Supramolecular photocatalysts fixed on the inside of polypyrrole layer in dye-sensitized molecular photocathodes: application to photocatalytic CO₂ reduction coupled with water oxidation

Fazalurahman Kuttassery,^{1,†} Hiromu Kumagai,² Ryutaru Kamata,¹ Yusuke Ebato,¹ Masanobu Higashi,³ Hajime Suzuki,⁴ Ryu Abe, ⁴ and Osamu Ishitani^{*,1}

¹ Department of Chemistry, Tokyo Institute of Technology, 2-12-1-NE-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan.

² Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1, Katahira, Aoba-ku,

Sendai, Miyagi 980-8577, Japan.

³ The OCU Advanced Research Institute for Natural Science and Technology Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka City, Osaka, 558-8585, Japan.

⁴ Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.

⁺ Present address: Department of Chemistry, University of Calicut, Malappuram, Kerala 673635, India.

Supplementary information

SI - I Synthetic strategy and ¹H-NMR Spectra of ligands and Ru(II) Complexes

- (a) 4,4'-bis((1H-pyrrol-1-yl)methyl)-2,2'-bipyridine (Pyrdmb)
- (b) [Ru(dmb)2]Cl₂
- (c) [Ru(Pyrdmb)₂Cl₂]
- (d) [Ru(dmb)(Pyrdmb)Cl₂]
- (e) $[Ru(dmb)_2(Pyrdmb)](PF_6)_2(PyrRu)$
- (f) [Ru(Pyrdmb)₂(dmb)](PF₆)₂ (Pyr2Ru)
- (g) $[Ru(dmb)(Pydmb)(dmb-PO_3H_2)](PF_6)_2$ (PRuPyr)
- (h) [Ru(dmb)(Pydmb)(bpyC₂bpy)](PF₆)₂ (PyrRuC₂bpy)
- (i) $[Ru(dmb)(Pydmb)(bpyC_2bpy)Ru(CO)_2Cl_2](PF_6)_2$ (PyrRuC_2RuCAT)

SI - II Figures, Schemes and Tables

- Fig. S1 Cyclic voltammorgram of *Pyr*Ru and *Pyr2*Ru
- Fig. S2 Oxidative electropolymerization of *Pyr2*Ru on NiO electrode
- Fig, S3 Images of photocathode after each fabrication step.

Fig. S4 TOF – SIMS spectra of NiO/PRu-PolyPyr-RuC₂RuCAT1 for ionic species Et₄N⁺ and BF₄⁻

Fig. S5 Cyclic voltammograms of *Pyr*RuC₂RuCAT and *Pyr*RuC₂bpy recorded in MeCN solution.

Fig. S6 Time courses of photocurrent and product amounts generated during photoelectrochemical CO_2 reduction using NiO/PRu-*PolyPyr*-RuC₂RuCAT1 under a weak light intensity (8 mW cm⁻²).

Fig. S7 UV-vis (DR) spectra of NiO/PRu-*PolyPyr*-RuC₂RuCAT1 electrode prepared using different numbers of oxidation cycles between 0 and +1.35 V vs. Ag/AgNO₃.

Fig. S8 Time courses of the electrons and oxygen evolved upon the irradiation of $CoO_x/BiVO_4$ and $RhO_x/TaON$ photoanodes.

Fig. S9 Time course and photocurrent and product analysis of a tandem cell constructed with NiO/PRu-*PolyPyr*-RuC₂RuCAT1 and $CoO_x/BiVO_4$ irradiated with simulated solar light.

Fig. S10 Time course and photocurrent and product analysis of a tandem cell constructed with NiO/PRu-*PolyPyr*-RuC₂RuCAT1 and RhO_x/TaON irradiated with simulated solar light.

Table S1 Estimation of PRuPyr on NiO/PRuPyr.

Table S2 Estimation of RuPS on NiO/PRu-PolyPyr-RuC₂bpy

Table S3 Estimation of RuPS on NiO/PRu-PolyPyr-RuC₂RuCAT1

Table S4 Estimation of RuPS on NiO/PRu-PolyPyr-RuC₂RuCAT2

Table S5 Summary of photoelectrochemical CO₂ reduction under controlled experimental conditions over NiO/PRu-*PolyPyr*-RuC₂RuCAT1 for 5 h.

