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Experimental Section

Materials

All experiments were carried out under N2, using standard Schlenk techniques or in a Mbraun glovebox. Toluene
was dried through a solvent purification system, degassed by freeze pump thaw techniques, and stored over 3 A
molecular sieves, under nitrogen. Cyclohexene oxide (Acros Organics) was fractionally distilled three times, once
over CaH2, under N,, at atmospheric pressure and twice from nBuli, under reduced pressure. Tricyclic anhydride
(TCA) was prepared according to a literature procedure,1 then recrystallized in hexane and sublimed under vacuum
at 90°C prior to use. Purification of phthalic anhydride (Sigma Aldrich) was achieved through stirring in dry toluene,
filtering, recrystallizing from hot chloroform, and subsequently subliming under vacuum at 80 °C. e-Decalactone
(Sigma Aldrich) was dried over CaH,, followed by fractional distillation under partial vacuum (0.1 mbar) at 70 °C. &-
Caprolactone (Sigma Aldrich) was dried over CaH,, followed by fractional distillation under partial vacuum (1.2 mbar)
at 65 °C. 1,2-Cyclohexanediol (Sigma Aldrich) was recrystallized from ethyl acetate and stored under an inert
atmosphere. CP Grade (BOC, 99.995 %) CO, was used for all copolymerization studies and dried through two VICI
purifier columns at point of use. Catalysts 1-4 were prepared according to literature procedures.> All other reagents
were used as received without further purification.

Methods

IH NMR spectra were obtained using a Bruker AVIII HD nanobay NMR spectrometer, 'H DOSY NMR spectra were
obtained using a Bruker Avance Ill NMR spectrometer, and 3C NMR spectra were obtained using a Bruker Avance
NMR spectrometer. GPC analysis was carried out on a Shimadzu LC-20AD instrument, equipped with a Refractive
Index (RI) detector and two PSS SDV 5 um linear M columns. HPLC grade THF was used as the eluent, at 1.0 mL/min,
at 30 °C. Samples were passed through 0.2 um PTFE filters prior to analysis. Monodisperse polystyrene standards
were used for calibration. Most experiments were monitored by in-situ ATR-IR spectroscopy, using a Mettler-Toledo
ReactlIR 4000 spectrometer equipped with a silver halide DiComp probe. Thermal properties were measured using a
Mettler Toledo DSC3 Star calorimeter, under N, flow (80 mL min), referenced with a sealed empty crucible and
calibrated using indium. Samples were heated and cooled from 30 to 200 °C, at a rate of 20 °C minL. Glass transition
temperatures (T,) were determined from the midpoint of the transition in the second heating curve.

General procedure for reactions under CO,

The catalyst (8 umol), anhydride (0.8 mmol), and epoxide (16 mmol) were combined in a 3 neck screw cap Schlenk
tube, with a screw-capped sidearm, in the glovebox. The Schlenk tube was cycled three times, between vacuum and
1 bar of CO,, and the headspace was evacuated and refilled with 1 bar of CO, three times before placing the flask in
a pre-heated 100 °C oil bath. Aliquots for 'H NMR and GPC analysis were taken by extracting 0.1 mL of the mixture
with a syringe under a positive flow of reaction gas using the screw-cap sidearm.

General procedure for CO,/N; switch polymerization reactions

The catalyst, monomers, and solvent were combined in a 3 neck screw cap Schlenk tube, with a screw-capped
sidearm, in the glovebox. The Schlenk tube was cycled three times on a triple manifold glass Schlenk line, between
vacuum and CO,, and the headspace was evacuated and refilled with CO, three times before placing the flask in a
pre-heated 100 °C oil bath. To switch to a N, atmosphere after the allotted time, CO, was removed by applying 6
rapid vacuum/N, cycles to the reaction flask. The reaction was left under N, for the desired time. The same
procedure applies when switching back to CO,. Aliquots were taken by extracting 0.1 mL of the mixture with a
syringe, under a positive flow of reaction gas, using the screw-cap sidearm. Entries in Table 2 were run twice, to be
monitored by in situ ATIR-IR.

