Electronic Supporting Information for

Genomics-driven discovery of chiral triscatechol siderophores with enantiomeric Fe(III) coordination

Parker R. Stow,^a Zachary L. Reitz,^a Timothy C. Johnstone,^b Alison Butler^{a,*}

^aDepartment of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, ^bDepartment of Chemistry, University of California, Santa Cruz, California 95064

Figure S1. Structures of select triscatecholate siderophores **Scheme S1**. Synthetic scheme for cyclic (DHB^{L/D}Lys^{L/D}Ser)₃ diastereomers Figure S2. ¹H NMR of cyclic (DHB^LLys^LSer)₃ Figure S3. ¹³C NMR of cyclic (DHB^LLys^LSer)₃ Figure S4. ¹H-¹³C HMBC NMR of cyclic (DHB^LLys^LSer)₃ **Table S1**. NMR data for cyclic (DHB^LLys^LSer)₃ **Table S2**. NMR data for cyclic (DHB^DLys^LSer)₃ Figure S5. HPLC chromatograms of FDAA-derivatized (DHB^LLys^LSer)₃ and (DHB^LLys^DSer)₃ hydrolysate Figure S6. HPLC chromatograms of FDAA-derivatized (DHB^DLys^LSer)₃ and (DHB^DLys^DSer)₃ hydrolysate Table S3. Sequencing and assembly statistics for Dickeya chrysanthemi EC16 Table S4. Annotation of cyclic trichrysobactin gene cluster in Dickeya chrysanthemi EC16 Table S5. Annotation of frederiksenibactin gene cluster in Yersinia frederiksenii ATCC 33641 Table S6. Complete genomes with a putative (DHB^LLys^LSer)₃ siderophore Figure S7. HPLC of the MeOH XAD-4 extract from the supernatant of a Y. frederiksenii ATCC 33641 culture and ESI-MS overlays of peaks 1 and 2 Figure S8. HR-ESI-MS (a) and ESI-MSMS (b) of frederiksenibactin Figure S9. HPLC chromatograms of FDAA-derivatized frederiksenibactin hydrolysate Figure S10. ¹H NMR of frederiksenibactin (full spectrum) **Figure S11**. ¹H NMR of frederiksenibactin (expansion of 1.2 ppm - 5.2 ppm region) **Figure S12**. ¹H NMR of frederiksenibactin (expansion of 6.4 ppm – 12 ppm region) **Figure S13**. ¹³C NMR of frederiksenibactin **Figure S14.** ¹H-¹³C HMBC of frederiksenibactin Table S7. NMR data for frederiksenibactin **Table S8.** Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^LLys^LSer)₃] **Table S9.** Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^DLys^DSer)₃] **Table S10.** Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^LLys^DSer)₃]

Table S11. Optimized Cartesian coordinates (Å) of Δ-Fe(III)-[(DHB^DLys^LSer)₃]

Figure S1. Structures of select triscatechol siderophores

Scheme S1. Synthetic scheme for cyclic (DHB^{L/D}Lys^{L/D}Ser)₃ diastereomers.

Figure S2: ¹H NMR of cyclic (DHB^LLys^LSer)₃ in (CD₃)₂SO.

Figure S3. ¹³C NMR of cyclic (DHB^LLys^LSer)₃ in (CD₃)₂SO.

Figure S4. ¹H-¹³C HMBC NMR of cyclic (DHB^LLys^LSer)₃ in (CD₃)₂SO.

	(DHB ^L Lys ^L Ser)₃						
Position	δ _c , type	δ _H (<i>J</i> in Hz)	НМВС				
1 (H _A)	63.1, CH ₂	4.43, t (10.6)	2, 3				
1 (H _B)	63.1, CH ₂	4.14, dd (10.8, 6.2)	2, 3				
2	50.8 <i>,</i> CH	4.64, ddd (10.1, 7.2, 4.7)	1, 3				
3	169.5 <i>,</i> C						
4	171.6, C						
5	52.6, CH	4.53, td (8.5, 4.8)	4, 6, 7, 10				
6	31.1, CH ₂	1.75, m	4, 5, 7, 8				
7	22.5, CH ₂	1.37, m	5, 6, 8, 9				
8	26.7, CH ₂	1.55, m	6, 7, 9				
9	38.7, CH ₂	2.77, m	8				
10	168.9 <i>,</i> C						
11	115.9, C						
12	118.4, CH	7.40, d (8.2)	10, 11, 13, 16				
13	118.2, CH	6.70, t (7.9)	10, 11, 12, 15				
14	118.9, CH	6.95 <i>,</i> d (7.8)	12, 15, 16				
15	146.1, C						
16	148.6, C						
N1		8.77, d (7.2)	1, 2, 4				
N2		8.80, d (7.6)	5, 6, 10				
N3		7.81, s	8, 9				
OH (meta)		9.40, s	-				
OH (ortho)		11.91, s	-				

Table S1. NMR data for cyclic $(DHB^{L}Lys^{L}Ser)_{3}$ in $(CD_{3})_{2}SO$. HMBC correlations are from proton(s) stated to the indicated carbon.

Table S2. NMR data for cyclic $(DHB^{D}Lys^{L}Ser)_{3}$ in $(CD_{3})_{2}SO$. HMBC correlations are from proton(s) stated to the indicated carbon. Indicated positions correspond to the analogous positions in $(DHB^{L}Lys^{L}Ser)_{3}$ (Table S1).

