
0	-3.52982200	-1.07165300	0.62438200
С	-3.86428400	1.14559400	-1.57811000
Н	-4.42393100	2.01417100	-1.95605900
С	-4.46720000	-0.08710300	-2.25027800
С	-5.72869900	-0.53253800	-1.82016600
С	-3.86877200	-0.76145600	-3.32213900
С	-6.36949700	-1.60459700	-2.43562000
Н	-6.20189600	-0.02157500	-0.98745800
С	-4.50507700	-1.84541300	-3.93764500
Н	-2.88751400	-0.46650000	-3.67097300
С	-5.75876800	-2.27309600	-3.50198200

Н	-7.35061400	-1.91651500	-2.08625400
Н	-4.01803900	-2.34391300	-4.77270600
Н	-6.26073500	-3.10339200	-3.99238400

TS2

Zero-point correction=	0.861609 (Hartree/Particle)
Thermal correction to Energy=	0.915292
Thermal correction to Enthalpy=	0.916236
Thermal correction to Gibbs Free Energy	y= 0.771262
E(solv) = -5442.62904608 A.U.	
Imaginary frequency $= 318.42$	

С	-0.88678300	-1.29216500	0.33457900
С	-1.21547000	-0.73617800	1.66035000
С	-1.14637600	0.76916900	1.77224800
С	-0.69276400	-0.30959900	-0.73302300
Н	-0.07818100	0.53965200	-0.46643100
С	-0.51570300	-0.68582500	-2.14729800
С	0.50014100	-0.05128000	-2.88139600
С	-1.35275700	-1.60345500	-2.80159100
С	0.68391300	-0.33988100	-4.23063800
Н	1.15337000	0.65483700	-2.37999500
С	-1.17801700	-1.87948900	-4.15420700
Н	-2.16112200	-2.07395400	-2.25286000
С	-0.15783700	-1.25007100	-4.87188500
Н	1.48954300	0.14194300	-4.77393000
Н	-1.84402200	-2.57833800	-4.65196900
Н	-0.02156100	-1.46888700	-5.92735700
0	-1.60685100	-1.43000800	2.61157900
Pd	1.17095100	-1.90056100	0.49630800
С	-0.75651600	-2.70855700	0.17098800
Н	-1.04660200	-3.35151400	0.99376600
Н	-0.76464200	-3.16391800	-0.81201600
Р	2.72695200	-0.25592900	0.70293600
0	3.33239000	0.14895200	2.18855900
0	4.20079700	-0.27783200	-0.03369300
0	2.08332100	1.18319600	0.17308600
С	2.59581200	2.47503200	0.24098000
С	3.89113100	2.77663000	0.67198900
С	1.71169600	3.48126000	-0.14964300
С	4.28482700	4.11652300	0.72498600
Н	4.57304600	1.99034700	0.96500900
С	2.12315700	4.81147800	-0.08598500

Н	0.72043100	3.21742700	-0.50175000
С	3.40806600	5.13718600	0.35445100
Н	5.28928600	4.35602400	1.06278700
Н	1.42662100	5.59076800	-0.38169200
Н	3.72552800	6.17472700	0.40375400
С	2.37716400	0.34375800	3.19057500
С	1.69768400	-0.74759500	3.73224800
С	2.11982300	1.64719200	3.61536100
С	0.73545000	-0.51920100	4.71715100
Н	1.90975400	-1.74762900	3.36776400
С	1.16394700	1.85843700	4.61056000
Н	2.66263400	2.46998100	3.16370300
С	0.46789600	0.77808100	5.15898900
Н	0.18525400	-1.36107800	5.12414800
Н	0.95908700	2.87017000	4.94921800
Н	-0.28151600	0.94803200	5.92689200
С	4.18754400	-0.50671900	-1.41790600
С	3.98794500	-1.79562000	-1.90985800
С	4.38021600	0.58195200	-2.26684000
С	3.98871000	-1.98890200	-3.29230600
Н	3.81782400	-2.61718800	-1.22049900
С	4.38966100	0.36915800	-3.64668800
Н	4.52152400	1.57064800	-1.84371100
С	4.19268200	-0.91469000	-4.16103700
Н	3.82568400	-2.98773100	-3.68618300
Н	4.54850400	1.20980700	-4.31650000
Н	4.19659300	-1.07660200	-5.23536900
Br	2.50749600	-4.02142900	0.74349300
С	-3.63808000	0.46664600	-2.46439300
С	-2.70020400	1.41630300	-2.88597900
С	-2.56932500	1.75450600	-4.22334200
С	-3.42374500	1.12958000	-5.14116800
С	-4.37751200	0.19443500	-4.71806200
С	-4.49303400	-0.15194300	-3.36674700
С	-3.46998500	0.25017100	-1.00120300
С	-1.90253500	1.87150700	-1.70035200
Н	-1.81848000	2.47233300	-4.53708300
Н	-3.34789400	1.37115600	-6.19748900
Н	-5.02756200	-0.27292500	-5.45240300
Н	-5.21280300	-0.89180400	-3.02928600
C	-2.31027100	1.01790700	-0.55508600
0	-4.19384200	-0.48923100	-0.30784700
0	-1.02499700	2.72388100	-1.73364900
С	-2.24192400	1.45800600	0.91107800

