# Supporting Information for "CO organization at ambient pressure on stepped Pt surfaces: First principle modeling accelerated by neural networks"

Vaidish Sumaria<sup>†</sup> and Philippe Sautet<sup>\*,†,‡</sup>

†Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90094, USA

<sup>‡</sup>Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90094, USA

E-mail: sautet@ucla.edu

# 1 Basin Hopping Algorithm

Fig. S1 shows the Basin hopping algorithm utilized in the work to generate structures efficiently. Structure updates are done using trail moves in two ways: (1) Rattling (random atomic displacements) the CO molecules to change CO positions and (2) Clustering mutation algorithm.

### 1.1 Clustering mutation algorithm

The following steps are used in implementing this modified version of random atomic displacement.



Figure S1: Basin Hopping Algorithm flowchart.



Figure S2: Flow-chart showing the algorithm for (a) Metropolis criterion - which decides the acceptance/ rejection of MC move and (b) adjusting temperature during the BH simulation where (a) is the acceptance ratio for the BH simulation.

- 1. Create a polygon (parallelogram) that maps the surface of the unit cell
- Randomly generate n points within the polygon which act as the centroids of the Voronoi tessellation (like a power diagram). Using the polygon boundary and centroids, we can define the edges of the Voronoi tessellation (intersections of half-spaces).
- 3. Within the each obtained cell ("cluster"), we identify the adsorbate positions and all CO molecules within the cell are displaced in same direction randomly generated.

This is implemented using a pythonic code (rand\_clustering.py) using scipy and shapely packages and added to the github repository.

### 1.2 HDNNP Training procedure



Figure S3: Iterative process for training NN as well as generating the reference database

We use an iterative process (as shown in in Fig. S3) for developing the HDNNP:

- Initialization reference dataset utilized to generate a preliminary HDNNP.
- Data Generation- new structures generated using the developed HDNNP and Basin Hopping Monte Carlo simulations.
- **Re-evaluation** identify structures that are relevant for evaluation and perform reference DFT calculations on these structures.
- **Parity check** Compare energies and forces obtained from reference DFT calculations and the NN predictions.

• Retrain & convergence - Structures deviating in energy and force predictions with respect to the reference DFT calculations are added back to the training dataset to generate a new iteration of HDNNP.

The initial dataset was generated on a Pt(111) surface with varying CO coverages and unit cell sizes.

# 2 Pt(111) terrace



Figure S4: Arrangement of CO on Pt(111) at 300K and 1 atm showing  $(\sqrt{19} \times \sqrt{19})$ -R23.4°-13 CO structure corresponding to a coverage of 13/19 = 0.68 ML

## 3 LEME structures data

### $3.1 \quad Pt(553)$

Data used to generate Figure 2 in the manuscript.

Table S1: Pt(553) LEME structures data: Free energy per unit area (G/A), Coverage of CO on the terrace top site  $(\theta_t(T))$ , bridge site  $(\theta_t(B))$ , hollow site  $(\theta_t(H))$  and on the step edge top site  $(\theta_e(T))$ , bridge site  $(\theta_e(B))$ , hollow site  $(\theta_e(H))$ , total coverage of CO on the terrace  $(\theta_t)$  and on the step edge  $(\theta_e)$  and the surface area of the unit cell (A)

| $G/A \ (eV/Å^2)$ | $\theta_t(T)$ | $\theta_t(\mathbf{B})$ | $\theta_t(\mathbf{H})$ | $\theta_e(\mathbf{T})$ | $\theta_e(\mathbf{B})$ | $\theta_e(\mathbf{H})$ | $\theta_t$ | $\theta_e$ | $A(Å^2)$ |
|------------------|---------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------|------------|----------|
| -0.0836          | 0.17          | 0                      | 0.33                   | 1                      | 0                      | 0                      | 0.5        | 1          | 182.97   |