	(DHB ^D Lys ^L Ser)₃							
Position	δ _c , type	НМВС						
1 (H _A)	63.1, CH ₂	4.44, t (10.5)	2, 3					
1 (H _B)	63.1, CH ₂	4.12, dd (10.8, 4.7)	2, 3					
2	50.7, CH	4.65, ddd (10.2, 7.5, 4.7)	1, 3					
3	169.5 <i>,</i> C							
4	171.7, C							
5	52.5, CH	4.55, td (8.4, 5.2)	4, 6, 7, 10					
6	31.3, CH ₂	1.75, m	4, 5, 7, 8					
7	22.5, CH ₂	1.34, m	5, 6, 8, 9					
8	26.7, CH₂	1.54, m	6, 7, 9					
9	38.7, CH ₂	2.77, s	-					
10	168.7, C							
11	115.9, C							
			10, 11, 14,					
12	118.5, CH	7.41, d (8.2)	16					
			10, 11, 14,					
13	118.2, CH	6.70, t (7.9)	15					
14	118.8, CH	6.94 <i>,</i> d (7.9)	12, 16					
15	146.1, C							
16	148.5, C							
N1		8.80, d (overlapping with N2)	1, 2, 4					
N2		8.80, d (overlapping with N1)	5, 6, 10					
N3		7.78, s	-					
ОН								
(meta)		9.44, s	-					
ОН								
(ortho)		11.86, s	11, 15					

Figure S5. HPLC chromatograms of (DHB^LLys^LSer)₃ and (DHB^LLys^DSer)₃ hydrolysate derivatized with FDAA (light blue trace) overlayed with FDAA-derivatized amino acid standards (black trace). Derivatized hydrolysis products were separated by HPLC on a YMC 4.6 x 250 mm C18-A column using a gradient from 10% CH₃CN in TEAP buffer (50 mM, pH 3.00) to 40% CH₃CN in TEAP over 60 min. Asterisks indicate the peaks that increase upon addition of the designated amino acid standard.

Figure S6. HPLC chromatograms of (DHB^DLys^LSer)₃ and (DHB^DLys^DSer)₃ hydrolysate derivatized with FDAA (light blue trace) overlayed with FDAA-derivatized amino acid standards (black trace). Derivatized hydrolysis products were separated by HPLC on a YMC 4.6 x 250 mm C18-A column using a gradient from 10% CH₃CN in TEAP buffer (50 mM, pH 3.00) to 40% CH₃CN in TEAP over 60 min. Asterisks indicate the peaks that increase upon addition of the designated amino acid standard.

Statistic	Data for Dickeya chrysanthemi EC16
Total filtered read length (bp)	865,361,754
Assembly size (bp)	4,685,942
Coverage (×)	185
No. of scaffolds	70
No. of contigs	76
Scaffold N ₅₀ (bp)	190,138
Contig N ₅₀ (bp)	186,974
G+C content (%)	54.36
No. of identified genes (total)	4,205
No. of identified CDSs (total)	4,136
No. of rRNAs (5S, 16S, 23S)	1, 2, 1
No. of predicted tRNAs	58
No. of predicted ncRNAs	7
Genome accession no.	JAFCAF000000000
SRA accession no.	SRR13439815

 Table S3. Sequencing and assembly statistics for Dickeya chrysanthemi EC16 (=ATCC 11662)

Table S4. Annotation of cyclic trichrysobactin gene cluster in *Dickeya chrysanthemi* EC16, including predicted protein functions based on sequence analysis using Pfam and BLAST. The sequence similarity of each gene to its corresponding homolog from the chrysobactin locus (*Dickeya dadantii* 3937) is indicated.

			Homologs	in <i>D. dadantii</i> 3937	
Name		Locus tag	%ID %SI	M Locus tag	Accession
cbsA	2,3-dihydro-2,3-DHB dehydrogenase	JJO56_07665	90	92 DDA3937_RS14720	WP_013318793
cbsB	Isochorismatase / Aryl carrier protein	JJO56_07670	95	96 DDA3937_RS14715	WP_013318792
cbsE	2,3-DHB–AMP ligase	JJO56_07675	92	95 DDA3937_RS14710	WP_013318791
cbsC	Isochorismate synthase	JJO56_07680	92	94 DDA3937_RS14705	WP_013318790
fctA	TonB-dependent receptor	JJO56_07685	81	88 DDA3937_RS14700	WP_013318789
cbsH	Esterase	JJO56_07690	88	92 DDA3937_RS14695	WP_033111969
cbsI	MbtH-like protein	JJO56_07695	86	90 DDA3937_RS14690	WP_013318786
cbsF	NRPS	JJO56_07700	91	94 DDA3937_RS14685	WP_033112377
fctC	ABC ATP-binding component	JJO56_07705	96	96 DDA3937_RS14675	WP_033111968
fctG	ABC permease	JJO56_07710	90	94 DDA3937_RS14670	WP_033112376
fctD	ABC permease	JJO56_07715	92	95 DDA3937_RS14665	WP_013318781
cbsS	MFS transporter	JJO56_07720	96	97 DDA3937_RS14660	WP_013318779
fctB	ABC periplasmic binding protein	JJO56 07725	84	90 DDA3937 RS14655	WP 033111967

Table S5. Annotation of frederiksenibactin gene cluster of *Yersinia frederiksenii* ATCC 33641. The predicted protein functions based on sequence analysis using Pfam and BLAST are included. The sequence similarity of each gene to its corresponding homolog in the cyclic trichrysobactin locus (*D. chrysanthemi* EC16, Table S2) is indicated.

