Synthesis of Structurally-Defined Polymeric Glycosylated Phosphoprenols as Potential Lipopolysaccharide Biosynthetic Probes

Lei Wang and Todd L. Lowary*

Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Gunning– Lemieux Chemistry Centre, Edmonton, AB T6G 2G2, Canada

Email: tlowary@ualberta.ca

Supporting Information

Table of Contents

Scheme S1. Synthesis of glucosamine-based building block 8.	S2
Scheme S2. Synthesis of mannose-based building blocks 3–7 and 31.	S2
Figure S1. Overlaid ¹ H NMR spectra of 1 and 2	S3
Figure S2. Overlaid ¹³ C NMR spectra of 1 and 2	S4
Experimental procedures and characterization data	S5
References	S95
Nuclear Magnetic Resonance (NMR) Spectra	S96

Scheme S1: Synthesis of glucosamine-based building block 8.

Scheme S2: Synthesis of mannose-based building blocks 3–7 and 31.

Figure S1. Overlaid partial ¹H NMR spectra of 1 (top) and 2 (bottom) from 3.5–5.6 ppm.

Figure S2. Overlaid ¹³C NMR spectra of 1 (top) and 2 (bottom).

4.5 Experimental section

General Methods: Reactions were carried out in oven-dried glassware. All reagents used were purchased from commercial sources and were used without further purification unless noted. Solvents used in reactions were purified by successive passage through columns of alumina and copper under nitrogen. Unless stated otherwise, all reactions were carried out at r.t. under a positive pressure of argon and were monitored by TLC on silica gel 60 F₂₅₄ (0.25 mm, E. Merck). Spots were detected under UV light or by charring with a solution of ammonium molybdate (12 g), ceric ammonium nitrate (0.42 g) and concentrated sulfuric acid (15 mL) in H₂O (235 mL). Unless otherwise indicated, all column chromatography was performed on silica gel 60 (40–60 μ M). The ratio between silica gel and crude product ranged from 100 to 50:1 (w/w). Optical rotations were measured at 22 ± 2 °C at the sodium D line (589 nm) and are in units of deg·mL(dm·g)⁻¹. ¹H NMR spectra were recorded at 500 or 700 MHz, and chemical shifts are referenced to either TMS (0.0 ppm, CDCl₃) or HOD (4.78 ppm, D₂O and CD₃OD). ¹³C NMR spectra were recorded at 150 or 175 MHz, and ¹³C chemical shifts were referenced to internal CDCl₃ (77.23 ppm, CDCl₃), external dioxane (67.40 ppm, D₂O) or CD₃OD (48.9 ppm, CD₃OD). The stereochemistry of the newly formed glycosidic linkages was confirmed by measuring ${}^{1}J_{C-1, H-1}$ values via an ${}^{1}H$ -coupled HSQC experiment. In the processing of reaction mixtures, solutions of organic solvents were washed with equal amounts of aqueous solutions. Organic solutions were concentrated under vacuum at $< 40^{\circ}$ C (bath). Electrospray mass spectra (time-of-light analyzer) were recorded on samples suspended in mixtures of THF with CH₃OH and added NaCl. MALDI mass spectrum was obtained in the linear positive mode of ionization on a MALDI TOF/TOF mass spectrometer using sinaoinic acid as the matrix.

General procedure A. Removal of PMP protecting group and formation of an trichloroacetimidate donors: CAN (5 equiv.) was added to a solution of compound 32, 10, 50 or 52 (1 equiv.) in 1:3:6 H₂O–CH₂Cl₂–CH₃CN (10 mL–300 mL, depending upon the amount of substrate) at 0 °C. The mixture was slowly warmed and vigorously stirred for 2 h at r.t.. The solution was then diluted with EtOAc and the organic layer was washed with H₂O, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography to afford the corresponding hemiacteal. Then, to a solution of the hemiacetal in dry CH₂Cl₂ (10 mL–200 mL) was added CCl₃CN (25 equiv.) and DBU (0.2 equiv.) at 0 °C and the mixture was subjected to chromatography to afford the trichloroacetimidate intermediate for glycosylation reactions.

2-(Trimethylsilyl)ethyl

4,6-O-Benzylidene-2-deoxy-2-(2,2,2-

trichloroethoxycarbonylamino)-β-D-glucopyranoside (8): To a solution of guanidine chloride (0.4 g, 62.8 mmol) in CH₃OH (40 mL) was added 1 M of NaOCH₃ (2 mL). Then, this mixture was added to a solution of $S3^1$ (6 g, 10.4 mmol) in CH₃OH (90 mL). The reaction mixture was stirred at r.t. for 20 min and then neutralized with Amberlite IR120 H⁺ ion-exchange resin and concentrated to dryness. The resulting residue, benzaldehyde dimethyl acetal (1.89 g, 12.4 mmol) and CSA (0.58 g, 2.5 mmol) were dissolved in anhydrous CH₃CN

(40 mL) and the mixture was stirred at r.t. for 4 h. After the addition of Et₃N, the mixture was diluted with EtOAc, washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The crude residue was purified by chromatography (gradient $17 \rightarrow 25\%$ EtOAc in hexane) to afford 8 (4.85 g, 86% yield) as a white solid. $R_f 0.53$ (3:2 hexane–EtOAc); $[\alpha]_{\rm D} = -30.5$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.49–7.47 (m, 2 H, ArH), 7.38–7.35 (m, 3 H, ArH), 5.54 (s, 1 H, PhCH(O)₂), 5.25 (br, 1 H, NH), 4.75 (d, 1 H, J = 12.0 Hz, CH₂CCl₃), 4.70 (d, 1 H, J = 8.0 Hz, H-1), 4.70 (d, 1 H, J = 12.0 Hz, CH₂CCl₃), 4.35 (dd, 1 H, J = 10.5, 5.0 Hz, H-6), 4.17 (br, 1 H, H-3), 3.96 (ddd, 1 H, J = 10.8, 9.7 5.5 Hz, TMSCH₂CH₂O), 3.78 (app t, 1 H, J = 10.5 Hz, H-6), 3.57 (ddd, 1 H, J = 11.0, 9.7 6.0 Hz, TMSCH₂CH₂O), 3.54 (app t, 1 H, J = 9.0 Hz, H-4), 3.49–3.45 (m, 1 H, H-5), 3.35–3.17 (m, 1 H, H-2), 3.04 (br, 1 H, OH), 0.97 (ddd, 1 H, *J* = 13.8, 11.2, 6.0 Hz, TMSCH₂CH₂O), 0.92 (ddd, 1 H, J = 13.8, 10.8, 5.5 Hz, TMSCH₂CH₂O), 0.01 (s, 9 H, (CH₃)₃Si); ¹³C NMR (125 MHz, CDCl₃, δ_C) 154.5 (NHC=O), 137.0 (Ar), 129.3 (Ar), 128.3 (Ar), 126.3 (Ar), 101.9 (PhCH(O)₂), 100.3 (C-1), 81.5 (C-4), 74.6 (CH₂CCl₃), 70.7 (C-3), 68.7 (C-6), 67.8 (TMSCH₂CH₂O), 66.0 (C-5), 59.1 (C-2), 18.2 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si); HRMS (ESI) calcd for (M+NH₄) C₂₁H₃₄Cl₃N₂O₇Si: 559.1195. Found: 559.1183.

p-Tolyl 3,4,6-tri-*O*-Benzyl-2-*O*-levulinyl-1-thio- α -D-mannopyranoside (4): To a solution of S7² (200 mg, 0.36 mmol) in CH₂Cl₂ (15 mL) was added levulinic acid (83 mg, 0.72 mmol), EDC (137 mg, 0.72 mmol) and DMAP (4.4 mg, 0.036 mmol). The mixture was stirred at r.t. overnight and then water was added and the mixture was extracted with CH₂Cl₂. The organic

phase was washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by chromatography (gradient $16 \rightarrow 20\%$ EtOAc in hexane) to afford 4 (222 mg, 95% yield) as a colorless oil. $R_{\rm f}$ 0.38 (2:1 hexane-EtOAc); $[\alpha]_D = +71.0$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.35-7.26 (m, 15 H, ArH), 7.20–7.19 (m, 2 H, ArH), 7.05–7.04 (m, 2 H, ArH), 5.58 (dd, 1 H, J = 3.0, 1.5 Hz, H-2), 5.43 (d, 1 H, J = 1.5 Hz, H-1), 4.87 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.70 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.63 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.54 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.53 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.46 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.33 (ddd, 1 H, J = 9.0, 5.0, 1.5 Hz, H-5), 3.93 (dd, 1 H, J = 9.0, 3.0 Hz, H-3), 3.90 (app t, 1 H, J = 9.0 Hz, H-4), 3.83 (dd, 1 H, J = 11.0, 5.0 Hz, H-6), 3.73 (dd, 1 H, J = 11.0, 2.0 Hz, H-6), 2.71–2.66 (m, 4 H, CH₃C=OCH₂, OC=OCH₂CH₂), 2.30 (s, 3 H, CH₃PhS), 2.11 (s, 3 H, CH₃C=OCH₂); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.2 (CH₃C=OCH₂), 171.9 (OC=OCH₂CH₂), 138.3 (Ar), 138.2 (Ar), 137.9 (Ar), 137.7 (Ar), 132.4 (Ar), 129.8 (Ar), 129.7 (Ar), 128.4 (Ar), 128.33 (Ar), 128.28 (Ar), 128.16 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.67 (Ar), 127.54 (Ar), 86.4 (C-1), 78.4 (C-3), 75.2 (PhCH₂), 74.5 (C-4), 73.3 (PhCH₂), 72.4 (C-5), 71.7 (PhCH₂), 70.4 (C-2), 68.9 (C-6), 37.9 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 28.1 (CH₃C=OCH₂CH₂), 21.1 (CH₃); HRMS (ESI) calcd for (M+Na) C₃₉H₄₂NaO₇S: 677.2543. Found: 677.2554.

p-Tolyl 2-O-Acetyl-4,6-O-benzylidene-3-O-levulinyl-1-thio-α-D-mannopyranoside (3): To a solution of S12³ (240 mg, 0.58 mmol) in CH₂Cl₂ (250 mL) was added levulinic acid (133 mg, 1.15 mmol), EDC (219 mg, 1.15 mmol) and DMAP (7.3 mg, 0.06 mmol). The mixture was stirred at r.t. overnight and then water was added and the mixture was extracted with EtOAc. The organic phase was washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by chromatography (gradient $20 \rightarrow 25\%$ EtOAc in hexane) to afford **3** (266 mg, 90% yield) as a colorless oil. $R_f 0.31$ (3:2) hexane–EtOAc); $[\alpha]_D = +145.0$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.48–7.47 (m, 2 H, ArH), 7.38–7.35 (m, 5 H, ArH), 7.13–7.11 (m, 2 H, ArH), 5.59 (s, 1H, PhCH(O)₂), 5.58 (d, 1 H, J = 3.5 Hz, H-2), 5.38 (dd, 1 H, J = 10.0, 3.5 Hz, H-3), 5.35 (s, 1 H, H-1), 4.46 (app td, 1 H, J = 10.0, 5.0 Hz, H-5), 4.24 (dd, 1 H, J = 10.0, 5.0 Hz, H-6), 4.12 (app t, 1 H, J = 10.0 Hz, H-4), 3.85 (dd, 1 H, J = 11.0, 1.5 Hz, H-6), 2.74–2.71 (app t, 2 H, J = 6.5 Hz, CH₃C=OC*H*₂), 2.60 (dt, 1 H, *J* = 17.0, 6.5 Hz, OC=OC*H*₂CH₂), 2.52 (dt, 1 H, *J* = 17.0, 6.5 Hz, OC=OCH₂CH₂), 2.32 (s, 3 H, CH₃PhS), 2.15 (s, 3 H, CH₃C=OCH₂), 2.14 (s, 3 H, OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.7 (OC=OCH₂CH₂), 169.8 (OC=OCH₃), 138.4 (Ar), 137.0 (Ar), 132.8 (Ar), 129.9 (Ar), 129.1 (Ar), 129.0 (Ar), 128.3 (Ar), 126.2 (Ar), 101.9 (PhCH(O)₂), 87.1 (C-1), 76.2 (C-4), 71.4 (C-2), 68.9 (C-3), 68.4 (C-6), 65.1 (C-5), 37.9 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 27.9 (CH₃C=OCH₂CH₂), 21.1 (CH₃), 20.8 (OC=OCH₃); HRMS (ESI) calcd for (M+Na) C₂₇H₃₀NaO₈S: 537.1554. Found: 537.1552.

p-Tolyl 3-O-Benzyl-4,6-di-O-benzylidene-1-thio-α-D-mannopyranoside (S13): Compound S11⁴ (5.0 g, 13.3 mmol) was suspended in toluene (120 mL) treated with *n*-Bu₂SnO (4.0 g, 1.6 mmol) and heated at reflux for 6 h with a Dean-Stark trap. The reaction mixture was cooled to r.t. and then BnBr (3.18 g, 18.6 mmol), cesium fluoride (2.2 g, 14.6 mmol) and TBAI (5.38 g, 14.6 mmol) were added. The resulting mixture was stirred at 110 °C for 2 h. After cooling to r.t., the mixture was diluted with EtOAc, washed with brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by chromatography (gradient $16 \rightarrow 25\%$ EtOAc in hexane) to afford S13 (5.21 g, 85% yield) as a white foam; R_f 0.50 (2:1 hexane–EtOAc); $[\alpha]_D = +230.5$ (c 0.6, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.51–7.50 (m, 2 H, ArH), 7.39–7.31 (m, 10 H, ArH), 7.12–7.11 (m, 2 H, ArH), 5.61 (s, 1 H, PhCH(O)₂), 5.51 (d, 1 H, *J* = 1.0 Hz, H-1), 4.89 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.74 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.42 (app td, 1 H, *J* = 10.0, 5.0 Hz, H-5), 4.27 (app dt, 1 H, *J* = 3.5, 1.4 Hz, H-2), 4.20 (dd, 1 H, J = 10.3, 5.0 Hz, H-6), 4.16 (app t, 1 H, J = 10.5 Hz, H-4), 3.96 (dd, 1 H, J = 9.5, 3.5 Hz, H-3), 3.84 (app t, 1 H, J = 10.3 Hz, H-6), 2.81 (d, 1 H, J = 1.4 Hz, OH), 2.33 (s, 3 H, CH₃PhS); ¹³C NMR (125 MHz, CDCl₃, δ_C) 138.1 (Ar), 137.8 (Ar), 137.5 (Ar), 132.5 (Ar), 130.0 (Ar), 129.4 (Ar), 129.0 (Ar), 128.6 (Ar), 128.3 (Ar), 128.1 (Ar), 127.9 (Ar), 126.1 (Ar), 101.6 (PhCH(O)₂), 88.2 (C-1), 79.1 (C-4), 75.7 (C-3), 73.2 (PhCH₂), 71.4 (C-2), 68.6 (C-6), 64.5 (C-5), 21.1 (CH₃); HRMS (ESI) calcd for (M+Na) C₂₇H₂₈NaO₅S: 487.1550. Found: 487.1560.

p-Tolyl 3-O-Benzyl-4,6-di-O-benzylidene-2-O-levulinyl-1-thio-α-D-mannopyrano side (5): To a solution of S13 (1.2 g, 2.37 mmol) in CH₂Cl₂ (100 mL) was added levulinic acid (0.55 g, 4.74 mmol), EDC (0.91 g, 4.74 mmol) and DMAP (30 mg, 0.24 mmol). The mixture was stirred at r.t. overnight and then water was added and the mixture was extracted with EtOAc. The organic phase was washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by chromatography (gradient 16 \rightarrow 25% EtOAc in hexane) to afford 5 (1.24 g, 92% yield) as a white foam. $R_{\rm f}$ 0.16 (3:1 hexane–EtOAc); $[\alpha]_D = +91.0$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.52–7.51 (m, 2 H, ArH), 7.39–7.26 (m, 10 H, ArH), 7.12–7.11 (m, 2 H, ArH), 5.63 (s, 1 H, PhCH(O)₂), 5.59 (dd, 1 H, J = 3.3, 1.2 Hz, H-2), 5.38 (d, 1 H, J = 1.0 Hz, H-1), 4.70 (d, 1 H, J = 12.5 Hz, H-1)PhC*H*₂), 4.67 (d, 1 H, *J* = 12.5 Hz, PhC*H*₂), 4.36 (app td, 1 H, *J* = 10.0, 5.0 Hz, H-5), 4.22 (dd, 1 H, J = 10.3, 5.0 Hz, H-6), 4.09 (app t, 1 H, J = 9.5 Hz, H-4), 4.00 (dd, 1 H, J = 9.5, 3.5 Hz, H-3), 3.84 (app t, 1 H, J = 10.3 Hz, H-6), 2.79–2.65 (m, 4 H, 2 x CH₂), 2.32 (s, 3 H, CH₃PhS), 2.16 (s, 3 H, CH₃C=O); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.9 (OC=OCH₂), 138.4 (Ar), 137.8 (Ar), 137.4 (Ar), 132.7 (Ar), 130.0 (Ar), 129.1 (Ar), 129.0 (Ar), 128.4 (Ar), 128.2 (Ar), 127.8 (Ar), 127.7 (Ar), 126.1 (Ar), 101.6 (PhCH(O)₂), 87.3 (C-1), 78.6 (C-4), 74.0 (C-3), 72.3 (PhCH₂), 71.5 (C-2), 68.5 (C-6), 65.0 (C-5), 38.0 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 28.0 (CH₃C=OCH₂CH₂), 21.1 (CH₃); HRMS (ESI) calcd for (M+Na) C₃₂H₃₄NaO₇S: 585.1920. Found: 585.1917.

p-Methoxyphenyl 6-*O*-Acetyl-α-D-mannopyranoside (S6): *p*-Methoxyphenyl α-Dmannopyranoside S5⁵ (4.2 g, 14.7 mmol) was dissolved in sym-collidine (100 mL) and the solution was cooled to -35 °C. Acetyl chloride (2.3 g, 29.4 mmol) was then added dropwise over 30 min under vigorous stirring. After 2 h, CH₃OH (5 mL) was added, and the reaction was warmed to r.t. The crude mixture was concentrated and purified by chromatography (gradient 10→33% acetone in CH₂Cl₂) to afford S6 (3.7 g, 77% yield) as a white solid. *R*_f 0.14 (1:3 hexane–EtOAc); [α]_D = +63.9 (*c* 0.9, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 6.96–6.95 (m, 2 H, ArH), 6.78–6.76 (m, 2 H, ArH), 5.43 (s, 1 H, H-1), 4.46 (dd, 1 H, *J* = 12.1, 5.5 Hz, H-6), 4.22 (dd, 1 H, *J* = 12.1, 2.0 Hz, H-6), 4.16 (dd, 1 H, *J* = 3.4, 1.5 Hz, H-2), 4.04 (dd, 1 H, *J* = 9.4, 3.4 Hz, H-3), 3.86 (ddd, 1 H, *J* = 9.8, 5.5, 2.0 Hz, H-5), 3.74 (app t, 1 H, *J* = 9.8 Hz, H-4), 3.73 (s, 3 H, OCH₃), 2.01 (s, 3 H, OC=OCH₃); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 172.2 (C=O), 155.1 (Ar), 150.0 (Ar), 117.8 (Ar), 114.6 (Ar), 98.8 (C-1), 71.4 (C-3), 71.0 (C-5), 70.5 (C-2), 67.6 (C-4), 63.5 (C-6), 55.6 (CH₃O), 20.9 (OC=OCH₃); HRMS (ESI) caled for (M+Na) C₁₅H₂₀NaO₈: 351.1050. Found: 351.1045.

p-Methoxyphenyl 2-*O*-Benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (6): *p*-Toluenesulfonic acid monohydrate (95 mg, 0.5 mmol) was added to a solution of S6 (0.73 g, 2.22 mmol) and trimethylorthobenzoate (3 mL) in DMF (0.7 mL) under N₂. After 1 h additional DMF (4.2 mL) was added and the suspension was cooled to 0 °C. NaH (60% in mineral oil, 528 mg, 13.2 mmol) was added and the mixture was stirred at 0 °C for 15 min. Then, benzyl bromide (1.14 g, 6.66 mmol) was added dropwise. After a further 1 h, ice water was added to the solution and the mixture was warmed to r.t. The organic phase was extracted with CH₂Cl₂. The organic extract was stirred vigorously in the presence of 1 M HCl for 1 h. At this time the mixture was diluted with CH₂Cl₂ and washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The crude residue was purified by chromatography (gradient 14 \rightarrow 25% EtOAc in hexane) to afford 6 (1.09 g, 86% yield) as a colorless oil; $R_{\rm f}$ 0.56 (3:2 hexane–EtOAc); $[\alpha]_D = +36.8 (c \ 1.9, CH_2Cl_2); {}^{1}H NMR (700 MHz, CDCl_3, \delta_H) 8.05-8.03$ (m, 2 H, ArH), 7.58–7.55 (m, 1 H, ArH), 7.40–7.26 (m, 12 H, ArH), 7.00–6.99 (m, 2 H, ArH), 6.80-6.78 (m, 2 H, ArH), 5.57 (d, 1 H, J = 1.9 Hz, H-1), 5.52 (dd, 1 H, J = 3.4, 1.9 Hz, H-2), 4.81 (d, 1 H, *J* = 11.1 Hz, PhC*H*₂), 4.71 (d, 1 H, *J* = 11.8 Hz, PhC*H*₂), 4.66 (d, 1 H, *J* = 11.1 Hz, PhC*H*₂), 4.50 (d, 1 H, *J* = 11.8 Hz, PhC*H*₂), 4.45 (ddd, 1 H, *J* = 9.6, 5.2, 3.4 Hz, H-3), 4.10 (app t, 1 H, *J* = 9.6 Hz, H-4), 3.98 (ddd, 1 H, *J* = 9.6, 3.7, 1.8 Hz, H-5), 3.90 (dd, 1 H, *J* = 11.0, 3.7 Hz, H-6), 3.75 (dd, 1 H, J = 11.0, 1.8 Hz, H-6), 3.74 (s, 3 H, OCH₃), 2.14 (d, 1 H, J = 5.2 Hz, OH); ¹³C NMR (125 MHz, CDCl₃, δ_C) 166.1 (C=O), 155.1 (Ar), 150.0 (Ar), 138.3 (Ar), 138.1 (Ar), 133.3 (Ar), 129.9 (Ar), 129.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.0 (Ar), 127.9 (Ar), 127.6 (Ar), 127.5 (Ar), 117.8 (Ar), 114.6 (Ar), 96.6 (C-1), 75.6 (C-4), 74.9 (PhCH₂), 73.4 (Ph*C*H₂), 72.6 (C-2), 71.9 (C-5), 70.4 (C-3), 68.8 (C-6), 55.6 (CH₃O); ¹H-coupled HSQC $(700 \text{ MHz}, \text{CDCl}_3)^{1}J_{\text{C-1, H-1}} = 174.6 \text{ Hz}(\text{C-1, H-1}); \text{HRMS}(\text{ESI}) \text{ calcd for (M+Na) C}_{34}\text{H}_{34}\text{NaO}_8:$ 593.2146. Found: 593.2154.

p-Tolyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-1-thio-α-D-mannopyranoside (7): To a solution of $S10^6$ (10.62 g, 21 mmol) in CH₂Cl₂ (250 mL) was added levulinic acid (4.85 g, 42 mmol), EDC (8.0 g, 42 mmol) and DMAP (256 mg, 2.1 mmol). The mixture was stirred at r.t. overnight and then water was added and the mixture was extracted with EtOAc. The organic phase was washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was purified by chromatography (gradient $20 \rightarrow 28\%$ EtOAc in hexane) to afford 7 (12.1 g, 94% yield) as a colorless oil. Rf 0.35 (3:2 hexane-EtOAc); $[\alpha]_D = +97.9$ (c 0.8, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.40–7.23 (m, 12 H, ArH), 7.09–7.08 (m, 2 H, ArH), 5.51 (dd, 1 H, J = 3.5, 1.5 Hz, H-2), 5.45 (d, 1 H, J = 1.5 Hz, H-1), 5.34 (dd, 1 H, J = 10.0, 3.5 Hz, H-3), 4.72 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.71 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.56 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.50 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.42 (ddd, 1 H, J = 11.0, 10.0, 1.5 Hz, H-5), 4.07 (app t, 1 H, J = 10.0 Hz, H-4), 3.89 (dd, 1 H, J = 11.0, 4.5 Hz, H-6), 3.73 (dd, 1 H, J = 11.0, 1.5 Hz, H-6), 2.81–2.67 (m, 2 H, CH₃C=OCH₂), 2.58-2.47 (m, 2 H, OC=OCH₂CH₂), 2.33 (s, 3 H, CH₃PhS), 2.20 (s, 3 H, CH₃C=OCH₂), 2.16 (s, 3 H, OC=OCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.2 (CH₃C=OCH₂), 171.8 (OC=OCH₂CH₂), 170.0 (OC=OCH₃), 138.1 (Ar), 138.0 (Ar), 137.9 (Ar), 132.4 (Ar), 129.8 (Ar), 129.6 (Ar), 128.4 (Ar), 128.3 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 86.2 (C-1), 74.9 (PhCH₂), 73.5 (PhCH₂), 73.3 (C-4), 72.6 (C-3), 72.4 (C-5), 71.5 (C-2), 68.7 (C-6), 37.9 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 27.9 (CH₃C=OCH₂CH₂), 21.1 (CH₃), 21.0 (OC=OCH₃); HRMS (ESI) calcd for (M+Na) C₃₄H₃₈NaO₈S: 629.2180. Found: 629.2179.