| -0.0835 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
|---------|------|------|------|---|---|---|------|---|--------|
| -0.0835 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0834 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0834 | 0.29 | 0    | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0834 | 0.29 | 0    | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0833 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0832 | 0.25 | 0.04 | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0831 | 0.25 | 0    | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.083  | 0.29 | 0    | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0827 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0826 | 0.29 | 0.04 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0826 | 0.33 | 0.04 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0825 | 0.25 | 0.17 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0825 | 0.08 | 0.17 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0824 | 0.21 | 0.04 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0823 | 0.38 | 0    | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0821 | 0.25 | 0    | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0821 | 0.21 | 0    | 0.29 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0821 | 0.33 | 0.08 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.082  | 0.33 | 0.08 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.082  | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.082  | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.082  | 0.08 | 0.25 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.082  | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0819 | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0819 | 0.38 | 0.13 | 0.06 | 1 | 0 | 0 | 0.56 | 1 | 121.98 |

| -0.0818 | 0.33 | 0    | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
|---------|------|------|------|---|---|---|------|---|--------|
| -0.0818 | 0.25 | 0.13 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0818 | 0.17 | 0.08 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0818 | 0.29 | 0.08 | 0.17 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0817 | 0.21 | 0.04 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0817 | 0.38 | 0    | 0.17 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0817 | 0.33 | 0.04 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0816 | 0.33 | 0.08 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0816 | 0.33 | 0.08 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0816 | 0.25 | 0.04 | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0816 | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0816 | 0.25 | 0.08 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0816 | 0.21 | 0.04 | 0.21 | 1 | 0 | 0 | 0.46 | 1 | 182.97 |
| -0.0816 | 0.25 | 0.17 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0816 | 0.29 | 0.08 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0815 | 0.17 | 0.13 | 0.17 | 1 | 0 | 0 | 0.46 | 1 | 182.97 |
| -0.0815 | 0.29 | 0.13 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0815 | 0.42 | 0.04 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0815 | 0.19 | 0    | 0.31 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.0815 | 0.21 | 0.04 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0815 | 0.29 | 0.13 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0815 | 0.29 | 0.08 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0815 | 0.38 | 0    | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.0815 | 0.08 | 0.25 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0815 | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0815 | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |

| -0.0814 | 0.29 | 0    | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
|---------|------|------|------|---|---|---|------|---|--------|
| -0.0814 | 0.42 | 0    | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0814 | 0.29 | 0.04 | 0.21 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0814 | 0.38 | 0    | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0813 | 0.13 | 0.13 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.0813 | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.25 | 0.13 | 0.17 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0813 | 0.33 | 0.08 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0813 | 0.33 | 0.04 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0812 | 0.31 | 0.06 | 0.13 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.0812 | 0.21 | 0.21 | 0.04 | 1 | 0 | 0 | 0.46 | 1 | 182.97 |
| -0.0812 | 0.33 | 0.08 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0811 | 0.38 | 0.13 | 0.06 | 1 | 0 | 0 | 0.56 | 1 | 121.98 |
| -0.0811 | 0.38 | 0.13 | 0.06 | 1 | 0 | 0 | 0.56 | 1 | 121.98 |
| -0.0811 | 0.25 | 0.17 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0811 | 0.13 | 0.13 | 0.25 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.0811 | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0811 | 0.42 | 0    | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0811 | 0.42 | 0    | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0811 | 0.25 | 0.17 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0811 | 0.21 | 0.13 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.0811 | 0.33 | 0.13 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |

| -0.081  | 0.33 | 0.13 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
|---------|------|------|------|---|---|---|------|---|--------|
| -0.081  | 0.25 | 0.04 | 0.21 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.081  | 0.29 | 0.13 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.081  | 0.13 | 0.19 | 0.19 | 1 | 0 | 0 | 0.5  | 1 | 121.98 |
| -0.081  | 0.42 | 0.04 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.081  | 0.25 | 0.08 | 0.17 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.081  | 0.33 | 0.08 | 0.08 | 1 | 0 | 0 | 0.5  | 1 | 182.97 |
| -0.081  | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.081  | 0.42 | 0.04 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.081  | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.081  | 0.38 | 0.04 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.081  | 0.38 | 0.08 | 0.08 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0809 | 0.33 | 0.08 | 0.13 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0809 | 0.42 | 0.08 | 0.08 | 1 | 0 | 0 | 0.58 | 1 | 182.97 |
| -0.0809 | 0.42 | 0.08 | 0.08 | 1 | 0 | 0 | 0.58 | 1 | 182.97 |
| -0.0809 | 0.42 | 0.08 | 0.04 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |
| -0.0809 | 0.44 | 0.06 | 0.06 | 1 | 0 | 0 | 0.56 | 1 | 121.98 |
| -0.0809 | 0.29 | 0.08 | 0.17 | 1 | 0 | 0 | 0.54 | 1 | 182.97 |



Figure S5: CO orientation on  $\mathrm{Pt}(553)$  at  $\theta$  =0.65 in the LEME structure

### 3.2 Pt(557)

Data used to generate Figure 4 in the manuscript.