Mass flow Measurements

The same procedure as above was repeated on a triple manifold steel Schlenk line, equipped with a pressure
controller and mass flow metre (See Figure S37 and 38 for a diagram and image). From the raw mass flow data
obtained in millilitre normal per minute (mLn/min) (see example S39), the number of times CO, mass flow increased
to a maximum was calculated and used qualitatively to show CO, uptake.



Polymer purification
Excess CHO was removed in vacuo, and the resulting polymer was purified by precipitation of a DCM solution in
acidified methanol. The polymers were dried in a vacuum oven at 60 °C. All the purified polymers were isolated as

white or off-white solids.
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Figure S24: Conversion vs time plot using data from ATR-IR spectroscopy for the polymerization of
PA/CHO/CO, at 20 bar of CO, with catalyst 4.
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Figure S25: 'H NMR spectra (CDCl3, 400 MHz) of aliquots taken during the polymerization of PA/CHO/CO, (20
bar) with catalyst 4 (Table 1, entry 9). Bottom spectrum: after 35 min under 20 bar of CO,. Top spectrum: after
20 min under air.
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Figure S26: Example 'H NMR spectrum (CDCl;, 400 MHz) showing resonances and integrals for a typical
TCA/CHO/CO, ROCOP.
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Figure S27: Example 'H NMR spectrum (CDCl;, 400 MHz) showing resonances and integrals for a typical
PA/CHO/CO, ROCOP.
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Figure S28: GPC plot of M,, for catalyst 1 TCA/CHO at 1 Figure S29: GPC plot of M, for catalyst 2 TCA/CHO at 1
bar CO; (Table 1, entry 1) bar CO, (Table 1, entry 2)
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Figure S30: GPC plot of M,, for catalyst 3 TCA/CHO at 1 Figure S31: GPC plot of M, for catalyst 4 TCA/CHO at 1
bar CO, (Table 1, entry 3) bar CO, (Table 1, entry 4)
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Figure S32: GPC plot of M,, for catalyst 1 PA/CHO at 1 Figure S33: GPC plot of M,, for catalyst 2 PA/CHO at 1

bar CO, (Table 1, entry 5) bar CO, (Table 1, entry 6)
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Figure S34: GPC plot of M,, for catalyst 3 PA/CHO at 1 Figure S35: GPC plot of M,, for catalyst 4 PA/CHO at 1
bar CO, (Table 1, entry 7) bar CO, (Table 1, entry 8)
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Figure S36: GPC plot of M, for catalyst 4 PA/CHO at 20
bar CO, (Table 1, entry 9)
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Figure S37: Diagram of the steel triple manifold Schlenk line used to reversibly switch between CO,, N, and
vacuum.

(]

Figure S38: Photograph of the steel triple manifold Schlenk line. CO, pressure is regulated and controlled with
a Bronkhorst pressure controller, such that when the pressure drops below the set pressure (due to CO,
consumption), the system is automatically pressurized. Mass flow measurements can be recorded using the

mass flow metre.
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Figure S39: Example raw data from the mass flow controller, showing the periodic increase in CO, mass flow as
CO; is being consumed throughout the reaction.
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Figure S40: GPC traces illustrating the increase in molecular weight with block formation during the
polymerization with one CO,/N, gas switches (Table 2, entry 1).
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Figure S41: Conversion vs time plot using data from ATR-IR spectroscopy for the polymerization of
TCA/CHO/CO2 with catalyst 4, which was switched to a N2 atmosphere after 1.3 h.