p-Tolyl 2-O-Acetyl-3,4,6-tri-O-benzyl-1-thio-α-D-mannopyranoside (31): Compound S7² (200 mg, 0.36 mmol) was dissolved in 3:2 pyridine-Ac₂O (5 mL) and the mixture was stirred at r.t. for 2 h. Then, the solution was concentrated, dissolved in CH₂Cl₂ (100 mL) followed by washing with 1M of HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient 16 \rightarrow 20% EtOAc in hexane) to afford **31** (222 mg, 96% yield) as a white solid; $R_{\rm f}$ 0.62 (2:1 hexane–EtOAc); $[\alpha]_D = +91.1$ (c 0.6, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.35–7.26 (m, 15 H, ArH), 7.20–7.18 (m, 2 H, ArH), 7.05–7.04 (m, 2 H, ArH), 5.59 (app t, 1 H, J = 2.0, H-2), 5.45 (d, 1 H, J = 2.0 Hz, H-1), 4.88 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.71 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.65 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.56 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.51 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.46 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.34–4.32 (m, 1 H, H-5), 3.95–3.93 (m, 2 H, H-3, H-4), 3.84 (dd, 1 H, J = 11.0, 4.5 Hz, H-6), 3.72 (dd, 1 H, J = 11.0, 1.5 Hz, H-6), 2.29 (s, 3 H, CH₃PhS), 2.13 (OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, δ_{C}) 170.4 (OC=OCH₃), 138.3 (Ar), 138.2 (Ar), 137.9 (Ar), 137.6 (Ar), 132.3 (Ar), 129.9 (Ar), 129.8 (Ar), 128.4 (Ar), 128.33 (Ar), 128.26 (Ar), 128.17 (Ar), 127.9 (Ar), 127.73 (Ar), 127.66 (Ar), 127.52 (Ar), 86.5 (C-1), 78.5 (C-3), 75.2 (PhCH₂), 74.6 (C-4), 73.3 (PhCH₂), 72.4 (C-5), 71.9 (PhCH₂), 70.3 (C-2), 68.9 (C-6), 21.1 (OC=OCH₃); HRMS (ESI) calcd for (M+Na) C₃₆H₃₈NaO₆S: 621.2281. Found: 621.2283.

p-Methoxyphenyl 2-O-Acetyl-4,6-di-O-benzylidene-3-O-levulinyl-α-D-manno pyranosyl- $(1 \rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (11): A mixture of donor 3 (160) mg, 0.31 mmol), acceptor 6 (161 mg, 0.28 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (20 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (94 mg, 0.42 mmol) and AgOTf (22 mg, 0.08 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h. Et₃N (0.1 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $16 \rightarrow 33\%$ EtOAc in hexane) to afford 11 (176 mg, 65%) yield) as a white foam; $R_f 0.24$ (3:2 hexane–EtOAc); $[\alpha]_D = +31.6$ (*c* 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.12–8.11 (m, 2 H, ArH), 7.60–7.58 (m, 1 H, ArH), 7.42–7.26 (m, 15 H, ArH), 7.18–7.17 (m, 2 H, ArH), 7.00–6.99 (m, 2 H, ArH), 6.79–6.78 (m, 2 H, ArH), 5.61 (dd, 1 H, *J* = 3.0, 2.0 Hz, H-2), 5.59 (d, 1 H, *J* = 2.0 Hz, H-1), 5.48 (dd, 1 H, *J* = 3.5, 1.5 Hz, H-2'), 5.43 (s, 1 H, PhC*H*(O)₂), 5.31 (dd, 1 H, *J* = 10.0, 3.0 Hz, H-3'), 5.15 (d, 1 H, *J* = 1.5 Hz, H-1'), 4.92 (d, 1 H, J = 10.5 Hz, PhCH₂), 4.68 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.64 (d, 1 H, J = 10.5 Hz, PhC*H*₂), 4.48 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.47 (dd, 1 H, *J* = 9.5, 3.0 Hz, H-3), 4.29 (app t, 1 H, J = 9.5 Hz, H-4), 4.16 (dd, 1 H, J = 10.0, 5.0 Hz, H-6'), 4.00–3.97 (m, 2 H, H-5, H-4'), 3.93 (td, 2 H, J = 10.0, 5.0 Hz, H-5'), 3.89 (dd, 1 H, J = 11.0, 3.5 Hz, H-6), 3.75 (s, 3 H, OCH₃), 3.73–3.70 (m, 2 H, H-6, H-6'), 2.65 (t, 2 H, *J* = 7.0 Hz, CH₃C=OCH₂), 2.54 (dt, 1 H, *J* = 17.0, 7.0 Hz, OC=OCH₂CH₂), 2.46 (dt, 1 H, *J* = 17.0, 7.0 Hz, OC=OCH₂CH₂), 2.13 (s, 3 H, $CH_3C=OCH_2$), 2.09 (s, 3 H, $OC=OCH_3$); ¹³C NMR (175 MHz, $CDCl_3$, δ_C) 206.1

(CH₃C=OCH₂), 171.7 (OC=OCH₂), 169.7, (OC=OCH₃), 166.1 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.2 (Ar), 137.8 (Ar), 137.1 (Ar), 133.4 (Ar), 130.0 (Ar), 129.4 (Ar), 129.0 (Ar), 128.6 (Ar), 128.4 (Ar), 128.3 (Ar), 128.0 (Ar), 127.8 (Ar), 127.6 (Ar), 127.5 (Ar), 126.4 (Ar), 117.7 (Ar), 114.6 (Ar), 101.9 (PhCH(O)₂), 100.8 (C-1'), 96.1 (C-1), 79.7 (C-3), 75.7 (PhCH₂), 75.6 (C-4'), 73.9 (C-4), 73.4 (PhCH₂), 72.1 (C-2), 72.0 (C-5), 69.9 (C-2'), 68.8 (C-3'), 68.7 (C-6), 68.5 (C-6'), 64.9 (C-5'), 55.6 (CH₃O), 37.8 (CH₃C=OCH₂), 29.7 (CH₃C=OCH₂), 27.9 (CH₃C=OCH₂CH₂), 20.7 (OC=OCH₃); HRMS (ESI) calcd for (M+NH₄) C₅₄H₆₀NO₁₆: 978.3907. Found: 978.3919.

p-Methoxyphenyl 2-*O*-Acetyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)- 2-*O*-benzyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (13): A solution of 11 (190 mg, 0.2 mmol) and hydrazine acetate (37 mg, 0.4 mmol) in 9:1 CH₂Cl₂–CH₃OH (30 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was purified by chromatography (gradient 20 \rightarrow 33% EtOAc in hexane) to afford 13 (156 mg, 93% yield) as a white foam; R_f 0.30 (3:2 hexane–EtOAc); $[\alpha]_D$ = +45.0 (*c* 0.5, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.11–8.10 (m, 2 H, ArH), 7.62–7.60 (m, 1 H, ArH), 7.43–7.24 (m, 17 H, ArH), 7.01–7.00 (m, 2 H, ArH), 6.80–6.79 (m, 2 H, ArH), 6.00–5.59 (m, 2 H, H-2, H-1), 5.48 (s, 1 H, PhC*H*(O)₂), 5.28 (dd, 1 H, *J* = 3.5, 1.5 Hz, H"-2), 5.20 (s, 1 H, H-1'), 4.83 (d, 1 H, *J* = 10.5 Hz, PhC*H*₂), 4.70 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.62 (d, 1 H, *J* = 10.5 Hz, PhC*H*₂), 4.49 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.48 (dd, 1 H, *J* = 9.0, 3.0 Hz, H-3), 4.29 (app t, 1 H, *J* = 9.5 Hz, H-

4), 4.21 (dd, 1 H, J = 10.0, 4.0 Hz, H-6'), 4.11–4.09 (m, 1 H, H-3'), 4.00–3.98 (m, 1 H, H-5), 3.88 (dd, 1 H, J = 10.5, 3.5 Hz, H-6), 3.86–3.81 (m, 2 H, H-5', H-4'), 3.75 (s, 3 H, OCH₃), 3.73–3.70 (m, 2 H, H-6', H-6), 2.15 (d, 1 H, J = 4.0 Hz, OH), 2.13 (s, 3 H, OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, δ_{C}) 170.2, (OC=OCH₃), 165.9 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.2 (Ar), 137.8 (Ar), 137.1 (Ar), 133.4 (Ar), 129.9 (Ar), 129.5 (Ar), 129.2 (Ar), 128.6 (Ar), 128.4 (Ar), 128.3 (Ar), 128.17 (Ar), 128.14 (Ar), 127.9 (Ar), 127.6 (Ar), 126.4 (Ar), 117.8 (Ar), 114.6 (Ar), 102.2 (PhCH(O)₂), 100.6 (C-1'), 96.2 (C-1), 78.6 (C-4'), 78.2 (C-3), 75.4 (PhCH₂), 74.3 (C-4), 73.4 (PhCH₂), 72.1 (C-2, C-5), 71.9 (C-2'), 68.6 (C-6), 68.4 (C-6'), 67.2 (C-3'), 64.2 (C-5'), 55.6 (CH₃O), 20.9 (OC=OCH₃); HRMS (ESI) calcd for (M+Na) C₄₉H₅₀NaO₁₄: 885.3093. Found: 885.3092.

p-Methoxyphenyl 3-*O*-Benzyl-4,6-di-*O*-benzylidene-2-*O*-levulinyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (14): A mixture of donor 5 (118 mg, 0.21 mmol), acceptor 13 (140 mg, 0.16 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (15 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (61 mg, 0.27 mmol) and AgOTf (16 mg, 0.06 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (0.2 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified

by chromatography (gradient $16 \rightarrow 25\%$ EtOAc in hexane) to afford 14 (141 mg, 67% yield) as a white foam; $R_f 0.33$ (3:2 hexane-EtOAc); $[\alpha]_D = +14.5$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 8.09–8.08 (m, 2 H, ArH), 7.59–7.57 (m, 1 H, ArH), 7.46–7.22 (m, 27 H, ArH), 7.00–6.99 (m, 2 H, ArH), 6.80–6.78 (m, 2 H, ArH), 5.60 (app t, 1 H, J = 2.0 Hz, H-2), 5.56 (d, 1 H, J = 2.0 Hz, H-1), 5.52 (s, 1 H, PhCH(O)₂), 5.51 (s, 1 H, PhCH(O)₂), 5.39 (dd, 1 H, J =3.0, 1.5 Hz, H^{'''}-2), 5.32 (dd, 1 H, J = 3.0, 1.0 Hz, H-2'), 5.20 (s, 1 H, H-1'), 5.07 (s, 1 H, H-1"), 4.82 (d, 1 H, J = 10.5 Hz, PhCH₂), 4.70 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.64–4.58 (m, 3 H, PhC*H*₂), 4.51 (dd, 1 H, *J* = 9.0, 3.0 Hz, H-3), 4.48 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.29 (app t, 1 H, J = 9.5 Hz, H-4), 4.22–4.19 (m, 2 H, H-3', H-6'), 3.99–3.97 (m, 2 H, H-5, H-4'), 3.93–3.83 (m, 4 H), 3.80–3.70 (m, 4 H), 3.75 (s, 3 H, OCH₃), 3.58–3.55 (m, 1 H), 2.64–2.56 (m, 4 H, CH₃C=OCH₂, OC=OCH₂CH₂), 2.11 (s, 3 H, CH₃C=OCH₂), 2.00 (s, 3 H, OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.6 (OC=OCH₂), 170.2, (OC=OCH₃), 165.8 (PhC=O), 155.2 (Ar), 149.9 (Ar), 138.2 (Ar), 138.1 (Ar), 137.6 (Ar), 137.2 (Ar), 133.4 (Ar), 129.9 (Ar), 129.5 (Ar), 128.8 (Ar), 128.7 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.2 (Ar), 128.05 (Ar), 127.97 (Ar), 127.89 (Ar), 127.6 (Ar), 127.56 (Ar), 127.54 (Ar), 127.49 (Ar), 126.20 (Ar), 126.16 (Ar), 117.8 (Ar), 114.6 (Ar), 101.5 (PhCH(O)₂), 101.3 (PhCH(O)₂), 100.3 (C-1"), 99.5 (C-1'), 96.3 (C-1), 78.5, 78.4, 77.4 (C-3), 75.4 (PhCH₂), 74.4 (C-4), 73.5 (PhCH₂), 73.3, 72.1 (C-5), 71.96 (PhCH₂), 71.9 (C-2), 71.6 (C-2'), 71.3 (C-3'), 69.6 (C-2''), 68.6, 68.5, 68.4, 64.5, 64.3, 55.6 (CH₃O), 38.0 (CH₃C=OCH₂), 29.7 (CH₃C=OCH₂), 28.0 (CH₃C=OCH₂CH₂), 20.7 (OC=OCH₃); HRMS (ESI) calcd for (M+NH₄) C₇₄H₈₀NO₂₁: 1318.5217. Found: 1318.5246.

S19

p-Methoxyphenyl 3-*O*-Benzyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)- 2-*O*acetyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-benzylα-D-mannopyranoside (15): A solution of 14 (110 mg, 0.08 mmol) and hydrazine acetate (23 mg, 0.25 mmol) in 9:1 CH₂Cl₂-CH₃OH (30 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient $20 \rightarrow 33\%$) EtOAc in hexane) to afford 15 (101 mg, 99% yield) as a white foam; R_f 0.44 (3:2) hexane-EtOAc); $[\alpha]_D = +34.7$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.10-8.09 (m, 2 H, ArH), 7.59–7.57 (m, 1 H, ArH), 7.45–7.25 (m, 27 H, ArH), 7.01–6.99 (m, 2 H, ArH), 6.80–6.78 (m, 2 H, ArH), 5.61 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.57 (d, 1 H, J = 2.0 Hz, H-1), 5.51 (s, 1 H, PhCH(O)₂), 5.49 (s, 1 H, PhCH(O)₂), 5.35 (dd, 1 H, J = 3.5, 1.5 Hz, H-2'), 5.20 (d, 1 H, *J* = 1.5 Hz, H-1'), 5.10 (s, 1 H, H-1"), 4.86 (d, 1 H, *J* = 10.5 Hz, PhC*H*₂), 4.80 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.70 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.65 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.61 (d, 1 H, *J* = 10.5 Hz, PhC*H*₂), 4.51 (dd, 1 H, *J* = 9.0, 3.0 Hz, H-3), 4.49 (d, 1 H, *J* = 12.0 Hz, PhCH₂), 4.29 (app t, 1 H, J = 9.5 Hz, H-4), 4.22–4.19 (m, 2 H, H-3', H-6'), 4.01–3.86 (m, 7 H), 3.79-3.70 (m, 4 H), 3.75 (s, 3 H, OCH₃), 3.58 (app t, 1 H, J = 10.5 Hz), 2.49 (d, 1 H, J= 1.0 Hz, OH), 2.07 (s, 3 H, OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, $\delta_{\rm C}$) 169.6 (OC=OCH₃), 165.8 (PhC=O), 155.2 (Ar), 149.9 (Ar), 138.2 (Ar), 138.1 (Ar), 137.6 (Ar), 137.5 (Ar), 137.3 (Ar), 133.4 (Ar), 129.9 (Ar), 129.5 (Ar), 128.9 (Ar), 128.8 (Ar), 128.7 (Ar), 128.6 (Ar), 128.5 (Ar), 128.40 (Ar), 128.38 (Ar), 128.1 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.61 (Ar),

127.57 (Ar), 126.17 (Ar), 126.15 (Ar), 117.8 (Ar), 114.6 (Ar), 101.6 (PhCH(O)₂), 101.5 (PhCH(O)₂), 101.4 (C-1"), 100.3 (C-1'), 96.3 (C-1), 78.8, 78.2, 77.8 (C-3), 75.4 (PhCH₂), 75.1, 74.3 (C-4), 73.5 (PhCH₂), 72.9 (PhCH₂), 72.3, 72.1, 71.94, 71.88, 69.9, 68.62, 68.60, 68.5, 64.6, 63.9, 55.6 (CH₃O), 20.8 (OC=OCH₃); HRMS (ESI) calcd for (M+Na) C₆₉H₇₀NaO₁₉: 1225.4404. Found: 1225.4413.

p-Methoxyphenyl 3,4,6-tri-O-Benzyl-2-O-levulinyl- α -D-mannopyranosyl-(1→2)-3-O-benzyl-4,6-di-O-benzylidene- α -D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-

benzylidene-α-D-mannopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-benzyl-α-D-

mannopyranoside (16): A mixture of donor **4** (38 mg, 0.058 mmol), acceptor **15** (54 mg, 0.045 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (5 mL) and stirred at r.t. for 10 min. The solution was then cooled to -5 °C, and then NIS (18 mg, 0.08 mmol) and AgOTf (5.8 mg, 0.022 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (0.2 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 16 \rightarrow 25% EtOAc in hexane) to afford **16** (48 mg, 63% yield) as a white foam; R_f 0.41 (3:2 hexane–EtOAc); $[\alpha]_D = +20.8$ (*c* 0.2, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃, δ_H) 8.11–8.09 (m, 2 H, ArH), 7.58–7.55 (m, 1 H, ArH), 7.48–7.11 (m, 42 H, ArH), 7.02–7.00 (m, 2 H, ArH),

6.81–6.79 (m, 2 H, ArH), 5.61 (dd, 1 H, J = 3.0, 2.0 Hz), 5.57 (d, 1 H, J = 2.0 Hz), 5.54 (s, 1 H), 5.51 (dd, 1 H, J = 3.0, 2.0 Hz), 5.40 (s, 1 H), 5.34 (dd, 1 H, J = 3.5, 1.5 Hz), 5.20 (d, 1 H, *J* = 1.5 Hz), 5.11 (d, 1 H, *J* = 1.5 Hz), 5.08 (d, 1 H, *J* = 1.5 Hz), 4.87–4.80 (m, 3 H), 4.73–4.70 (m, 2 H), 4.63 (d, 1 H, J = 11.5 Hz), 4.60 (d, 1 H, J = 12.5 Hz, PhCH₂), 4.54–4.50 (m, 2 H), 4.43 (d, 1 H, J = 11.5 Hz), 4.41 (d, 1 H, J = 10.5 Hz), 4.30 (app t, 1 H, J = 9.5 Hz), 4.24–4.17 (m, 3 H), 4.01–3.86 (m, 7 H), 3.79–3.70 (m, 4 H), 4.02–3.85 (m, 8 H), 3.81 (dd, 1 H, *J* = 10.5, 3.5 Hz), 3.76 (s, 3 H), 3.75–3.68 (m, 4 H), 3.56–3.51 (m, 2 H), 3.25 (dd, 1 H, J = 11.0, 3.0 Hz), 3.03 (dd, 1 H, J = 11.0, 1.5 Hz), 2.67–2.61 (m, 4 H), 2.08 (s, 3 H), 2.03 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.2, 171.6, 169.5, 165.8, 155.2, 149.9, 138.6, 138.5, 138.2, 138.1, 137.7, 137.6, 137.3, 133.4, 130.0, 129.4, 128.9, 128.8, 128.6, 128.46, 128.37, 128.29, 128.25, 128.13, 128.11, 128.07, 127.9, 127.7, 127.6, 127.56, 127.48, 127.41, 127.3, 126.24, 126.15, 117.8, 114.6, 101.7, 101.5, 100.6, 100.3, 99.4, 96.4, 79.1, 78.5, 77.8, 77.2, 75.6, 75.5, 75.3, 75.2, 74.5, 73.9, 73.5, 73.2, 73.0, 72.2, 72.0, 71.9, 71.65, 71.64, 70.6, 68.63, 68.59, 68.52, 68.45, 68.0, 64.6, 64.5, 55.6, 30.0, 29.7, 28.2, 20.7; HRMS (ESI) calcd for (M+NH₄) C₁₀₁H₁₀₈NO₂₆:1750.7154. Found: 1750.7189.

p-Methoxyphenyl 3-O-Benzyl-4,6-di-O-benzylidene-2-O-levulinyl-α-D-mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (17): A mixture of donor 5 (6.40 g, 11.4 mmol), acceptor 6 (5.0 g, 8.77 mmol) and powdered 4Å molecular sieves was suspended in anhydrous CH₂Cl₂ (480 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (3.52 g, 15.8 mmol) and AgOTf (673 mg, 2.63 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (2.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $16 \rightarrow 25\%$ EtOAc in hexane) to afford 17 (6.4 g, 72%) yield) as a white foam; $R_f 0.26$ (2:1 hexane–EtOAc); $[\alpha]_D = +31.7$ (c 0.6, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.06–8.05 (m, 2 H, ArH), 7.58–7.56 (m, 1 H, ArH), 7.38–7.15 (m, 22 H, ArH), 7.00–6.99 (m, 2 H, ArH), 6.79–6.78 (m, 2 H, ArH), 5.58 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.56 (d, 1 H, J = 2.0 Hz, H-1), 5.50 (s, 1 H, PhCH(O)₂), 5.38 (dd, 1 H, J = 3.5, 1.5 Hz, H-2'), 5.18 (d, 1 H, J = 1.5 Hz, H-1'), 4.74 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.60 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.52 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.50–4.45 (m, 4 H, PhCH₂, H-3), 4.22 (app t, 1 H, J = 10.0 Hz, H-4'), 4.16 (dd, 1 H, J = 10.5, 4.5 Hz, H-6'), 3.98–3.96 (m, 1 H, H-5'), 3.96 (app t, 1 H, J = 9.5 Hz, H-4), 3.88–3.84 (m, 3 H, H-3', H-5, H-6), 3.74 (s, 3 H, OCH₃), 3.71 (app t, 1 H, J = 10.5 Hz, H-6'), 3.66 (dd, 1 H, J = 11.0, 1.6 Hz, H-6), 2.74–2.60 (m, 4 H, CH₃C=OCH₂, CH₃C=OCH₂CH₂), 2.14 (s, 3 H, CH₃C=OCH₂,); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.7 (OC=OCH₂), 165.8 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.3 (Ar), 137.9 (Ar), 137.8 (Ar), 137.5 (Ar), 133.3 (Ar), 129.9 (Ar), 129.6 (Ar), 128.8 (Ar), 128.5

(Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.6 (Ar), 127.5 (Ar), 127.4 (Ar), 126.3 (Ar), 117.8 (Ar), 114.6 (Ar), 101.6 (PhCH(O)₂), 100.6 (C-1'), 96.2 (C-1), 78.2 (C-4), 78.0 (C-3), 75.4 (PhCH₂), 74.4 (C-4'), 73.6 (C-3'), 73.4 (PhCH₂), 72.1 (PhCH₂), 72.0 (C-5), 71.9 (C-2), 70.2 (C-2'), 68.6 (C-6), 68.5 (C-6'), 64.7 (C-5'), 55.6 (CH₃O), 38.0 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 28.0 (CH₃C=OCH₂CH₂); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 171.5$ Hz (C-1, H-1), ${}^{1}J_{C-1', H-1'} = 171.5$ Hz (C-1', H-1'); HRMS (ESI) calcd for (M+NH₄) C₅₉H₆₄NO₁₅: 1026.4270. Found: 1026.4257.

p-Methoxyphenyl 3-*O*-Benzyl-4,6-di-*O*-benzylidene-α-D-mannopyranosyl-(1→3)- 2-*O*-benzyl-4,6-di-*O*- benzyl-α-D-mannopyranoside (18): A solution of 17 (6.40 g, 6.35 mmol) and hydrazine acetate (1.05 g, 11.4 mmol) in 9:1 CH₂Cl₂–CH₃OH (300 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient 16→25% EtOAc in hexane) to afford 18 (5.6 g, 92% yield) as a white foam; $R_{\rm f}$ 0.28 (2:1 hexane–EtOAc); $[\alpha]_{\rm D}$ = +40.1 (*c* 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.10–8.09 (m, 2 H, ArH), 7.59–7.57 (m, 1 H, ArH), 7.41–7.20 (m, 22 H, ArH), 7.02–7.00 (m, 2 H, ArH), 6.80–6.79 (m, 2 H, ArH), 5.61 (dd, 1 H, *J* = 3.0, 2.0 Hz, H-2), 5.57 (d, 1 H, *J* = 2.0 Hz, H-1), 5.49 (s, 1 H, PhC*H*(O)₂), 5.24 (d, 1 H, *J* = 1.0 Hz, H-1'), 4.74 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.71 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.68 (d, 1 H, *J* = 10.5 Hz, PhC*H*₂), 4.53 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.48 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.47 (dd, 1 H, *J* = 9.5, 3.0 Hz, H-3), 4.24 (app t, 1 H, *J* = 10.0 Hz, H-4'), 4.19 (dd,

1 H, J = 10.0, 4.5 Hz, H-6'), 4.03 (app t, 1 H, J = 9.5 Hz, H-4), 3.99 (ddd, J = 10.0, 3.0, 1.5 Hz, H-5), 3.95 (dd, J = 3.0, 1.5 Hz, H-2'), 3.87 (dd, 1 H, J = 11.0, 3.0 Hz, H-6), 3.84 (td, 1 H, J = 10.0, 4.5 Hz, H-5'), 3.78 (dd, 1 H, J = 9.5, 3.0 Hz, H-3'), 3.75 (s, 3 H, OCH₃), 3.73 (app t, 1 H, J = 10.0 Hz, H-6'), 3.72 (dd, 1 H, J = 11.0, 1.5 Hz, H-6), 2.54 (s, 1 H, OH); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 165.8 (PhC=O), 155.2 (Ar), 150.0 (Ar), 138.3 (Ar), 138.0 (Ar), 137.9 (Ar), 137.7 (Ar), 133.3 (Ar), 129.9 (Ar), 129.8 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.6 (Ar), 126.3 (Ar), 117.9 (Ar), 114.6 (Ar), 102.3 (C-1'), 101.6 (PhCH(O)₂), 96.4 (C-1), 78.6 (C-4'), 78.1 (C-3), 75.5 (C-3'), 75.4 (PhCH₂), 74.5 (C-4), 73.5 (PhCH₂), 73.1 (PhCH₂), 72.2 (C-2), 72.1 (C-5), 70.4 (C-2'), 68.8 (C-6), 68.7 (C-6'), 64.2 (C-5'), 55.6 (CH₃O); HRMS (ESI) calcd for (M+NH₄) C₅₄H₅₈NO₁₃: 928.3903. Found: 928.3899.