				Homologs in <i>D.</i> chrysanthemi EC16		
Name	Putative function	Locus tag	Accession	Name	%ID	%SIM
ffuA	TonB-dependent receptor	DJ58_RS13925	WP_004709694	fctA	54	71
freH	Esterase	DJ58_RS13920	WP_080544642	cbsH	49	62
frel	MbtH-like protein	DJ58_RS13915	WP_032911217	cbsI	63	76
freF	NRPS	DJ58_RS13910	WP_050504533	cbsF	58	71
ffuC	ABC ATP-binding component	DJ58_RS13905	WP_080544678	fctC	71	84
ffuG	ABC permease	DJ58_RS13900	WP_032911802	fctG	63	77
ffuD	ABC permease	DJ58_RS13895	WP_004711942	fctD	59	77
freS	MFS transporter	DJ58_RS13890	WP_004711941	cbsS	64	77
ffuB	ABC periplasmic binding protein	DJ58_RS13885	WP_004711939	fctB	54	72
freC	Isochorismate synthase	DJ58_RS13880	WP_004711937	cbsC	47	62
freE	2,3-DHB–AMP ligase	DJ58_RS13875	WP_032911801	cbsE	64	74
. -	Isochorismatase / Aryl carrier					
freB	protein	DJ58_RS13870	WP_004711933	cbsB	58	74
freA	dehydrogenase	DJ58_RS13865	WP_032911814	cbsA	65	77

Strain	RefSeq Accession
Yersinia enterocolitica LC20	GCF_000597945.1
Y. kristensenii Y231	GCF_000834865.1
Y. frederiksenii Y225	GCF_000834215.1
Y. frederiksenii FDAARGOS_417	GCF_002591095.1
Y. frederiksenii FDAARGOS_418	GCF_002591195.1
Y. massiliensis GTA	GCF_003048255.1
Y. hibernica CFS1934	GCF_004124235.1

Table S6. Complete genomes with a putative $(DHB^{L}Lys^{L}Ser)_{3}$ siderophore.

Figure S7. HPLC of the MeOH XAD-4 extract from the supernatant of a *Y. frederiksenii* ATCC 33641 culture. ESI-MS of isolated peaks **1** and **2** corresponding to the related monocatechol and dicatechol fragments of frederiksenibactin, respectively. MS data for peak **3** corresponding to frederiksenibactin shown in Figure S8.

Figure S8. (a) HR-ESI-MS of frederiksenibactin. Observed m/z 1072.4403 [M+H]¹⁺. Calculated exact mass for frederiksenibactin [M+H]¹⁺ is 1072.4475 (C₄₈H₆₆N₉O₁₉). (b) ESI-MSMS of frederiksenibactin.

Figure S9. HPLC chromatograms of frederiksenibactin hydrolysate derivatized with FDAA (light blue trace) overlayed with FDAA-derivatized amino acid standards (black traces). Derivatized hydrolysis products were separated by HPLC on a YMC 4.6 x 250 mm C18-AQ column using a gradient from 10% CH₃CN in ddH₂O (0.05% trifluoroacetic acid) to 40% CH₃CN in ddH₂O (0.05% trifluoroacetic acid) over 60 min. Asterisks indicate the peaks that increase upon addition of the designated amino acid standard.

Figure S10. ¹H NMR of frederiksenibactin, FSB, in (CD₃)₂SO.

Figure S11. ¹H NMR of frederiksenibactin (expansion of 1.2 ppm – 5.2 ppm region) in $(CD_3)_2SO$.

Figure S12. ¹H NMR of frederiksenibactin (expansion of 6.4 ppm – 12.0 ppm region) in $(CD_3)_2SO$.

Figure S13. ¹³C NMR of frederiksenibactin in $(CD_3)_2$ SO. TFA observed in all ¹³C NMR spectra following HPLC purification, where it is used as an ion-pairing agent.

Figure S14. $^{1}H^{-13}C$ HMBC of frederiksenibactin (FSB) in (CD₃)₂SO.

		Frederiksenibactin (1)	
Position	δ _c , type	δ _H (<i>J</i> in Hz)	НМВС
1	168.7, C		
2	115.9 <i>,</i> C		
3	118.5, CH	7.40, m	1, 2, 5, 6, 7
4	118.1, CH	6.70, td (7.9, 2.2)	3, 5, 6, 7
5	118.8, CH	6.94, d (7.8)	3, 6, 7
6	146.1, C		
7	148.5 <i>,</i> C		
8	171.7, C		
8'	171.9, C		
8"	171.8, C		
9	52.5, CH	4.65 <i>,</i> m	8, 10, 11
9' / 9"	52.6, CH	4.50 - 4.60, m	8', 8", 10, 11
10 (H _A)	31.2, CH ₂	1.75, m	9, 11, 12
10 (H _B)	31.2, CH ₂	1.80, m	9, 11, 12
11	22.4, CH ₂	1.39, m	9, 10, 12, 13
12	26.7, CH ₂	1.55, m	10, 11, 13
13	38.7, CH ₂	2.77 <i>,</i> m	
14	170.5, C		
15	51.0, CH	4.59, m	14, 16
16 (H _A)	64.0, CH ₂	4.28, dd(11.1, 6.4)	14, 15, 17
16 (H _B)	64.0, CH ₂	4.40, m	15, 17
14'	168.7, C		
15'	51.1, CH	4.69, td (7.2, 4.6)	
16' (H _A)	63.2, CH ₂	4.23, dd (11.4, 7.0)	17, 18, 20
16' (H _Β)	63.2, CH ₂	4.47, dd (11.4, 4.3)	17, 20
14"	170.0, C		
15″	54.7 <i>,</i> CH	4.41, m	20, 22
16" (H _A)	61.1, CH	3.66, dd (11.4, 4.0)	20
16" (Н _в)	61.1, CH	3.77, dd (11.3, 5.3)	20
N1		8.57, d (7.7)	8, 15
N1'		8.61, d (7.9)	8′, 18
N1"		8.45, d (8.4)	8", 21
N2		8.75, m	1, 9-9″
N3		7.73, br s	12, 13
01		13.13, br s	
02		5.13, br s	
OH (meta)		9.38, br s	
OH (ortho)		11.82 - 11.92, s	2, 6, 7

Table S7. NMR data for frederiksenibactin in $(CD_3)_2SO$. HMBC correlations are from proton(s) stated to the indicated carbon.

Table S8. Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^LLys^LSer)₃].