Н	-3.19743500	1.12904600	1.33957300
С	-2.21529300	2.97782000	1.05213300
С	-1.15026600	3.67192800	1.63144300
С	-3.31189200	3.71311100	0.58007200
С	-1.16988300	5.06632800	1.71604300
Н	-0.28690500	3.13884700	2.01131100
С	-3.33806200	5.10218300	0.66637500
Н	-4.14791700	3.18512400	0.12570500
С	-2.26023800	5.78732500	1.23390000
Н	-0.32046100	5.58370300	2.15323500
Н	-4.19653600	5.65128700	0.28882100
Н	-2.27353900	6.87177900	1.29830400
Н	-0.15537200	1.11083800	1.46545600
Н	-1.28082600	1.04176000	2.82038000

TS2-new-iso

Zero-poin	t correction=		0.860042 (Hartree/Particle)
Thermal	correction to Energy=		0.914108
Thermal	correction to Enthalpy=		0.915053
Thermal	correction to Gibbs Free En	ergy=	0.767107
E(solv) = Imagina	-5442.61941956 A.U ary frequency = 310.01	J.	
С	-0.95307700	-0.69109400	0.17383000
С	-1.26527400	-1.39180800	1.43850500
С	-2.34303100	-2.44686500	1.32914500
Н	-2.04036700	-3.21461200	0.61059800
Н	-2.46288200	-2.93789700	2.29680400
С	-0.05297700	0.43179700	0.26817700
Н	0.29058000	0.58546600	1.28688700
С	0.00316300	1.66297900	-0.54930200
С	0.99075000	2.61263400	-0.21446000
С	-0.87463200	1.98252800	-1.59809300
С	1.09466400	3.82353500	-0.88977000
Н	1.70343200	2.35863700	0.56206100
С	-0.77757500	3.20155800	-2.27000200
Н	-1.66499800	1.30498700	-1.87995000
С	0.20196300	4.13136300	-1.92146800
Н	1.88659300	4.51846100	-0.62578800
Н	-1.47814800	3.41743000	-3.07260300
Н	0.28149500	5.07451000	-2.45448100
0	-0.79516600	-1.05158400	2.53068800

Pd	1.09019500	-1.07550100	-0.62418800
С	-1.60657800	-1.18149100	-1.00006300
Н	-1.68531300	-2.25146300	-1.14511400
Н	-1.53167000	-0.63989900	-1.93456600
Р	3.16051200	-0.58365200	0.03110100
0	3.23906200	0.58276400	1.22080800
0	3.97861300	-1.84163000	0.70033100
0	4.36565000	-0.10576200	-0.98311200
С	4.03367500	0.95569800	-1.83868400
С	3.11605100	0.75735200	-2.87088300
С	4.63867000	2.19129200	-1.62151000
С	2.78927800	1.83815600	-3.69081600
Н	2.66917800	-0.22180700	-3.01400400
С	4.31390900	3.25702200	-2.46268700
Н	5.34566100	2.30264600	-0.80697000
С	3.38376700	3.08563100	-3.48997900
Н	2.06526300	1.69924400	-4.48803700
Н	4.78490400	4.22373600	-2.30681400
Н	3.12343800	3.92125500	-4.13313200
С	4.38189400	1.21607600	1.68967300
С	4.22408700	2.53886700	2.10840000
С	5.62906300	0.59100600	1.75947400
С	5.32296600	3.24695400	2.59205200
Н	3.24323600	2.99832100	2.04566200
С	6.72169300	1.31493300	2.23915400
Н	5.74102600	-0.43695700	1.44052500
С	6.57878800	2.63986100	2.65456400
Н	5.19650800	4.27663100	2.91501500
Н	7.69321200	0.83161300	2.28782300
Н	7.43644100	3.19267500	3.02578000
С	3.21618900	-2.87059100	1.27305100
С	2.22243200	-2.58454600	2.20852000
С	3.46784800	-4.17127300	0.85169400
С	1.45086100	-3.63144800	2.71649500
Н	2.03350500	-1.56377600	2.52062400
С	2.70607400	-5.21028200	1.38445900
Н	4.22156600	-4.34587200	0.09271100
С	1.69326000	-4.94374600	2.31001000
Н	0.65449700	-3.40263800	3.41762500
Н	2.88811400	-6.22832200	1.05329800
Н	1.09184800	-5.75698000	2.70591500
Br	1.52294400	-3.00012700	-2.18222900
Ν	-2.58809400	3.21524600	2.44990000
С	-2.27290300	3.79341100	1.09292000