p-Methoxyphenyl 3-*O*-Benzyl-4,6-di-*O*-benzylidene-2-*O*-levulinyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3-*O*-benzyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (19): A mixture of donor 5 (4.70 g, 8.35 mmol), acceptor 18 (5.24 g, 5.76 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (480 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (2.58 g, 11.52 mmol) and AgOTf (442 mg, 1.73 mmol) were added. The

solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (2.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $16 \rightarrow 25\%$ EtOAc in hexane) to afford **19** (5.82 g, 73% yield) as a white foam; $R_f 0.27$ (2:1 hexane-EtOAc); $[\alpha]_D = +5.9$ (c 1.1, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 8.10–8.09 (m, 2 H, ArH), 7.61–7.58 (m, 1 H, ArH), 7.51–7.50 (m, 1 H, ArH), 7.42-7.20 (m, 31 H, ArH), 7.03-7.02 (m, 2 H, ArH), 6.79-6.78 (m, 2 H, ArH), 5.60 (s, 1 H, PhC*H*(O)₂), 5.59–5.57 (m, 2 H, H-1, H-2), 5.56 (dd, 1 H, *J* = 3.5, 1.5 Hz, H-2"), 5.48 (s, 1 H, PhC*H*(O)₂), 5.11 (d, 1 H, *J* = 1.5 Hz, H-1'), 4.98 (d, 1 H, *J* = 1.5 Hz, H-1"), 4.72–4.66 (m, 4 H, 4 X PhCH₂), 4.62 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.51 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.45 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.43 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.40 (dd, 1 H, *J* = 9.5, 2.5 Hz, H-3), 4.19 (app t, 1 H, J = 10.0 Hz, H-4), 4.14 (dd, 1 H, J = 10.0, 4.5 Hz, H-6'), 4.07 (dd, 1 H, *J* = 10.0, 5.0 Hz, H-6"), 4.03 (dd, 1 H, *J* = 10.0, 3.0 Hz, H-3"), 4.00 (app t, 1 H, *J* = 10.0 Hz, H-4"), 3.98 (ddd, 1 H, J = 10.0, 3.5, 1.5 Hz, H-5), 3.94 (app t, 1 H, J = 9.5 Hz, H-4'), 3.89 (td, 1 H, J = 10.0, 5.0 Hz, H-5"), 3.86 (dd, 1 H, J = 3.0, 1.5 Hz, H-2'), 3.83 (dd, 1 H, J = 11.0, 3.5 Hz, H-6), 3.81 (dd, 1 H, *J* = 10.0, 3.0 Hz, H-3'), 3.77–3.74 (m, 1 H, H-5'), 3.75 (s, 3 H, OCH₃), 3.72-3.65 (m, 3 H, H-6, H-6', H-6'), 2.79-2.63 (m, 4 H, CH₃C=OCH₂, CH₃C=OCH₂CH₂), 2.16 (s, 3 H, CH₃C=OCH₂,); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.6 (OC=OCH₂), 165.8 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.4 (Ar), 138.3 (Ar), 138.1 (Ar), 137.9 (Ar), 137.7 (Ar), 137.4 (Ar), 133.3 (Ar), 129.9 (Ar), 129.7 (Ar), 128.9 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.28 (Ar), 128.2 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.76 (Ar), 127.7 (Ar), 127.6 (Ar), 127.56 (Ar), 127.54 (Ar), 127.52 (Ar), 126.4 (Ar), 126.1 (Ar), 117.8 (Ar), 114.6 (Ar), 102.3 (C-1'), 101.6 (PhCH(O)₂), 101.5 (PhCH(O)₂), 100.7

(C-1"), 96.2 (C-1), 79.2 (C-3), 78.7 (C-4'), 78.5 (C-4"), 77.2 (C-2'), 75.4 (PhCH₂), 75.2 (C-3'), 74.2 (C-4), 73.7 (C-3"), 73.4 (PhCH₂), 73.2 (PhCH₂), 72.3 (PhCH₂), 72.2 (C-2), 72.1 (C-5), 69.7 (C-2"), 68.7 (C-6), 68.5 (C-6', C-6"), 64.9 (C-5'), 64.5 (C-5"), 55.6 (CH₃O), 38.1 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 28.1 (CH₃C=OCH₂CH₂); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 174.8$ Hz (C-1, H-1), ${}^{1}J_{C-1', H-1'} = 170.2$ Hz (C-1', H-1'), ${}^{1}J_{C-1'', H-1''} = 171.9$ Hz (C-1", H-1"); HRMS (ESI) calcd for (M+NH₄) C₇₉H₈₄NO₂₀: 1366.5581. Found: 1366.5570.

p-Methoxyphenyl 3-*O*-Benzyl-4,6-di-*O*-benzylidene-α-D-mannopyranosyl-(1→2)-3-*O*-benzyl-4,6-di-*O*-benzylbenzyl-4,6-di-*O*- benzylidene-α-D-mannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyla-D-mannopy- ranoside (20): A solution of 19 (5.53 g, 4.10 mmol) and hydrazine acetate (676 mg, 7.34 mmol) in 9:1 CH₂Cl₂--CH₃OH (300 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient 16→25% EtOAc in hexane) to afford 20 (4.9 g, 97% yield) as a white foam; *R*_f 0.33 (2:1 hexane-EtOAc); [α]_D = +30.7 (*c* 0.8, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.10-8.09 (m, 2 H, ArH), 7.61-7.59 (m, 1 H, ArH), 7.51-7.49 (m, 2 H, ArH), 7.42-7.16 (m, 30 H, ArH), 7.04-7.03 (m, 2 H, ArH), 6.80-6.78 (m, 2 H, ArH), 5.60 (s, 1 H, PhC*H*(O)₂), 5.59-5.58 (m, 2 H, H-1, H-2), 5.47 (s, 1 H, PhC*H*(O)₂), 5.14 (d, 1 H, *J* = 1.5 Hz, H-1'), 5.12 (d, 1 H, *J* = 1.0 Hz, H-1''), 4.89 (d, 1 H, *J* = 11.7 Hz, PhC*H*₂), 4.74 (d, 1 H, *J* = 11.7 Hz, PhC*H*₂), 4.69 (d, 1 H, *J* = 12.2 Hz, PhC*H*₂), 4.68 (d, 1 H, *J* = 11.6 Hz, PhC*H*₂), 4.63 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.51 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.46 (d, 1 H, *J* = 12.2 Hz, PhC*H*₂), 4.46 (d, 1 H, *J* = 11.6 Hz, PhC H_2), 4.41 (dd, 1 H, J = 9.5, 2.5 Hz, H-3), 4.22–4.21 (m, 1 H, H-2"), 4.20 (app t, 1 H, *J* = 10.0 Hz, H-4), 4.15 (dd, 1 H, *J* = 10.0, 4.5 Hz, H-6'), 4.11 (app t, 1 H, *J* = 9.5 Hz, H-4"), 4.07 (dd, 1 H, J = 10.5, 5.0 Hz, H-6"), 3.98 (ddd, 1 H, J = 10.0, 3.5, 1.5 Hz, H-5), 3.97 (dd, 1 H, J = 9.5, 3.5 Hz, H-3"), 3.94–3.93 (m, 1 H, H-2'), 3.94 (app t, 1 H, J = 9.5 Hz, H-4'), 3.89 (td, 1 H, *J* = 10.0, 5.0 Hz, H-5"), 3.84 (dd, 1 H, *J* = 11.0, 3.5 Hz, H-6), 3.82 (dd, 1 H, *J* = 10.0, 3.0 Hz, H-3'), 3.76 (td, 1 H, J = 10.0, 5.0 Hz, H-5'), 3.75 (s, 3 H, OCH₃), 3.74–3.67 (m, 3 H, H-6, H-6', H-6'), 2.58 (d, 1 H, J = 1.3 Hz, OH); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 165.9 (PhC=O), 155.2 (Ar), 149.9 (Ar), 138.3 (Ar), 138.2 (Ar), 138.1 (Ar), 137.9 (Ar), 137.7 (Ar), 137.5 (Ar), 133.3 (Ar), 129.9 (Ar), 129.7 (Ar), 128.9 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.95 (Ar), 127.92 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 126.4 (Ar), 126.1 (Ar), 117.8 (Ar), 114.6 (Ar), 102.6 (C-1'), 102.1 (C-1"), 101.6 (PhCH(O)₂), 101.5 (PhCH(O)₂), 96.2 (C-1), 79.3 (C-3), 78.9 (C-4"), 78.7 (C-4'), 77.2 (C-2'), 75.5 (PhCH₂), 75.4 (C-3', C-3"), 74.2 (C-4), 73.4 (PhCH₂), 73.3 (PhCH₂), 73.2 (PhCH₂), 72.3 (C-2), 72.1 (C-5), 69.9 (C-2"), 68.7, 68.6, 68.5 (C-6, C-6', C-6"), 64.9 (C-5'), 64.0 (C-5"), 55.6 (CH₃O); HRMS (ESI) calcd for (M+Na) C₇₄H₇₄NaO₁₈: 1273.4767. Found: 1273.4772.

p-Methoxyphenyl 2-*O*-Acetyl-4,6-di-*O*-benzyl-3-*O*-levulinyl- α -D-mannopyrano- syl-(1 \rightarrow 2)-3-*O*-benzyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 2)-3-*O*-benzyl-4,6-di-*O*-benzylidene- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-manno-

pyranoside (21): A mixture of acceptor **20** (4.60 g, 3.72 mmol), donor 7 (2.92 g, 4.83 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (400 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (1.58 g, 7.07 mmol) and AgOTf (285 mg, 1.11 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (2.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 16 \rightarrow 33% EtOAc in hexane) to afford **21** (5.53 g, 86% yield) as a white solid; *R*_f 0.14 (2:1 hexane–EtOAc); [α]_D = +27.6 (*c* 1.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.08–8.06 (m, 2 H, ArH), 7.59–7.57 (m, 1 H, ArH), 7.50–7.49 (m, 2 H, ArH), 7.39–7.09 (m, 40 H, ArH), 7.06–7.01 (m, 3 H, ArH), 6.79–6.77 (m, 2 H, ArH), 5.65 (s, 1 H, PhC*H*(O)₂), 5.57–5.55 (m, 2 H, H-1, H-2), 5.45–5.44 (m, 2 H, H''''-2, PhC*H*(O)₂), 5.40 (dd, 1 H, *J* = 10.0, 3.5 Hz, H''''-3), 5.17 (d, 1 H, *J* = 1.5 Hz, H-1'''), 5.12 (d, 1 H, *J* = 1.5 Hz, H-1''), 5.10 (d, 1 H, *J* = 1.5 Hz, H-1'), 4.89 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.66 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.63 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.61 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.57 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.55 (d, 1 H, *J* = 12.0

Hz, PhCH₂), 4.54 (d, 1 H, J = 12.5 Hz, PhCH₂), 4.46–4.39 (m, 5 H, PhCH₂, H-3), 4.22 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.19 (dd, 1 H, *J* = 1.5 Hz, H-2"), 4.16 (app t, 1 H, *J* = 9.5 Hz, H-4), 4.13 (dd, 1 H, J = 10.0, 4.5 Hz, H-6'), 3.99 (dd, 1 H, J = 10.5, 5.0 Hz, H-6"), 4.00-3.95 (m, 4 H), 3.93 (dd, 1 H, J = 3.0, 1.5 Hz, H-2'), 3.88 (app t, 1 H, J = 9.5 Hz, H-4'), 3.83-3.76 (m, 4 H), 3.74 (s, 3 H, OCH₃), 3.74-3.70 (m, 2 H), 3.67 (dd, 1 H, J = 11.0, 2.0 Hz), 3.65 (app t, 1 H, *J* = 10.0 Hz), 3.55 (dd, 1 H, *J* = 11.0, 3.0 Hz), 3.39 (dd, 1 H, *J* = 11.0, 2.0 Hz), 2.78 (dt, 1 H, *J* = 18.0, 7.5 Hz, CH₃C=OCH₂), 2.65 (dt, 1 H, *J* = 18.0, 6.5 Hz, CH₃C=OCH₂), 2.53 (dt, 1 H, *J* = 17.0, 7.0 Hz, OC=OCH₂CH₂), 2.44 (dt, 1 H, *J* = 17.0, 6.5 Hz, OC=OCH₂CH₂), 2.16 (s, 3 H, CH₃C=OCH₂), 2.07 (s, 3 H, OC=OCH₃); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 206.3 (CH₃C=OCH₂), 171.8 (OC=OCH₂), 169.8 (CH₃C=O), 165.8 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.6 (Ar), 138.4 (Ar), 138.3 (Ar), 138.1 (Ar), 138.0 (Ar), 137.8 (Ar), 137.7 (Ar), 137.6 (Ar), 133.3 (Ar), 129.9 (Ar), 129.7 (Ar), 128.8 (Ar), 128.6 (Ar), 128.5 (Ar), 128.33 (Ar), 128.32 (Ar), 128.28 (Ar), 128.22 (Ar), 128.1 (Ar), 128.0 (Ar), 127.99 (Ar), 127.92 (Ar), 127.89 (Ar), 127.87 (Ar), 127.7 (Ar), 127.69 (Ar), 127.63 (Ar), 127.5 (Ar), 127.4 (Ar), 127.3 (Ar), 126.4 (Ar), 126.1 (Ar), 117.8 (Ar), 114.6 (Ar), 102.5 (C-1'), 101.6 (C-1"), 101.5 (PhCH(O)₂), 101.3 (PhCH(O)₂), 99.4 (C-1"), 96.2 (C-1), 79.2 (C-3), 78.8, 77.2, 76.5, 75.8, 75.5, 75.4 (PhCH₂), 75.3, 74.9 (PhCH₂), 74.1, 73.5 (PhCH₂), 73.4 (PhCH₂), 73.3 (PhCH₂), 72.9 (PhCH₂), 72.8, 72.3, 72.0, 71.8, 69.7, 68.7, 68.5, 68.4, 68.1, 64.9, 64.8, 55.6 (CH₃O), 37.9 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 28.0 (CH₃C=OCH₂CH₂), 20.9 (OC=OCH₃); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 175.4 \text{ Hz} (C-1, H-1), {}^{1}J_{C-1', H-1'} = 170.1 \text{ Hz} (C-1', H-1'), {}^{1}J_{C-1'', H-1''} = 173.1 \text{ Hz}$ (C-1'', H-1''), ${}^{1}J_{C-1''', H-1'''} = 173.3$ Hz (C-1''', H-1'''); HRMS (ESI) calcd for (M+Na) C₁₀₁H₁₀₄NaO₂₆: 1755.6708. Found: 1755.6690.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-a-D-manno- pyranosyl- $(1\rightarrow 3)$ -4,6-*O*-benzylidene-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino) -β-Dglucopyranoside (22): A mixture of thioglycoside 7 (2 g, 3.68 mmol), acceptor 8 (2.45 g, 4.05 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (70 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (1.21 g, 5.43 mmol and AgOTf (282 mg, 1.1 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (1.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $25 \rightarrow 33\%$) EtOAc in hexane) to afford 22 (3.21 g, 85% yield) as a white solid; $R_f 0.72$ (1:1 hexane-EtOAc); $[\alpha]_{D} = +1.5$ (c 0.5, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_{H}) 7.39–7.26 (m, 13 H, ArH), 7.20–7.19 (m, 2 H, ArH), 5.55 (d, 1 H, J = 8.8 Hz, NH), 5.52 (s, 1 H, PhCH(O)₂), 5.37 (app t, 1 H, J = 2.1, H-2'), 5.24 (dd, 1 H, J = 10.3, 2.1 Hz, H-3'), 5.22 (s, 1 H, H-1'), 4.65 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.64 (d, 1 H, J = 11.2 Hz, PhCH₂), 4.64 (d, 1 H, J = 12.0 Hz, CH₂CCl₃), 4.50 (d, 1 H, J = 12.0 Hz, CH₂CCl₃), 4.50 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.47 (d, 1 H, J = 11.2 Hz, PhCH₂), 4.34–4.32 (m, 2 H, H-1, H-6), 4.09 (app t, 1 H, *J* = 10.0 Hz, H-3), 4.06–4.04 (m, 1 H, H-5'), 3.88–3.84 (m, 1 H, TMSCH₂CH₂O), 3.79 (app t, 1 H, J = 9.0 Hz, H-4'), 3.76 (app t, 1 H, J = 10.0 Hz, H-6), 3.71–3.63 (m, 2 H, H-6'), 3.67 (app t, 1 H, J = 10.0 Hz, H-4), 3.44-3.40 (m, 2 H, H-2, TMSCH₂CH₂O), 3.35 (app td, 1 H, J = 10.0, 5.0 Hz, H-5), 2.71 (dt, 1 H, *J* = 18.3, 7.0 Hz, CH₃C=OCH₂), 2.64 (dt, 1 H, *J* = 18.3, 6.5 Hz, CH₃C=OCH₂), 2.48 (dt, 1

H, J = 17.2, 7.0 Hz, OC=OCH₂CH₂), 2.43 (dt, 1 H, J = 17.2, 6.5 Hz, OC=OCH₂CH₂), 2.14 (s, 3 H, CH₃C=OCH₂), 2.04 (s, 3 H, OC=OCH₃), 0.90–0.86 (m, 2 H, TMSCH₂CH₂O), 0.00 (s, 9 H, (CH₃)₃Si); ¹³C NMR (175 MHz, CDCl₃, δ_{C}) 206.2 (CH₃C=OCH₂), 171.6 (OC=OCH₂CH₂), 169.6 (OC=OCH₃), 153.9 (NHC=O), 138.0 (Ar), 137.8 (Ar), 137.0 (Ar), 133.8 (Ar), 130.0 (Ar), 128.8 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 125.9 (Ar), 101.2 (C-1), 100.9 (PhCH(O)₂), 98.3 (C-1'), 81.9 (C-4), 74.6 (PhCH₂), 74.5 (C-3), 74.4 (CH₂CCl₃), 73.7 (PhCH₂), 73.3 (C-4'), 72.1 (C-3'), 71.3 (C-5'), 69.8 (C-2'), 69.1 (C-6'), 68.6 (C-6), 67.7 (TMSCH₂CH₂O), 65.8 (C-5), 56.8 (C-2), 37.8 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 20.7 (OC=OCH₃), 18.1 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si); HRMS (ESI) calcd for (M+NH₄) C₄₈H₆₄Cl₃N₂O₁₅Si: 1041.3136. Found: 1041.3120.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl-amino)- β -Dglucopyranoside (23): Disaccharide 22 (3.15 g, 3.08 mmol) was dissolved in 4:1 AcOH-H₂O (50 mL) and the solution was heated at 60 °C for 6 h. After cooling to r.t., the solvent was evaporated, the residue was dissolved with EtOAc, washed with a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. Then, the residue was dissolved in 2:3 Ac₂O-pyridine (25 mL) and stirred at r.t. for 2 h. The solvent was evaporated under high vacuum and the residue was diluted with CH₂Cl₂, washed with 1M HCl, a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The resulting residue was

purified by chromatography (gradient 33 -> 50% EtOAc in hexane) to afford 23 (2.95 g, 94% yield) as a white foam; $R_f 0.26$ (1:1 hexane–EtOAc); $[\alpha]_D = +19.2$ (*c* 0.4, CH₂Cl₂); ¹H NMR $(700 \text{ MHz}, \text{CDCl}_3, \delta_{\text{H}})$ 7.39–7.25 (m, 8 H, ArH), 7.17–7.16 (m, 2 H, ArH), 5.90 (d, 1 H, J =6.9 Hz, N*H*), 5.23 (dd, 1 H, *J* = 8.5, 3.0 Hz, H-3'), 5.04 (app t, 1 H, *J* = 9.5 Hz, H-4), 5.01 (app t, 1 H, J = 3.0 Hz, H-2'), 4.90 (s, 1 H, H-1'), 4.70 (d, 1 H, J = 11.8 Hz, CH₂CCl₃), 4.64 (d, 1 H, J = 11.2 Hz, PhCH₂), 4.60 (d, 1 H, J = 11.8 Hz, PhCH₂), 4.59 (d, 1 H, J = 8.5 Hz, H-1), 4.51 (d, 1 H, *J* = 11.8 Hz, PhC*H*₂), 4.46 (d, 1 H, *J* = 11.8 Hz, C*H*₂CCl₃), 4.44 (d, 1 H, *J* = 11.2 Hz, PhCH₂), 4.19 (dd, 1 H, J = 12.2, 5.0 Hz, H-6), 4.15 (app t, 1 H, J = 9.5 Hz, H-3), 4.05 (dd, 1 H, J = 12.2, 2.5 Hz, H-6), 4.02–4.00 (m, 1 H, H-5'), 3.86 (app td, 1 H, J = 10.0, 6.2 Hz, TMSCH₂CH₂O), 3.78 (app t, 1 H, J = 8.5 Hz, H-4'), 3.66–3.59 (m, 2 H, H-6'), 3.55–3.52 (m, 1 H, H-5), 3.44 (app td, 1 H, J = 10.0, 6.2 Hz, TMSCH₂CH₂O), 3.22–3.21 (m, 1 H, H-2), 2.68 (t, 2 H, J = 6.8 Hz, CH₃C=OCH₂), 2.45 (t, 2 H, J = 6.8 Hz, CH₃C=OCH₂), 2.13 (s, 3 H, CH₃C=OCH₂), 2.09 (s, 3 H, OC=OCH₃), 2.07 (s, 3 H, OC=OCH₃), 2.05 (s, 3 H, OC=OCH₃), 0.90–0.83 (m, 2 H, TMSCH₂CH₂O), -0.03 (s, 9 H, (CH₃)₃Si); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.4 (OC=OCH₂CH₂), 170.8 (OC=OCH₃), 169.9 (OC=OCH₃), 169.5 (OC=OCH₃), 154.1 (NHC=O), 137.8 (Ar), 128.5 (Ar), 128.4 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 99.7 (C-1), 98.8 (C-1'), 78.0 (C-3), 74.4 (CH₂CCl₃), 74.3 (PhCH₂), 73.7 (PhCH₂), 73.5 (C-4'), 71.5 (C-3', C-5', C-5), 70.7 (C-4), 70.5 (C-2'), 69.1 (C-6'), 67.5 (TMSCH₂CH₂O), 62.3 (C-6), 57.6 (C-2), 37.9 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 27.9 (CH₃C=OCH₂CH₂), 20.9 (OC=OCH₃), 20.8 (OC=OCH₃), 20.7 (OC=OCH₃), 18.1 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si); HRMS (ESI) calcd for (M+NH₄) C₄₅H₆₄Cl₃N₂O₁₇Si: 1037.3034. Found: 1037.3014.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)- 4,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (24): A solution of 23 (2.86 g, 2.8 mmol) and hydrazine acetate (515 mg, 5.6 mmol) in 9:1 CH₂Cl₂-CH₃OH (100 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient $33 \rightarrow 50\%$ EtOAc in hexane) to afford 24 (2.52 g, 98% yield) as a white foam; $R_f 0.30$ (1:1 hexane-EtOAc); $[\alpha]_D = +10.3$ (c 0.5, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.37–7.26 (m, 8 H, ArH), 7.22–7.21 (m, 2 H, ArH), 5.94 (d, 1 H, *J* = 7.3 Hz, N*H*), 5.02 (dd, 1 H, *J* = 9.9, 9.2 Hz, H-4), 4.92 (s, 1 H, H-1'), 4.86 (dd, 1 H, *J* = 3.5, 1.8 Hz, H-2'), 4.74 (d, 1 H, *J* = 10.8 Hz, PhC*H*₂), 4.68 (d, 1 H, *J* = 11.8 Hz, CH₂CCl₃), 4.62 (d, 1 H, *J* = 11.4 Hz, PhCH₂), 4.58–4.51 (m, 4 H, H-1, CH₂CCl₃, PhCH₂), 4.21 (dd, 1 H, J = 12.3, 5.0 Hz, H-6), 4.12–4.09 (m, 1 H, H-3), 4.06 (dd, 1 H, J = 12.3, 2.6 Hz, H-6), 4.03 (dd, 1 H, J = 8.8, 3.5 Hz, H-3'), 3.96–3.94 (m, 1 H, H-5'), 3.87 (td, 1 H, J = 10.0, 6.5 Hz, TMSCH₂CH₂O), 3.72 (dd, 1 H, J = 10.2, 1.7 Hz, H-6'), 3.66–3.64 (m, 1 H, H-4', H-6'), 3.55–3.54 (m, 1 H, H-5), 3.48–3.44 (m 1 H, TMSCH₂CH₂O), 3.26–3.23 (m, 1 H, H-2), 2.11 (s, 3 H, OC=OCH₃), 2.10 (s, 3 H, OC=OCH₃), 2.05 (s, 3 H, OC=OCH₃), 0.90–0.86 (m, 2 H, TMSCH₂CH₂O), -0.01 (s, 9 H, (CH₃)₃Si); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.8 (OC=OCH₃), 170.4 (OC=OCH₃), 169.9 (OC=OCH₃), 154.1 (NHC=O), 138.0 (Ar), 137.8 (Ar), 128.5 (Ar), 128.4 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 99.8 (C-1), 98.9 (C-1'), 78.5 (C-3), 76.0 (C-4'), 74.9 (PhCH₂), 74.4 (CH₂CCl₃), 73.6 (PhCH₂), 72.9 (C-2'), 71.6 (C-5'), 71.5 (C-5), 70.8 (C-4), 70.0(C-3'), 69.2 (C-6'), 67.5 (TMSCH₂CH₂O), 62.3 (C-6), 57.6 (C-2), 21.0 (OC=OCH₃), 20.9 (OC=OCH₃), 20.8 (OC=OCH₃), 18.1 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si);