0	-1 732100	0 793600	5 333300	н	-5 268300	-3 093900	0 464700
0	1.752100	0.799000	5.555500	11	0.05000	2.247100	0.101/00
0	-0.385900	-2.339000	5.108900	Н	-2.253300	-3.34/100	0.859000
0	1.583300	0.399500	5.420400	H	-3.399400	-4.166100	1.932300
С	-1.791800	0.807200	4.132000	С	1,909800	4.587700	-0.109800
c	0 222700	2 275600	2 070000	° C	0 414500	1 202400	0 017000
C	-0.223700	-2.2/3000	3.9/0000	C	0.414500	4.202400	0.01/800
С	1.629100	0.607700	4.236700	H	2.203800	4.645600	-1.161600
С	-2.437800	-1.527400	3.625600	Н	2.125000	5.561300	0.341400
Ċ	2 166200	-1 645600	3 771000	C	-0 166400	4 906500	1 295200
C	2.100200	-1.043000	3.//1000	C	-0.100400	4.906500	1.205200
С	-0.057800	2.403900	3.976700	H	-0.115000	4.653400	-0.868900
Н	-2.461700	-1.735000	4.695100	Н	0.239800	3.198500	0.033800
ц	-3 153200	-2 164000	3 110400	C	-1 611200	1 527400	1 532500
11	5.155200	2.104000	3.110400	C	1.011200	4.527400	1.552500
Н	2.245000	-1.641600	4.857900	Н	0.424200	4.613000	2.152000
Н	3.122800	-1.919900	3.332800	Н	-0.078100	5.998600	1.231200
н	-0 220200	2 388000	5 054000	н	-1 786600	3 474000	1 302600
	0.220200	2.000000	2 500400	11	1 001200	4 711500	2.502000
н	-0.241600	3.403200	3.589400	H	-1.921300	4./11500	2.561/00
0	1.861200	-0.319400	3.301800	С	-0.523000	-4.224900	-1.100400
0	-0.999800	1.527100	3.331400	0	-0.829600	-5.325400	-0.589800
0	1 126900	1 040700	2 000000	° C	4 011500	1 710000	0 557000
0	-1.136800	-1.849/00	3.099800	C	4.011500	1./19800	-0.55/800
С	1.380700	1.996600	3.682600	0	5.059200	1.962300	0.082500
Н	1.987700	2.661800	4.305600	С	-3.419700	2.680300	-0.746100
C	1 102500	2 654100	2 252100	0	4 219500	2 424400	0 122100
C	1.105500	-2.034100	3.332100	0	-4.210500	5.424400	-0.133100
Н	1.396900	-3.583400	3.850800	С	-2.481100	3.203300	-1.750100
С	-2.790800	-0.063300	3.395800	С	-1.494400	2.389200	-2.336500
н	-3 736100	0 077900	3 930100	C	-2 653400	4 527900	-2 221400
11	3.750100	0.077500	1.010000	C	2.000400	4.527500	2.221900
Ν	1.072900	-2.938500	1.940900	С	-0.722700	2.885800	-3.446000
Ν	-3.043800	0.285000	2.021900	С	-1.842700	5.029300	-3.218100
N	1 795000	2 215500	2 321200	н	-3 475800	5 119100	-1 832300
	1.654800	1 501000	2.021200		0.075400	0.110100	1.002000
Н	1.654/00	1.201800	1.620300	C	-0.8/5400	4.212200	-3.831300
Н	0.527700	-2.365400	1.312800	H	-1.982400	6.047600	-3.566900
Н	-2.282600	0.534900	1.406800	н	-0.268200	4.595000	-4.647000
	2 476000	2 240100	2 001000		2 000700	0 702500	1 600000
C	2.4/6900	3.340100	2.001800	C	3.989700	0./82500	-1.690800
0	2.746500	4.208900	2.823200	С	2.788200	0.405900	-2.319400
С	2.838200	3.547800	0.539200	С	5,221100	0.339300	-2.232900
U	3 951700	3 955000	0 559300	C	2 927700	-0 368000	-3 533400
11	5.051/00	5.555000	0.550500	C	2.027700	0.300000	5.555400