Н	-2.64652500	3.09864600	0.34209500
Н	-2.76690700	4.76414100	1.01594900
Н	-1.19208800	3.90303800	0.99540000
С	-2.14302300	4.16103500	3.51733000
Н	-2.67577200	5.10664000	3.40180900
Н	-2.36451100	3.72316200	4.49189800
Н	-1.06859000	4.32284600	3.41729200
С	-1.87110600	1.89701500	2.61147200
Н	-2.21682200	1.24094600	1.81687800
Н	-0.80062100	2.07685100	2.53106200
Н	-2.12195900	1.48073400	3.58584600
С	-4.07123800	2.97715400	2.55859700
Н	-4.35372200	2.27111400	1.77856900
Η	-4.28604700	2.54889900	3.53708800
Н	-4.58282400	3.93363300	2.43399500
С	-4.49356300	-0.71446500	-2.70108600
С	-4.24298900	0.52349200	-2.09431100
С	-4.38202800	1.71051300	-2.79890300
С	-4.78546000	1.63393000	-4.14051800
С	-5.03483500	0.39726300	-4.74530400
С	-4.88789000	-0.79942200	-4.02653500
С	-4.24216200	-1.79550700	-1.68593300
С	-3.81125100	0.29215000	-0.67777900
Н	-4.17913600	2.66456400	-2.32118000
Н	-4.90578200	2.54518500	-4.71977900
Н	-5.34450000	0.36510800	-5.78595100
Н	-5.07259900	-1.76592600	-4.48509200
С	-3.67606700	-1.13602000	-0.48792800
0	-4.44952500	-2.99237000	-1.83920400
0	-3.55096500	1.20313400	0.12837200
С	-3.71718000	-1.86856300	0.84896200
Н	-4.32430100	-2.76086200	0.64308000
С	-4.46230300	-1.08397100	1.93048000
С	-5.75692500	-0.61614400	1.65218500
С	-3.94603200	-0.85759200	3.21265500
С	-6.50941900	0.05488300	2.61267700
Н	-6.17831200	-0.78469600	0.66466000
С	-4.70338500	-0.19305300	4.18378500
Н	-2.94437500	-1.18520600	3.46380000
С	-5.98662600	0.26695700	3.89230100
Н	-7.51116500	0.39816600	2.36825400
Н	-4.28509500	-0.04973400	5.17766100
Н	-6.57891900	0.77148700	4.65123400

INT4

Zero-point co	orrection=		0.856380 (Hartree/Particle)
Thermal cor	rrection to Energy=		0.911713
Thermal cor	rection to Enthalpy=		0.912657
Thermal cor	rrection to Gibbs Free End	ergy=	0.760996
E(solv) =	-5446.14831156 A	U.	
С	0.67758400	-1.36106900	0.22448600
С	0.92976000	-1.44919100	-1.21147400
С	1.06134500	-0.10238600	-1.89811500
С	0.86450500	0.04139100	0.80213600
Н	0.11210600	0.69557900	0.35949200
С	0.67147100	0.14080700	2.29947100
С	-0.42398300	0.86296000	2.78729000
С	1.53413500	-0.47306900	3.21687400
С	-0.64957000	0.97781200	4.15885900
Н	-1.11153200	1.32543900	2.08592100
С	1.31616600	-0.35452200	4.58891500
Н	2.37220800	-1.06355900	2.86004600
С	0.22315400	0.37323200	5.06374500
Н	-1.51600900	1.52804300	4.50966400
Н	1.99617100	-0.83623900	5.28655900
Н	0.04994300	0.46095700	6.13284900
0	1.13242500	-2.50648200	-1.84204300
Pd	-1.43834100	-1.80625700	0.29385100
С	0.42514600	-2.53928800	0.98325400
Н	0.57177700	-3.50998900	0.52327000
Н	0.45197000	-2.52052400	2.06650900
Р	-2.78811100	-0.24080600	-0.59045700
0	-3.40248200	-0.37011400	-2.13117200
Ο	-4.23468800	0.22788600	0.05705600
0	-1.97596500	1.22116600	-0.67543100
С	-2.39120100	2.44791900	-1.17119100
С	-3.62647200	2.66876100	-1.79001400
С	-1.46891000	3.48661000	-1.02539000
С	-3.91646600	3.94584100	-2.27772100
Н	-4.34305700	1.86594000	-1.89045900
С	-1.77479000	4.75188500	-1.52348600
Н	-0.52922600	3.29065200	-0.52296300
С	-2.99789600	4.98914100	-2.15503700
Н	-4.87511300	4.11802200	-2.75932100
Н	-1.04900500	5.55268200	-1.41053600
Н	-3.23557000	5.97604400	-2.54133600
С	-2.47716800	-0.69055500	-3.12374800

С	-1.93883500	-1.97558300	-3.19520000
С	-2.10278200	0.30468000	-4.02761300
С	-1.00677200	-2.26157700	-4.19342300
Н	-2.23086900	-2.72085900	-2.46264300
С	-1.17911500	0.00051400	-5.02863100
Н	-2.53427000	1.29517600	-3.93428600
С	-0.62768700	-1.28066800	-5.11183000
Н	-0.56664600	-3.25222200	-4.23664100
Н	-0.88682800	0.76935900	-5.73861500
Н	0.09599100	-1.51172200	-5.88871600
С	-4.23475900	0.57485600	1.41375200
С	-4.19361000	-0.41887200	2.39067900
С	-4.28970100	1.92792700	1.74733900
С	-4.21549400	-0.03707600	3.73289300
Н	-4.12010200	-1.46263300	2.09978200
С	-4.31875100	2.29262700	3.09482900
Н	-4.31357300	2.67149100	0.95833800
С	-4.28326500	1.31194600	4.08931900
Н	-4.17471700	-0.80494500	4.49984700
Н	-4.36913800	3.34424500	3.36341900
Н	-4.30794400	1.59863700	5.13731700
Br	-2.93744500	-3.66769300	1.14906300
Ν	4.31911400	-3.86049900	-1.15620700
С	3.17154400	-3.90195800	-0.17276100
Н	2.24082200	-3.89864400	-0.73997700
Н	3.28592500	-4.79446800	0.44492700
Н	3.21033200	-2.99474900	0.42589700
С	5.60821700	-3.73027000	-0.40312000
Н	5.72161500	-4.59564000	0.25233300
Н	6.43434100	-3.68845300	-1.11583800
Н	5.56004900	-2.81202000	0.18364000
С	4.15869000	-2.67061800	-2.06931900
Н	3.16549900	-2.70921900	-2.52002400
Н	4.23078700	-1.77920500	-1.44940400
Н	4.95656600	-2.70303700	-2.81396400
С	4.31020500	-5.11475700	-1.97238500
Н	3.35826200	-5.17110300	-2.50162200
Н	5.13734700	-5.08461500	-2.68404300
Н	4.41781900	-5.97224600	-1.30615900
С	4.03397100	1.13407800	1.84989000
С	3.27525200	2.30816500	1.82958300
С	3.58802600	3.38453400	2.65392200
С	4.69071400	3.25580400	3.50008800
С	5.45695800	2.07709000	3.51893100