HRMS (ESI) calcd for (M+NH₄) C₄₀H₅₈Cl₃N₂O₁₅Si: 939.2667. Found: 939.2649.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-α-D- mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-4,6-di-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside (25): А mixture of thioglycoside 7 (1.44 g, 2.38 mmol), acceptor 24 (2.0 g, 2.12 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (50 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (0.73 g, 3.25 mmol and AgOTf (166 mg, 0.65 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (1.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $25 \rightarrow 40\%$ EtOAc in hexane) to afford **25** (2.75 g, 91% yield) as a white foam; $R_f 0.46$ (1:1 hexane–EtOAc); $[\alpha]_D = +33.4$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.37–7.22 (m, 14 H, ArH), 7.18–7.16 (m, 6 H, ArH), 5.94 (d, 1 H, J = 7.5 Hz, NH), 5.30 (dd, 1 H, J = 3.3, 1.9 Hz, H-2"), 5.26 (dd, 1 H, J = 9.6, 3.2 Hz, H-3"), 5.06 (d, 1 H, J = 1.7 Hz, H-1"), 5.00 (dd, 1 H, J = 9.9, 9.2 Hz, H-4'), 4.91 (dd, 1 H, J = 3.0, 1.8 Hz, H-2'), 4.89 (s, 1 H, H-1'), 4.76 (d, 1 H, J = 11.9 Hz, PhCH₂), 4.75 (d, 1 H, J = 10.0 Hz, PhCH₂), 4.68 (d, 1 H, J = 11.8 Hz, CH₂CCl₃), 4.61 (d, 1 H, J = 11.3 Hz, PhCH₂), 4.60–4.49 (m, 5 H, H-1, CH₂CCl₃, PhCH₂), 4.47 (d, 1 H, J = 12.4 Hz, PhCH₂), 4.43 (d, 1 H, J = 10.0 Hz, PhCH₂), 4.21 (dd, 1 H, J = 12.5, 5.5 Hz, H-6), 4.12–4.09 (m, 1 H, H-3), 4.06 (dd, 1 H, J = 6.3, 3.3 Hz, H-3'), 4.05–4.03 (m, 2 H, H-6, H-4''), 3.94–3.92 (m, 1 H, H-5'), 3.88 (td, 1 H, *J* = 10.0, 6.0 Hz, TMSCH₂CH₂O), 3.82 (dd, 1 H, *J* = 11.0, 2.5 Hz, H-6"), 3.76 (app t, 1 H, J = 10.0 Hz, H-4'), 3.72 (app dt, 1 H, J = 9.7, 2.0 Hz, H-5''), 3.68 (dd, 1 H, J = 11.0, 1.8 Hz, H-6"), 3.66 (dd, 1 H, J = 10.0, 1.5 Hz, H-6'), 3.61–3.59 (m, 1 H, H-6'), 3.55–3.54 $(m, 1 H, H-5), 3.48-3.44 (m 1 H, TMSCH_2CH_2O), 3.22-3.19 (m, 1 H, H-2), 2.69 (dt, 1 H, J =$ 18.4, 7.0 Hz, CH₃C=OCH₂), 2.61 (dt, 1 H, J = 18.4, 6.5 Hz, CH₃C=OCH₂), 2.46 (dt, 1 H, J = 17.3, 7.0 Hz, OC=OCH₂CH₂), 2.41 (dt, 1 H, *J* = 17.3, 6.5 Hz, OC=OCH₂CH₂), 2.13 (s, 3 H, CH₃C=OCH₂), 2.08 (s, 6 H, 2 x OC=OCH₃), 2.06 (s, 3 H, OC=OCH₃), 2.05 (s, 3 H, OC=OCH₃), 0.90-0.86 (m, 2 H, TMSCH₂CH₂O), -0.01 (s, 9 H, (CH₃)₃Si); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.8 (OC=OCH₂CH₂), 170.7 (OC=OCH₃), 170.4 (OC=OCH₃), 169.9 (OC=OCH₃), 169.6 (OC=OCH₃), 154.1 (NHC=O), 138.4 (Ar), 138.3 (Ar), 137.7 (Ar), 128.4 (Ar), 128.3 (Ar), 128.28 (Ar), 128.25 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.5 (Ar), 99.7 (C-1), 99.6 (C-1"), 98.7 (C-1"), 78.6 (C-3), 77.3(C-3'), 75.2 (PhCH₂), 74.6 (C-4'), 74.5 (PhCH₂), 74.4 (CH₂CCl₃), 73.6 (PhCH₂), 72.5 (C-4", C-5"), 72.2 (C-2'), 72.0 (C-3"), 71.9 (C-5'), 71.5 (C-5), 70.6 (C-4), 69.9 (C-2"), 68.9 (C-6'), 68.1 (C-6"), 67.6 (TMSCH₂CH₂O), 62.4 (C-6), 57.6 (C-2), 37.8 (CH₃C=OCH₂), 29.8 (CH₃C=OCH₂), 27.9 (CH₃C=OCH₂CH₂), 21.3 (OC=OCH₃), 20.9 (OC=OCH₃), 20.8 (OC=OCH₃), 18.1 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 165.3 \text{ Hz} (C-1, H-1), {}^{1}J_{C-1', H-1'} = 174.8 \text{ Hz} (C-1', H-1'), {}^{1}J_{C-1'', H-1''} = 174.9 \text{ Hz} (C-1'', H-1')$ H-1"); HRMS (ESI) calcd for (M+NH₄) C₆₇H₈₈Cl₃N₂O₂₃Si: 1421.4607. Found: 1421.4579.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)- 2-Oacetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2trichloroethoxycarbonylamino)-β-D-glucopyranoside (26): A solution of 25 (2.73 g, 1.9 mmol) and hydrazine acetate (320 mg, 3.5 mmol) in 9:1 CH₂Cl₂-CH₃OH (100 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient $33 \rightarrow 50\%$ EtOAc in hexane) to afford **26** (2.35 g, 93\% yield) as a white foam; $R_f 0.53$ (1:1 hexane-EtOAc); $[\alpha]_D = +33.2$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, $CDCl_3, \delta_H$) 7.38–7.25 (m, 16 H, ArH), 7.21–7.17 (m, 4 H, ArH), 5.88 (d, 1 H, J = 6.7 Hz, NH), 5.15 (dd, 1 H, J = 3.0, 1.5 Hz, H-2"), 5.10 (s, 1 H, H-1"), 5.00 (app t, 1 H, J = 9.5 Hz, H-4'), 4.88 (s, 1 H, H-1'), 4.88 (s, 1 H, H-2'), 4.77 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.73 (d, 1 H, J = 11.2 Hz, PhCH₂), 4.68 (d, 1 H, J = 11.2 Hz, CH₂CCl₃), 4.65 (d, 1 H, J = 11.3 Hz, PhCH₂), 4.61–4.48 (m, 5 H, H-1, CH₂CCl₃, PhCH₂), 4.45 (d, 1 H, J = 12.3 Hz, PhCH₂), 4.43 (d, 1 H, J = 10.8 Hz, PhCH₂), 4.21 (dd, 1 H, J = 12.1, 5.0 Hz, H-6), 4.14–4.01 (m, 1 H, H-3), 4.07 (dd, 1 H, J = 7.0, 2.7 Hz, H-3'), 4.05 (dd, 1 H, J = 12.1, 2.3 Hz, H-6), 3.98 (dd, 1 H, J = 9.5, 3.3 Hz, H-3"), 3.93-3.90 (m, 1 H, H-5'), 3.90-3.87 (m, 1 H, TMSCH₂CH₂O), 3.86 (app t, 1 H, J = 9.5 Hz, H-4"), 3.82 (dd, 1 H, J = 11.3, 3.0 Hz, H-6"), 3.79 (app t, 1 H, J = 9.0 Hz, H-4'), 3.71 (dd, 1 H, J = 11.3, 1.5 Hz, H-6"), 3.63–3.57 (m, 3 H, H-5", H-6'), 3.55–3.53 (m, 1 H, H-5), 3.48–3.44 (m 1 H, TMSCH₂CH₂O), 3.22–3.19 (m, 1 H, H-2), 2.08 (s, 3 H, OC=OCH₃), 2.07 (s, 3 H, OC=OCH₃), 2.06 (s, 3 H, OC=OCH₃), 2.05 (s, 3 H, OC=OCH₃), 0.90–0.86 (m, 2

H, TMSCH₂CH₂O), -0.02 (s, 9 H, (CH₃)₃Si); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 170.8 (OC=OCH₃), 170.6 (OC=OCH₃), 170.1 (OC=OCH₃), 169.6 (OC=OCH₃), 154.1 (NHC=O), 138.3 (Ar), 137.8 (Ar), 137.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.1 (Ar), 128.02 (Ar), 127.99 (Ar), 127.9 (Ar), 127.8 (Ar), 127.6 (Ar), 99.7 (C-1), 99.5 (C-1"), 98.8 (C-1'), 78.6 (C-3), 76.5(C-3'), 75.3 (C-4"), 75.1 (PhCH₂), 74.8 (C-4'), 74.6 (PhCH₂), 74.4 (CH₂CCl₃), 73.7 (PhCH₂), 73.6 (PhCH₂), 72.3 (C-2'), 72.2 (C-2"), 72.0 (C-5", C-5'), 71.5 (C-5), 70.7 (C-4), 70.1 (C-1"), 68.9 (C-6'), 68.2 (C-6"), 67.6 (TMSCH₂CH₂O), 62.4 (C-6), 57.6 (C-2), 21.02 (OC=OCH₃), 20.99 (OC=OCH₃), 20.84 (OC=OCH₃), 20.82 (OC=OCH₃), 18.1 (TMSCH₂CH₂O), -1.4 (CH₃)₃Si); HRMS (ESI) calcd for (M+NH₄) C₆₂H₈₂Cl₃N₂O₂₁Si: 1323.4239. Found: 1323.4213.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-a-D- mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*acetyl-4,6-di-Obenzyl-α-D-mannopyranosyl-(1→3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2trichloroethoxycarbonylamino)-β-D-glucopyranoside (27): A mixture of thioglycoside 7 (1.25 g, 2.06 mmol), acceptor 26 (2.43 g, 1.87 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (50 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (0.63 g, 2.81 mmol and AgOTf (143 mg, 0.56 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (0.5 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 25 \rightarrow 40% EtOAc in hexane) to afford 27 (2.75 g, 83% yield) as a white solid; $R_f 0.42$ (1:1 hexane-EtOAc); $[\alpha]_D = +36.3$ (c 0.5, CH₂Cl₂); ¹H NMR (700 MHz, $CDCl_3, \delta_H$) 7.37–7.30 (m, 8 H), 7.28–7.18 (m, 18 H), 7.16–7.12 (m, 4 H), 5.85 (d, 1 H, J = 7.1 Hz), 5.30 (dd, 1 H, J = 3.0, 2.0 Hz), 5.28–5.27 (m, 1 H), 5.26 (dd, 1 H, J = 9.5, 3.0 Hz), 5.10 (s, 1 H), 5.08 (d, 1 H, J = 1.5 Hz), 4.99 (app t, 1 H, J = 9.5 Hz), 4.90 (s, 1 H), 4.87 (app t, 1 H, J = 2.5 Hz), 4.78 (d, 1 H, J = 10.5 Hz), 4.73 (d, 1 H, J = 12.1 Hz), 4.71 (d, 1 H, J = 10.9 Hz), 4.65 (d, 1 H, J = 11.5 Hz), 4.62–4.54 (m, 3 H), 4.53–4.43 (m, 5 H), 4.34 (d, 1 H, J = 10.5 Hz), 4.21–4.16 (m, 2 H), 4.13–4.02 (m, 5 H), 3.97 (app t, 1 H, J = 10.0 Hz), 3.90–3.85 (m, 2 H), 3.81–3.73 (m, 3 H), 3.65 (dd, 1 H, J = 11.0, 2.0 Hz), 3.63 (dd, 1 H, J = 11.0, 2.5 Hz), 3.59–3.52 (m, 4 H), 3.47–3.43 (m, 1 H), 3.40 (dd, 1 H, J = 11.0, 1.5 Hz), 3.19–3.16 (m, 1 H), 2.68 (dt, 1

H, J = 18.5, 7.0 Hz), 2.61 (dt, 1 H, J = 18.5, 6.5 Hz), 2.46 (dt, 1 H, J = 17.5, 7.0 Hz), 2.41 (dt, 1 H, J = 17.5, 6.5 Hz), 2.12 (s, 3 H), 2.11 (s, 3 H), 2.08 (s, 3 H), 2.06 (s, 3 H), 2.04 (s, 3 H), 2.01 (s, 3 H), 0.90–0.86 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_{C}) 206.2, 171.8, 170.8, 170.4, 170.3, 169.8, 169.6, 154.0, 138.3, 138.2, 138.1, 138.0, 137.8, 137.6, 128.5, 128.4, 128.3, 128.27, 128.25, 128.22, 127.9, 127.86, 127.83, 127.64, 127.60, 127.5, 100.0, 99.7, 98.6, 95.6, 78.6, 77.6, 75.3, 75.1, 74.5, 74.4, 74.3, 74.2, 73.6, 73.5, 73.3, 72.6, 72.5, 72.4, 72.1, 72.0, 71.8, 71.5, 70.7, 70.0, 68.9, 68.1, 68.0, 67.5, 62.4, 60.4, 57.6, 37.9, 29.8, 27.9, 21.1, 21.0, 20.84, 20.82, 18.1, -1.4; ¹H-coupled HSQC (700 MHz, CDCl₃) ¹ $J_{C-1, H-1} = 173.6, 170.8, 170.8, 161.0$ Hz; HRMS (ESI) calcd for (M+NH₄) C₈₉H₁₁₂Cl₃N₂O₂₉Si: 1805.6180. Found: 1805.6149.

2-(Trimethylsilyl)ethyl 2-*O*-Acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)- 2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-4,6-di-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl-amino)- β -D-glucopyranoside (28): A solution of 27 (2.70 g, 1.5 mmol) and hydrazine acetate (250 mg, 2.7 mmol) in 9:1 CH₂Cl₂-CH₃OH (100 mL) was stirred at r.t. for 3 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient 33 \rightarrow 40% EtOAc in hexane) to afford 28 (2.39 g, 94% yield) as a white solid; $R_{\rm f}$ 0.53 (1:1 hexane–EtOAc); [α]_D = +38.6 (*c* 0.5, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.36–7.19 (m, 24 H), 7.18–7.15 (m, 6 H), 5.85 (d, 1 H, *J* = 6.7 Hz), 5.23 (dd, 1 H, *J* = 3.0, 2.0 Hz), 5.14 (dd,

1 H, J = 3.3, 1.7 Hz), 5.10 (d, 1 H, J = 1.5 Hz), 5.09 (d, 1 H, J = 1.5 Hz), 4.99 (app t, 1 H, J = 9.5 Hz), 4.90 (s, 1 H), 4.89 (app t, 1 H, J = 2.5 Hz), 4.79 (d, 1 H, J = 10.0 Hz), 4.72 (d, 1 H, J = 11.7 Hz), 4.69 (d, 1 H, J = 10.9 Hz), 4.65 (d, 1 H, J = 11.9 Hz), 4.62–4.54 (m, 3 H), 4.51–4.43 (m, 6 H), 4.34 (d, 1 H, J = 10.5 Hz), 4.21–4.16 (m, 2 H), 4.13–3.98 (m, 6 H), 3.90–3.85 (m, 2 H), 3.81–3.74 (m, 3 H), 3.69 (app dt, 1 H, J = 9.5, 2.0 Hz), 3.65 (dd, 1 H, J = 11.0, 2.0 Hz), 3.62 (dd, 1 H, J = 11.0, 3.0 Hz), 3.59–3.52 (m, 4 H), 3.47–3.43 (m, 1 H), 3.40 (dd, 1 H, J = 11.0, 1.5 Hz), 3.19–3.16 (m, 1 H), 2.08 (s, 6 H), 2.07 (s, 3 H), 2.04 (s, 3 H), 2.03 (s, 3 H), 0.90–0.86 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.8, 170.4, 170.3, 170.1, 169.6, 154.0, 138.4, 138.3, 138.1, 138.0, 137.8, 137.6, 128.6, 128.5, 128.4, 128.3, 128.28, 128.27, 128.0, 127.96, 127.94, 127.86, 127.84, 127.81, 127.6, 127.5, 99.9, 99.7, 99.6, 98.6, 78.5, 77.8, 77.1, 75.3, 75.2, 75.0, 74.5, 74.4, 74.3, 73.5, 73.4, 72.6, 72.5, 72.3, 71.9, 71.8, 71.5, 70.7, 70.0, 68.9, 68.3, 68.1, 67.5, 62.4, 57.6, 21.1, 21.0, 20.9, 20.84, 20.82, 18.1, -1.4; ¹H-coupled HSQC (700 MHz, CDCl₃) ¹ $J_{C-1, H-1} = 176.8, 172.3, 172.3, 162.2$ Hz HRMS (ESI) calcd for (M+NH₄) C_{84H₁₀₆Cl₃N₂O₂₇si: 1707.5812. Found: 1707.5801.}

p-Methoxyphenyl 3,4,6-tri-*O*-Benzyl-2-*O*-levulinyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ - 2-*O*benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (29): A mixture of acceptor 6 (1.08 g, 1.90 mmol), donor 4 (1.37 g, 2.09 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (100 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (702 mg, 3.13 mmol) and AgOTf (146 mg, 0.57 mmol) were added. The

solution was slowly warmed to 0 °C and stirred for 1 h before Et₃N (1.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $16 \rightarrow 33\%$ EtOAc in hexane) to afford **29** (1.96 g, 94% yield) as a white foam; $R_f 0.24$ (2:1 hexane–EtOAc); $[\alpha]_D = +32.9$ (c 1.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.03–8.02 (m, 2 H, ArH), 7.56–7.54 (m, 1 H, ArH), 7.36–7.16 (m, 25 H, ArH), 7.07-7.05 (m, 2 H, ArH), 6.97-6.96 (m, 2 H, ArH), 6.77-6.76 (m, 2 H, ArH), 5.59 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.57 (d, 1 H, J = 2.0 Hz, H-1), 5.36 (dd, 1 H, J = 3.0, 2.0 Hz, H-2'), 5.23 $(d, 1 H, J = 2.0 Hz, H-1'), 4.77 (d, 1 H, J = 10.5 Hz, PhCH_2), 4.75 (d, 1 H, J = 11.0 Hz, PhCH_2),$ 4.67 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.65 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.54 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.52 (dd, 1 H, J = 9.5, 3.0 Hz, H-3), 4.47 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.45 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.43 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.42 (d, 1 H, J = 12.0 Hz, PhC*H*₂), 4.32 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.22 (app t, 1 H, *J* = 9.5 Hz, H-4), 3.96 (ddd, 1 H, J = 10.0, 3.0, 1.5 Hz, H-5), 3.88 (app t, 1 H, J = 9.5 Hz, H-4'), 3.86–3.83 (m, 3 H, H-3', H-5', H-6), 3.74 (s, 3 H, OCH₃), 3.68 (dd, 1 H, *J* = 11.0, 2.0 Hz, H-6), 3.63 (dd, 1 H, *J* = 11.0, 3.0 Hz, H-6'), 3.59 (dd, 1 H, J = 11.0, 1.5 Hz, H-6'), 2.65–2.61 (m, 4 H, CH₃C=OCH₂, CH₃C=OCH₂CH₂), 2.08 (s, 3 H, CH₃C=OCH₂,); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.1 (CH₃C=OCH₂), 171.8 (OC=OCH₂), 165.7 (PhC=O), 155.1 (Ar), 149.9 (Ar), 138.6 (Ar), 138.3 (Ar), 138.2 (Ar), 137.9 (Ar), 137.8 (Ar), 133.3 (Ar), 129.9 (Ar), 129.7 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.22 (Ar), 128.20 (Ar), 128.1 (Ar), 127.92 (Ar), 127.90 (Ar), 127.8 (Ar), 127.7 (Ar), 127.55 (Ar), 127.53 (Ar), 127.52 (Ar), 127.4 (Ar), 127.3 (Ar), 117.8 (Ar), 114.6 (Ar), 99.7 (C-1'), 96.2 (C-1), 77.7 (C-3'), 77.0 (C-3), 75.3 (PhCH₂), 74.54 (C-4), 74.53 (PhCH₂), 73.9 (C-4'), 73.4 (PhCH₂), 72.3 (C-5'), 72.1 (C-5), 72.0 (C-2), 71.7 (PhCH₂), 69.2 (C-2'), 68.7

(C-6), 68.4 (C-6'), 55.6 (CH₃O), 38.0 (CH₃C=OCH₂), 29.7 (CH₃C=OCH₂), 28.2 (CH₃C=OCH₂CH₂); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 174.5 \text{ Hz}$ (C-1, H-1), ${}^{1}J_{C-1, H-1} = 174.5 \text{ Hz}$ (C-1', H-1'); HRMS (ESI) calcd for (M+Na) C₆₆H₆₈NaO₁₅: 1123.4450. Found: 1123.4434.

p-Methoxyphenyl 3,4,6-tri-*O*-Benzyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-benzoyl- 4,6-di-*O*benzyl-a-D-mannopyranoside (30): A solution of 29 (1.88 g, 1.71 mmol) and hydrazine acetate (282 mg, 3.07 mmol) in 9:1 CH₂Cl₂-CH₃OH (100 mL) was stirred at r.t. for 2 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient 33 \rightarrow 40% EtOAc in hexane) to afford **30** (1.60 g, 93% yield) as a white foam; $R_{\rm f}$ 0.24 (2:1 hexane-EtOAc); $[\alpha]_D = +53.1$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.06-8.04 (m, 2 H, ArH), 7.57–7.55 (m, 1 H, ArH), 7.38–7.19 (m, 25 H, ArH), 7.09–7.07 (m, 2 H, ArH), 6.98–6.97 (m, 2 H, ArH), 6.78–6.77 (m, 2 H, ArH), 5.61 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.57 (d, 1 H, *J* = 2.0 Hz, H-1), 5.27 (d, 1 H, *J* = 2.0 Hz, H-1'), 4.72 (d, 1 H, *J* = 11.0 Hz, PhC*H*₂), 4.70–4.68 (m, 2 H, PhC H_2), 4.65 (d, 1 H, J = 12.0 Hz, PhC H_2), 4.55 (d, 1 H, J = 11.0 Hz, PhC*H*₂), 4.53 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.51 (dd, 1 H, *J* = 9.5, 3.0 Hz, H-3), 4.48–4.43 (m, 4 H, PhCH₂), 4.21 (app t, 1 H, J = 9.5 Hz, H-4), 3.98 (ddd, 1 H, J = 10.0, 3.0, 1.5 Hz, H-5), 3.90–3.84 (m, 4 H, H-2', H-5', H-6, H-4'), 3.74 (s, 3 H, OCH₃), 3.72 (dd, 1 H, J = 9.0, 3.0 Hz, H-3'), 3.69 (dd, 1 H, J = 11.0, 2.0 Hz, H-6), 3.63–3.60 (m, 2 H, H-6'), 3.59 (dd, 1 H, J = 11.0, 1.5 Hz, H-6'), 2.35 (d, 1 H, J = 3.0 Hz, OH); ¹³C NMR (175 MHz, CDCl₃, $\delta_{\rm C}$) 165.7 (PhC=O), 155.1 (Ar), 150.0 (Ar), 138.5 (Ar), 138.3 (Ar), 138.2 (Ar), 137.93 (Ar), 137.91 (Ar), 133.2 (Ar), 129.9 (Ar), 129.8 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.1 (Ar), 127.86 (Ar), 127.84 (Ar), 127.82 (Ar), 127.80 (Ar), 127.77 (Ar), 127.57 (Ar), 127.55 (Ar), 127.53 (Ar), 127.4 (Ar), 127.3 (Ar), 117.8 (Ar), 114.6 (Ar), 101.6 (C-1'), 96.3 (C-1), 79.7 (C-3'), 77.4 (C-3), 75.2 (PhCH₂), 74.6 (C-4), 74.5 (PhCH₂), 73.9 (C-4'), 73.4 (PhCH₂), 72.3 (C-2), 72.15 (PhCH₂), 72.11 (C-5), 71.9 (C-5'), 69.0 (C-2'), 68.7 (C-6), 68.4 (C-6'), 55.6 (CH₃O); HRMS (ESI) calcd for (M+Na) C₆₁H₆₂NaO₁₃: 1025.4083. Found: 1025.4066.