N	2.854200	2.344300	-0.253400	C	5.245900	-0.484600	-3.338600
Н	2.048700	2.072000	-0.828600	H	6.146400	0.710300	-1.804400
C	1 685000	-4 048700	1 466600	C	4 051500	-0 842200	-3 989900
~	1.0000000	1.010/00	2.100000		1.001000	0.012200	2 740100
0	2.299100	-4.828400	2.185500	Н	6.196500	-0.821400	-3./40100
С	1.666600	-4.264800	-0.038500	H	4.075700	-1.454900	-4.886800
Н	1,517300	-5.339600	-0.163700	С	-1.337300	-3.599100	-2.153200
NT	0 604300	_3 500500	-0 730900	C	-1 069200	-2 301000	-2 625500
IN	0.004300	-3.380300	-0.730800	C	-1.008200	-2.301000	-2.023300
Н	0.764000	-2.680000	-1.196700	С	-2.339900	-4.371300	-2.789600
С	-4.319600	0.377200	1.577300	С	-1.762200	-1.803100	-3.784900
\cap	-5 289900	0 154700	2 291800	C	-3 070800	-3 848600	-3 835900
ä	3.205500	0.101/00	2.291000		0.470500	5.010000	0.0000000
C	-4.525/00	0.080100	0.102200	H	-2.4/8500	-5.403100	-2.484100
Н	-5.383100	1.362600	0.077300	С	-2.786300	-2.564500	-4.334800
Ν	-3.415500	1.347400	-0.534600	Н	-3.839700	-4,449700	-4.311000
 TT	2 710000	0 000000	1 076400		2 222100	2 171000	E 100200
п	-2.718800	0.023300	-1.078400	п	-3.332100	-2.1/1000	-3.100200
С	3.022100	-3.886500	-0.658900	0	-1.250000	1.158800	-1.969600
С	3.502200	-2.468000	-0.338300	0	0.076900	2.021400	-4.030200
Н	2,913400	-4.022700	-1.738600	0	1,601500	0.755800	-1.897900
	2.919100	1.022700	1.750000	0	1.001000	0.755600	1 1 2 7 1 0 0
Н	3./65800	-4.611600	-0.313900	0	1.6/6200	-0.560600	-4.13/100
С	4.350400	-2.450000	0.932100	0	-0.172100	-1.505000	-2.104900
Н	4.074300	-2.071300	-1.186500	0	-1.354100	-0.644300	-4.251900
	2 (10000	1 700400	0.010700		2 664500	4 4 6 0 0 0 0	0 0 0 4 0 0 0
н	2.648900	-1./88400	-0.213700	н	-3.664500	-4.408800	-0.964800
С	4.744600	-1.054400	1.368400	H	-2.470400	-5.297500	-0.196300
Н	3.813800	-2.932500	1.748600	Н	-4.106900	-5.516600	0.240800
н	5 252400	-3 055900	0 780500	ц	5 792200	-0 891700	-0 423500
11	2.232300	0.050000	1 042000	11	5.752200	0.001400	0.42000
н	3.912900	-0.353/00	1.243000	Н	5.812300	0.501400	0.450600
Н	5.073800	-1.018200	2.407500	Н	6.775300	-0.833400	0.908300
С	-4.891300	-0.588600	-0.676500	N	5,871300	-0.546000	0.538500
č	2 000000	1 7//700	0 510000	11	2 404000	1 020000	0.042400
C	-3.900200	-1./44/00	-0.518000	N	-3.404200	-4.030800	-0.043400
Η	-4.975500	-0.292300	-1.725800	Н	-3.379000	4.760300	0.426300
Н	-5.884800	-0.911000	-0.349500	Н	-2.762300	6.216100	1.076500
C	-4 288000	-2 640400	0 656700	ц	-2 073200	5 199700	-0 249400
		2.010100	1 447100	11	2.0/3200	5.30100	0.270700
н	-3.801000	-2.32/300	-1.44/100	N	-2.51/300	J.321200	0.05/100
Н	-2.881200	-1.364800	-0.365900	Fe	0.100800	0.212000	-3.175300
С	-3.273800	-3.728100	0.941700				
н	-4 /10700	-2 0/1200	1 557500				
11		2.041200	T.00/000				