С	5.13698100	1.00085800	2.69143900
С	3.47421400	0.16411100	0.88519000
С	2.15510300	2.16666600	0.86433200
Н	2.98315200	4.28501600	2.63050000
Н	4.96401400	4.07573500	4.15780800
Н	6.30714400	2.00746800	4.19117500
Н	5.71497900	0.08213300	2.70121700
С	2.20095700	0.74080400	0.27668200
0	3.99228900	-0.91501200	0.59994700
0	1.31156800	3.01162800	0.64321800
С	2.26239800	0.66262500	-1.30178200
Н	3.14769800	0.05643600	-1.52114900
С	2.50410000	2.01883700	-1.94098500
С	1.49384500	2.73765700	-2.58556900
С	3.77795700	2.59554800	-1.84266200
С	1.74477200	4.00976000	-3.10127200
Н	0.49825700	2.32060800	-2.67638500
С	4.03403500	3.86482000	-2.35845300
Н	4.57626500	2.04481500	-1.34793700
С	3.01289900	4.57951000	-2.98841900
Н	0.93811500	4.55606400	-3.58177100
Н	5.02814000	4.29475400	-2.26986400
Н	3.20609300	5.57086100	-3.38849900
Н	0.13913900	0.46577600	-1.76139300
Н	1.20677700	-0.25561400	-2.96942900

1q-TS2

Zero-point correction=0.851408 (Hartree/Particle)Thermal correction to Energy=0.906145Thermal correction to Enthalpy=0.907090Thermal correction to Gibbs Free Energy=0.760289E(solv) = -5478.75061370A.U.Imaginary frequency = 313.54

С	1.24011400	1.13814800	-0.39296600
С	1.79831800	1.31081100	0.96453900
С	1.61330100	0.13396500	1.89007300
С	0.65440400	-0.15891200	-0.66362000
Н	0.03969700	-0.61239800	0.09753500
0	2.43934900	2.31199400	1.30613000
Pd	-0.70420900	2.04299500	-0.55464000
С	1.26013800	2.20943400	-1.33758700
Н	1.74398100	3.13384200	-1.04496900

Н	1.19348800	2.00401200	-2.39930000
Р	-2.45021600	1.10975200	0.58751900
0	-2.86948600	1.74209600	2.05743500
0	-3.99729900	1.00346800	0.04809900
0	-2.06852200	-0.45810800	0.96324500
С	-2.87658200	-1.47490600	1.45700300
С	-4.02611100	-1.23847800	2.21448700
С	-2.44759400	-2.77171800	1.17140900
С	-4.75610900	-2.33375100	2.68352600
Н	-4.34603800	-0.22637600	2.42531900
С	-3.18330700	-3.85086200	1.65922600
Н	-1.54413400	-2.91980100	0.59046700
С	-4.34120900	-3.63849500	2.41214800
Н	-5.65419000	-2.15762300	3.26892000
Н	-2.84516500	-4.86045600	1.44411000
Н	-4.91410900	-4.48205000	2.78596800
С	-1.78624700	1.94295000	2.92185700
С	-0.94299200	3.03833300	2.73451100
С	-1.56110600	1.01115900	3.93378300
С	0.14918900	3.19720800	3.58896800
Н	-1.13440800	3.72965100	1.92004000
С	-0.47178500	1.19003300	4.78817300
Н	-2.22810700	0.16161000	4.03444900
С	0.38500100	2.27956400	4.61509400
Н	0.82466800	4.03262600	3.43627700
Н	-0.28665400	0.46731200	5.57757800
Н	1.23842300	2.40921700	5.27449600
C	-4.20124700	0.50422000	-1.24542600
C	-3.80259700	1.24394000	-2.35823700
С	-4.83645100	-0.72960100	-1.37217600
С	-4.04423700	0.71814100	-3.62937000
Н	-3.31778900	2.20668800	-2.22670800
С	-5.08311000	-1.23331700	-2.65041000
Н	-5.12542100	-1.27360600	-0.47976800
С	-4.68280900	-0.51536400	-3.78026400
Н	-3.73474900	1.28530000	-4.50244700
Н	-5.58388400	-2.19103200	-2.76007300
Н	-4.87324800	-0.91299400	-4.77310500
Br	-1.67271800	4.23246500	-1.31989700
Ν	5.75482200	2.27874900	-0.12697100
С	4.50649200	2.64940400	-0.89297000
Н	3.82684700	3.16217100	-0.21490200
Н	4.80031200	3.27798500	-1.73552700
Н	4.03783800	1.72724800	-1.23119900