p-Methoxyphenyl 2-*O*-Acetyl-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→2)- 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-

mannopyranoside (32): A mixture of acceptor **30** (1.57 g, 1.56 mmol), donor **31** (1.08 g, 1.80 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (100 mL) and stirred at r.t. for 10 min. The solution was then cooled to -15 °C, and then NIS (602 mg, 2.69 mmol) and AgOTf (119 mg, 0.49 mmol) were added. The solution was slowly warmed to 0 °C and stirred for 1 h. Et₃N (1.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 16 \rightarrow 25% EtOAc in hexane) to afford **32** (2.0 g, 86% yield) as a white foam; *R*_f 0.44 (2:1 hexane–EtOAc); [α]_D = +37.6 (*c* 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ _H) 8.06–8.04 (m, 2 H, ArH),

7.57-7.55 (m, 1 H, ArH), 7.38-7.06 (m, 42 H, ArH), 6.95-6.94 (m, 2 H, ArH), 6.75-6.74 (m, 2 H, ArH), 5.62 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.57 (d, 1 H, J = 2.0 Hz, H-1), 5.48 (dd, 1 H, J = 3.0, 2.0 Hz, H-2"), 5.31 (d, 1 H, J = 1.5 Hz, H-1'), 5.02 (d, 1 H, J = 1.5 Hz, H-1"), 4.79 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.75 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.74 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.66 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.62 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.58 (d, 1 H, J = 12.5 Hz, PhCH₂), 4.57 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.52–4.49 (m, 3 H, PhCH₂), 4.48 (dd, 1 H, J = 9.5, 3.0 Hz, H-3), 4.42–4.39 (m, 4 H, PhCH₂), 4.36 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.28 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.17 (app t, 1 H, J = 9.5 Hz, H-4), 3.95–3.90 (m, 5 H, H-2', H-4', H-5, H-3", H-5"), 3.85 (app t, 1 H, J = 9.5 Hz, H-4"), 3.81–3.77 (m, 3 H, H-6, H-3', H-5'), 3.74 (s, 3 H, OCH₃), 3.67–3.63 (m, 2 H, H-6, H-6"), 3.57 (dd, 1 H, J = 11.0, 3.5 Hz, H-6'), 3.54 (dd, 1 H, J = 11.0, 1.5 Hz, H-6'), 3.69 (dd, 1 H, J = 10.5, 1.0 Hz, H-6''), 2.10 (s, 3 H, OC=OCH₃); ¹³C NMR (175 MHz, CDCl₃, δ_C) 170.1 (OC=OCH₃), 165.7 (PhC=O), 155.1 (Ar), 150.0 (Ar), 138.7 (Ar), 138.6 (Ar), 138.5 (Ar), 138.3 (Ar), 138.28 (Ar), 138.26 (Ar), 138.19 (Ar), 138.0 (Ar), 133.2 (Ar), 129.9 (Ar), 129.7 (Ar), 128.5 (Ar), 128.4 (Ar), 128.3 (Ar), 128.2 (Ar), 128.17 (Ar), 128.12 (Ar), 128.11 (Ar), 127.8 (Ar), 127.7 (Ar), 127.6 (Ar), 127.56 (Ar), 127.54 (Ar), 127.48 (Ar), 127.46 (Ar), 127.44 (Ar), 127.39 (Ar), 127.37 (Ar), 127.26 (Ar), 127.21 (Ar), 117.9 (Ar), 114.5 (Ar), 101.0 (C-1'), 99.4 (C-1"), 96.3 (C-1), 79.1 (C-3'), 78.4 (C-3), 78.2 (C-3'), 75.3, 75.1 (PhCH₂), 74.9 (PhCH₂), 74.4 (PhCH₂), 74.3 (C-4), 74.1 (C-4"), 73.34 (PhCH₂), 73.3 (PhCH₂), 73.2 (PhCH₂), 72.8, 72.2, 72.1 (PhCH₂), 72.0, 71.97, 71.9 (PhCH₂), 68.8, 68.7, 68.6 68.5, 55.6 (CH₃O), 21.1 (OC=OCH₃); ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 176.2 \text{ Hz} (C-1, H-1), {}^{1}J_{C-1', H-1'} = 170.5 \text{ Hz} (C-1', H-1'), {}^{1}J_{C-1'', H-1''} = 171.9 \text{ Hz} (C-1'', H-1')$ H-1"); HRMS (ESI) calcd for (M+Na) C₉₀H₉₂NaO₁₉: 1499.6125. Found: 1499.6120.

2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-a-D*p*-Methoxyphenyl mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranoside (10): Tetrasaccharide 21 (1.40 g 0.81 mmol) was dissolved in a 1% solution of I₂ in CH₃OH (w/v, 120 mL) and the solution was heated at reflux for 6 h. The solution was cooled, a few crystals of Na₂S₂O₃ were added, and the suspension was stirred until the dark red solution went colorless. Then, the mixture was filtered and water was added. The mixture was extracted with EtOAc. The organic phase was washed with brine, dried over Na₂SO₄, filtered and concentrated to dryness. The resulting residue was dissolved in 5:4 pyridine-Ac₂O (90 mL) and the mixture was stirred at r.t. for 2 h. Then, the solution was concentrated to dryness and the residue was dissolved in a 2% solution of HCl in acetone (30 mL). After 0.5 h, CH₂Cl₂ (150 mL) was added and the mixture was washed with 1M of HCl, a satd aq solution of NaHCO₃, brine, dried over Na₂SO₄, filtered and concentrated. The crude residue was purified by chromatography (gradient 33 \rightarrow 66% EtOAc in hexane) to afford 10 (1.22 g, 88% yield) as a white solid. $R_{\rm f}$ 0.18 (1:1 hexane–EtOAc); $[\alpha]_D = +50.0 (c \ 0.2, CH_2Cl_2)$; ¹H NMR (700 MHz, CDCl₃, δ_H) 8.08–8.07 (m, 2 H, ArH), 7.62–7.60 (m, 1 H, ArH), 7.43–7.41 (m, 2 H, ArH), 7.36–7.01 (m, 30 H, ArH),

6.98–6.96 (m, 3 H, ArH), 6.79–6.77 (m, 2 H, ArH), 5.57 (d, 1 H, J = 2.0 Hz, H-1), 5.54 (dd, 1 H, *J* = 3.0, 2.0 Hz, H-2), 5.39 (dd, 1 H, *J* = 9.5, 3.5 Hz, H-3"'), 5.31 (dd, 1 H, *J* = 3.5, 2.0 Hz, H-2"'), 5.30 (s, 1 H, H-1'), 5.25 (app t, 1 H, J = 10.0 Hz, H-4"), 5.16 (app t, 1 H, J = 10.0 Hz, H-4′), 4.94 (d, 1 H, J = 2.0 Hz, H-1″), 4.88 (d, 1 H, J = 1.5 Hz, H-1″′), 4.67 (d, 1 H, J = 12.0 Hz, PhC H_2), 4.62–4.52 (m, 5 H, PhC H_2), 4.46–4.44 (m, 2 H, PhC H_2), 4.42 (dd, 1 H, J = 9.5, 3.0 Hz, H-3), 4.36 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.28–4.23 (m, 3 H, PhCH₂), 4.16 (app t, 1 H, J = 9.5 Hz, H-4), 4.08 (dd, 1 H, J = 12.0, 2.5 Hz), 4.04 (dd, 1 H, J = 12.0, 6.0 Hz), 4.02 (app t, 1 H, J = 2.5 Hz, H-2"), 3.96–3.79 (m, 9 H), 3.74 (s, 3 H, OCH₃), 3.69 (app t, 1 H, J = 2.0 Hz), 3.66-3.64 (m, 2 H), 3.57 (dd, 1 H, J = 10.5, 3.5 Hz), 3.42 (dd, 1 H, J = 11.0, 1.5 Hz), 2.77 (dt, 1 H, *J* = 18.0, 7.0 Hz, CH₃C=OC*H*₂), 2.63 (dt, 1 H, *J* = 18.0, 6.5 Hz, CH₃C=OC*H*₂), 2.52 (dt, 1 H, J = 17.0, 7.0 Hz, OC=OCH₂CH₂), 2.42 (dt, 1 H, J = 17.0, 6.5 Hz, OC=OCH₂CH₂), 2.14 (s, 3 H, CH₃C=OCH₂), 2.07 (s, 3 H, OC=OCH₃), 2.01 (s, 3 H, OC=OCH₃), 1.98 (s, 3 H, OC=OCH₃), 1.94 (s, 3 H, OC=OCH₃), 1.90 (s, 3 H, OC=OCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_c) 206.4 (CH₃C=OCH₂), 171.2 (OC=OCH₂), 170.8 (CH₃C=O), 170.7 (CH₃C=O), 169.7 (CH₃C=O), 169.6 (CH₃C=O), 169.3 (CH₃C=O), 165.6 (PhC=O), 155.3 (Ar), 149.7 (Ar), 138.3 (Ar), 138.1 (Ar), 138.0 (Ar), 137.8 (Ar), 137.7 (Ar), 137.5 (Ar), 133.5 (Ar), 129.8 (Ar), 129.6 (Ar), 128.6 (Ar), 128.5 (Ar), 128.4 (Ar), 128.32 (Ar), 128.31 (Ar), 128.25 (Ar), 128.2 (Ar), 128.1 (Ar), 127.9 (Ar), 127.8 (Ar), 127.77 (Ar), 127.73 (Ar), 127.68 (Ar), 127.64 (Ar), 127.57 (Ar), 127.54 (Ar), 127.51 (Ar), 125.49 (Ar), 117.7 (Ar), 114.6 (Ar), 100.9 (C-1', C-1"), 98.6 (C-1""), 96.4 (C-1), 77.4 (C-3), 76.9, 75.7, 75.3 (PhCH₂), 74.7 (PhCH₂), 74.5, 73.5, 73.40 (PhCH₂), 73.39 (PhCH₂), 72.9, 72.3, 72.2 (PhCH₂), 72.1, 71.9 (PhCH₂), 71.8, 71.7, 69.9, 69.75, 69.74, 68.6, 68.5, 67.4, 67.3, 62.8, 62.6, 55.6 (CH₃O), 37.9 (CH₃C=OCH₂), 29.8

 $(CH_3C=OCH_2)$, 27.9 $(CH_3C=OCH_2CH_2)$, 20.9 $(OC=OCH_3)$, 20.8 $(OC=OCH_3)$, 20.79 $(OC=OCH_3)$, 20.7 $(OC=OCH_3)$, 20.6 $(OC=OCH_3)$; ¹H-coupled HSQC (700 MHz, CDCl₃) ¹J_C. _{1, H-1} = 173.3 Hz (C-1, H-1), ¹J_{C-1', H-1'} = 174.4 Hz (C-1', H-1'), ¹J_{C-1'', H-1''} = 172.8 Hz (C-1'', H-1''), ¹J_{C-1''', H-1'''} = 175.0 Hz (C-1''', H-1'''); HRMS (ESI) calcd for (M+NH4) C₉₅H₁₀₈NO₃₀: 1742.6951. Found: 1742.6827.

2-(Trimethylsilyl)ethyl 2-*O*-Acetyl-4,6-di-*O*-benzyl-3-*O*-levulinyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-

mannopyranosyl-(1→3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonyl-

amino)-β-D-glucopyranoside (38): Trichloroacetimidate 36 (780 mg) was prepared from tetrasaccharide 10 (1.19 g) in 65% yield following general procedure A described above. A mixture of tetrasaccharide acceptor 28 (532 mg, 0.31 mmol), trichloroacetimidate donor 36 (460 mg, 0.29 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (100 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C, and then TBSOTf (20 µL) was added. The solution was stirred for 1 h before Et₃N (0.2 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 30→60% EtOAc in hexane) to afford 38 (750 mg, 86%) yield as a white solid; *R*_f 0.09 (1:1 hexane–EtOAc); [α]_D = +27.9 (*c* 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 7.99–7.98 (m, 2 H), 7.58–7.56 (m, 1 H), 7.37–7.06 (m, 60 H), 6.99–6.97 (m, 2 H),

5.84 (d, 1 H, J = 6.5 Hz), 5.47 (dd, 1 H, J = 3.0, 2.0 Hz), 5.37 (dd, 1 H, J = 9.5, 3.5 Hz), 5.30 (dd, 1 H, J = 3.5, 2.0 Hz), 5.28 (dd, 1 H, J = 3.0, 1.5 Hz), 5.26-5.21 (m, 3 H), 5.18-5.15 (m, 3 H), 5.18-5.15 (m, 3 H))2 H), 5.12 (d, 1 H, J = 1.5 Hz), 5.09 (s, 1 H), 4.98 (dd, 1 H, J = 10.0, 9.0 Hz), 4.91 (d, 1 H, J = 1.5 Hz), 4.89 (s, 1 H), 4.86 (d, 1 H, J = 1.5 Hz), 4.84 (app t, 1 H, J = 2.5 Hz), 4.80 (d, 1 H, J = 10.5 Hz), 4.74 (d, 1 H, J = 10.5 Hz), 4.71 (d, 1 H, J = 10.5 Hz), 4.70 (d, 1 H, J = 12.0 Hz), 4.65-4.48 (m, 9 H), 4.44-4.42 (m, 5 H), 4.38-4.32 (m, 4 H), 4.25-4.06 (m, 11 H), 4.04-3.96 (m, 5 H), 3.92–3.72 (m, 14 H), 3.64–3.51 (m, 11 H), 3.46–3.34 (m, 4 H), 3.18–3.15 (m, 1 H), 2.77 (dt, 1 H, J = 18.5, 7.0 Hz), 2.63 (dt, 1 H, J = 18.5, 6.5 Hz), 2.51 (dt, 1 H, J = 17.0, 7.0 Hz), 2.41 (dt, 1 H, J = 17.0, 6.5 Hz), 2.14 (s, 3 H), 2.05–2.04 (m, 18 H), 1.93 (s, 3 H), 1.91 (s, 3 H), 1.89 (s, 3 H), 1.88 (s, 3 H), 0.89–0.82 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 206.5, 171.3, 171.0, 170.8, 170.6, 170.3, 170.2, 170.0, 169.7, 169.6, 169.5, 169.3, 165.2, 154.0, 138.4, 138.3, 138.0, 137.9, 137.87, 137.84, 137.77, 137.73, 137.6, 137.5, 133.4, 129.8, 129.7, 128.5, 128.4, 128.3, 128.29, 128.28, 128.27, 128.24, 128.2, 128.1, 128.0, 127.9, 127.86, 127.84, 127.80, 127.78, 127.72, 127.70, 127.65, 127.62, 127.58, 127.54, 127.48, 127.47, 127.43, 127.37, 100.7, 99.8, 99.6, 98.7, 98.5, 78.2, 77.2, 76.7, 75.9, 75.8, 75.3, 75.1, 74.9, 74.7, 74.3, 74.1, 74.0, 73.5, 73.46, 73.39, 73.37, 73.33, 73.2, 72.9, 72.5, 72.4, 72.3, 72.2, 72.0, 71.9, 71.8, 71.76, 71.4, 70.7, 69.8, 69.6, 68.9, 68.4, 68.3, 68.0, 67.5, 67.2, 67.1, 62.5, 62.4, 62.3, 57.6, 37.9, 29.8, 27.9, 21.1, 21.0, 20.97, 20.92, 20.80, 20.78, 20.75, 20.67, 20.61, 18.0, -1.4; ¹H-coupled HSQC (700 MHz, CDCl₃) ¹J_{C-1, H-1} = 175.0, 175.0, 174.3, 174.3, 174.3, 173.6, 172.2, 161.7 Hz; HRMS (ESI) calcd for (M+3Na)⁺³ C₁₇₂H₁₉₈Cl₃NNa₃O₅₅Si: 1119.7080. Found: 1119.7119.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 4,6-di-O-acetyl-3-O-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl-(1→3)-2-O-benzoyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-Oacetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -4,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranoside (40): A solution of 38 (0.95 g, 0.29 mmol) and hydrazine acetate (53 mg, 0.58 mmol) in 9:1 CH₂Cl₂-CH₃OH (50 mL) was stirred at r.t. for 1 h. Then, the solution was concentrated at 40 °C for 0.5 h to achieve complete deproection of the levulinyl group. The resulting residue was subjected to chromatography (gradient $16 \rightarrow 33\%$ EtOAc in hexane) to afford 40 (0.86 g, 94% yield) as a white solid; $R_{\rm f}$ 0.13 (1:1 hexane-EtOAc); $[\alpha]_{\rm D} = +29.0$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.00–7.99 (m, 2 H), 7.59–7.56 (m, 1 H), 7.37–7.07 (m, 60 H), 7.02–7.00 (m, 2 H), 5.83 (d, 1 H, J = 7.0 Hz), 5.47 (dd, 1 H, J = 3.0, 2.0 Hz), 5.28 (dd, 1 H, J = 3.0, 1.5 Hz), 5.25 (d, 1 H, J = 1.5 Hz), 5.22 (app t, 1 H, J = 2.0 Hz), 5.19–5.16 (m, 4 H), 5.11 (d, 1 H, J = 1.5 Hz), 5.08 (s, 1 H), 5.01 (d, 1 H, J = 1.5 Hz), 4.98 (app t, 1 H, J = 9.5 Hz), 4.88 (s, 1 H), 4.84 (app t, 1 H, J = 2.5 Hz), 4.79 (d, 1 H, J = 10.5 Hz), 4.78–4.70 (m, 5 H), 4.64 (d, 1 H, J = 11.5 Hz), 4.59–4.42 (m, 13 H), 4.37 (d, 1 H, J = 10.5 Hz), 4.34 (d, 1 H, J = 11.0 Hz), 4.33 (d, 1 H, J = 10.5 Hz), 4.28 (d, 1 H, J = 12.0 Hz), 4.23–4.06 (m, 11 H), 4.04–3.94 (m, 5 H), 3.91–3.81 (m, 9 H), 3.76–3.71 (m, 5 H), 3.65–3.34 (m, 15 H), 3.18–3.14 (m, 1 H), 2.08 (s, 3 H), 2.05–2.03 (m, 15 H), 1.92 (s, 3 H), 1.91 (s, 3 H), 1.89 (s, 3 H), 1.84 (s, 3 H), 0.88–0.84 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 170.8, 170.6, 170.5, 170.3, 170.2, 170.0, 169.6, 169.5, 165.2, 154.0, 138.4, 138.3, 138.28, 138.1, 137.9, 137.83, 137.78, 137.75, 137.6, 137.5, 133.4, 129.8, 129.7, 128.5, 128.47, 128.41, 128.38, 128.32, 128.29, 128.27, 128.20, 128.1, 128.0, 127.93, 127.91, 127.80, 127.78, 127.74, 127.72, 127.69, 127.62, 127.57, 127.50, 127.49, 127.43, 127.35, 100.8, 100.7, 99.8, 99.6, 99.2, 98.5, 78.2, 75.8, 75.5, 75.4, 75.3, 75.1, 75.04, 74.99, 74.94, 74.4, 74.3, 74.1, 74.0, 73.5, 73.4, 73.33, 73.28, 73.24, 72.5, 72.4, 72.26, 72.25, 72.18, 72.0, 71.9, 71.8, 71.6, 71.4, 70.7, 70.6, 69.6, 69.4, 68.8, 68.3, 68.0, 67.5, 67.2, 67.1, 62.5, 62.3, 57.6, 21.1, 21.0, 20.92, 20.82, 20.79, 20.78, 20.76, 20.65, 20.61, 18.0, -1.4; HRMS (ESI) calcd for (M+2(NH4))⁺² C₁₆₇H₂₀₀Cl₃N₃O₅₃Si: 1614.0935. Found: 1614.0952.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3,2-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl

h at r.t. before Et₃N (0.2 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $25 \rightarrow 50\%$ EtOAc in hexane) to afford 41 (800 mg, 86% yield) as a white solid; $R_{\rm f}$ 0.53 (1:1 hexane-EtOAc); $[\alpha]_D = +16.3$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.00-7.97 (m, 4 H), 7.58–7.56 (m, 1 H), 7.53–7.51 (m, 1 H), 7.36–6.98 (m, 104 H), 5.83 (d, 1 H, *J* = 6.5 Hz), 5.57 (s, 1 H), 5.47 (s, 1 H), 5.46 (s, 1 H), 5.30 (s, 1 H), 5.27 (s, 1 H), 5.25 (s, 1 H), 5.22–5.14 (m, 6 H), 5.11 (s, 1 H), 5.08 (s, 1 H), 5.02 (s, 1 H), 4.99–4.96 (m, 2 H), 4.89 (s, 1 H), 4.84–4.79 (m, 4 H), 4.76–4.64 (m, 8 H), 4.58–4.41 (m, 18 H), 4.38–4.32 (m, 7 H), 4.26–3.95 (m, 22 H), 3.93-3.69 (m, 24 H), 3.64-3.32 (m, 19 H), 3.18-3.14 (m, 1 H), 2.07 (s, 3 H), 2.06-2.04 (m, 12 H), 2.02 (s, 3 H), 2.00 (s, 3 H), 1.91 (s, 3 H), 1.89 (s, 3 H), 1.82 (s, 3 H), 1.77 (s, 3 H), 0.88–0.84 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 170.8, 170.7, 170.5, 170.3, 170.2, 170.03, 169.98, 169.90, 169.6, 169.5, 169.0, 165.4, 165.2, 154.0, 139.1, 138.8, 138.7, 138.6, 138.5, 138.4, 138.32, 138.30, 138.29, 138.1, 138.07, 137.97, 137.94, 137.85, 137.81, 137.78, 137.6, 137.5, 133.4, 133.0, 129.9, 129.8, 129.7, 128.6, 128.5, 128.42, 128.38, 128.36, 128.32, 128.27, 128.23, 128.19, 128.14, 128.12, 128.10, 128.0, 127.90, 127.88, 127.81, 127.77, 127.75, 127.71, 127.69, 127.66, 127.63, 127.59, 127.55, 127.50, 127.47, 127.40, 127.38, 127.35, 127.31, 127.18, 127.12, 101.1, 100.8, 99.8, 99.6, 99.4, 99.1, 99.0, 98.5, 79.3, 78.3, 78.2, 77.7, 76.5, 75.7, 75.5, 75.4, 75.3, 75.1, 75.0, 74.9, 74.87, 74.7, 74.6, 74.3, 74.2, 74.18, 74.14, 74.0, 73.9, 73.5, 73.4, 73.32, 73.29, 73.23, 73.18, 73.09, 72.7, 72.6, 72.48, 72.46, 72.43, 72.3, 72.19, 72.13, 72.0, 71.95, 71.89, 71.83, 71.7, 71.4, 70.7, 69.6, 69.5, 68.63, 68.58, 68.33, 68.27, 68.20, 68.0, 67.4, 67.23, 67.18, 62.6, 62.5, 62.3, 57.6, 21.1, 21.05, 21.04, 21.0, 20.9, 20.78,

20.76, 20.70, 20.6, 20.5, 18.0, -1.4; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₂₅₀H₂₈₄Cl₃N₃O₇₀Si: 2290.3790. Found: 2290.3814.

2-(Trimethylsilyl)ethyl 2-*O*-Acetyl-3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 3,4,6-tri-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-3)-2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-2-deoxy- β -D-glucopyranoside (42): To a solution of substrate 41 (800 mg, 0.18 mmol) in 3:1 THF-AcOH (84 mL) was added freshly activated zinc dust (2 g). After stirring for 3 h at r.t., the mixture was filtered and the filtrate was concentrated. The

resulting residue was dissolved in 3:2 pyridine-Ac₂O (25 mL) and the mixture was stirred at r.t. for 2 h. Then, the solution was concentrated, dissolved in CH₂Cl₂ (100 mL) followed by washing with 1M HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient $40 \rightarrow 66\%$ EtOAc in hexane) to afford 42 (698 mg, 90% yield) as a white solid; $R_f 0.19$ (1:1 hexane–EtOAc); $[\alpha]_D = +9.8 (c \ 0.1, CH_2Cl_2)$; ¹H NMR (700 MHz, CDCl₃, δ_H) 8.00–7.98 (m, 4 H), 7.59–7.57 (m, 1 H), 7.54–7.52 (m, 1 H), 7.37–6.99 (m, 104 H), 6.49 (d, 1 H, *J* = 7.0 Hz), 5.58 (s, 1 H), 5.48 (app t, 1 H J = 2.0 Hz), 5.46 (app t, 1 H J = 2.0 Hz), 5.31 (d, 1 H J = 1.5 Hz), 5.28 (dd, 1 H J = 2.5, 1.5 Hz), 5.25 (d, 1 H J = 1.5 Hz), 5.23–5.16 (m, 6 H), 5.12 (s, 1 H), 5.10 (s, 1 H), 5.07 (d, 1 H J = 8.0 Hz), 5.03 (d, 1 H J = 1.5 Hz), 4.98 (s, 1 H), 4.90 (dd, 1 H J = 10.0, 9,0 Hz), 4.85–4.81 (m, 4 H), 4.77–4.67 (m, 8 H), 4.59–4.30 (m, 24 H), 4.27–4.12 (m, 14 H), 4.09–4.01 (m, 5 H), 3.98–3.70 (m, 25 H), 3.65–3.34 (m, 20 H), 2.96–2.93 (m, 1 H), 2.07 (s, 3 H), 2.06–2.04 (m, 12 H), 2.03 (s, 3 H), 2.02 (s, 3 H), 1.92 (s, 3 H), 1.89 (s, 3 H), 1.83 (s, 3 H), 1.79 (s, 3 H), 1.77 (s, 3 H), 0.96–0.82 (m, 2 H), -0.01 (s, 9 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 171.4, 170.83, 170.81, 170.5, 170.22, 170.20, 170.04, 169.97, 169.91, 169.6, 169.5, 169.0, 165.4, 165.2, 154.0, 139.1, 138.8, 138.7, 138.6, 138.5, 138.4, 138.33, 138.30, 138.10, 138.08, 138.00, 137.98, 137.88, 137.82, 137.78, 137.6, 137.5, 137.2, 133.4, 133.0, 129.9, 129.8, 129.7, 128.6, 128.56, 128.53, 128.51, 128.43, 128.39, 128.37, 128.33, 128.31, 128.28, 128.24, 128.20, 128.16, 128.14, 128.12, 128.10, 128.04, 128.00, 127.97, 127.89, 127.83, 127.77, 127.74, 127.71, 127.67, 127.64, 127.61, 127.56, 127.55, 127.51, 127.48, 127.44, 127.43, 127.41, 127.39, 127.35, 127.34, 127.32, 127.19, 127.14, 101.2, 100.8, 99.8, 99.6, 99.5, 99.4, 99.1, 99.0, 98.7, 80.3, 79.3, 78.3, 78.0, 77.7, 77.6, 77.3, 76.5, 75.7, 75.5, 75.49, 75.33, 75.27,

75.16, 75.04, 74.94, 74.89, 74.85, 74.7, 74.6, 74.3, 74.2, 74.19, 74.16, 74.07, 73.97, 73.6, 73.5, 73.32, 73.31, 73.24, 73.19, 73.09, 72.7, 72.6, 72.47, 72.44, 72.3, 72.19, 72.14, 71.99, 71.97, 71.89, 71.85, 71.7, 71.2, 70.3, 69.6, 69.5, 69.4, 68.4, 68.35, 68.28, 68.21, 68.12, 68.06, 67.28, 67.25, 67.19, 62.6, 62.51, 62.49, 58.7, 23.4, 21.1, 21.06, 21.05, 21.0, 20.9, 20.79, 20.75, 20.71, 20.6, 20.5, 18.0, -1.4; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₂₄₉H₂₈₅N₃O₆₉Si: 2224.4321. Found: 2224.4363.