Table S9. Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^DLys^DSer)₃].

Ν	-2.494900	-2.457300	-0.621000	Н	1.816100	5.008500	-2.825500
Ν	-2.547800	0.674600	2.491100	С	4.666000	4.015000	-1.229000
Н	-2.203000	-0.011500	1.835100	Н	4.004300	5.891900	-2.065500
н	-2 162000	-1 536900	-0.870600	Н	5 616600	4 411000	-0 881800
Ċ	-1 866300	1 866900	2 477400	C	2 195300	0 305700	3 684700
0	-2 336200	2 879600	2 953/00	C	3 132300	0.254600	2 629500
ĉ	-0 563200	1 840400	1 671900	C	2 572900	-0 164600	4 960700
	-0.303200	1 401200	1.0/1900	C	2.372900	-0.104000	2 925200
H	-0.850400	1.401300	0.707300	C	4.412/00	-0.359300	2.825300
IN	0.465800	0.959400	2.1/6900	C	3.821900	-0./18800	5.156/00
Н	1.265/00	0.846400	1.52/600	Н	1.862300	-0.088200	5.///000
С	-1.821000	-3.035900	0.425800	С	4.738900	-0.827900	4.092600
0	-2.284600	-3.964000	1.055400	Н	4.101900	-1.086500	6.139100
С	-0.525900	-2.317300	0.809200	Н	5.710600	-1.288200	4.251000
Н	-0.822600	-1.267200	0.948500	С	2.209100	-3.226500	-1.572700
Ν	0.478200	-2.270700	-0.230800	С	3.145500	-2.288400	-1.086700
Н	1.268900	-1.643000	-0.007700	С	2.579600	-4.080800	-2.634000
С	-1.827700	1.155200	-2.908700	С	4.418000	-2.134300	-1.728500
0	-2.323400	1.085200	-4.014200	С	3.820200	-3.955400	-3.226200
С	-0.528200	0.451000	-2.516000	Н	1.870800	-4.827700	-2.975800
Н	-0.803400	-0.185900	-1.665300	С	4.736100	-2.979000	-2.785600
N	0.498300	1.321900	-1.992700	Н	4.094900	-4.608500	-4.048900
Н	1,287000	0.829900	-1.535000	Н	5,701100	-2.872300	-3.274200
Ċ	0 045500	-2 783300	2 144600	0	2 922700	0 885300	-1 275700
c	-0 808200	-2 201500	2.144000	0	5 144300	1 913200	_0 372200
11	1 049000	2.291300	2 222000	0	2 016100	1.013200	-0.372200
п	1.040900	-2.330800	2.232000	0	Z.910100	0.730800	1.430900
н	0.139/00	-3.8/3200	2.155600	0	5.181800	-0.440100	1.755200
C	-0.145000	-2.458300	4.654/00	0	2.935200	-1.50//00	-0.060500
Н	-0.982500	-1.220300	3.135000	0	5.188800	-1.172300	-1.255700
Н	-1.780900	-2.796800	3.283400	Н	-2.197700	4.240000	-1.965900
С	-1.028300	-1.995800	5.797900	Н	-2.093000	5.471700	-3.053000
Η	0.097400	-3.509900	4.838000	Н	-0.785500	4.441000	-2.758600
Н	0.798300	-1.903700	4.665300	Н	-2.226400	-3.859500	-2.728100
Н	-1.905200	-2.635800	5.907800	Н	-2.079200	-5.430200	-3.193600
Н	-0.479600	-1.979500	6.739700	Н	-0.784800	-4.597300	-2.494900
С	-0.020400	-0.500700	-3.593600	Н	-2.205600	-0.579500	4.802900
С	-0.899600	-1.741600	-3.653500	Н	-2.009700	-0.251300	6.401900
Н	0.997000	-0.796200	-3.314100	Н	-0.785500	0.070800	5.284300
Н	0.022400	0.008100	-4.561300	N	-1.536900	-0.608900	5.573400
C	-0.292400	-2.870400	-4.469300	N	-1.584800	4,975500	-2.322400
H	-1 021700	-2 094000	-2 622200	N	-1 596400	-4 533500	-3 164600
и П	_1 892900	_1 /79900	-1 035800	N	-2 472300	1 761900	-1 858500
C	_1 197900	-4 093300	-4 531700	1N LI	-2 116000	1 509900	-0 947300
U U	_0 111000	-2 545400	-5 400000	11 C	-4 650700	1.500000	-2 121400
п	-0.111900	-2.545400	-3.499000	C	-4.030700	0.574200	-2.121400
п	0.070300	-3.143100	-4.041100	C	-4.412400	2.34/300	-0.831000
H	-2.106500	-3.890300	-5.085300	0	-5.788400	0.515500	-2.499900
Н	-0.675800	-4.937800	-4.993500	0	-3.899700	-0.473400	-1.778600
С	-0.031300	3.237800	1.366000	Н	-5.502600	2.565900	-0.608200
С	-0.880600	3.916100	0.301600	Н	-4.027300	3.564100	-0.531800
Н	0.990100	3.120500	0.986400	0	-3.895400	1.774700	0.461600
Η	0.008200	3.835500	2.281700	С	-4.449200	-1.793500	-1.887500
С	-0.268600	5.204100	-0.223000	С	-4.663200	1.598400	1.538800
Н	-0.962200	3.215100	-0.535400	Н	-5.539500	-1.760000	-1.889400
Н	-1.891000	4.095700	0.688100	Н	-4.094600	-2.222800	-2.827800
С	-1.158700	5.904500	-1.232800	С	-3.933700	-2.591200	-0.699300
Н	-0.093600	5.908400	0.596700	0	-5.774200	2.034300	1.671700
Н	0.704400	4.982500	-0.673900	C	-3.991900	0.708900	2.586600
Н	-2.072300	6.276800	-0.765600	C	-4.679100	-2.139600	0.560500
н	-0 640400	6 736200	-1 711500	Н	-4 211400	-3 637300	-0 846400
C	0.868400	-3 330200	_0 979200	и Ц	-1 300800	1 110300	3 55/200
0	0 110600	-4 3030200	-1 170/00	0	-5 700/00	-2 50/700	0 820700
C	0.0110000		7.110400	0	-3 073000	_1 257600	1 260000
	0.843000	0.044300	3.409000	U	-3.9/3800	-1.23/000	1.200000
U C	0.066900	1.134600	4.403/00	C	-4.552/00	-0.69/600	2.456900
C	0.860100	2.518100	-2.507200	Н	-5.640900	-0.675900	2.383100
0	0.096000	3.165300	-3.255700	Н	-4.258400	-1.315700	3.306400
С	2.180000	3.016200	-2.090300	С	-3.910800	1.897100	-1.910200
С	3.115700	2.162300	-1.470800	Н	-4.199600	2.534400	-2.748700
С	2.527300	4.365100	-2.318400	Fe	4.257500	0.054900	0.038700
С	4.369000	2.676000	-1.002100				
C	3.747600	4.851200	-1.893800				