С	6.62702100	1.42709400	-1.00445200
Н	6.89862300	2.00458000	-1.89010300
Н	7.52433900	1.15158300	-0.44684400
Н	6.05102800	0.54236800	-1.28052600
С	5.38024200	1.49204600	1.10567000
Н	4.67093300	2.07551100	1.69171000
Н	4.89632400	0.57762000	0.76410400
Н	6.29580700	1.28254600	1.66249700
С	6.47728500	3.52408900	0.27736000
Н	5.81397300	4.12012000	0.90552900
Н	7.37601100	3.25099000	0.83327500
Н	6.74661900	4.08594100	-0.61855900
С	3.03963400	-2.21738600	-2.17236500
С	2.03351500	-3.14467000	-1.87961800
С	1.68000700	-4.13236600	-2.78567300
С	2.36473200	-4.17472000	-4.00858900
С	3.36929900	-3.24463600	-4.30240100
С	3.71976700	-2.24952100	-3.38076700
С	3.17978100	-1.29522600	-1.01100900
С	1.44909300	-2.82906900	-0.53135700
Н	0.89776200	-4.84540300	-2.54534100
Н	2.11434300	-4.93786200	-4.74003100
Н	3.87954500	-3.29573000	-5.26000700
Н	4.48980700	-1.51730700	-3.60313300
С	2.11122800	-1.58129500	-0.06145200
0	4.06171200	-0.42453000	-0.89323400
0	0.54948700	-3.47083400	-0.00445100
С	2.31282200	-1.18243700	1.40423400
Н	3.38802800	-0.98137400	1.48700700
С	2.00228800	-2.30900400	2.38071200
С	0.69903600	-2.56515200	2.82277500
С	3.03797400	-3.12274600	2.84892500
С	0.43841400	-3.60949700	3.70590400
Н	-0.12768500	-1.96519100	2.46212100
С	2.78404600	-4.16921400	3.73773400
Н	4.05523000	-2.93657300	2.51024100
С	1.48080000	-4.41540000	4.16941500
Н	-0.58483000	-3.79901800	4.01801400
Н	3.60380500	-4.78867300	4.09182800
Н	1.27797600	-5.22982600	4.85947100
Н	0.54175500	-0.04011600	2.01655500
Н	2.01201700	0.39690900	2.87135700
С	0.23194600	-0.55826900	-2.03943500
0	0.75349000	-0.21195500	-3.08211200

0	-0.78698000	-1.42806800	-1.94697500
С	-1.27064300	-2.02707300	-3.16814900
С	-2.06174500	-3.25340300	-2.75721100
Н	-0.41195300	-2.27344400	-3.79837800
Н	-1.89158400	-1.29067900	-3.68594300
Н	-2.45421200	-3.76192900	-3.64478400
Н	-1.42451400	-3.94643300	-2.19926500
Н	-2.90231100	-2.96828700	-2.11933700

1q-TS2'

Zero-point c	correction=		0.850726 (Hartree/Pa	article)
Thermal co	orrection to Energy=		0.905625	
Thermal co	orrection to Enthalpy=		0.906569	
Thermal co	prrection to Gibbs Free En	ergy=	0.758182	
E(solv) =	-5454.37801054 A.U	J.		
Imaginary f	requency $= 184.65$			
С	-0.99141100	-0.32269900	-0.86641900	
С	-1.70575600	-1.50276700	-1.43014900	
С	-2.79801300	-1.17620700	-2.42043900	
Н	-2.39834700	-0.56522200	-3.23435100	
Н	-3.16579400	-2.10369800	-2.86312700	
С	-0.10115000	-0.55471700	0.25519000	
Н	-0.03450700	-1.59460200	0.55243800	
0	-1.51562200	-2.64309100	-1.00932200	
Pd	1.14802400	-0.10480600	-1.36152300	
С	-1.27446500	0.94558400	-1.39897700	
Н	-1.56143900	1.06685900	-2.43243900	
Н	-0.95414600	1.84010800	-0.88124400	
Р	3.15502200	-0.43783000	-0.45077600	
0	2.98529400	-0.73648000	1.15629100	
0	4.07663800	-1.67767200	-1.00208300	
0	4.35550600	0.66801100	-0.52216100	
С	4.06561400	2.01278900	-0.25227700	
С	3.49123800	2.80573600	-1.24353400	
С	4.41385200	2.52791700	0.99485500	
С	3.27376500	4.15789700	-0.97233600	
Н	3.21657600	2.36314100	-2.19568200	
С	4.19094800	3.88267800	1.24870500	
Н	4.86178400	1.87750800	1.73756800	
С	3.62561000	4.69955800	0.26667300	
Н	2.82837300	4.78663500	-1.73772400	