<u>SI – I Synthesis and Characterization of metal complexes</u>

(a) Synthesis of 4,4'-bis((1H-pyrrol-1-yl)methyl)-2,2'-bipyridine (Pyrdmb)

¹H NMR spectrum of 4,4'-bis((1H-pyrrol-1-yl)methyl)-2,2'-bipyridine in CDCl₃

(b) Synthesis of [Ru(dmb)₂]Cl₂

¹H NMR spectrum of [Ru(dmb)₂Cl₂] in CDCl₃

(c) Synthesis of [Ru(Pyrdmb)₂Cl₂]

¹H NMR spectrum of $[Ru(Pyrdmb)_2Cl_2]$ in CDCl₃

(d) Synthesis of [Ru(dmb)(Pyrdmb)Cl₂]

¹H NMR spectrum of [Ru(dmb)(*Pyr*dmb)Cl₂] in CDCl₃

(e) Synthesis of [Ru(dmb)₂(Pyrdmb)](PF₆)₂ (PyrRu)

Figure SI-I (5). ¹H NMR spectrum of [Ru(dmb)₂(*Pyr*dmb)](PF₆)₂ in Acetone-d₆

(f) Synthesis of [Ru(Pyrdmb)₂(dmb)](PF₆)₂ (Pyr2Ru)

Figure SI-I (6). ¹H NMR spectrum of [Ru(*Pyr*dmb)₂(dmb)](PF₆)₂ in Acetone-d₆

¹H NMR spectrum of ([Ru(dmb)(*Pyr*dmb)(dmb-PO₃Et₂)](PF₆)₂ in Acetone-d₆

³¹P NMR spectrum of ([Ru(dmb)(*Pyr*dmb)(dmb-PO₃Et₂)](PF₆)₂ in Acetone-d₆

(h) Synthesis of [Ru(dmb)(Pydmb)(bpyC₂bpy)](PF₆)₂ (PyrRuC₂bpy)

¹H NMR spectrum of [Ru(dmb)(*Pyr*dmb)(bpyC₂bpy)](PF₆)₂ in Acetone-d₆.

(i) Synthesis of [Ru(dmb)(Pydmb)(bpyC₂bpy)Ru(CO)₂Cl₂](PF₆)₂ (PyrRuC₂RuCAT)

Fig. S1 Cyclic voltammograms of *Pyr*Ru (a, b) and *Pyr2*Ru (c, d) recorded at 200 mV s⁻¹ in MeCN containing the corresponding complex (0.5 mM) and Et₄NBF₄ (0.1 M) as the electrolyte under Ar using a ring-shaped glassy carbon working electrode (ϕ = 0.3 mm), a Ag/AgNO₃ reference electrode, and a Pt wire counter electrode.

Fig. S2 (a) Cyclic voltammograms recorded during the oxidative electropolymerization of *Pyr2*Ru on NiO (electrode area = 2.5 cm^2) in Ar-saturated MeCN containing *Pyr2*Ru (0.5 mM) and Et₄NBF₄ (0.1 M) as an electrolyte. The potential was cycled 25 times between 0 and +1.35 V (vs. Ag/AgNO₃) at 100 mV s⁻¹. (b) Cyclic voltammogram of the NiO/*PolyPyr2*Ru working electrode recorded in MeCN containing 0.1 M Et₄NBF₄ as an electrolyte (counter electrode = Pt coil, reference electrode = Ag/AgNO₃) at 10 mV s⁻¹.

Fig. S3 Images of photocathode after each steps of fabrication

Fig. S4 TOF – SIMS spectra of NiO/PRu-PolyPyr-RuC₂RuCAT1 for ionic species Et₄N⁺ and BF₄⁻

Fig. S5 Cyclic voltammograms of $PyrRuC_2RuCAT$ and $PyrRuC_2bpy$ measured in MeCN solutions containing 0.1M Et₄NBF₄ as an electrolyte under an Ar atmosphere (Scan rate = 200mV s). WE: GC (φ = 0.3mm) RE: Ag/AgNO₃ and CE: Pt.

Fig. S6 (a) Time courses of photocurrent and **(b)** products expressed as half of electrons passed (black line), CO (green triangle), HCOOH (blue triangle), and H₂ (red circle). NiO/PRu-*PolyPyr*-RuC₂RuCAT1 (electrode area: 2.5 cm²) applied bias at E = -0.7 V vs. Ag/AgCl was irradiated at 460 nm < λ_{ex} < 650 nm (8 mW cm⁻²) in a CO₂-purged 50 mM NaHCO₃ aqueous solution (pH = 6.6).