Table S10. Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^LLys^DSer)₃].

Ν	-1.226600	2,549900	2,237700	Н	5,278400	-2.955300	-2.047700
N	-1 607900	-2 331700	2 254200	 C	2 864100	-2 983600	-4 456500
11	1 442100	1 560700	1 621000	U U	4 620000	1 195600	1.100000
п 11	-1.443100	-1.300700	1.021000	п	4.020900	-4.103000	-4.093000
н	-0.649900	2.009200	1.60/900	Н	2.598000	-3.503000	-5.3/3300
С	-1.234500	-3.571400	1.846100	С	-3.201600	-2.270300	-2.096100
0	-1.167100	-4.522200	2.610500	С	-2.286300	-1.464000	-2.810000
С	-0.807100	-3.694100	0.396800	С	-4.521900	-2.401700	-2.579600
Н	-0.937500	-4.747800	0.129200	С	-2.685900	-0.823400	-4.031800
Ν	-1.522100	-2.835700	-0.510500	С	-4,914200	-1.751400	-3.730900
н	-0 981700	-2 216200	-1 139500	Н	-5 210300	-3 046200	-2 043400
C	-2 487400	2 848200	1 832400	C III	-1 000300	-0.965500	-4 460400
0	-2.407400	2.040200	1.032400	C II	-4.000300	-0.905500	-4.400400
0	-3.340400	3.2/3000	2.596800	п	-5.932200	-1.85/600	-4.092900
С	-2.811100	2.535000	0.384/00	Н	-4.310900	-0.4/2500	-5.3//800
Н	-3.656300	3.177200	0.116400	С	-0.363700	3.894000	-2.095100
Ν	-1.709600	2.719900	-0.523000	С	-0.113300	2.699400	-2.807200
Н	-1.438300	1.940600	-1.147500	С	0.175800	5.106600	-2.577800
С	3.713600	0.727600	1.843200	С	0.646600	2.729400	-4.025900
0	4.499300	1.262600	2.610700	C	0.937800	5.125800	-3.727200
Ĉ	3 608700	1 162200	0 30/300	ц Ц	-0 047000	6 024300	-2 043900
11	4 597500	1 575000	0.120200	11 C	1 172000	2 042200	2.045300
п	4.30/300	1.575000	0.129200	C	1.1/2900	3.942300	-4.434400
Ν	3.224900	0.115100	-0.515700	Н	1.348900	6.063300	-4.089000
Н	2.414400	0.266300	-1.141000	Н	1.758100	3.968100	-5.369800
С	-3.191800	1.058500	0.260400	0	1.608900	-0.289200	-2.448600
С	-4.353700	0.554200	1.097800	0	1.002400	-1.471100	-4.653200
Н	-2.296800	0.467600	0.496200	0	-1.041700	-1.260100	-2.454600
Н	-3.409200	0.872700	-0.798200	0	-1.749300	-0.139300	-4.660300
C	-4 545400	-0 908300	0 730100	0	-0 555500	1 517600	-2 454000
11	4 120600	0.500500	2 164200	0	0.5555500	1 576000	4 652200
н	-4.138600	0.6/5800	2.164300	0	0.781500	1.5/6900	-4.653200
н	-5.262300	1.126600	0.880900	Н	6.299200	-3./02900	1.340900
С	-5.628400	-1.645100	1.485100	H	5.623600	-4.230300	-0.060700
Н	-4.758800	-0.967300	-0.343600	Н	-0.015100	7.250300	1.436600
Н	-3.603000	-1.442300	0.887400	Н	0.784300	7.038900	0.019000
Н	-5.329400	-1.884200	2.506900	Н	-6.329300	-3.625800	1.391000
Н	-6.568600	-1.092600	1,515800	Н	-6.500100	-2.792900	-0.014700
C	2 518200	2 227800	0 265800	N	-5 882400	-2 941500	0 782700
c	2.510200	2.227000	1 006000	IN	5.002400	2.041000	0.702700
C	2.003000	1 740200	1.096900	IN	5.475500	-3.626600	0.740700
н	1.559800	1.749300	0.506300	IN	0.369000	6.546000	0.808600
Н	2.464300	2.504200	-0.794000	N	2.830000	-0.220900	2.247100
С	1.493500	4.387700	0.726000	Н	2.077600	-0.456200	1.614900
Н	2.661700	3.248000	2.164700	С	1.869000	0.702400	4.341100
Н	3.613700	3.988500	0.877800	С	2.014600	-1.762000	3.984900
С	1.395900	5.692000	1.483800	0	1.837800	0.829500	5.535500
Н	1,549700	4,603500	-0.347300	0	1,241400	1,493200	3,462200
н	0 559200	3 839000	0 881400	ч	2 010300	-1 912100	5 064500
11	1 067200	5.035000	2 512000	11	2.010300	2 550200	2 404200
п	1.007300	5.545200	2.313900	П	2.373400	-2.336200	3.494300
н	2.33/000	6.244100	1.492400	0	0.6/5800	-1.825900	3.4/1500
С	0.660000	-3.279300	0.268200	С	0.519600	2.625900	3.969200
С	1.683200	-4.031000	1.100200	С	-0.328000	-1.950200	4.348100
Н	0.720600	-2.208900	0.505400	Н	0.655700	2.705800	5.047700
Н	0.926700	-3.372700	-0.791400	Н	0.926300	3.505400	3.469300
С	3.045100	-3.480600	0.708600	С	-0.954000	2.495600	3.646600
н	1 483300	-3 895000	2 167800	0	-0 208000	-1 959800	5 543700
ц	1 631100	-5 105800	0 894700	c	-1 686700	-2 068000	3 663300
	1.031100	1 040000	1 466200	C	1 52000	1 2000000	1 242600
C	4.22/900	-4.040000	1.400300	C	-1.536200	1.269000	4.342600
Н	3.192400	-3.658800	-0.363400	Н	-1.448900	3.349900	4.117700
Н	3.043700	-2.394500	0.841900	H	-2.169900	-2.926100	4.139400
Н	4.293700	-3.641800	2.480000	0	-1.608800	1.180300	5.538800
Н	4.216500	-5.129900	1.517500	0	-1.927700	0.330500	3.472600
С	-1.228400	3.914900	-0.904600	С	-2.538300	-0.859800	3.992800
0	-1.519600	4.957800	-0.274900	H	-2.660700	-0.778300	5.072800
Ċ	-2 794200	-3.024600	-0.899900	ц	-3 510200	-0.951100	3 507000
0	-3 553000	_3 707000	_0 272500	11	2 640700	-0 400500	3 666600
C	-3.333900	-3.191800	-0.2/2000		2.040/00	-0.422300	00000.0
C	4.025/00	-0.893400	-0.899500	Н	3.626000	-0.419100	4.131/00
0	5.073200	-1.162400	-0.267600	Fe	0.007600	-0.011100	-3.699400
С	3.581400	-1.628800	-2.094000	Н	5.386900	-2.637800	0.379700
С	2.419100	-1.254900	-2.805600	Н	-0.420900	5.955500	0.416900
С	4.369100	-2.695700	-2.579100	Н	-4.980200	-3.345900	0.397800
С	2.070400	-1.926500	-4.026600				
C	4 008800	-3.365900	-3 729400				

Table S11. Optimized Cartesian coordinates (Å) of Δ -Fe(III)-[(DHB^DLys^LSer)₃].

