Electronic Supplementary Information for

A vanadium-based oxide-phosphatepyrophosphate framework as a 4 V electrode material for K-ion batteries

Mirai Ohara,^a A. Shahul Hameed,^{ab} Kei Kubota,^{ab} Akihiro Katogi,^a Kuniko Chihara,^{ab} Tomooki Hosaka^{ab} and Shinichi Komaba^{*ab}

^{b.} Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan.

^{a.} Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Table. S1 Refined structural parameters of pristine $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ obtained from Rietveld refinement of synchrotron XRD data.

$R_{\rm wp} = 4.48\%$											
1 st phase (KVPP): 97.2 mass%											
Space group: Pnma											
<i>a</i> = 6.97269(6) Å, <i>b</i> = 13.39710(10) Å, <i>c</i> = 14.23770(11) Å											
R _B = 2.20%, R _F = 0.92%											
Atom	site	x	У	Ζ	g	B _{iso} / Ų					
К1	8d	0.1013(2)	0.00896(15)	0.33586(13)	0.980(2)	1.5					
К2	4c	0.1215(3)	0.25	0.50876(18)	0.989(2)	1.5					
V1	8d	0.15852(18)	0.12489(10)	0.07835(10)	1	0.5					
V2	4c	0.2442(3)	0.25	0.75965(14)	1	0.5					
P1	8d	0.0383(3)	0.59833(18)	0.11843(16)	1	1.0					
P2	4c	0.360(1)	0.25	0.2407(5)	0.5	1.0					
Р3	4c	0.2796(9)	0.25	0.2617(5)	0.5	1.0					
01	8d	0.3359(6)	0.0646(3)	0.0320(3)	1	1.0					
02	4c	0.2224(8)	0.25	0.0421(4)	1	1.0					
O 3	8d	0.0290(6)	0.0115(3)	0.1449(2)	1	1.0					
04	8d	0.0506(6)	0.6161(3)	0.0111(3)	1	1.0					
05	8d	0.2745(6)	0.1544(3)	0.2066(2)	1	1.0					
06	4c	0.4596(9)	0.25	0.8023(4)	1	1.0					
07	8d	0.3527(7)	0.6445(3)	0.3392(3)	1	1.0					
08	8d	0.2190(6)	0.6443(3)	0.1622(3)	1	1.0					
09	4c	0.4061(9)	0.25	0.3462(4)	1	1.0					
010	4c	0.071(1)	0.25	0.3114(9)	0.5	1.0					

Polyhedron	Bond	Bond length / Å
	V1-01	1.618(5)
	V1-02	1.809(3)
Square pyramid V10	V1-03	2.004(5)
	V1-04	1.940(5)
	V1-05	2.057(5)
(octahedron)	V1-09	2.658(6)
	V2-06	1.622(8)
	V2-06	2.168(8)
Octahedron	V2-07	1.933(5)
V20 ₆	V2-07	1.933(5)
	V2-08	1.999(5)
	V2-08	1.999(5)

Table. S2 V-O bond lengths in the refined structure of as-prepared $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$.

Table. S3 Refined structural parameters of $K_x(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ at the charged state, which were obtained from Rietveld refinement of synchrotron XRD data of the KVPP electrode charged to 4.5 V.

 $R_{wp} = 6.94\%$

Space group: Pnma a = 7.1372(2) Å, b = 13.0433(4) Å, c = 14.1399(4) Å, V = 1316.34(7) Å³ $R_{\rm B} = 7.58\%, R_{\rm F} = 3.49\%$ $B_{\rm iso}$ / Å² Atom site Х у Ζ g 0.0308(4) К1 8d 0.1158(8)0.3424(3)0.646(2)1.6 4c K2 0.1325(12)0.25 0.5060(6) 0.507(8) 1.6 V1 8d 0.1604(4)0.1233(2)0.0791(2)1 0.5 0.2468(6) 0.7584(3)0.5 V2 4c 0.25 1 **P1** 8d 0.0299(8) 0.5985(3) 0.1221(3) 1 1.0 **P2** 0.5 4c 0.376(2)0.25 0.2465(13) 1.0 **P3** 4c 0.271(2)0.25 0.2680(12) 0.5 1.0 01 8d 0.3226(13) 0.0576(6) 0.0358(6) 1 1.0 02 0.2350(16) 0.25 0.0333(10)1.0 4c 1 0.0370(13) 03 8d 0.0177(7) 0.1468(6) 1 1.0 04 8d 0.0199(14)0.6158(6) 0.0143(6) 1 1.0 05 8d 0.2874(14)0.1572(7)0.2043(6) 1 1.0 06 4c 0.496(2) 0.25 0.8005(8) 1 1.0 07 8d 0.3520(15) 0.6423(7) 0.3381(6)1 1.0 08 8d 0.2077(14) 0.6484(7)0.1628(6)1 1.0 09 4c 0.4258(18) 0.25 0.3531(10) 1.0 1 010 4c 0.046(4) 0.25 0.313(2) 0.5 1.0

Table. S4 Refined structural parameters of $K_x(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ at the discharged state, which were obtained from Rietveld refinement of synchrotron XRD data of the KVPP electrode discharged to 2.0 V.