Table S2: Pt(557) LEME structures data: Free energy per unit area (G/A), Coverage of CO on the terrace top site ( $\theta_t(T)$ ), bridge site ( $\theta_t(B)$ ), hollow site ( $\theta_t(H)$ ) and on the step edge top site ( $\theta_e(T)$ ), bridge site ( $\theta_e(B)$ ), hollow site ( $\theta_e(H)$ ), total coverage of CO on the terrace ( $\theta_t$ ) and on the step edge ( $\theta_e$ ) and the surface area of the unit cell (A)

| $O(\Lambda (-X/\lambda 2))$ |               |                        |                 |               | (D)                    |                 | 0          | 0          | $\Lambda(\hat{\lambda}_2)$ |
|-----------------------------|---------------|------------------------|-----------------|---------------|------------------------|-----------------|------------|------------|----------------------------|
| $G/A (eV/A^2)$              | $\theta_t(1)$ | $\theta_t(\mathbf{B})$ | $\theta_t(\Pi)$ | $\theta_e(1)$ | $\sigma_e(\mathbf{B})$ | $\theta_e(\Pi)$ | $\theta_t$ | $\theta_e$ | $A(A^2)$                   |
| -0.0801                     | 0.27          | 0                      | 0.33            | 1             | 0                      | 0               | 0.6        | 1          | 118.5                      |
| -0.08                       | 0.2           | 0.03                   | 0.37            | 1             | 0.17                   | 0               | 0.58       | 1.08       | 237.01                     |
| -0.0799                     | 0.2           | 0                      | 0.4             | 1             | 0                      | 0               | 0.6        | 1          | 237.01                     |
| -0.0799                     | 0.2           | 0.1                    | 0.3             | 1             | 0.33                   | 0               | 0.57       | 1.17       | 237.01                     |
| -0.0799                     | 0.2           | 0.1                    | 0.3             | 1             | 0.33                   | 0               | 0.57       | 1.17       | 237.01                     |
| -0.0797                     | 0.2           | 0.03                   | 0.37            | 1             | 0.17                   | 0               | 0.58       | 1.08       | 237.01                     |
| -0.0797                     | 0.23          | 0                      | 0.37            | 1             | 0                      | 0               | 0.6        | 1          | 237.01                     |
| -0.0797                     | 0.23          | 0                      | 0.37            | 1             | 0                      | 0               | 0.6        | 1          | 237.01                     |
| -0.0797                     | 0.23          | 0.03                   | 0.33            | 1             | 0.17                   | 0               | 0.58       | 1.08       | 237.01                     |
| -0.0794                     | 0.2           | 0.2                    | 0.2             | 1             | 0.5                    | 0               | 0.55       | 1.25       | 237.01                     |
| -0.0793                     | 0.27          | 0.07                   | 0.27            | 1             | 0.33                   | 0               | 0.57       | 1.17       | 118.5                      |
| -0.0793                     | 0.17          | 0.07                   | 0.37            | 1             | 0.33                   | 0               | 0.57       | 1.17       | 237.01                     |
| -0.0792                     | 0.2           | 0                      | 0.4             | 1             | 0                      | 0               | 0.6        | 1          | 118.5                      |
| -0.0792                     | 0.27          | 0                      | 0.33            | 1             | 0                      | 0               | 0.6        | 1          | 237.01                     |
| -0.0792                     | 0.2           | 0                      | 0.4             | 1             | 0                      | 0               | 0.6        | 1          | 118.5                      |
| -0.0791                     | 0.2           | 0.07                   | 0.33            | 1             | 0.33                   | 0               | 0.57       | 1.17       | 118.5                      |
| -0.0791                     | 0.2           | 0.07                   | 0.33            | 1             | 0.33                   | 0               | 0.57       | 1.17       | 118.5                      |
| -0.0791                     | 0.2           | 0.07                   | 0.3             | 1             | 0.17                   | 0               | 0.55       | 1.08       | 237.01                     |
| -0.0791                     | 0.2           | 0.03                   | 0.33            | 1             | 0                      | 0               | 0.57       | 1          | 237.01                     |
| -0.079                      | 0.27          | 0                      | 0.33            | 1             | 0                      | 0               | 0.6        | 1          | 118.5                      |