2-(Trimethylsilyl)ethyl 2,3,4,6-tetra-*O*-Acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,-acetamido-4,6-di-*O*-acetyl-2-deoxy- β -D-glucopyranoside (43): Compound 42 (120 mg, 27.1 µmol) was dissolved in CH₃OH (10 mL), treated with NaOCH₃ (0.5 M solution in CH₃OH,

124 μ L) and stirred at r.t. for 5 h. Water (0.10 mL) and then Amberlite IR120 H⁺ ion-exchange resin was added. The mixture was then filtered and concentrated to provide crude halfdeprotected compound. Next, ammonia was condensed at -78 °C into 50 mL round-bottom flask equipped with a Dewar condenser and a magnetic stir bar (total volume 15 mL). Freshly cut sodium metal (60 mg) was added and the mixture was stirred at -78 °C for 10 min. A solution of crude half-deprotected compound in THF (0.50 mL) was introduced via syringe and the mixture was stirred at -78 °C for 1 h before CH₃OH (2 mL) was added. The colorless solution was warmed to r.t. and then concentrated. The residue was dissolved in water (4 mL) and neutralized with Amberlite IR120 H⁺ ion-exchange resin, filtered and concentrated to afford crude fully deprotected compound. This compound was then suspended in 3:2 pyridine-Ac₂O (25 mL) and the mixture was stirred at r.t. for 1 day. Then, the solution was concentrated, dissolved in CH₂Cl₂ (100 mL) followed by washing with 1M of HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient $66 \rightarrow 95\%$ EtOAc in hexane) to afford **43** (59 mg, 65% yield) as a white solid; $R_f 0.57$ (EtOAc); $[\alpha]_D = +14.8$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 6.25 (d, 1 H, J = 7.0 Hz), 5.58 (s, 1 H), 5.36 (dd, 1 H J = 10.0, 3.0 Hz), 5.32 (app t, 1 H J = 10.0 Hz), 5.30–5.16 (m, 12 H), 5.12–5.09 (m, 2 H), 5.06–4.94 (m, 9 H), 4.91–4.89 (m, 5 H), 4.84 (d, 1 H J = 1.5 Hz), 4.82 (s, 1 H), 4.50 (app t, 1 H J = 9.5 Hz), 4.26–4.19 (m, 9 H), 4.17–3.85 (m, 29 H), 3.84–3.77 (m, 5 H), 3.64 (ddd, 1 H, J = 10.0, 5.0, 2.5 Hz), 3.54 (td, 1 H, J = 10.0, 6.5 Hz), 3.09–3.05 (m, 1 H), 2.15–2.07 (m, 69 H), 2.05–2.02 (m, 15 H), 2.00–1.97 (m, 18 H), 0.96–0.84 (m, 2 H), -0.01 (s, 9 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 171.1, 170.8, 170.69, 170.66, 170.63, 170.59, 170.56, 170.41, 170.38, 170.32, 170.22, 170.18, 170.16, 170.0, 169.85, 169.82, 169.79, 169.71, 169.67, 169.50, 169.45, 169.37, 169.35, 169.2, 99.9, 99.8, 99.49, 99.44, 99.40, 99.34, 99.25, 99.1, 98.8, 98.6, 80.6, 77.6, 77.4, 75.6, 75.4, 75.1, 75.0, 74.0, 73.7, 71.25, 71.23, 71.16, 71.13, 70.9, 70.7, 70.4, 69.9, 69.7, 69.63, 69.61, 69.56, 69.52, 69.48, 68.9, 68.6, 68.3, 67.31, 67.29, 67.23, 66.9, 66.73, 66.68, 66.1, 65.9, 65.3, 63.7, 62.4, 62.3, 62.23, 62.18, 61.96, 61.94, 61.8, 61.7, 61.6, 61.5, 58.3, 45.8, 23.6, 20.93, 20.90, 20.83, 20.81, 20.76, 20.73, 20.71, 20.68, 20.65, 20.64, 20.62, 20.58, 20.56, 20.53, 17.9, −1.4; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₁₃₉H₂₀₁N₃O₈₉Si: 1682.0526. Found: 1682.0530.

2,3,4,6-tetra-O-Acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-O-acetyl- α -Dmannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6-tri-Oacetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-acetamido-4,6-di-O-acetyl-2-deoxy- α -D-glucopyranosyl dibenzyl phosphate (45): To a solution of 43 (58 mg, 17.4 µmol) in dry CH₂Cl₂ (3 mL) was added TFA (1 mL) dropwise at 0 °C. After stirring for 3 h at r.t., the solution was concentrated, dissolved in CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography to afford hemiacital (47 mg, 83% yield) as a white solid. Then, hemiacital (47 mg, 14.4 µmol) was dissolved in dry CH₂Cl₂ (5 mL) before tetraazole (20.2 mg, 288 µmol) was added and the reaction mixture was cooled to 0 °C. After 10 min, dibenzyl *N*,*N*-diisopropylphosphoramidite (50 mg, 144 µmol) was added dropwise and

the mixture was stirred at r.t. for 4 h. The mixture was cooled to -78 °C and *m*-CPBA (37 mg, 216 µmol) was added in one portion. The reaction mixture was warmed to r.t. and after stirring at r.t. for 2 h, CH₂Cl₂ was added. The mixture was washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient $50 \rightarrow 95\%$ EtOAc in hexane) to afford phosphate 45 (38) mg, 75% yield) as a white solid; $R_f 0.19$ (1:10 hexane–EtOAc); $[\alpha]_D = +21.1$ (*c* 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.36–7.30 (m, 10 H), 5.85 (d, 1 H, J = 9.5 Hz), 5.58 (dd, 1 H, J = 6.0, 3.0 Hz), 5.36 (dd, 1 H J = 10.0, 3.0 Hz), 5.31 (app t, 1 H J = 10.0 Hz), 5.29–5.25 (m, 4 H), 5.22–5.15 (m, 8 H), 5.11–4.88 (m, 20 H), 4.86 (dd, 1 H, J = 3.0, 2.0 Hz), 4.83 (d, 1 H J = 2.0 Hz), 4.33–4.18 (m, 8 H), 4.16–3.92 (m, 25 H), 3.89–3.72 (m, 10 H), 3.12–3.09 (m, 1 H), 2.14-2.12 (m, 24 H), 2.10-2.02 (m, 60 H), 1.99-1.97 (m, 18 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.9, 170.75, 170.69, 170.66, 170.59, 170.54, 170.45, 170.41, 170.36, 170.27, 170.25, 170.22, 170.21, 170.14, 170.07, 170.03, 169.88, 169.86, 169.83, 169.73, 169.71, 169.53, 169.48, 169.42, 169.40, 169.3, 135.3, 135.2 (d, $J_{PC} = 6.4$ Hz), 135.1(d, $J_{PC} = 6.4$ Hz), 129.1, 128.8, 128.24, 128.20, 99.9, 99.8, 99.6, 99.5, 99.3, 99.2, 99.1, 98.4, 96.7 (d, $J_{PC-1} = 6.5$ Hz), 77.7, 77.5, 76.5, 75.6, 75.5, 75.1, 75.0, 74.7, 74.0, 71.3, 71.0, 70.9, 70.13, 70.10, 70.09, 70.06, 69.85, 69.80, 69.72, 69.68, 69.62, 69.58, 68.7, 68.3, 67.4, 67.4, 67.0, 66.9, 66.7, 66.1, 66.0, 65.4, 62.7, 62.5, 62.4, 62.3, 62.0, 61.9, 61.8, 61.7, 61.6, 61.2, 60.4, 51.8 (d, $J_{PC-2} = 7.3$ Hz), 22.9, 21.1, 20.96, 20.92, 20.87, 20.83, 20.79, 20.71, 20.69, 20.62, 20.59; ³¹P NMR (200 MHz, CDCl₃, δ_{C}) 2.4; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₁₄₈H₂₀₂N₃O₉₂P: 1762.0473. Found: 1762.0501.

Mannopyranosyl- $(1\rightarrow 2)-\alpha$ -D-mannopyranosyl- $(1\rightarrow 3)-\alpha$ -D-m

product. To a solution of crude phosphate 48 in CH₃OH (5 mL) was added freshly prepared NaOCH₃ (1M solution in CH₃OH, 0.5 mL). The reaction mixture was stirred at r.t. for 3 h, and then the NaOCH₃ was quenched by addition of Amberlite IR120 (NH₄⁺ form). The mixture was filtered, concentrated in vacuo and the residue purified by C₁₈ chromatography (gradient $0 \rightarrow 50\%$ CH₃OH in H₂O) to afford 1 (13 mg, 56% yield) as a white solid. $R_{\rm f}$ 0.36 (2:3) H₂O–CH₃OH); $[\alpha]_D = +100.4$ (*c* 0.1, CH₂Cl₂); ¹H NMR (700 MHz, D₂O, δ_H) 5.50 (dd, 1 H, J = 7.0, 3.0 Hz), 5.46 (app t, 1 H J = 7.5 Hz), 5.39 (s, 1 H), 5.38 (s, 1 H), 5.31 (s, 1 H), 5.26 (s, 1 H), 1 H), 5.23–5.19 (m, 2 H), 5.13–5.10 (m, 4 H), 5.06 (s, 1 H), 5.05 (s, 1 H), 4.53–4.47 (m, 2 H), 4.25-4.19 (m, 6 H), 4.12-4.08 (m, 5 H), 4.03-3.66 (m, 53 H), 3.61-3.59 (m, 1 H), 3.22-3.18 (m, 1 H), 2.19-2.10 (m, 6 H), 2.08 (s, 3 H), 2.04 (t, 1 H J = 7.5 Hz), 1.73 (s, 3 H), 1.70 (s, 3 H), 1.64 (s, 6 H); ¹³C NMR (125 MHz, D₂O, δ_C) 175.3, 144.0, 137.7, 134.5, 125.4, 125.2, 120.4 $(d, J_{PC} = 8.0 \text{ Hz}), 103.25, 103.23, 103.18, 103.07, 103.05, 101.9, 101.68, 101.64, 101.61, 95.6$ (d, $J_{PC} = 6.3$ Hz), 79.6, 79.5, 79.4, 79.3, 79.24, 79.20, 79.0, 78.5, 74.5, 74.4, 74.35, 74.30, 74.28, 74.24, 74.20, 73.9, 71.30, 71.28, 71.06, 70.99, 70.94, 70.68, 70.65, 70.57, 68.0, 67.8, 67.7, 67.17, 67.13, 67.10, 66.5, 64.0 (d, $J_{PC} = 5.3$ Hz), 62.1, 62.0, 61.94, 61.90, 61.5, 61.1, 53.2 $(d, J_{PC} = 8.3 \text{ Hz}), 39.7, 26.7, 26.5, 25.8, 23.3, 18.0, 16.6, 16.3; {}^{31}P \text{ NMR} (200 \text{ MHz}, D_2O, \delta_C)$ -10.6, -13.3; HRMS (ESI) calcd for (M-2H)⁻² C₈₃H₁₄₁NO₆₂P₂: 1101.8620. Found: 1101.8628.

p-Methoxyphenyl 2-*O*-Acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-

mannopyranosyl- $(1 \rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranoside (49): А solution of 10 (1.04 g, 0.60 mmol) and hydrazine acetate (100 mg, 1.08 mmol) in 9:1 CH₂Cl₂-CH₃OH (150 mL) was stirred at r.t. for 2 h. Then, the solution was concentrated and the resulting residue was subjected to chromatography (gradient $33 \rightarrow 50\%$ EtOAc in hexane) to afford **49** (0.91 g, 93% yield) as a white solid; $R_{\rm f}$ 0.18 (1:1 hexane-EtOAc); $[\alpha]_{\rm D} = +50.0$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.10–8.09 (m, 2 H, ArH), 7.64–7.61 (m, 1 H, ArH), 7.44-7.42 (m, 2 H, ArH), 7.39-7.06 (m, 30 H, ArH), 6.99-6.97 (m, 3 H, ArH), 6.80–6.78 (m, 2 H, ArH), 5.58 (d, 1 H, J = 2.0 Hz, H-1), 5.56 (dd, 1 H, J = 3.0, 2.0 Hz, H-2), 5.30 (d, 1 H, J = 1.5 Hz, H-1'), 5.22–5.18 (m, 3 H, H-2", H-4', H-4"), 5.06 (d, 1 H, J = 2.0 Hz, H-1"), 4.81 (d, 1 H, J = 1.5 Hz, H-1""), 4.78 (d, 1 H, J = 11.5 Hz, PhCH₂), 4.68 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.60 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.56 (d, 1 H, J = 11.0 Hz, PhCH₂), 4.54 (d, 1 H, J = 12.0 Hz, PhCH₂), 4.49–4.43 (m, 5 H, PhCH₂, H-3), 4.33 (d, 1 H, J = 12.0 Hz, PhC*H*₂), 4.27 (d, 1 H, *J* = 11.5 Hz, PhC*H*₂), 4.25 (d, 1 H, *J* = 12.0 Hz, PhC*H*₂), 4.21 (app dt, 1 H, *J* = 9.0, 4.0 Hz, H-3^{'''}), 4.17 (app t, 1 H, *J* = 9.5 Hz, H-4), 4.09 (dd, 1 H, *J* = 12.0, 2.5 Hz), 4.06 (dd, 1 H, J = 12.0, 5.6 Hz), 3.99 (ddd, 1 H, J = 10.0, 5.5, 2.5 Hz), 3.96–3.94 (m, 2 H), 3.91–3.80 (m, 6 H), 3.75 (s, 3 H, OCH₃), 3.74–3.70 (m, 2 H), 3.68–3.65 (m, 2 H), 3.59 (dd, 1 H, J = 11.0, 4.0 Hz), 3.45 (dd, 1 H, J = 10.5, 1.5 Hz), 2.11 (d, J = 4.0 Hz, OH), 2.10 (s, 3 H, OC=OCH₃), 2.02 (s, 3 H, OC=OCH₃), 1.96 (s, 3 H, OC=OCH₃), 1.95 (s, 3 H, OC=OCH₃), 1.90 (s, 3 H, OC=OCH₃); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.8 (OC=OCH₃), 170.7 (OC=OCH₃), 170.6 (OC=OCH₃), 169.7 (OC=OCH₃), 169.6 (OC=OCH₃), 165.6 (PhC=O), 155.3 (Ar), 149.7 (Ar), 138.4 (Ar), 138.3 (Ar), 138.1 (Ar), 137.8 (Ar), 137.5 (Ar), 133.5 (Ar), 129.9 (Ar), 129.7 (Ar), 128.6 (Ar), 128.52 (Ar), 128.51 (Ar), 128.37 (Ar), 128.35 (Ar), 128.33 (Ar), 128.2 (Ar), 128.1 (Ar), 128.0 (Ar), 127.9 (Ar), 127.8 (Ar), 127.75 (Ar), 127.72 (Ar), 127.64 (Ar), 127.62 (Ar), 127.53 (Ar), 127.51 (Ar), 117.8 (Ar), 114.7 (Ar), 101.0 (C-1″), 100.9 (C-1′), 99.2 (C-1″′), 96.4 (C-1), 77.4 (C-3), 75.8, 75.6, 75.5, 75.4 (PhCH₂), 75.3, 75.0 (PhCH₂), 74.6 (C-4), 73.5 (PhCH₂), 73.4 (PhCH₂), 72.5, 72.3, 72.28 (PhCH₂), 72.2, 72.0 (PhCH₂), 71.6, 70.6, 69.8, 69.7, 68.9, 68.4, 67.5, 67.2, 55.6 (CH₃O), 21.9 (OC=OCH₃), 20.9 (OC=OCH₃), 20.8 (OC=OCH₃), 20.71 (OC=OCH₃), 20.70 (OC=OCH₃); HRMS (ESI) calcd for (M+NH₄)⁺ C₉₀H₁₀₂NO₂₈: 1644.6583. Found: 1644.6555.

2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-α-D*p*-Methoxyphenyl mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-Obenzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-mannopyranoside (50): mixture of А tetrasaccharide acceptor 49 (2.30 g, 1.42 mmol), trichloroacetimidate donor 36 (2.73 g, 1.57 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (100 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C and then TBSOTf (50 µL) was added. The solution was stirred for 2 h before Et₃N (0.5 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 33 \rightarrow 66% EtOAc in hexane) to afford 50 (4.05 g, 88%) yield as a white solid; $R_{\rm f}$ 0.42 (2:3 hexane–EtOAc); $[\alpha]_D = +30.4$ (*c* 0.5, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.08–8.06

(m, 2 H), 8.01–7.99 (m, 2 H), 7.62–7.59 (m, 1 H), 7.58–7.55 (m, 1 H), 7.42–6.99 (m, 66 H), 6.78–6.76 (m, 2 H), 5.56 (d, 1 H, J = 2.0 Hz), 5.54 (dd, 1 H, J = 3.0, 2.0 Hz), 5.50 (app t, 1 H, J = 2.0 Hz), 5.37 (dd, 1 H, J = 9.5, 3.5 Hz), 5.31 (d, 1 H, J = 1.5 Hz), 5.30 (dd, 1 H, J = 3.0, 2.0 Hz), 5.29 (s, 1 H), 5.25 (app t, 1 H, J = 10.0 Hz), 5.22 (dd, 1 H, J = 3.0, 2.0 Hz), 5.20–5.15 (m, 4 H), 5.00 (d, 1 H, J = 2.0 Hz), 4.92 (d, 1 H, J = 2.0 Hz), 4.85 (d, 1 H, J = 2.0 Hz), 4.79 (d, 1 H, J = 2.0 Hz), 4.76 (d, 1 H, J = 12.0 Hz), 4.75 (d, 1 H, J = 10.5 Hz), 4.67 (d, 1 H, J = 12.0 Hz),4.60–4.37 (m, 17 H), 4.30–4.20 (m, 6 H), 4.18–4.13 (m, 4 H), 4.08–4.01 (m, 3 H), 3.96-3.78 (m, 21 H), 3.72-3.70 (m, 1 H), 3.65-3.60 (m, 4 H), 4.57-4.53 (m, 2 H), 3.40 (dd, 1 H, J = 11.0, 1.5 Hz), 3.35 (d, 1 H, J = 11.0 Hz), 2.76 (dt, 1 H, J = 18.5, 7.5 Hz), 2.62 (dt, 1 H, J = 18.5, 6.5 Hz), 2.50 (dt, 1 H, J = 17.0, 7.0 Hz), 2.41 (dt, 1 H, J = 17.0, 6.5 Hz), 2.13 (s, 3 H), 2.07 (s, 3 H), 2.05 (s, 3 H), 2.00 (s, 3 H), 1.94 (s, 3 H), 1.92 (s, 3 H), 1.91 (s, 3 H), 1.89 (s, 3 H), 1.88 (s, 3 H), 1.87 (s, 3 H), 1.82 (s, 3 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.5, 171.3, 171.1, 170.8, 170.7, 170.6, 169.8, 169.69, 169.68, 169.6, 169.3, 169.2, 165.6, 165.4, 155.3, 149.7, 139.1, 138.3, 138.1, 138.02, 138.00, 137.94, 137.8, 137.6, 137.5, 133.6, 133.3, 129.9, 129.8, 129.7, 128.7, 128.55, 128.50, 128.46, 128.39, 128.36, 128.34, 128.28, 128.25, 128.1, 128.0, 127.88, 127.87, 127.85, 127.76, 127.73, 127.62, 127.59, 127.53, 127.3, 117.8, 114.7, 101.01, 100.97, 100.87, 100.7, 99.3, 99.2, 98.8, 96.4, 77.5, 77.2, 76.6, 76.1, 75.93, 75.88, 75.76, 75.48, 75.44, 75.39, 74.97, 74.94, 74.8, 74.6, 74.5, 73.7, 73.47, 73.44, 73.41, 73.37, 72.94, 72.88, 72.4, 72.30, 72.27, 72.23, 72.19, 72.02, 71.96, 71.93, 71.91, 71.83, 71.79, 69.9, 69.8, 69.71, 69.69, 69.62, 68.5, 68.4, 68.3, 67.5, 67.3, 62.91, 62.88, 62.55, 62.44, 55.6, 37.9, 29.9, 28.0, 21.09, 21.08, 21.0, 20.9, 20.82, 20.81, 20.76, 20.72, 20.69, 20.63; ¹H-coupled HSQC (700

MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 176.0, 176.0, 175.6, 175.6, 175.5, 173.3, 173.2, 173.1 Hz HRMS (ESI) calcd for (M+2(NH₄)) <math>{}^{+2}C_{178}H_{202}N_2O_{56}$: 1631.6505. Found: 1631.6521.

p-Methoxyphenyl 2-*O*-Acetyl-3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→2)- 3,4,6-tri-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-

O-acetyl-3-*O*-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*-benzyl-α-D-

mannopyranosyl-(1 \rightarrow 3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-mannopyranoside (52): A mixture of tetrasaccharide acceptor 49 (941 mg, 0.56 mmol), trisaccharide trichloroacetimidate 33 (1070 mg, 0.70 mmol) and powdered 4Å molecular sieves was suspended in anhydrous CH₂Cl₂ (100 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C and then TBSOTf (40 µL) was added. The solution was stirred for 2 h at r.t. before Et₃N (0.2 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient 16 \rightarrow 33% EtOAc in hexane) to afford 52 (1.48 g, 87% yield) as a white solid; *R*_f 0.67 (1:1 hexane–EtOAc); [α]_D = +22.8 (*c* 0.2, CH₂Cl₂); ¹H NMR

