Cu(I) Catalysis for Selective Condensation/Bicycloaromatization of Two Different Arylalkynes: Direct and General Construction of Functionalized C–N Axial Biaryl Compounds

Qian Shang,^a Haifang Tang,^a Yongping Liu,^c MingMing Yin,^c Lebin Su,^a Shimin Xie,^a Lixin Liu,^a Wen

Yang,^a Yi Chen,^c Jianyu Dong,^{*,b} Yongbo Zhou,^{*,a} and Shuang-Feng Yin^a

^aAdvanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry

and Chemical Engineering, Hunan University, Changsha 410082, China

^bDepartment of Educational Science, Hunan First Normal University, Changsha 410205, China

^cSchool of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China

E-mail: zhouyb@hnu.edu.cn

djyustc@hotmail.com

Tables of Contents

1. General Information	S2
2. Possible Products from <i>o</i> -Amino Arylkyne 1a and/or <i>o</i> -Carbonyl Arylalkyne 1b	S 2
3. General Experimental Procedure	S 5
4. Investigations of the Reaction MechanismS	47
5. Asymmetric SynthesisS	80
6. MTT assayS	86
7. X-ray Crystallographic Data of 15cS	88
8. Preparation of SubstratesS	90
9. Characterization Data for the ProductsS	97
10. Copies of ¹ H, ¹³ C and ¹⁹ C NMR Spectra of the Products	32
11. References	37

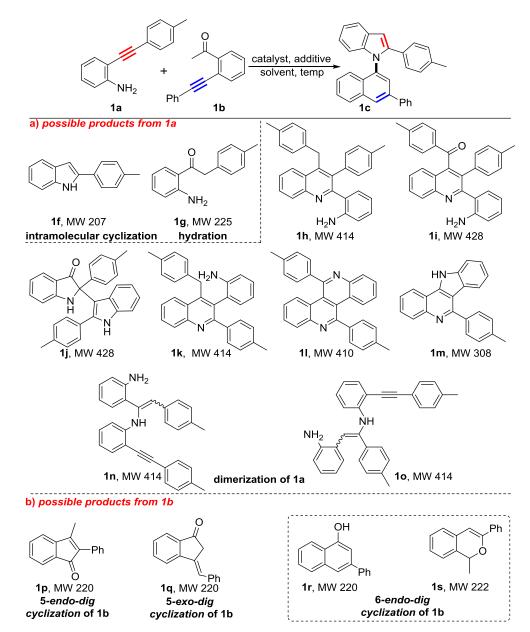
1. General Information

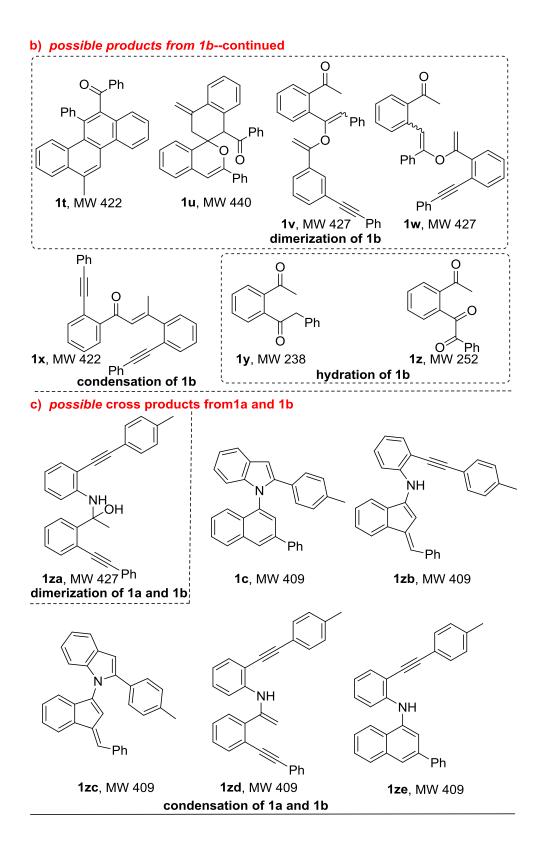
1.1 Materials and Instruments

Except noted otherwise, all reactions were carried out in Schlenk tubes under N₂ atmosphere. Reagents and solvents were obtained from commercial sources (Energy Chemical, Aladdin, Alfa Aesar, Sigma-Aldrich, and J&K Scientific) and used without further purification. The ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a Brucker ADVANCE III spectrometer at 400 MHz, 101 MHz, and 376 MHz respectively, and chemical shifts were reported in parts per million (ppm). Flash column chromatography was performed using silica gel of 300–400 µm. The GC-MS results were recorded on a GC-MS QP 2010 equipment, GC analysis was performed on GC 2014 plus. The electron ionization (EI) method was used for HRMS measurement, and the mass analyzer type is TOF for EI. The single-crystal X-ray diffraction was recorded on Brucker D8 QUEST. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm). The enantiomeric excesses were determined by chiral HPLC using a Shimadzu Prominence LC-20A instrument with a Daicel Chiralcel OD-H column.