| -0.079  | 0.27 | 0.07 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
|---------|------|------|------|---|------|---|------|------|--------|
| -0.079  | 0.27 | 0.03 | 0.27 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.079  | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0789 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0789 | 0.27 | 0    | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0789 | 0.17 | 0.07 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0788 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0788 | 0.2  | 0.1  | 0.27 | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
| -0.0788 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0787 | 0.23 | 0.03 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0787 | 0.2  | 0.1  | 0.27 | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
| -0.0787 | 0.2  | 0    | 0.4  | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0787 | 0.2  | 0    | 0.4  | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0787 | 0.27 | 0.07 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0787 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0787 | 0.2  | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0787 | 0.2  | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0787 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0787 | 0.17 | 0.07 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0786 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0786 | 0.27 | 0.07 | 0.27 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0786 | 0.27 | 0.13 | 0.2  | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0786 | 0.27 | 0    | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0786 | 0.27 | 0    | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0786 | 0.2  | 0.03 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0786 | 0.2  | 0    | 0.43 | 1 | 0    | 0 | 0.63 | 1    | 237.01 |

|         | 1    | 1    | I    | 1 | 1    | 1 |      |      |        |
|---------|------|------|------|---|------|---|------|------|--------|
| -0.0785 | 0.27 | 0.07 | 0.27 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0785 | 0.23 | 0    | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0785 | 0.27 | 0    | 0.3  | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0785 | 0.2  | 0.07 | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0785 | 0.2  | 0.07 | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0785 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0785 | 0.2  | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0785 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0785 | 0.2  | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0785 | 0.2  | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0785 | 0.17 | 0.07 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0784 | 0.17 | 0.1  | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.2  | 0.1  | 0.27 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0784 | 0.27 | 0.03 | 0.27 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.23 | 0    | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0784 | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.17 | 0.1  | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0784 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0784 | 0.2  | 0.07 | 0.3  | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0783 | 0.2  | 0.03 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0783 | 0.2  | 0.07 | 0.33 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0783 | 0.23 | 0.03 | 0.3  | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0783 | 0.2  | 0.1  | 0.25 | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0783 | 0.2  | 0.07 | 0.3  | 1 | 0    | 0 | 0.57 | 1    | 237.01 |

| -0.0783 | 0.17 | 0.1  | 0.3  | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
|---------|------|------|------|---|------|---|------|------|--------|
| -0.0783 | 0.2  | 0.07 | 0.3  | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
| -0.0783 | 0.25 | 0.05 | 0.25 | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0782 | 0.2  | 0.1  | 0.27 | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
| -0.0782 | 0.27 | 0    | 0.3  | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0782 | 0.23 | 0    | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0782 | 0.15 | 0.05 | 0.35 | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0782 | 0.15 | 0.1  | 0.3  | 1 | 0.25 | 0 | 0.53 | 1.13 | 158.01 |
| -0.0782 | 0.2  | 0.03 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0781 | 0.27 | 0.07 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0781 | 0.27 | 0.07 | 0.23 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0781 | 0.2  | 0.1  | 0.25 | 1 | 0.25 | 0 | 0.53 | 1.13 | 158.01 |
| -0.0781 | 0.27 | 0.03 | 0.27 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0781 | 0.2  | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0781 | 0.2  | 0.05 | 0.3  | 1 | 0.25 | 0 | 0.53 | 1.13 | 158.01 |
| -0.0781 | 0.2  | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0781 | 0.17 | 0.1  | 0.3  | 1 | 0.33 | 0 | 0.53 | 1.17 | 237.01 |
| -0.0781 | 0.23 | 0.03 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0781 | 0.23 | 0    | 0.4  | 1 | 0    | 0 | 0.63 | 1    | 237.01 |
| -0.078  | 0.13 | 0.1  | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.078  | 0.27 | 0.27 | 0.07 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.078  | 0.23 | 0.03 | 0.37 | 1 | 0.17 | 0 | 0.62 | 1.08 | 237.01 |
| -0.078  | 0.2  | 0    | 0.35 | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.078  | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.078  | 0.17 | 0.1  | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.078  | 0.2  | 0.2  | 0.2  | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |

| -0.078  | 0.2  | 0.07 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
|---------|------|------|------|---|------|---|------|------|--------|
| -0.078  | 0.17 | 0.1  | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0779 | 0.2  | 0.05 | 0.3  | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0779 | 0.2  | 0.03 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0779 | 0.2  | 0    | 0.37 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0779 | 0.17 | 0.03 | 0.37 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0779 | 0.17 | 0.23 | 0.17 | 1 | 0.5  | 0 | 0.52 | 1.25 | 237.01 |
| -0.0779 | 0.17 | 0.07 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0779 | 0.2  | 0.03 | 0.33 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0779 | 0.2  | 0.1  | 0.25 | 1 | 0.25 | 0 | 0.53 | 1.13 | 158.01 |
| -0.0779 | 0.27 | 0.07 | 0.2  | 1 | 0    | 0 | 0.53 | 1    | 118.5  |
| -0.0779 | 0.33 | 0    | 0.27 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0778 | 0.27 | 0    | 0.27 | 1 | 0    | 0 | 0.53 | 1    | 118.5  |
| -0.0778 | 0.27 | 0.07 | 0.27 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0778 | 0.2  | 0.05 | 0.3  | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0778 | 0.2  | 0.1  | 0.25 | 1 | 0.25 | 0 | 0.53 | 1.13 | 158.01 |
| -0.0778 | 0.25 | 0    | 0.3  | 1 | 0    | 0 | 0.55 | 1    | 158.01 |
| -0.0778 | 0.2  | 0.13 | 0.2  | 1 | 0    | 0 | 0.53 | 1    | 118.5  |
| -0.0778 | 0.27 | 0.07 | 0.23 | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0778 | 0.2  | 0    | 0.43 | 1 | 0    | 0 | 0.63 | 1    | 237.01 |
| -0.0778 | 0.13 | 0.2  | 0.2  | 1 | 0.33 | 0 | 0.5  | 1.17 | 118.5  |
| -0.0777 | 0.27 | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0777 | 0.27 | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0777 | 0.27 | 0.07 | 0.23 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0777 | 0.2  | 0.03 | 0.37 | 1 | 0.17 | 0 | 0.58 | 1.08 | 237.01 |
| -0.0777 | 0.2  | 0    | 0.4  | 1 | 0    | 0 | 0.6  | 1    | 118.5  |

|         | 1    | 1    | 1    | 1 | 1    | 1 | 1    |      | 1      |
|---------|------|------|------|---|------|---|------|------|--------|
| -0.0777 | 0.4  | 0    | 0.2  | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0777 | 0.17 | 0.07 | 0.33 | 1 | 0    | 0 | 0.57 | 1    | 237.01 |
| -0.0777 | 0.2  | 0.03 | 0.4  | 1 | 0.17 | 0 | 0.62 | 1.08 | 237.01 |
| -0.0777 | 0.2  | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0776 | 0.23 | 0.03 | 0.3  | 1 | 0.17 | 0 | 0.55 | 1.08 | 237.01 |
| -0.0776 | 0.27 | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0776 | 0.27 | 0.13 | 0.2  | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0776 | 0.33 | 0    | 0.27 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0775 | 0.27 | 0.13 | 0.2  | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0775 | 0.47 | 0    | 0.13 | 1 | 0    | 0 | 0.6  | 1    | 118.5  |
| -0.0775 | 0.27 | 0.2  | 0.2  | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0775 | 0.13 | 0.2  | 0.27 | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0775 | 0.27 | 0.13 | 0.2  | 1 | 0.33 | 0 | 0.57 | 1.17 | 118.5  |
| -0.0774 | 0.27 | 0.07 | 0.33 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0774 | 0.2  | 0    | 0.45 | 1 | 0    | 0 | 0.65 | 1    | 158.01 |
| -0.0774 | 0.2  | 0.03 | 0.4  | 1 | 0.17 | 0 | 0.62 | 1.08 | 237.01 |
| -0.0774 | 0.37 | 0    | 0.3  | 1 | 0    | 0 | 0.67 | 1    | 237.01 |
| -0.0774 | 0.27 | 0.27 | 0.13 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |
| -0.0773 | 0.27 | 0.13 | 0.27 | 1 | 0.33 | 0 | 0.63 | 1.17 | 118.5  |

### 3.3 Pt(643)

Data used to generate Figure 6 in the manuscript.