(700 MHz, CDCl₃, δ_H) 8.08–8.06 (m, 2 H), 7.99–7.98 (m, 2 H), 7.62–7.60 (m, 1 H), 7.54–7.52 (m, 1 H), 7.43–7.40 (m, 2 H), 7.36–7.25 (m, 72 H), 6.99–6.96 (m, 2 H), 6.78–6.77 (m, 2 H), 5.58 (app t, 1 H, J = 2.0 Hz), 5.56 (d, 1 H, J = 2.0 Hz), 5.54 (dd, 1 H, J = 3.0, 2.0 Hz), 5.48 (dd, 1 H, J = 3.0, 2.0 Hz), 5.31 (d, 1 H, J = 1.5 Hz), 5.29 (s, 1 H), 5.24 (dd, 1 H, J = 3.0, 2.0 Hz), 5.20–5.15 (m, 3 H), 5.03 (d, 1 H, J = 1.5 Hz), 5.00 (d, 1 H, J = 2.0 Hz), 4.85–4.84 (m, 2 H), 4.75 (d, 1 H, J = 11.0 Hz), 4.73–4.66 (m, 4 H), 4.59–4.53 (m, 5 H), 5.00–4.40 (m, 8 H), 4.38–4.32 (m, 4 H), 4.30–4.18 (m, 9 H), 4.15 (app t, 1 H, J = 9.5 Hz), 4.07 (dd, 1 H, J = 12.5, 2.5 Hz), 4.04 (dd, 1 H, J = 12.5, 5.0 Hz), 3.96–3.78 (m, 17 H), 3.75–3.70 (m, 4 H), 3.74 (s, 3 H), 3.65–3.63 (m, 2 H), 3.59 (dd, 1 H, J = 11.0, 3.5 Hz), 3.53–3.49 (m, 2 H), 3.41–3.34 (m, 3 H), 2.07 (s, 3 H), 2.02 (s, 3 H), 2.01 (s, 3 H), 1.91 (s, 3 H), 1.89 (s, 3 H), 1.83 (s, 3 H); ¹³C NMR (175 MHz, CDCl₃, δ_C) 170.8, 170.7, 170.0, 169.9, 169.6, 169.1, 165.6, 165.4, 155.2, 149.7, 139.1, 138.8, 138.7, 138.6, 138.5, 138.32, 138.29, 138.11, 138.07, 137.9, 137.8, 137.4, 133.5, 133.0, 129.9, 129.8, 129.6, 128.62, 128.59, 128.46, 128.44, 128.39, 128.33, 128.29, 128.25, 128.23, 128.20, 128.19, 128.15, 128.14, 128.13, 128.11, 128.0, 127.9, 127.8, 127.70, 127.66, 127.59, 127.57, 127.51, 127.47, 127.44, 127.41, 127.38, 127.33, 127.31, 127.18, 127.14, 127.13, 117.7, 114.7, 101.2, 100.98, 100.94, 99.4, 99.1, 98.9, 96.4, 79.2, 78.3, 77.7, 77.3, 77.2, 76.5, 75.6, 75.55, 75.4, 75.2, 74.94, 74.88, 74.80, 74.6, 74.5, 74.24, 74.18, 73.9, 73.4, 73.3 73.24, 73.19, 73.09, 72.8, 72.6, 72.4, 72.27, 72.19, 72.16, 72.12, 72.0, 71.9, 71.86, 71.83, 69.72, 69.67, 68.7, 68.6, 68.3, 68.2, 67.4, 67.3, 62.84, 62.80, 60.4, 55.6, 21.13, 21.06, 20.80, 20.75, 20.65, 20.57; ¹H-coupled HSQC (700 MHz, CDCl₃) ${}^{1}J_{C-1, H-1} = 176.4, 175.7,$ 175.7, 175.0, 175.0, 174.3, 172.9 Hz; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₁₇₃H₁₉₀N₂O₄₅: 1507.6315. Found: 1507.6323.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-α-D- mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6di-O-ace-tyl-3-Obenzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-O-acetyl-3-O-benzyl- α -Dmannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-ace-tyl-4,6-di-*O*mannopyranosylbenzyl-α-D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-4,6-di-*O*-acetyl-2-deoxy-**2-(2,2,2-trichloroethoxycarbonylamino)-β-D-glucopyranoside** (54): The formation of octasaccharide trichloroacetimidate 51 (2.5 g) was achieved from octasaccharide 50 (4.0 g) in 63% yield following general procedure A described above. A mixture of adaptor 28 (460 mg, 0.50 mmol), octasaccharide trichloroacetimidate 51 (740 mg, 0.23 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (40 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C and then TBSOTf (20 µL) was added. The solution was stirred at r.t. for 2 h before Et₃N (0.5 mL) was added and the mixture was filtered. The filtrate

was concentrated and the resulting residue was purified by chromatography (gradient $50 \rightarrow 60\%$ EtOAc in hexane) to afford 54 (950 mg, 86%) yield as a white solid; $R_{\rm f}$ 0.48 (2:3) hexane–EtOAc); $[\alpha]_D = +15.1$ (c 0.7, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.01–7.99 (m, 4 H), 7.58–7.55 (m, 2 H), 7.38–6.99 (m, 94 H), 5.83 (d, 1 H, J = 6.5 Hz), 5.49 (s, 1 H), 5.46 (s, 1 H), 5.37 (dd, 1 H, J = 9.5, 3.5 Hz), 5.31–5.15 (m, 13 H), 5.11 (s, 1 H), 5.08 (s, 1 H), 4.99-4.97 (m, 2 H), 4.93 (s, 1 H), 4.88 (s, 1 H), 4.85-4.70 (m, 9 H), 4.65-4.32 (m, 25 H), 4.27-3.70 (m, 50 H), 3.64-3.52 (m, 14 H), 3.46-3.34 (m, 5 H), 3.18-3.15 (m, 1 H), 2.76 (dt, 1 H, J = 18.0, 7.0 Hz), 2.63 (dt, 1 H, J = 18.0, 6.5 Hz), 2.50 (dt, 1 H, J = 17.0, 7.0 Hz), 2.41 (dt, 1 H, J = 17.0, 6.5 Hz), 2.14 (s, 3 H), 2.06–2.04 (m, 18 H), 2.02 (s, 3 H), 1.94 (s, 3 H), 1.92 (s, 3 H), 1.91 (s, 3 H), 1.90 (s, 3 H), 1.89 (s, 3 H), 1.88 (s, 3 H), 1.83 (s, 3 H), 1.77 (s, 3 H), 0.88–0.79 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.5, 171.3, 171.1, 170.8, 170.77, 170.5, 170.3, 170.2, 170.0, 169.8, 169.66, 169.61, 169.57, 169.3, 169.1, 165.4, 165.2, 154.0, 139.1, 138.5, 138.3, 138.15, 138.14, 137.98, 137.96, 137.93, 137.89, 137.8, 137.63, 137.61, 133.4, 133.3, 129.9, 129.83, 129.79, 129.7, 128.53, 128.47, 128.43, 128.38, 128.32, 128.30, 128.26, 128.22, 128.14, 127.93, 127.89, 127.85, 127.82, 127.73, 127.69, 127.62, 127.59, 127.57, 127.52, 127.45, 127.38, 127.3, 100.84, 100.79, 100.64, 99.9, 99.7, 99.3, 99.2, 98.8, 98.5, 95.5, 78.2, 76.5, 76.1, 75.9, 75.83, 75.79, 75.6, 75.48, 75.43, 75.3, 75.1, 74.92, 74.88, 74.75, 74.45, 74.39, 74.2, 74.1, 73.6, 73.54, 73.51, 73.42, 73.37, 73.33, 73.29, 72.92, 72.85, 72.51, 72.47, 72.38, 72.32, 72.26, 72.17, 72.04, 72.02, 71.93, 71.88, 71.81, 71.78, 71.75, 71.5, 70.7, 69.9, 69.7, 69.65, 69.60, 69.5, 68.5, 68.4, 68.3, 68.1, 67.5, 67.2, 62.7, 62.5, 62.41, 62.38, 57.6, 37.9, 29.9, 28.0, 21.08, 21.06, 21.04, 20.97, 20.95, 20.83, 20.81, 20.79, 20.76, 20.73, 20.67, 20.66, 20.59, 18.1, -1.4; HRMS (ESI) calcd for $(M+2(NH_4))^{+2}$ C₂₅₅H₂₉₆Cl₃N₃O₈₁Si: 2414.3980. Found: 2414.3971.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -D-glucopyranoside (55): A solution of 54 (0.9 g, 0.19 mmol) and hydrazine acetate (86 mg, 0.93 mmol) in 9:1 CH₂Cl₂-CH₃OH (30 mL) was stirred at r.t. for 1 h. Then, the solution was concentrated at 40 °C for 0.5 h to achieve complete deprocetion of the levulinyl group. The resulting residue was subjected to chromatography
(gradient 50 \rightarrow 60% EtOAc in hexane) to afford 55 (0.77 g, 87% yield) as a white solid; $R_{\rm f}$ 0.47 (2:3 hexane–EtOAc); $[\alpha]_D = +20.0 (c \ 0.5, CH_2Cl_2)$; ¹H NMR (700 MHz, CDCl₃, δ_H) 8.02–7.98 (m, 4 H), 7.59-7.57 (m, 2 H), 7.38-6.99 (m, 94 H), 5.83 (d, 1 H, J = 7.0 Hz), 5.50 (s, 1 H), 5.46 (dd, 1 H, J = 3.0, 2.0 Hz), 5.31 (d, 1 H, J = 1.5 Hz), 5.28 (dd, 1 H, J = 3.0, 1.5 Hz), 5.25 (d, 1 H, J = 1.5 Hz), 5.22–5.15 (m, 9 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 4.99–4.97 (m, 2 H), 4.89 (s, 1 H), 4.88 (s, 1 H), 4.84 (dd, 1 H, J = 3.0, 2.0 Hz), 4.80–4.70 (m, 8 H), 4.65–4.12 (m, 20 H), 4.39–4.32 (m, 4 H), 4.28–3.70 (m, 51 H), 3.67–3.51 (m, 14 H), 3.46–3.34 (m, 4 H), 3.18-3.15 (m, 1 H), 2.09 (s, 3 H), 2.06-2.04 (m, 15 H), 2.02 (s, 3 H), 1.93 (s, 3 H), 1.92 (s, 3 H), 1.905 (s, 3 H), 1.902 (s, 3 H), 1.899 (s, 3 H), 1.85 (s, 3 H), 1.83 (s, 3 H), 1.77 (s, 3 H), 0.88-0.79 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.9, 170.80, 170.77, 170.6, 170.5, 170.26, 170.20, 170.0, 169.7, 169.62, 169.57, 169.50, 169.1, 165.4, 165.3, 154.0, 139.1, 138.5, 138.4, 138.3, 138.2, 137.98, 137.95, 137.89, 137.85, 137.79, 137.78, 137.6, 133.4, 133.3, 129.9, 129.83, 129.79, 129.7, 128.53, 128.49, 128.46, 128.44, 128.38, 128.31, 128.29, 128.23, 128.14, 127.98, 127.95, 127.93, 127.87, 127.80, 127.78, 127.73, 127.69, 127.62, 127.58, 127.56, 127.52, 127.4, 127.3, 127.2, 100.8, 100.7, 99.9, 99.7, 99.3, 99.28, 99.21, 98.5, 78.2, 77.2, 76.0, 75.8, 75.7, 75.6, 75.5, 75.4, 75.3, 75.1, 74.95, 74.88, 74.5, 74.4, 74.2, 74.1, 73.53, 73.51, 73.37, 73.33, 73.28, 72.83, 72.51, 72.46, 72.36, 72.32, 72.27, 72.24, 72.03, 71.93, 71.90, 71.77, 71.74, 71.6, 71.5, 70.7, 70.6, 69.59, 69.52, 69.49, 68.8, 68.3, 68.1, 67.5, 67.3, 67.2, 62.7, 62.5, 62.4, 57.6, 21.08, 21.05, 20.97, 20.85, 20.83, 20.81, 20.76, 20.71, 20.67, 20.65, 20.59, 18.1, -1.4; HRMS (ESI) calcd for (M+2(NH₄))⁺² C₂₅₀H₂₉₀Cl₃N₃O₇₉Si: 2365.3796. Found: 2365.3757.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl-3-O-levulinyl-α-D- mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6di-O-acetyl-3-Obenzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-*O*-ace-tyl-3-*O*benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-O-acetyl-3-O-benzyl- α -Dmannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*benzoyl-4,6-di-Obenzyl-α-D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-Dmannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-*O*-acetyl-3-*O*benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-acetyl-4,6-di-*O*-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -4,6-di-*O*-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbonylamino)- β -Dglucopyranoside (56): A mixture of acceptor 55 (800 mg, 0.17 mmol), octasaccharide

trichloroacetimidate 51 (772 mg, 0.24 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (40 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C and then TBSOTf (20 µL) was added. The solution was stirred at r.t. overnight before Et₃N (0.5 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $50 \rightarrow 66\%$ EtOAc in hexane) to afford **56** (944 mg, 71% yield) as a white solid; $R_{\rm f}$ 0.25 (2:3 hexane–EtOAc); $[\alpha]_{\rm D} = +18.0$ (c 0.4, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 8.01–7.99 (m, 8 H), 7.58–7.56 (m, 4 H), 7.39–6.97 (m, 158 H), 5.83 (d, 1 H, J = 7.0 Hz), 5.50–5.47 (m, 4 H), 5.38 (dd, 1 H, J = 9.5, 3.5 Hz), 5.31–5.15 (m, 21 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 5.00–4.97 (m, 4 H), 4.94 (s, 1 H), 4.89 (s, 1 H), 4.86–4.70 (m, 14 H), 4.65–4.32 (m, 39 H), 4.26–4.01 (m, 34 H), 3.99–3.71 (m, 56 H), 3.66–3.51 (m, 20 H), 3.46–3.34 (m, 6 H), 3.18–3.15 (m, 1 H), 2.77 (dt, 1 H, J = 18.0, 7.0 Hz), 2.63 (dt, 1 H, J = 18.0, 6.5 Hz), 2.51 (dt, 1 H, J = 17.0, 7.0 Hz), 2.42 (dt, 1 H, J = 18.0, 6.0 Hz), 2.42 (dt, 1 H, J = 18.0, 6.0 Hz), 2.42 (dt, 1 H, J = 18.0, 6.0 Hz), 2.42 (dt, 1 H, J = 18.0, 6.0 Hz), 2.42 (dt, 1 H, J = 17.0, 7.0 Hz), 2.42 (dt, 1 H, J = 17.0, 7.0 Hz), 2.42 (dt, 1 H, J = 18.0, 6.0 Hz), 2.42 (dt, 1 H, J = 18 17.0, 6.5 Hz), 2.14 (s, 3 H), 2.07–2.03 (m, 24 H), 1.94–1.92 (m, 15 H), 1.90–1.89 (m, 15 H), 1.849 (s, 3 H), 1.846 (s, 3 H), 1.835 (s, 3 H), 1.78 (s, 9 H), 0.88–0.79 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 206.5, 171.2, 171.1, 170.9, 170.80, 170.77, 170.55, 170.53, 170.26, 170.21, 170.0, 169.76, 169.72, 169.66, 169.59, 169.3, 169.1, 165.3, 165.2, 154.0, 139.14, 139.10, 138.5, 138.3, 138.16, 138.14, 138.07, 138.01, 137.99, 137.95, 137.89, 137.89, 137.81, 137.65, 137.61, 133.4, 133.3, 129.9, 129.8, 129.7, 128.53, 128.44, 128.38, 128.34, 128.31, 128.26, 128.24, 128.22, 128.14, 127.94, 127.87, 127.85, 127.83, 127.80, 127.79, 127.76, 127.74, 127.73, 127.67, 127.61, 127.59, 127.56, 127.4, 100.8, 100.6, 99.9, 99.7, 99.3, 99.2, 98.8, 98.6, 78.2, 77.9, 77.2, 76.6, 76.1, 75.96, 75.84, 75.68, 75.61, 75.51, 75.40, 75.31, 75.07, 75.01, 74.88, 74.75, 74.48, 74.39, 74.2, 74.1, 73.61, 73.54, 73.51, 73.42, 73.38, 73.33,

73.29, 72.92, 72.84, 72.51, 72.47, 72.36, 72.27, 72.22, 72.18, 72.03, 71.93, 71.88, 71.81, 71.78, 71.74, 71.5, 69.9, 69.70, 69.65, 69.60, 69.52, 68.5, 68.4, 68.3, 68.0, 67.5, 67.3, 67.2, 62.7, 62.56, 62.53, 62.41, 62.37, 57.6, 37.9, 29.8, 27.9, 21.08, 21.07, 21.04, 20.97, 20.95, 20.84, 20.81, 20.79, 20.76, 20.73, 20.67, 20.61, 20.59, 18.1, -1.4; HRMS (ESI) calcd for (M+3(NH4))⁺³ C₄₂₁H₄₈₀Cl₃N₄O₁₃₃Si: 2617.3251. Found: 2617.3245.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)- 4,6-di-O-acetyl-3-O-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*benzoyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-*O*-benzoyl-4,6-di-*O*-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-O-acetyl-3-O-benzyl-α-D-mannopyranosyl-(1→2)-4,6-di-O-acetyl-3-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-benzoyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-Dmannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2-trichloroethoxycarbo-nylamino)-β-D-glucopyranoside (57): A solution of 56 (0.94 g, 0.12 mmol) and hydrazine acetate (222 mg, 2.4 mmol) in 9:1

CH₂Cl₂-CH₃OH (40 mL) was stirred at r.t. for 1 h. Then, the solution was concentrated at 40 °C for 1.5 h to achieve complete deproection of the levulinyl group. The resulting residue was subjected to chromatography (gradient 50 \rightarrow 66% EtOAc in hexane) to afford 57 (806 mg, 87% yield) as a white solid; $R_f 0.30$ (2:3 hexane–EtOAc); $[\alpha]_D = +13.0$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.03–7.99 (m, 8 H), 7.59–7.56 (m, 4 H), 7.39–6.97 (m, 158 H), 5.83 (d, 1 H, J = 6.0 Hz), 5.51–5.47 (m, 4 H), 5.32–5.27 (m, 4 H), 5.25 (s, 1 H), 5.22–5.15 (m, 16 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 5.04 (d, 1 H, J = 1.5 Hz), 5.00–4.97 (m, 3 H), 4.89 (s, 1 H), 4.85 (app t, 1 H, J = 2.0 Hz), 4.86-4.70 (m, 14 H), 4.65-4.32 (m, 39 H), 4.26-4.01 (m, 34 H), 3.99-3.71 (m, 57 H), 3.66-3.51 (m, 20 H), 3.46-3.34 (m, 6 H), 3.18-3.15 (m, 1 H), 2.09 (s, 3 H), 2.06–2.03 (m, 24 H), 1.94–1.92 (m, 12 H), 1.91–1.89 (m, 15 H), 1.855 (s, 3 H), 1.852 (s, 3 H), 1.845 (s, 3 H), 1.835 (s, 3 H), 1.78–1.77 (m, 9 H), 0.88–0.79 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 170.94, 170.90, 170.80, 170.77, 170.62, 170.53, 170.26, 170.21, 170.0, 169.73, 169.64, 169.52, 169.1, 165.3, 165.2, 154.0, 139.14, 139.13, 139.10, 138.5, 138.4, 138.3, 138.16, 138.01, 137.99, 137.97, 137.95, 137.89, 137.86, 137.81, 137.78, 137.61, 133.4, 133.3, 129.9, 129.8, 129.7, 128.53, 128.49, 128.45, 128.37, 128.31, 128.24, 128.22, 128.14, 127.99, 127.96, 127.94, 127.87, 127.80, 127.79, 127.76, 127.73, 127.70, 127.67, 127.63, 127.61, 127.58, 127.56, 127.4, 127.3, 100.77, 100.74, 100.66, 99.9, 99.7, 99.3, 99.2, 98.5, 78.2, 77.2, 76.0, 75.96, 75.84, 75.69, 75.63, 75.51, 75.40, 75.31, 75.07, 75.01, 74.96, 74.89, 74.55, 74.50, 74.39, 74.35, 74.2, 74.1, 73.54, 73.51, 73.38, 73.37, 73.33, 73.29, 72.84, 72.51, 72.47, 72.36, 72.26, 72.22, 72.03, 71.93, 71.90, 71.78, 71.74, 71.63, 71.48, 70.7, 70.6, 69.65, 69.59, 69.52, 68.8, 68.5, 68.3, 68.0, 67.5, 67.3, 67.27, 67.20, 62.7, 62.56, 62.53, 62.37,

57.6, 21.09, 21.04, 20.97, 20.87, 20.84, 20.81, 20.77, 20.71, 20.68, 20.61, 20.59, 18.1, -1.4; MALDI-TOF calcd for (M+Na)⁺ C₄₁₆H₄₆₂Cl₃NNaO₁₃₁Si: 7722.8. Found: 7722.5.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl- (1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyrano

mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*benzoyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*acetyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-4,6-di-O-acetyl-2-deoxy-2-(2,2,2trichloroethoxycarbonylamino)-β-D-glucopyranoside (58): Trichloroacetimidate 53 (0.94 g) was synthesized from heptasaccharide 52 (1.49 g) in 63% yield. following general procedure A described above. A mixture of acceptor 57 (963 mg, 0.125 mmol), heptasaccharide trichloroacetimidate 53 (530 mg, 0.175 mmol) and powdered 4 Å molecular sieves was suspended in anhydrous CH₂Cl₂ (80 mL) and stirred at r.t. for 10 min. The solution was then cooled to 0 °C and then TBSOTf (50 µL) was added. The solution was stirred at r.t. overnight before Et₃N (1.0 mL) was added and the mixture was filtered. The filtrate was concentrated and the resulting residue was purified by chromatography (gradient $50 \rightarrow 63\%$ EtOAc in hexane) to afford **58** (963 mg, 73%) yield as a white solid; $R_{\rm f} 0.53$ (2:3 hexane–EtOAc); $[\alpha]_{\rm D} = +6.1$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.01–7.98 (m, 12 H), 7.58–7.52 (m, 6 H), 7.39–6.98 (m, 232 H), 5.83 (d, 1 H, J = 6.0 Hz), 5.58 (s, 1 H), 5.50–5.47 (m, 6 H), 5.31–5.28 (m, 6 H), 5.25 (s, 1 H), 5.23–5.16 (m, 21 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 5.03 (d, 1 H, J = 1.5 Hz), 5.00–4.97 (m, 5 H), 4.89 (s, 1 H), 4.85–4.64 (m, 24 H), 4.59–4.33 (m, 54 H), 4.27–4.13 (m, 37 H), 4.12–4.00 (m, 8 H), 3.98–3.71 (m, 79 H), 3.66–3.50 (m, 25 H), 3.47–3.34 (m, 9 H), 3.18–3.15 (m, 1 H), 2.07 (s, 3 H), 2.06–2.04 (m, 24 H), 2.03 (s, 3 H), 2.01 (s, 3 H), 1.93–1.92 (m, 15 H), 1.90–1.89 (m, 15 H), 1.85–1.84 (m, 15 H), 1.78–1.77 (m, 15 H), 0.88–0.79 (m, 2 H), -0.03 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.99, 170.94, 170.81, 170.78, 170.53, 170.26, 170.21, 170.07, 170.00, 169.93, 169.7, 169.6, 169.1, 169.0, 165.4, 165.3, 165.2, 154.0,

139.16, 139.13, 139.10, 138.8, 137.72, 138.68, 138.53, 138.49, 138.37, 138.34, 138.33, 138.16, 138.11, 138.08, 138.01, 137.99, 137.95, 137.89, 137.86, 137.81, 137.78, 137.61, 133.4, 133.3, 133.2, 129.9, 129.8, 129.7, 128.6, 128.53, 128.44, 128.41, 128.38, 128.34, 128.30, 128.26, 128.24, 128.22, 128.18, 128.14, 128.06, 127.94, 127.85, 127.80, 127.76, 127.73, 127.67, 127.63, 127.61, 127.56, 127.54, 127.51, 127.46, 127.44, 127.41, 127.38, 127.36, 127.25, 127.21, 127.15, 101.2, 100.78, 100.65, 99.9, 99.7, 99.6, 99.4, 99.27, 99.17, 99.09, 98.5, 79.2, 78.4, 78.2, 77.2, 76.9, 76.4, 75.96, 75.84, 75.64, 75.51, 75.39, 75.31, 75.07, 75.00, 74.89, 74.79, 74.65, 74.50, 74.39, 74.30, 74.2, 74.1, 74.0, 73.54, 73.52, 73.38, 73.33, 73.29, 73.22, 73.13, 72.84, 72.63, 72.51, 72.47, 72.36, 72.27, 72.22, 72.15, 72.03, 71.93, 71.90, 71.78, 71.74, 71.48, 70.7, 69.65, 69.58, 69.52, 68.65, 68.62, 68.49, 68.39, 68.25, 68.14, 68.06, 67.5, 67.3, 67.2, 62.7, 62.53, 62.37, 57.6, 21.18, 21.11, 21.09, 21.04, 20.97, 20.87, 20.84, 20.81, 20.77, 20.68, 20.61, 18.1, -1.4; MALDI-TOF calcd for (M+Na)⁺ C₅₈₂H₆₃₆Cl₃NNaO₁₇₄Si: 10578. Found: 10578.