Fig. S7 (a) UV-Vis (DRS) spectra of NiO/PRu-*PolyPyr*-RuC₂RuCAT1 prepared under different number of cycles of oxidative CV scan between 0-+1.35V vs. Ag/AgNO₃ (b) Plot between absorbance at λ =460 nm versus number of polymerization cycle

Fig. S8 Time courses of the electrons and oxygen evolved by irradiating $CoO_x/BiVO_4$ or $RhO_x/TaON$ Photoanode in a three-electrode cell with Nafion[®] membrane in CO_2 purged 50mM NaHCO₃ solution by using 400 nm < λ_{ex} < 650 nm (41.2-45.2 mW cm⁻²) (a) $CoO_x/BiVO_4$ under applied bias 0.0V vs Ag/AgCl (b) RhO_x/TaON under applied bias 0.0V vs Ag/AgCl and (c) RhO_x/TaON under applied bias +0.1V vs Ag/AgCl

Fig. S9 Construction of artificial Z-Scheme model under simulated sunlight irradiation (AM 1.5) (a) photocurrent (black) and working potential of the electrode (blue line) and (b) products under simulated solar light irradiation consisting NiO/PRu-*PolyPyr*-RuC₂RuCAT1 photocathode and the $CoO_x/BiVO_4$ photoanode without any bias in a CO₂-purged NaHCO₃ (50 mM) aqueous solution (pH = 6.6) in a tandem cell configuration.

Fig. S10 Construction of artificial Z-Scheme model under simulated sunlight irradiation (AM 1.5) (a) photocurrent (black) and working potential of the electrode (blue line) and (b) products under simulated solar light irradiation consisting NiO/PRu-*PolyPyr*-RuC₂RuCAT1 photocathode and the RhO_x/TaON photoanode without any bias in a CO₂-purged NaHCO₃ (50 mM) aqueous solution (pH = 6.6) in a tandem cell configuration.

Sample	Total amount of PRuPyr
No	n _{PRuPyr} (nmol)
1	16.7
2	15.9
3	13.0
4	16.5

Table S1 Estimation of PRuPyr on NiO/PRuPyr by ICP-MS method (Step – 1)

Average amount of PRuPyr adsorbed $(n_{PRuPyr}) = 15.5 \pm 1.3$ nmol

Table S2 Estimation of total Ru Photosensitizers (RuPS) by ICP-MS analysis of NiO/PRu-*PolyPyr*-RuC₂bpy (Step – 2)

Sample	Total amount of Ru photosensitizer
No	n _{RuPS} (nmol)
1	76.1
2	73.2
3	77.2
4	75.1

Average amount of RuPS adsorbed = 75.4 ± 1.3 nmol

Table S3 Estimation of total amount of Ru (PS+CAT) by ICP-MS analysis of NiO/PRu-*PolyPyr*-RuC₂RuCAT1 (Step – 3)

Sample	Total amount					
No	Of Ru					
	n _{Ru(PS+CAT)} (nmol)					
1	109.5					
2	103.9					
3	92.5					
4	95.2					

Average amount of Ru(PS+CAT) adsorbed = 100.3 ± 5.5 nmol

Sample	Total amount					
No	Of Ru					
	n _{Ru(PS+CAT)} (nmol)					
1	49.2					
2	34.6					
3	35.5					
4	43.4					

Table S4 Estimation of total amount of Ru (PS+CAT) by ICP-MS analysis of NiO/PRu-*PolyPyr*-RuC₂RuCAT2 (Two-step method)

Average amount of Ru(PS+CAT) adsorbed = 40.7 ± 5.6 nmol

Table S5 Photoelectrochemical reactions using NiO/PRu-*PolyPyr*-RuC₂RuCAT1 under varying conditions for 5h.

Entry	Applied	Light	Atmosphere	Electrolyte	Products / μmol			
	Potential				e ⁻ /2	СО	НСООН	H ₂
1	0	0	CO ₂	NaHCO ₃	4.6	2.9	1.1	0.3
2	0	Xa	CO ₂	NaHCO ₃	n.d.	n.d.	n.d.	n.d.
3	Xp	0	CO ₂	NaHCO ₃	n.d.	n.d.	n.d.	n.d.
4	0	0	Ar	Phosphate ^c	06	n.d.	n.d.	0.1

^a Without irradiation. ^b Without potentiostat. ^c Phosphate buffer: pH 7.4, [Na₂HPO₄.7H₂O] = 75.4 mM + [NaH₂PO₄.H₂O] = 24.6 mM.