Н	4.46618400	4.29794100	2.21401800
Н	3.45670800	5.75357100	0.46747200
С	3.95520400	-0.71864000	2.15017100
С	3.51010800	-0.32355600	3.41226900
С	5.28482100	-1.07800900	1.92524500
С	4.41943300	-0.28046900	4.46780600
Н	2.46439600	-0.05888800	3.53234200
С	6.18225700	-1.02334800	2.99437500
Н	5.61101800	-1.38067900	0.93814300
С	5.75824000	-0.62590600	4.26321100
Н	4.08071900	0.02877300	5.45281200
Н	7.22074900	-1.29412200	2.82691600
Н	6.46512000	-0.58581000	5.08657600
С	3.39510700	-2.87810900	-1.26217100
С	3.41244000	-3.87504600	-0.29069500
С	2.71872100	-3.03542200	-2.46998900
С	2.73904900	-5.07170900	-0.54326100
Н	3.94615700	-3.70599900	0.63892700
С	2.04232400	-4.23395700	-2.70313000
Н	2.70851400	-2.22453700	-3.19082700
С	2.05124400	-5.25066400	-1.74564400
Н	2.74990100	-5.86084400	0.20330700
Н	1.50233800	-4.36575600	-3.63585900
Н	1.52197000	-6.17984400	-1.93537800
Br	1.79818000	0.51281000	-3.70390300
Ν	-3.04290500	-2.18116800	3.25812900
С	-2.44779000	-0.93573300	3.86371300
Н	-2.63431300	-0.11628000	3.16971400
Н	-2.93265500	-0.76547000	4.82744500
Н	-1.37377500	-1.07556700	3.97649100
С	-2.89477100	-3.32464500	4.20726000
Н	-3.42435900	-3.09199500	5.13298100
Н	-3.31766100	-4.22037500	3.74957600
Н	-1.83352000	-3.47547400	4.41122100
С	-2.33117700	-2.50084400	1.96541100
Н	-2.48549500	-1.65723000	1.29799900
Н	-1.27263000	-2.63597800	2.18263200
Н	-2.76521700	-3.40641500	1.54369300
С	-4.49808300	-1.93776900	2.96283100
Н	-4.55866300	-1.11840900	2.24673200
Н	-4.92544900	-2.83900300	2.52612500
Н	-5.00198100	-1.68543500	3.89805900
С	-3.74415000	3.26177400	-0.66868500
С	-3.48511600	2.61606800	0.54769700

С	-3.31762200	3.33424900	1.71949100
С	-3.40894200	4.73507600	1.65259600
С	-3.65413700	5.37903700	0.43695500
С	-3.82514300	4.64096800	-0.74715800
С	-3.90228900	2.20547900	-1.73503400
С	-3.44292300	1.13404400	0.30730300
Н	-3.12071000	2.82528600	2.65884500
Н	-3.28287900	5.32662900	2.55530800
Н	-3.71666500	6.46326800	0.40938500
Н	-4.02062600	5.12777000	-1.69786600
С	-3.63252400	0.91692900	-1.09343300
0	-4.18931500	2.40936800	-2.91175400
0	-3.23260500	0.29085800	1.20765600
С	-3.99238200	-0.38346200	-1.77936400
Н	-4.58710400	-0.06762400	-2.64818600
С	-4.91657800	-1.25877100	-0.92850100
С	-6.06639100	-0.67398200	-0.37286600
С	-4.72342500	-2.63309800	-0.73625000
С	-6.99750100	-1.43138900	0.33400400
Н	-6.23144100	0.39134200	-0.50746500
С	-5.66280000	-3.39902600	-0.03704500
Н	-3.83497800	-3.11930500	-1.12017100
С	-6.80588400	-2.80684400	0.49802500
Н	-7.88346400	-0.95119200	0.74106200
Н	-5.49790900	-4.46815000	0.07638700
Н	-7.54167800	-3.40512600	1.02901700
С	0.07437800	0.34502000	1.41575700
0	0.21697800	-0.05845400	2.56331300
0	0.08836200	1.65409000	1.10115000
С	0.32106000	2.58515200	2.17772600
С	0.28306800	3.97544300	1.57749900
Н	1.29467100	2.35902200	2.62377000
Н	-0.44988200	2.43860500	2.94117600
Н	0.47511800	4.72020200	2.35822100
Н	1.05240500	4.07806500	0.80874600
Н	-0.69600300	4.18195700	1.13741900

TS1B

Zero-point correction= Thermal correction to Energy= Thermal correction to Enthalpy= 0.681880 (Hartree/Particle) 0.728513 0.729457 Thermal correction to Gibbs Free Energy=E(solv) = -2657.36860569A.U.Imaginary frequency=62.66