Table S3: Pt(643) LEME structures data: Free energy per unit area (G/A), Coverage of CO on the terrace top site ( $\theta_t(T)$ ), bridge site ( $\theta_t(B)$ ), hollow site ( $\theta_t(H)$ ) and on the step edge top site ( $\theta_e(T)$ ), bridge site ( $\theta_e(B)$ ), hollow site ( $\theta_e(H)$ ), total coverage of CO on the terrace ( $\theta_t$ ) and on the step edge ( $\theta_e$ ) and the surface area of the unit cell (A)

| $G/A \ (eV/Å^2)$ | $\theta_t(T)$ | $\theta_t(\mathbf{B})$ | $\theta_t(\mathbf{H})$ | $\theta_e(\mathbf{T})$ | $\theta_e(\mathbf{B})$ | $\theta_e(\mathbf{H})$ | $\theta_t$ | $\theta_e$ |
|------------------|---------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------|------------|
| -0.0845          | 0.29          | 0.00                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.43       | 1.00       |
| -0.0843          | 0.14          | 0.07                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0839          | 0.21          | 0.00                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0838          | 0.14          | 0.07                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0837          | 0.14          | 0.07                   | 0.07                   | 1.00                   | 0.00                   | 0.00                   | 0.29       | 1.00       |
| -0.0836          | 0.00          | 0.07                   | 0.29                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0835          | 0.14          | 0.00                   | 0.21                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0835          | 0.14          | 0.00                   | 0.21                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0834          | 0.14          | 0.07                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0834          | 0.14          | 0.00                   | 0.29                   | 0.83                   | 0.00                   | 0.00                   | 0.43       | 0.83       |
| -0.0831          | 0.21          | 0.00                   | 0.21                   | 0.83                   | 0.00                   | 0.00                   | 0.43       | 0.83       |
| -0.0831          | 0.29          | 0.00                   | 0.07                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0830          | 0.00          | 0.00                   | 0.36                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0829          | 0.14          | 0.21                   | 0.07                   | 1.00                   | 0.00                   | 0.00                   | 0.43       | 1.00       |
| -0.0829          | 0.07          | 0.07                   | 0.21                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0826          | 0.29          | 0.07                   | 0.14                   | 0.83                   | 0.00                   | 0.00                   | 0.50       | 0.83       |
| -0.0825          | 0.21          | 0.00                   | 0.14                   | 1.00                   | 0.00                   | 0.00                   | 0.36       | 1.00       |
| -0.0824          | 0.14          | 0.07                   | 0.07                   | 0.83                   | 0.17                   | 0.00                   | 0.29       | 1.00       |
| -0.0821          | 0.21          | 0.07                   | 0.14                   | 0.83                   | 0.17                   | 0.00                   | 0.43       | 1.00       |
| -0.0819          | 0.36          | 0.21                   | 0.00                   | 0.83                   | 0.00                   | 0.00                   | 0.57       | 0.83       |

#### CO-Surface vs CO-CO lateral interaction 4

#### **CO-Surface Interaction** 4.1





Table S4: Comparison the adsorption energy of CO on the step edge and the terrace.

|         | Step (eV) | Terrace (eV) |
|---------|-----------|--------------|
| Pt(553) | -1.84     | -1.21        |
| Pt(557) | -1.85     | -1.33        |
| Pt(643) | -1.81     | -1.25        |

# 5 Neural Network Evaluation



# 5.1 Pt(553)

Figure S7: Parity plot comparing the reference DFT energies and forces with the neural network estimates for Pt(553)

### 5.2 Pt(557)



Figure S8: Parity plot comparing the reference DFT energies and forces with the neural network estimates for Pt(557)

# 5.3 Pt(643)



Figure S9: Parity plot comparing the reference DFT energies and forces with the neural network estimates for Pt(643)

# 5.4 Pt(111)



Figure S10: Parity plot comparing the reference DFT energies and forces with the neural network estimates for Pt(111)



### 5.5 Low Coordination adsorption sites

Figure S11: Parity plot comparing the reference DFT energies and forces with the neural network estimates for structures with low coordination adsorption sites