2-(Trimethylsilyl)ethyl 2-O-Acetyl-3,4,6-tri-O-benzyl- α -D-mannopyranosyl- (1 \rightarrow 2)-3,4,6-tri-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 2)-4,6-di-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-acetyl-3-O-benzyl- α -D-mannopyranosyl-(1 \rightarrow 3)-2-O-benzyl- α -D-mannop

mannopyranosyl- $(1\rightarrow 2)$ -4,6-di-*O*-acetyl-3-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*benzoyl-4,6-di-O-benzyl-α-D-mannopyranosyl-(1→3)-2-O-acetyl-4,6-di-O-benzyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4,6-di-*O*-benzyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -2-*O*acetyl-4,6-di-*O*-benzyl-α-D-mannopyranosyl-(1→3)-2-acetamido-4,6-di-*O*-acetyl-2deoxy-β-D-glucopyranoside (59): To a solution of substrate 58 (940 mg, 0.09 mmol) in 3:1 THF-AcOH (40 mL) was added freshly activated zinc dust (2 g). After stirring for 3 h at r.t., the mixture was filtered and the filtrate was concentrated. The resulting residue was dissolved in 3:2 pyridine–Ac₂O (25 mL) and the mixture was stirred at r.t. for 2 h. Then, the solution was concentrated, dissolved in CH₂Cl₂ (100 mL) followed by washing with 1M HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient $50 \rightarrow 60\%$ EtOAc in hexane) to afford **59** (742 mg, 80% yield) as a white solid; $R_f 0.17$ (2:3 hexane-EtOAc); $[\alpha]_D = +6.4$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, δ_H) 8.01–7.98 (m, 12 H), 7.58–7.51 (m, 6 H), 7.39–6.98 (m, 232 H), 6.48 (d, 1 H, J = 7.0 Hz), 5.57 (s, 1 H), 5.50–5.47 (m, 6 H), 5.30–5.28 (m, 6 H), 5.25 (s, 1 H), 5.22–5.15 (m, 21 H), 5.11 (s, 1 H), 5.09 (s, 1 H), 5.06 (d, 1 H, J = 8.5 Hz), 5.02 (d, 1 H, J = 1.5 Hz), 4.99–4.98 (m, 5 H), 4.93 (dd, 1 H, J = 10.0, 9.0 Hz), 4.84–4.67 (m, 23 H), 4.58–4.30 (m, 53 H), 4.27–4.12 (m, 38 H), 4.09–4.00 (m, 6 H), 3.98–3.70 (m, 78 H), 3.66-3.48 (m, 26 H), 3.45-3.34 (m, 9 H), 2.95-2.92 (m, 1 H), 2.07 (s, 3 H), 2.05-2.03 (m, 24 H), 2.02 (s, 3 H), 2.01 (s, 3 H), 1.93–1.92 (m, 15 H), 1.90–1.89 (m, 15 H), 1.84–1.83 (m, 15 H), 1.78–1.77 (m, 18 H), 0.94–0.80 (m, 2 H), -0.02 (s, 9 H); ¹³C NMR (125 MHz, CDCl₃, $\delta_{\rm C}$) 171.4, 170.99, 170.94, 170.83, 170.80, 170.53, 170.24, 170.21, 170.07, 169.98, 169.93, 169.7, 169.6, 169.1, 169.0, 165.4, 165.3, 165.2, 139.16, 139.13, 139.10, 138.8, 137.72, 138.68, 138.53, 138.48, 138.37, 138.34, 138.32, 138.16, 138.11, 138.08, 138.01, 137.99, 137.95, 137.90, 137.86, 137.81, 137.78, 137.61, 137.5, 137.2, 133.4, 133.3, 133.1, 129.9, 129.8, 129.7, 128.62, 128.59, 128.53, 128.44, 128.38, 128.34, 128.30, 128.26, 128.23, 128.21, 128.18, 128.14, 128.11, 128.06, 128.02, 129.99, 127.85, 127.80, 127.76, 127.73, 127.70, 127.63, 127.61, 127.56, 127.54, 127.51, 127.46, 127.44, 127.41, 127.38, 127.36, 127.25, 127.21, 127.15, 101.2, 100.77, 100.64, 99.8, 99.66, 99.58, 99.42, 99.28, 99.18, 99.08, 98.8, 80.4, 79.2, 78.4, 78.1, 77.7, 77.6, 77.2, 76.9, 76.4, 75.96, 75.84, 75.64, 75.53, 75.39, 75.30, 75.07, 75.00, 74.89, 74.79, 74.65, 74.50, 74.39, 74.30, 74.2, 74.1, 74.0, 73.63, 73.53, 73.38, 73.35, 73.33, 73.28, 73.22, 73.13, 72.83, 72.64, 72.51, 72.47, 72.36, 72.27, 72.22, 72.15, 72.03, 71.93, 71.88, 71.78, 71.74, 71.2, 70.4, 69.65, 69.62, 69.52, 68.65, 68.50, 68.39, 68.25, 68.17, 68.09, 67.3, 67.2, 62.7, 62.53, 57.8, 23.4, 21.18, 21.10, 21.09, 21.04, 20.97, 20.87, 20.84, 20.78, 20.76, 20.67, 20.61, 20.59, 18.0, -1.4; MALDI-TOF calcd for (M+Na)⁺ C₅₈₁H₆₃₇NNaO₁₇₃Si: 10446. Found: 10446.

2-(Trimethylsilyl)ethyl α -D-Mannopyranosyl-(1 \rightarrow 2)- α -D-mannopyranosyl-(1 \rightarrow 3) - α -Dmannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -Dmannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -Dmannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopy-ranosyl- $(1\rightarrow 3)$ - α -Dmannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -Dmannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -Dmannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 2)$ - α -Dmannopyranosyl- $(1\rightarrow 2)$ - α -D-mannopyranos-yl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -Dmannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ - α -D-mannopyranosyl- $(1\rightarrow 3)$ -2acetamido-2-deoxy-β-D-glucopyranoside (S14): Ammonia was condensed at -78 °C into 50 mL round bottom flask equipped with a Dewar condenser and a magnetic stir bar (total volume 14 mL). Freshly cut sodium metal (70 mg) was added and the mixture was stirred at -78 °C for 5 min. A solution of compound 59 (25 mg, 2.4 µmol) in THF (0.40 mL) was introduced via syringe and the mixture was stirred at -80 °C for 1.5 h before CH₃OH (2 mL) was added. The colorless solution was warmed to r.t. and then concentrated. The residue was dissolved in water (4 mL) and the solution was neutralized with Amberlite IR120 H⁺ ion-exchange resin, filtered, concentrated. The residue purified by C₁₈ chromatography (gradient $0\rightarrow30\%$ CH₃OH in H₂O) to afford **S14** (6.6 mg, 61% yield) as a white solid. [α]_D = +88.8 (*c* 0.2, H₂O); ¹H NMR (700 MHz, D₂O, $\delta_{\rm H}$) 5.39–5.38 (m, 6 H), 5.31–5.28 (m, 6 H), 5.15–5.13 (m, 7 H), 5.09 (s, 1 H), 5.06–5.05 (m, 6 H), 4.58 (d, 1 H, *J* = 8.5 Hz), 4.23–4.18 (m, 13 H), 4.12–4.05 (m, 13 H), 4.03–3.99 (m, 13 H), 3.97–3.64 (m, 119 H), 3.63–3.58 (m, 3 H), 2.95–2.92 (m, 1 H), 2.04 (s, 3 H), 1.02–0.86 (m, 2 H), 0.02 (s, 9 H); ¹³C NMR (125 MHz, D₂O, $\delta_{\rm C}$) 174.9, 103.25, 103.22, 103.17, 103.07, 101.71, 101.68, 101.63, 101.1, 80.7, 79.6, 79.5, 79.39, 79.36, 79.31, 79.2, 76.6, 74.50, 74.44, 74.37, 74.29, 74.26, 74.21, 71.8, 71.3, 71.05, 71.01, 70.96, 70.91, 70.64, 70.57, 69.3, 68.0, 67.9, 67.8, 67.14, 67.10, 66.5, 62.07, 61.99, 61.96, 61.91, 61.62, 61.54, 55.1, 23.5, 18.1, –1.4; MALDI-TOF calcd for (M+Na)⁺ C₁₆₉H₂₈₇NNaO₁₃₆Si: 4557.6. Found: 4558.0.

2-(Trimethylsilyl)ethyl 2,3,4,6-Tetra-O-acetyl- α -D-mannopyranosyl-(1 \rightarrow 2)-3,4,6- tri-Oacetyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -3,4,6-tri-O-acetyl- α -D-mannopyranosyl-(1→3)-3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-manno-pyranosyl-(1→2)-3,4,6-tri-*O*-acetyl-α-D-mannopyranosyl-(1→3)-3,4,6-tri-*O*-acetyl-α-Dmannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*acetyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-acetyl- α -D-mannopyranosyl- $(1 \rightarrow 3)$ -3,4,6tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -Dmannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*acetyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6-tri-O-acetyl- α -D-mannopyranosyl- $(1 \rightarrow 2)$ -3,4,6tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl-(1→3)-3,4,6-tri-*O*-acetyl-α-D-mannopyranosyl-(1→3)-2-acetamido-4,6-di-*O*-acetyl-2deoxy-β-D-glucopyranoside (60): Compound S14 (64 mg, 14.1 μmol) was suspended in 3:2 pyridine–Ac₂O (5 mL) and the mixture was stirred at 45 °C overnight. Then, the solution was concentrated, dissolved in CH₂Cl₂ (100 mL) followed by washing with 1M HCl, saturated aqueous NaHCO₃, and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by chromatography (gradient $60 \rightarrow 75\%$ acetone in hexane) to afford 60 (86 mg, 77% yield) as a white solid; $R_f 0.24$ (4:7 hexane-acetone); $[\alpha]_D = +18.9$ (c 0.3, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 6.25 (d, 1 H, J = 7.0 Hz), 5.37 (dd, 1 H, J = 10.0, 3.5 Hz), 5.34–5.17 (m, 32 H), 5.31–5.28 (m, 6 H), 5.14–5.10 (m, 6 H), 5.06–4.90 (m, 31 H), 4.84 (s, 1 H), 4.83 (s, 1 H), 4.50 (app t, 1 H, J = 9.0 Hz), 4.27–4.21 (m, 17 H), 4.16–3.89 (m, 79 H), 3.85–3.78 (m, 9 H), 3.72 (s, 2 H), 3.66–3.64 (m, 1 H), 3.54 (td, 1 H, *J* = 10.0, 6.5 Hz), 3.09–3.05 (m, 1 H), 2.16–2.12 (m, 69 H), 2.11–2.08 (m, 87 H), 2.05–2.03 (m, 39 H), 2.00–1.98 (m, 51 H), 0.97–0.83 (m, 2 H), 0.00 (s, 9 H); 13 C NMR (125 MHz, CDCl₃, δ_{C}) 171.1, 170.9, 170.72, 170.68, 170.61, 170.59, 170.44, 170.40, 170.36, 170.26, 170.21, 170.19, 170.07, 169.85, 169.82, 169.71, 169.69, 169.52, 169.47, 169.43, 169.41, 169.39, 169.37, 169.28, 99.95, 99.83, 99.59, 99.54, 99.50, 99.42, 99.30, 99.15, 98.8, 98.6, 80.7, 77.7, 77.5, 77.2, 77.1, 75.6, 75.4, 75.2, 75.1, 74.3, 74.0, 73.7, 71.3, 71.2, 70.94, 70.89, 70.79, 70.5, 70.0, 69.8, 69.63, 69.58, 69.51, 69.0, 68.7, 68.4, 67.38, 67.31, 67.22, 67.0, 66.8, 66.7, 66.1, 66.0, 65.4, 63.8, 62.5, 62.37, 62.28, 62.23, 62.0, 61.87, 61.80, 61.76, 61.71, 61.6, 58.4, 23.7, 20.98, 20.95, 20.88, 20.86, 20.82, 20.79, 20.76, 20.72, 20.68, 20.62, 20.59, 20.56, 18.0, -1.4; MALDI-TOF calcd for (M+Na)⁺ C₃₃₁H₄₄₉NNaO₂₁₇Si: 7960.4. Found: 7960.6.

S89

2,3,4,6-tetra-*O*-Acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 2)$ -3,4,6-tri-*O*-acetyl- α -D-mannopyranosyl- $(1\rightarrow 3)$ -3

mannopyranosyl-(1→3)-2-acetamido-4,6-di-*O*-acetyl-2-deoxy-α-D-glucopyranosyl

dibenzyl phosphate (62): To a solution of 60 (81 mg, 10.2 µmol) in dry CH₂Cl₂ (3 mL) was added TFA (1 mL) dropwise at 0 °C. After stirring for 3 h at r.t., the solution was concentrated, dissolved in CH₂Cl₂ (20 mL), washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried (Na₂SO₄), filtered and concentrated. The residue was purified by chromatography (gradient $60 \rightarrow 95\%$ acetone in hexane) to afford hemiacital (62 mg, 78% yield) as a white solid. The hemiacital (62 mg, 7.9 µmol) was dissolved in dry CH₂Cl₂ (5 mL), tetraazole (28 mg, 395 µmol) was added and the reaction mixture was cooled to 0 °C. After 10 min, dibenzyl N,N-diisopropylphosphoramidite (82 mg, 237 µmol) was added dropwise and the mixture was stirred at r.t. for 4 h. The mixture was cooled to -78 °C and *m*-CPBA (61 mg, 355 µmol) was added in one portion and then the solition was warmed to r.t. After stirring at r.t. for 2 h, CH₂Cl₂ was added and the mixture was washed with saturated aqueous NaHCO₃ and brine. The organic phase was dried (Na₂SO₄), filtered, and concentrated. The residue was purified by Sephadex LH-20 (1:1CH₃OH–CH₂Cl₂) to afford phosphate **62** (82 mg, 92% yield) as a white solid; $R_f 0.12$ (4:7 hexane-acetone); $[\alpha]_D = +17.3$ (c 0.2, CH₂Cl₂); ¹H NMR (700 MHz, CDCl₃, $\delta_{\rm H}$) 7.37–7.31 (m, 10 H), 5.86 (d, 1 H, J = 9.5 Hz), 5.60 (dd, 1 H, J = 6.0, 3.0Hz), 5.37 (dd, 1 H, J = 10.0, 3.0 Hz), 5.34 (app t, 1 H, J = 10.0 Hz), 5.30–5.25 (m, 13 H), 5.23-5.19 (m, 13 H), 5.18-5.09 (m, 10 H), 5.08-5.01 (m, 9 H), 5.00-4.97 (m, 14 H), 4.91-4.87 (m, 9 H), 4.84 (d, 1 H, J = 1.5 Hz), 4.34-4.19 (m, 16 H), 4.17-4.11 (m, 23 H), 4.08-3.93 (m, 10 H), 4.08-3.93 (m, 10 H), 4.17-4.11 (m, 23 H), 4.08-3.93 (m, 10 H), 4.18-3.93 (m46 H), 3.90–3.73 (m, 22 H), 2.17–2.13 (m, 51 H), 2.12–2.06 (m, 99 H), 2.05–2.03 (m, 42 H), 2.00–1.98 (m, 54 H); ¹³C NMR (125 MHz, CDCl₃, δ_C) 170.9, 170.75, 170.68, 170.59, 170.54, 170.44, 170.40, 170.37, 170.26, 170.21, 170.14, 170.07, 170.02, 169.86, 169.82, 169.72,

169.70, 169.52, 169.47, 169.43, 169.41, 169.40, 169.39, 169.28, 135.2 (d, $J_{PC} = 6.1$ Hz), 135.1(d, $J_{PC} = 6.1$ Hz), 129.8, 129.10, 129.08, 128.85, 128.24, 128.20, 99.95, 99.83, 99.59, 99.56, 99.50, 99.30, 99.18, 99.10, 98.4, 96.7 (d, $J_{PC-1} = 6.4$ Hz), 77.7, 77.5, 77.2, 77.1, 76.5, 75.6, 75.4, 75.1, 75.0, 74.7, 74.3, 74.0, 71.3, 70.94, 70.89, 70.77, 70.13, 70.10, 70.04, 69.86, 69.80, 69.67, 69.63, 69.58, 69.49, 68.7, 68.4, 67.37, 67.31, 67.22, 67.02, 66.96, 66.7, 66.1, 66.0, 65.4, 62.7, 62.5, 62.37, 62.28, 62.03, 61.88, 61.81, 61.75, 61.71, 61.6, 61.2, 51.8 (d, $J_{PC-2} = 7.3$ Hz), 22.9, 20.95, 20.91, 20.86, 20.82, 20.79, 20.72, 20.68, 20.66, 20.62, 20.59, 20.56; ³¹P NMR (160 MHz, CDCl₃, δ_{C}) –2.4; MALDI-TOF calcd for (M+Na)⁺ C₃₄₀H₄₅₀NNaO₂₂₀P: 8125.0. Found: 8124.8.

 $\begin{array}{l} \alpha \text{-D-Mannopyranosyl-}(1 \rightarrow 2) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 3) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 2) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 2) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 2) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 3) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 2) - \alpha \text{-D-mannopyranosyl-}(1 \rightarrow 3) - \alpha \text{-D-mannopyranosyl-}(1$

 α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 2)$ - α -D-mannopyranosyl- $(1 \rightarrow 3)$

glucopyranosyl farnesyl diphosphate diammonium salt (2): To a solution of 62 (20 mg, 2.5 µmol) in THF (5 mL) was added palladium on charcoal (10%, 10 mg) and the solution was subjected to hydrogen atmosphere for 4 h. The mixture was filtered through Celite and the filtrate was concentrated. The residue 63 was used in the next step without further purification. To a solution of the crude phosphate 63 in dry CH₂Cl₂ (3 mL) was added 1,1'carbonyldiimidazole (16 mg, 0.1 mmol). After stirring at r.t. for 2 h, a solution of 5% (v/v) solution of anhydrous CH₃OH in CH₂Cl₂ (0.10 mL) was added to quench the unreacted 1,1'carbonyldiimidazole and the mixture was stirred for 30 min. The solvent was concentrated and the residue dissolved in DMF- d_7 (0.6 mL). Farnesyl phosphate 47 (41 mg, 0.125 mmol) was added and the reaction mixture stirred at r.t. for 7 days. ³¹P NMR spectroscopy showed that at this point all of the activated intermediate was consumed. The solvent was removed in vacuo and the residue purified by Sephadex LH-20 (1:1 CH₃OH-CH₂Cl₂) to afford farnesyl-linked compound as a crude product. To a solution of crude farnesyl-linked compound in CH₃OH-CH₂Cl₂ (5 mL, 4:1) was added freshly prepared NaOCH₃ (1M solution in CH₃OH, 1.0 mL). The reaction mixture was stirred at r.t. for 6 h, and the NaOCH₃ was quenched by addition of Amberlite IR120 (NH₄⁺ form). The mixture was filtered, concentrated in vacuo and the residue purified by C₁₈ chromatography (gradient $0 \rightarrow 15\%$ CH₃OH in H₂O) to afford **2** (6.5 mg, 55%)

yield) as a white solid. $[\alpha]_D = +40.6 (c \ 0.1, CH_2Cl_2); {}^{1}H \ NMR (700 \ MHz, D_2O, \delta_H) 5.50 (dd, 1 H,$ *J*= 7.0, 3.0 Hz), 5.46 (app t, 1 H*J*= 8.0 Hz), 5.39–5.38 (m, 6 H), 5.31 (s, 5 H), 5.26 (s, 1 H), 5.23–5.19 (m, 2 H), 5.13 (s, 7 H), 5.10 (s, 1 H), 5.06 (s, 1 H), 5.05 (s, 5 H), 4.53–4.47 (m, 2 H), 4.22–4.19 (m, 14 H), 4.12–4.08 (m, 13 H), 4.03–3.73 (m, 126 H), 3.72–3.66 (m, 13 H), 3.61–3.59 (m, 1 H), 2.19–2.10 (m, 6 H), 2.08 (s, 3 H), 2.04 (t, 1 H*J* $= 7.5 Hz), 1.73 (s, 3 H), 1.70 (s, 3 H), 1.64 (s, 6 H); {}^{13}C \ NMR (125 \ MHz, D_2O, \delta_C) 175.3, 144.0, 137.7, 134.5, 125.4, 125.2, 120.4 (d, <math>J_{PC} = 8.5 \ Hz)$, 103.25, 103.23, 103.18, 103.06, 101.98, 101.68, 101.63, 95.6 (d, $J_{PC} = 6.5 \ Hz)$, 79.6, 79.5, 79.35, 79.30, 79.25, 79.22, 79.0, 78.5, 74.5, 74.4, 74.35, 74.30, 74.28, 74.24, 74.25, 74.20, 73.9, 71.30, 71.04, 71.00, 70.95, 70.63, 70.57, 68.0, 67.8, 67.7, 67.14, 67.10, 66.5, 64.0 (d, $J_{PC} = 5.8 \ Hz)$, 62.06, 61.95, 61.90, 61.5, 61.1, 53.2 (d, $J_{PC} = 7.5 \ Hz)$, 39.7, 26.7, 26.5, 25.8, 23.3, 18.0, 16.6, 16.2; ³¹P \ NMR (200 \ MHz, D_2O, \delta_C) -10.6 (d, $J_{PP} = 20.0 \ Hz)$, -13.3 (d, $J_{PP} = 20.0 \ Hz)$; HRMS (ESI) calcd for (M–3H)⁻³ C₁₇₉H₂₉₈NO₁₄₂P₂: 1598.5201. Found: 1598.5180.

References:

- (1) Ellervik, U.; Magnusson, G. Carbohydr. Res. 1996, 280, 251–260.
- (2) Callam, C. S.; Lowary, T. L. J. Org. Chem. 2001, 66, 8961–8972.
- (3) Wang, H.; She, J.; Zhang, L.-H.; Ye, X.-S. J. Org. Chem. 2004, 69, 5774–5777.
- (4) Lin, Y.-H.; Ghosh, B.; Mong, K. T. Chem. Commun. 2012, 48, 10910–10912.
- Wang, Z.; Chinoy, Z. S.; Ambre S. G.; Peng, W.; McBride, R.; de Vries, R. P.;
 Glushka, J.; Paulson, J. C.; Boons, G. *Science*. 2013, *341*, 379–383.
- (6) Thompson, A. J. Williams, R. J.; Hakki, Z.; Alonzi, D. S.; Wennekes, T.; Gloster, T. M.; Songsrirote, K.; Thomas-Oates, J. E.; Wrodnigg, T. M.; Spreitz, J.; Stütz, A. E.; Butters, T. D.; Williams, S. J.; Davies, G. J. *Proc. Natl. Acad. Sci. USA* 2012, *109*, 781–786.

2015.09.25.v7_WL-6-020-prod_loc48_17.29_H1_1D — Lei, WL-6-020-prod — 699.764 MHz H1 PRESAT in d2o (ref. to external acetone @ 2.225 pt

2015.10.08.i5_WL-6-020-prod_P31_1D — WL-6-020-prod — 201.641 MHz P31[H1] 1D in d2o, temp 26.4 C -> actual temp = 27.0 C, autoxdb prob

2016.06.29.u5_WL-6-053-final-prod_C13_1D — Lei, WL-6-053-final-prod — 125.691 MHz C13[H1] 1D in d2o (ref. to external acetone @ 31.07 ppr

			1						
-4	-6	-8	-10	-12	-14	-16	-18	-20	ppm

WL-6-053-prod 161.914 MHz P31[H1] 1D in d2o, temp 25.9 C -> actual temp = 27.0 C, onenmr probe

6

HOT

0

Agilent Technologies Recorded on: mr400, Jun 12 2016 Pulse Sequence: s2pul

 Recorded on:
 mr400, Jun 12 2016
 Sweep Width(Hz):
 32051.3
 Acquisiton Time(s):
 1
 Relaxation Delay(s):
 0.1

 Pulse Sequence:
 s2pul
 Digital Res.(Hz/pt):
 0.49
 Hz per mm(Hz/mm):
 12.96
 Completed Scans
 46128

-10.714

-10.593

2016.08.16.v7_WL-6-055-prod_loc48_11.44_H1_1D — Lei, WL-6-055-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

 7.47
 7.33

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.35

 7.7
 7.7

 7.7
 7.7

 7.7
 7.7

 7.7
 7.7

 7.7
 7.7
 </tr

2016.08.18.v7_WL-6-058-prod_loc48_10.35_H1_1D — Lei, WL-6-058-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

10 100 f1 (ppm) -1(S109

2015.03.11.v7_WL-5-028-prod_loc12_20.04_C13_1D — Lei, WL-5-028-prod — 175.976 MHz C13[H1] 1D in cdcl3 (ref. to CDCl3 @ 77.06 ppm), terr

2015.05.15.u5_WL-5-061-PROD_loc11_16.50_H1_1D — Lei, WL-5-061-PROD — 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), ten 4000 + 4

2015.05.15.u5_WL-5-061-PROD_loc11_16.52_C13_DEPTq — Lei, WL-5-061-PROD — 125.690 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06

0 100 f1 (ppm) -10 S115

2016.08.16.v7_WL-6-057-prod_loc48_17.42_H1_1D — Lei, WL-6-057-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2016.08.17.v7_WL-6-060-prod_loc48_12.30_H1_1D — Lei, WL-6-060-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2016.08.17.v7_WL-6-060-prod_loc48_12.32_C13_DEPTq — Lei, WL-6-060-prod — 175.974 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 p

2016.08.18.v7_WL-6-062-prod_loc47_13.57_H1_1D — Lei, WL-6-062-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2016.08.19.u5_WL-6-063-prod_loc3_23.55_H1_1D — Lei, WL-6-063-prod — 499.797 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2015.06.5.v7_WL-5-080-prod_loc27_22.57_C13_DEPTq — Lei, WL-5-080-prod — 175.976 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 pt

2015.11.25.u5_WL-6-031-prod_loc12_14.37_C13_DEPTq — Lei, WL-6-031-prod — 125.690 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 pr

2015.11.26.v7_WL-6-032-prod_loc48_15.51_H1_1D — Lei, WL-6-032-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp : 0.000 1

2015.12.2.v7_WL-6-034-prod_loc47_19.10_H1_1D — Lei, WL-6-034-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 2

2015.05.28.v7_WL-5-074-prod_loc5_14.33_H1_1D — Lei, WL-5-074-prod — 699.769 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 2

2015.05.28.u5_WL-5-074-prod_loc11_21.51_C13_DEPTq — Lei, WL-5-074-prod — 125.690 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 pt

26

2015.07.12.v7_WL-5-091-prod_loc6_22.18_H1_1D — Lei, WL-5-091-prod — 699.769 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 27

2016.08.22.v7_WL-6-059-prod_loc43_10.47_H1_1D — Lei, WL-6-059-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2016.08.22.v7_WL-6-059-prod_loc43_10.48_C13_DEPTq — Lei, WL-6-059-prod — 175.974 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 r

2015.08.28.u5_WL-6-016-prod_loc2_15.16_H1_1D — Lei, WL-6-016-prod — 499.806 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 2

_

2016.05.30.v7_WL-6-050-prod_loc45_10.12_H1_1D — Lei, WL-6-050-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp

2016.05.31.mr4_WL-6-050-prod_P31_1D — WL-6-050-prod — 161.913 MHz P31[H1] 1D in cdcl3, temp 25.9 C -> actual temp = 27.0 C, onenmr pi

90 80 70 60 50 30 20 10 0 f1 (ppm) -20 -30 -50 -70 -80 -90 S200 40 -10 -40 -60

	—172.18	— 155.14 — 149.95		71.38 71.03 71.03 67.61 63.52 55.65	- 20.86
--	---------	----------------------	--	--	---------

2015.11.19.v7_WL-5-071-prod_loc47_15.29_H1_1D — Lei, WL-5-071-prod — 699.762 MHz H1 PRESAT in cdcl3 (ref. to CDCl3 @ 7.26 ppm), temp 2

2015.11.19.u5_WL-5-071-prod_loc12_17.38_C13_DEPTq — Lei, WL-5-071-prod — 125.690 MHz C13[H1] DEPTq in cdcl3 (ref. to CDCl3 @ 77.06 ppr

-21.15