0.596031

С	1.334915	-0.426093	-2.198757
С	1.629272	0.952036	-2.795877
С	1.679852	2.028241	-1.907510
Н	1.344259	1.967453	-0.884983
Н	1.853874	3.018612	-2.310103
С	1.143186	-0.647971	-0.792514
Н	1.066756	0.234906	-0.168127
С	1.421933	-1.866960	-0.037974
С	1.010264	-1.905224	1.309164
С	2.118328	-2.971261	-0.565083
С	1.222862	-3.037600	2.083386
Н	0.530240	-1.033371	1.737147
С	2.336744	-4.099731	0.216887
Н	2.538861	-2.916714	-1.561635
С	1.878496	-4.143734	1.535658
Н	0.897497	-3.052113	3.119306
Н	2.897926	-4.933682	-0.191462
Н	2.062706	-5.024094	2.144158
0	1.808854	0.980441	-4.034164
Pd	-0.808038	-0.780719	-1.854844
С	-5.853686	-2.269103	-0.694862
С	-4.904913	-1.692748	0.144993
С	-6.583702	-1.233923	1.792691
С	-7.554566	-1.790095	0.957800
С	-7.184815	-2.316373	-0.281267
Н	-5.541630	-2.658714	-1.658201
Н	-6.864520	-0.825329	2.758616
Н	-8.592988	-1.817847	1.273523
Н	-7.932184	-2.759493	-0.932794
С	-4.648527	1.402267	-0.464425
С	-7.032374	1.675440	-0.468305
С	-4.527358	2.219013	0.655995
С	-6.937321	2.475730	0.672693
Н	-8.001839	1.459950	-0.906729
С	-5.685936	2.751156	1.225000
Н	-3.551127	2.432674	1.073720
Н	-7.834457	2.888416	1.124067
Н	-5.603735	3.384719	2.103234
0	-3.585950	-1.667316	-0.329515

0	-3.506012	0.846765	-1.065191
Р	-2.597141	-0.385856	-0.488806
С	0.974096	-1.423467	-3.104075
Н	0.996906	-1.140638	-4.152526
Н	0.884152	-2.471393	-2.839557
С	-5.246337	-1.191752	1.399305
Н	-4.486546	-0.754639	2.033377
С	-5.884331	1.139774	-1.048086
Н	-5.935990	0.501899	-1.922600
С	-1.423077	0.834017	1.600420
С	-0.998889	0.581998	2.905475
С	-0.887856	1.885392	0.855097
С	-0.001707	1.379698	3.463211
Н	-1.441987	-0.244046	3.452245
С	0.117485	2.671845	1.427339
Н	-1.228177	2.084020	-0.155213
С	0.564019	2.419780	2.722966
Н	0.346174	1.175498	4.470911
Н	0.561547	3.474407	0.848091
Н	1.356257	3.023808	3.149552
0	-2.407081	-0.017949	1.107399
С	5.018559	-1.753750	0.073645
С	4.550979	-1.362715	1.331771
С	4.671713	-2.199214	2.433103
С	5.298591	-3.437295	2.249441
С	5.779649	-3.822175	0.990120
С	5.637328	-2.981409	-0.119661
С	4.715771	-0.665875	-0.906964
С	3.952814	0.011823	1.250300
Н	4.290073	-1.888933	3.400675
Н	5.416745	-4.111525	3.093360
Н	6.265630	-4.787528	0.877513
Н	5.993150	-3.267588	-1.104798
С	4.172161	0.476228	-0.129359
0	4.883816	-0.731637	-2.118609
0	3.369895	0.548266	2.194806
С	4.034707	1.691772	-0.771916
Н	4.330650	1.645457	-1.817485
С	3.889721	3.045185	-0.245948
С	3.550284	3.344351	1.087204
С	4.139434	4.116075	-1.130464
С	3.458021	4.669522	1.508056
Н	3.356180	2.528947	1.772639
С	4.048513	5.435489	-0.705036

Н	4.395830	3.894238	-2.162707
С	3.702397	5.719308	0.619870
Н	3.197258	4.885372	2.541295
Н	4.244220	6.243692	-1.403890
Н	3.626797	6.749889	0.955468

TS1C

Zero-point correction=			0.681447 (Hartree/Particle)		
Thermal co	rrection to Energy	/=	0	.727972	
Thermal correction to Enthalpy=			0.	728916	
Thermal co	rrection to Gibbs	Free Energy=	0.5	94583	
E(solv) =	-2657.36591119	A.U.			
Imaginary fr	equency=156.32				
С	1.237397	0.074908	-1.589334		
С	1.359590	1.573200	-1.341736		
С	2.144796	2.264046	-2.261621		
Н	2.479696	1.768764	-3.166105		
Н	2.200728	3.343548	-2.216403		
С	1.642408	-0.808852	-0.548606		
Н	1.957422	-0.337207	0.377257		
С	1.934051	-2.235270	-0.699157		
С	1.909107	-3.062684	0.439415		
С	2.297003	-2.799042	-1.937820		
С	2.183482	-4.421324	0.335630		
Н	1.681293	-2.620968	1.402823		
С	2.569149	-4.159371	-2.037426		
Н	2.437550	-2.152175	-2.795639		
С	2.500852	-4.976730	-0.906379		
Н	2.165527	-5.045138	1.224086		
Н	2.863164	-4.578620	-2.995118		
Н	2.723354	-6.036778	-0.986789		
0	0.817799	1.997141	-0.287325		
Pd	-0.571729	-0.604147	-0.454848		
С	-1.077323	1.793175	2.156757		
С	-1.692930	0.574662	1.901052		
С	0.211957	-0.610128	2.806766		
С	0.852173	0.604930	3.037874		
С	0.196943	1.799243	2.722348		
Н	-1.561874	2.710426	1.843503		
Н	0.694948	-1.543911	3.077273		
Н	1.868399	0.625558	3.413985		
Н	0.704923	2.746313	2.868151		
С	-5.125446	-1.446650	0.488365		
С	-6.578569	-1.256107	2.387092		