Note that the signal for polyester formation between 0 — 1.3 h apparently increases due to signal overlap with the
growing polycarbonate (no conversion to polyester was observed by *H NMR spectroscopy).
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Figure S42: Selected regions of 'H NMR spectra of reaction aliquots illustrating the changes in resonances
during the different stages of the ABA triblock formation (Table 2, entry 1).
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Figure S43: Frequency of CO, flow extracted from mass flow data for the polymerization in Table 2, entry 1,
which was switched to a N, atmosphere after 1 h.

26



~1x10*

L1x10°

S o] SO RSAGIEN i it S U S e s i e AT ot~ WA '@”"""‘""@’@'"émm """"""" L1x10

f1 (cn/sec)

L 1x107

L1x10°®

12.5 11.5 10.5 9.5 8.5 7.5 6.5 5.5 4.5 3.5 2.5 1.5 0.5 -0.5
Chemical shift (ppm)

Figure S44: 'H DOSY NMR spectrum (CDCl;, 500 MHz) of the purified ABA triblock.
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Figure S45: Conversion vs time plot using data from ATR-IR spectroscopy for the polymerization of
TCA/CHO/CO, with catalyst 4, which was switched to a N, atmosphere after 1 h and back to CO, after 2.3 h
under N, (Table 2, entry 2).
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Figure S46: Selected region of 'H NMR spectra of reaction aliquots illustrating the changes in resonances during
the different stages of the BABAB pentablock formation (Table 2, entry 2).

—B
M, = 9.4 kg mol" —— ABA
Pp=1.15 —— BABAB

M, = 5.7 kg mol™
P=1.13

M, = 14.0 kg mol
P=1.12

1000

10000
Molecular Weight (g mol™)

Figure S47: GPC traces illustrating the increase in molecular weight with block formation during the
polymerization with two CO,/N, gas switches (Table 2, entry 2).
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Figure S48: Frequency of CO, flow extracted from mass flow data for the polymerization in Table 2, entry 2,
which was switched to a N, atmosphere after 1 h and switched back to CO, after 2.3 h.
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Figure S49: Selected region of 'H NMR spectra of reaction aliquots illustrating the changes in resonances during
the different stages of the ABABABA heptablock formation (Table 2, entry 3).
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Figure S50: DSC trace of the purified ABA polymer (Table 2, entry 1).
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Figure S51: DSC trace of the purified BABAB polymer (Table 2, entry 2).
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Figure S52: Selected region of the 'H NMR spectra of reaction aliquots illustrating the changes in resonances
during the different stages of the CHO/TCA/CO,/DL polymerization.
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Figure S53: Selected region of the 'H NMR spectra of reaction aliquots illustrating the changes in resonances
during the different stages of the CHO/TCA/DL polymerization.
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Figure S54: GPC traces corresponding to two aliquots taken for the polymerization of CHO/TCA/DL.
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Figure S55: Catalytic cycles accessed during the switchable catalysis using CHO/CO,/TCA/CL.

33



internal i
standard + " @0 58 56 54 |
3 | = jb
'''''' PCHC
PE
R
PCHC
1 J\;
| e
CL
TCA
] )

PCL

— O

!

ay

J

T T T T T T

75 70 65 60 55 50 45

Chemical shift (ppm)

4.0

3.0

2.5 2.0

1.0 0.5

Figure S56: Stack plot showing the 1H NMR spectra of aliquots removed during formation of the polymer

blocks.

Spectrum 0 is the mixture before polymerization. The first block that formed is PCHC, shown by the resonance at 4.6
ppm, the second is PE, shown by the loss of the sharp doublet into a broad polymer signal at 5.8 ppm, and the final
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Figure S57: 'H NMR spectrum (CDCl3, 400 MHz) of the purified multiblock polymer CABAC.
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Figure S58: 'H DOSY spectrum (CDClz, 500 MHz) of the purified multiblock polymer CABAC.
35



)

E i

2

3 | 86 °C

- |

©

Q |

T |

Texo
T T T T T T T 1
60 80 100 120 140
Temperature (°C)
Figure S59: DSC thermogram of the purified multiblock polymer CABAC.
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