R_{wp} = 7.86%

Space group: Pnma

a = 6.98358(12) Å, b = 13.3883(2) Å, c = 14.2489(2) Å, V = 1332.25(3) Å³

 $R_{\rm B} = 7.90\%$, $R_{\rm F} = 4.84\%$

Atom	site	X	У	Ζ	g	B _{iso} / Ų
K1	8d	0.1031(4)	0.0083(2)	0.3366(2)	0.981(3)	1.5
К2	4c	0.1260(5)	0.25	0.5092(2)	1.007(4)	1.5
V1	8d	0.1597(3)	0.12422(18)	0.07882(17)	1	0.5
V2	4c	0.2469(5)	0.25	0.7592(2)	1	0.5
P1	8d	0.0344(5)	0.5983(3)	0.1182(2)	1	1.0
P2	4c	0.3589(18)	0.25	0.2425(10)	0.5	1.0
P3	4c	0.2782(16)	0.25	0.2614(10)	0.5	1.0
01	8d	0.3345(10)	0.0649(5)	0.0321(5)	1	1.0
02	4c	0.2258(13)	0.25	0.0429(7)	1	1.0
03	8d	0.0302(11)	0.0155(5)	0.1478(5)	1	1.0
04	8d	0.0452(10)	0.6146(5)	0.0111(5)	1	1.0
05	8d	0.2801(11)	0.1519(5)	0.2060(5)	1	1.0
06	4c	0.4590(17)	0.25	0.7989(7)	1	1.0
07	8d	0.3564(12)	0.6463(5)	0.3404(5)	1	1.0
08	8d	0.2171(11)	0.6454(5)	0.1614(5)	1	1.0
09	4c	0.4118(16)	0.25	0.3466(7)	1	1.0
010	4c	0.061(3)	0.25	0.3136(15)	0.5	1.0

Fig. S1 Schematic illustrations of crystal structures for $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$. (a) Relationship between the conventional sub-cell and triclinic and monoclinic supercells. (b-d) Projected crystal structures of (b) conventional sub-cell (*Pnma*) having split P and O sites as disorderly located P_2O_7 units, monoclinic sub-cell a $(P2_1/m)$, and orthorhombic sub-cell b $(Pmn2_1)$. In the latter sub-cells and supercells, the P_2O_7 units are in order with no P-site splitting and no O-site splitting.

Fig. S2 Comparison of Rietveld refinement results for fitting the synchrotron XRD pattern of as-prepared $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ using different structural models: (a) monoclinic supercell $(P2_1/c)$, (b) monoclinic sub-cell a $(P2_1/m)$, and (c) orthorhombic sub-cell b $(Pmn2_1)$. The structural models are illustrated in **Fig. S1**.

Fig. S3 Comparison of SAED patterns for $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$: (a) observed pattern and (b-d) simulated ones with (b) sub-cell a $(P2_1/m)$, (c) sub-cell b $(Pmn2_1)$, and (d) monoclinic supercell $(P2_1/c)$. The structural models are shown in **Fig. S1**. For ease of understanding, the *a*-and *b*-axes of sub-cell a (the same as the conventional sub-cell) were transformed to be opposite and the same as sub-cell b. Green circles represent unobserved but simulated diffraction spots. The observed SAED pattern is the same as in **Fig. 2f**, where the crystal zone axis is labeled as [100] to match the conventional sub-cell.

Fig. S4 TEM-EDX spectrum of as-prepared $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$.

Fig. S5 Comparison of charge-discharge curves of $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ and $KVOPO_4$ electrodes at the 2nd cycle.

Fig. S6 Charge-discharge curves of $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ electrodes in (a) Li and (b) Na half-cells tested for first 10 cycles.

Fig. S7 Comparison of differential capacity vs. voltage plots of $K_6(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$ electrodes in Li, Na, and K half-cells at the 2nd cycle.

Fig. S8 Comparison of XRD patterns of charged and discharged electrodes with the pristine electrode of $K_x(VO)_2(V_2O_3)_2(PO_4)_4(P_2O_7)$.