С	-6.214242	-1.640482	-0.356217
С	-7.685078	-1.422098	1.552962
Н	-6.716390	-1.112401	3.454710
С	-7.499070	-1.619705	0.182836
Н	-6.047323	-1.773087	-1.418646
Н	-8.687874	-1.402295	1.968748
Н	-8.354696	-1.751074	-0.472342
0	-2.921436	0.561089	1.223571
0	-3.839661	-1.474227	-0.076941
Р	-2.824841	-0.204700	-0.259648
С	0.340802	-0.392408	-2.566008
Н	-0.115694	0.324722	-3.240854
Н	0.252322	-1.441249	-2.828950
С	-1.068160	-0.643939	2.226745
Н	-1.608128	-1.580581	2.116420
С	-5.286015	-1.272414	1.860419
Н	-4.418985	-1.133691	2.494156
С	-4.932831	1.216312	-1.216025
С	-5.648493	1.070307	-2.400495
С	-5.521173	1.728103	-0.061635
С	-6.999046	1.418702	-2.421143
Н	-5.145834	0.680119	-3.279185
С	-6.875467	2.059174	-0.094834
Н	-4.936451	1.836173	0.842985
С	-7.617586	1.903231	-1.267155
Н	-7.567079	1.304797	-3.339733
Н	-7.350144	2.439289	0.804574
Н	-8.671360	2.164180	-1.282853
0	-3.582347	0.840033	-1.246896
С	5.039288	-1.493676	-0.299341
С	4.774878	-1.090956	1.012264
С	4.940487	-1.959653	2.080882
С	5.390589	-3.258233	1.805985
С	5.654375	-3.662018	0.491440
С	5.478198	-2.778308	-0.581841
С	4.725285	-0.348269	-1.216089
С	4.270025	0.326577	1.017751
Н	4.726335	-1.629505	3.093197
Н	5.534498	-3.963753	2.620043
Н	5.995275	-4.676359	0.303048
Н	5.664706	-3.082202	-1.606874
С	4.321564	0.785481	-0.371909
0	4.763176	-0.389838	-2.446405
0	3.878818	0.880604	2.050542

С	4.153274	2.042369	-0.969600
Н	4.581807	2.086691	-1.966866
С	3.982516	3.340358	-0.318029
С	3.277933	3.518225	0.885877
С	4.514087	4.476046	-0.961699
С	3.129531	4.793857	1.427099
Н	2.870527	2.656054	1.388766
С	4.371860	5.744684	-0.412376
Н	5.042310	4.348731	-1.903590
С	3.674251	5.908355	0.788723
Н	2.583768	4.917863	2.359142
Н	4.799113	6.605998	-0.918588
Н	3.557002	6.898852	1.220223

14.References

(1) (a) S. Chandrasekhar, Ch. Narsihmulu, B. Saritha and S. S. Sultana, Tetrahedron Lett., 2004, 45, 5865–5867; (b)

P. R. Krishna, E. R. Sekhar and V. Kannan, *Tetrahedron Lett.*, 2003, **44**, 4973–4975; (*c*) S. Xue, L. He, K. Han, Y. Liu and Q. Guo, *Synlett*, 2005, **8**, 1247–1250; (*d*) Y. M. Chung, Y. J. Im and J. N. Kim, *Bull. Korean Chem. Soc.*, 2002, **23**, 1651–1654.

(2) C. J. Lee, C. N. Sheu, C. C. Tsai, Z. Z. Wu and W. Lin, Chem. Commun., 2014, 50, 5304-5306.

(3) (a) K. S. Halskov, T. K. Johansen, R. L. Davis, M. Steurer, F. Jensen and K. A. Jørgensen, J. Am. Chem. Soc.,

2012, **134**, 12943–12946; (*b*) R. Sriram, C. N. S. S. P. Kumar, N. Raghunandan, V. Ramesh, M. Sarangapani and V. J. Rao, *Synth. Commun.*, 2012, **42**, 3419–3428; (*c*) Y. Liu, Z.-J. Cai, S.-Y. Wang and S.-J. Ji, *Asian J. Org. Chem.*, 2016, **5**, 43–47.

(4) (a) H. J. Davis, M. E. Kavanagh, T.Balan, C. Abell and A. G. Coyne, Bioorg. Med. Chem. Lett., 2016, 26,

3735–3740; (b) M. A. Jinks, H. Sun and C. A. Hunter, Org. Biomol. Chem., 2014, 12, 1440–1447.

(5) Q.-Q. Yang, X. Yin, X.-L. He, W. Du and Y.-C. Chen, ACS Catal., 2019, 9, 1258–1263.

(6) B.-X. Xiao, B. Jiang, X. Song, W. Du and Y.-C. Chen, Chem. Commun., 2019, 55, 3097-3100.

(7) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone,
B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng,
J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O.
Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E.Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers,
K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S.
Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J.
Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L.
Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö.
Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA,

(9) K. Fukui, Acc. Chem. Res., 1981, 14, 363-368.

- (10) J. M. Um, D. A. DiRocco, E. L. Noey, T. Rovis and K. N. Houk, J. Am. Chem. Soc., 2011, 133, 11249-11254.
- (11) R. F. Ribeiro, A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B., 2011, 115, 14556-14562.

^{(8) (}a) A. D. Becke, J. Chem. Phys., **1993**, 98, 5648–5652; (b) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B., **1988**, 37, 785–789.