0	2.708200	-0.681000	5.512500	Н	-0.021500	3.464500	1.525400
0	-0.777000	2.348600	5.647900	Н	-0.332200	5.891900	2.140400
0	-1.859900	-1.974000	5.567700	Н	-0.872600	6.193200	0.473900
C	2,231900	-0.365600	4,454600	С	2.005500	-3.755900	-0.251000
Ċ	-0.803700	2.001500	4.497100	Ċ	3.291000	-3.608000	0.561700
C	-1 444100	-1 767400	4 458800	н	2 186500	-3 402600	-1 272200
Ĉ	1 564700	2 028000	4 314200	н	1 704700	-4 805800	-0 304700
c	-2 50000	0 306600	4 203600		3 737700	-2 155000	0.504700
c	-2.300000	0.300000	4.293000	C II	3.737700	-2.133000	1 500500
C	0.949800	-2.352400	4.330800	н	3.136400	-4.034800	1.560500
н	1.506100	1.990500	5.402900	Н	4.078800	-4.18/200	0.066/00
Н	1.904800	3.013500	3.993000	С	5.120300	-2.031100	1.282000
Н	-2.551400	0.263600	5.382800	H	3.726100	-1.685400	-0.310200
Н	-3.606700	0.126200	3.946800	Н	3.046900	-1.592500	1.317200
Н	0.933400	-2.298300	5.420500	Н	5.205500	-2.593300	2.214100
Н	1.663000	-3.111700	4.006300	Н	5.893300	-2.370700	0.590700
0	-1.731800	-0.696000	3.719900	С	-2.470300	2.788300	-1.069900
0	1.343700	-1.087200	3.772500	0	-3.179400	3.544800	-0.366900
0	0.269100	1.799300	3.731700	C	-1.145700	-3.539300	-1.044900
C	-0 439600	-2 681900	3 783900	0	-1 452100	-4 521300	-0 328800
ц	-0 665200	-3 698800	1 110700	c	3 635900	0 765900	-1 072300
	0.005200	1 ((7200	2 200000	C	1 (11000	1 007500	1.072300
C II	-2.105100	1.00/300	3.790900	0	4.644000	1.00/500	-0.370000
н	-2.842600	2.396/00	4.132600	C	3.705800	0.021100	-2.338/00
С	2.526500	0.962800	3.782600	С	2.609300	-0.019600	-3.226800
Н	3.524000	1.262800	4.108400	С	4.897200	-0.656700	-2.679600
Ν	-2.014800	1.712500	2.341100	С	2.700600	-0.755400	-4.456700
Ν	2.498800	0.881500	2.330900	С	4.981300	-1.362000	-3.862600
Ν	-0.482200	-2.620700	2.332700	Н	5.736000	-0.609100	-1.993100
Н	-0.571800	-1.691000	1.948600	С	3.888000	-1.414300	-4.751200
н	-1.164600	1.330800	1.952700	H	5.897000	-1.887600	-4.116000
н	1 734000	0 341700	1 951900	н	3 961600	-1 977300	-5 678100
C	0 3/1000	-3 473400	1 639200	C	-1 839400	-3 222600	-2 302600
0	0.341000	4 520700	2 120000	C	1 220000	2 256000	2.302000
0	0.720000	-4.520700	2.120900	C	-1.330900	-2.230900	-3.190700
C	0.84/000	-2.929900	0.301900	C	-3.028200	-3.911200	-2.630500
Н	1.230600	-1.931800	0.532100	С	-2.019900	-1.9/4300	-4.426/00
Ν	-0.178300	-2.681000	-0.682300	С	-3.690000	-3.633200	-3.808800
Н	0.057900	-1.997900	-1.420800	Н	-3.403200	-4.658900	-1.939400
С	-3.158200	1.458000	1.624200	С	-3.189900	-2.669200	-4.707800
0	-4.262700	1.662100	2.089100	Н	-4.607500	-4.160600	-4.052200
С	-2.928300	0.763500	0.283000	Н	-3.719200	-2.456200	-5.633100
Н	-2.265900	-0.076400	0.514100	С	-1.863000	3.214900	-2.338900
Ν	-2.180600	1.533500	-0.681700	С	-1.291800	2,277900	-3.227700
н	-1.710700	0.982800	-1.419400	C	-1.869000	4.583600	-2.687200
C	2 832300	2 012200	1 624500	Č	-0 713700	2 714800	-4 467600
0	2.052500	2 960500	2 005900	C	-1 310400	1 000600	-3 979100
0	0.100400	2.00000	2.00000	C II	2 210200	F 202100	1 000000
C	2.108400	2.165000	0.288000	H	-2.319300	5.292100	-1.999800
н	1.052800	2.002200	0.526600	С	-0./34400	4.0/1000	-4./69300
Ν	2.403300	1.141800	-0.686200	Н	-1.309700	6.054100	-4.137000
Н	1.691900	1.009400	-1.423900	H	-0.293200	4.409600	-5.703200
С	-4.215600	0.190900	-0.301600	0	1.467700	0.582700	-3.014300
С	-4.775300	-0.983300	0.500500	0	1.618400	-0.754400	-5.213600
Н	-3.969200	-0.156100	-1.311400	0	-0.236700	-1.569500	-2.996700
Н	-4.958600	0.988400	-0.389600	0	-1.476500	-1.048100	-5.195700
С	-3.722700	-2.059100	0.755600	0	-1.241800	0.989600	-3.006700
Н	-5.181700	-0.631800	1.453600	0	-0.187300	1.769500	-5.225100
н	-5 606500	-1 417900	-0 066100	Ц	4 762300	-0 262500	2 311800
C	-4 344100	-3 360600	1 210000	11 11	6 353700	-0.461800	1 918900
	2 140500	2 221400	1.210000	11	0.333700 E 010700	0.401000	1.010000
н	-3.148500	-2.231400	-0.162200	H	5.218/00	0.015900	0.749200
н	-3.018300	-1.726500	1.528000	н	-2.102900	4.286900	2.355000
Н	-4.977800	-3.218200	2.087400	Н	-2.734100	5.745200	1.908300
Н	-4.935800	-3.818100	0.415200	Н	-2.597300	4.482100	0.783100
С	2.246000	3.572100	-0.285100	Н	-2.710200	-3.964900	2.342800
С	1.507200	4.632400	0.530000	Н	-3.659100	-5.226100	1.864000
Н	1.819400	3.539900	-1.293800	N	-3.273600	-4.328500	1.574600
Н	3.306600	3.822800	-0.374500	Ν	5.399500	-0.600900	1.590400
С	0.048400	4.256800	0.770700	Ν	-2.141400	4.974900	1.603300
Н	2.009600	4.791500	1.488600	Fe	-0.009400	-0.006800	-4.307200
Н	1.550500	5.578800	-0.021000	н	-2,601100	-4.477400	0.767500
C	-0.769900	5,434100	1.251300				
н	-0 385000	3 866200	-0 157300				
11	0.00000	5.000200	0.10/000				