1.2 Cell Culture and Western Blot Analysis

BV-2 microglia cell line was grown in Dulbecco's modified Eagle's medium (DMEM) (PAN Biotech, Aidenbach, DE) supplemented with 10% (v/v) fetal calf serum (FCS), 2 mM L-glutamine, 100 mg streptomycin, and 100 U penicillin (GIBCO, Gran Island, NY, USA). The cells were cultured in Petri dishes at 37 °C with 5% CO₂ and saturated humidity. Cell viability was determined by the CCK-8 assay (Dojindo Molecular Technologies, Shanghai, China). The viability was assessed before each experiment as part of standard protocol and cell counting. We proceeded with the experiment if the cell viability was \geq 95% in both cultivation conditions. Cellular extracts were prepared in RIPA lysis buffer supplemented with protease inhibitor. Proteins were separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and blotted onto a PVDF Western blotting membrane (GE Healthcare Limited, Amersham, UK).

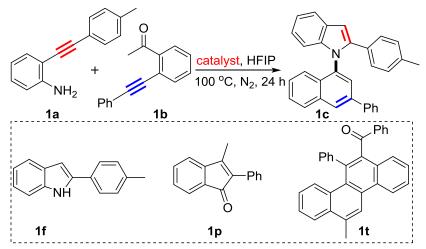

2. Possible Products from o-Amino Arylkyne 1a and/or o-Carbonyl Arylalkyne 1b


As described in the main text, diverse types of reactions of both o-amino and o-carbonyl arylalkynes could occur. o-Amino arylkynes easily occur a series of reactions, such as hydration, intramolecular cyclization and dimerization, which produce amino aryl ketones,¹ indoles,² 2-(2-aminophenyl)quinoline,³ etc. More types of reactions could also take place for o-carbonyl arylalkynes, producing diketone,⁴ triketone,⁵ 1-indanones,⁶

indenones,⁷ 1-naphthols,⁶ chalocones,⁸ 1*H*-isochromene,⁹ and chrysene,¹⁰ etc. polymerizations of the two alkynes also could be occur.

Many possible products of the reactions of o-amino arylalkyne 1a and/or o-carbonyl arylalkyne 1b could be figured out. Simple possible products (except polymerization products) are as follows:

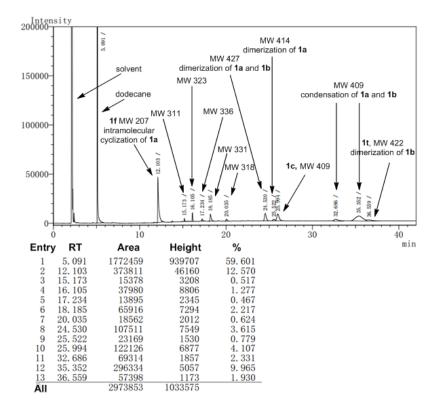
Scheme S1. Possible products from *o*-amino arylkynes 1a and/or *o*-carbonyl arylalkynes 1b



3. General Experimental Procedure

3.1. Optimization of the Reaction Conditions

Table S1. Catalyst Screening


	an ta la st	convers	ion [%] ^b	yield [%] ^b				
entry	catalyst	1a	1b	1c	1f	1p	1t	
1	CuCl	>99	>99	64	16	trace	trace	
2	CuBr	>99	>99	70	21	trace	trace	
3	CuOAc	>99	>99	79	12	trace	trace	
4	CuI	>99	>99	86	11	trace	trace	
5	CuCl ₂	>99	>99	8	77	trace	trace	
6	Cu(OAc) ₂	>99	>99	10	32	trace	trace	
7	Pd(OAc) ₂	>99	>99	7	45	trace	trace	
8 ^c	Pd(OAc) ₂	>50	>99	trace	48	trace	5	
9	PdCl ₂	>99	>99	6	56	trace	trace	
10	Cu	>99	>90	38	20	trace	trace	
11	Fe	>99	>85	27	25	trace	5	
12	Mg	>99	>80	20	25	trace	7	
13	FeCl ₃	>99	>70	trace	40	trace	4	
14	ZnBr ₂	>99	>99	26	19	trace	trace	
15	AgOAc	>99	>80	4	49	trace	8	

16	NiSO4	>99	>80	21	36	trace	4
17	MnCO ₃	>99	>85	11	50	trace	trace
18	Co(OAc) ₂	>99	>75	8	52	trace	5

^aReactions: **1a** (0.05 mmol), **1b** (0.05 mmol), Catalyst (10 mol %), in HFIP (0.5 mL) at 100 °C under N₂ for 24 h. ^bGC yield using dodecane as an internal standard.

^cDMF as Solvent.

Notes: Many byproducts have been detected, and different **catalysts** gave different types and selectivities of products (Figures S1-S9). The byproducts of the intramolecular cyclization product (**1f**) of **1a**, intramolecular cyclization (**1p**) of **1b**, dimerization (**1t**) of **1b** were selected to be shown in Table S1.

Selected GC and/or GC-MS charts of the reactions catalyzed by different catalysts.

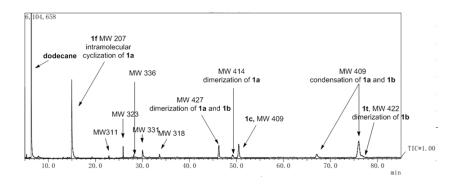


Figure S1. The GC and GC-MS charts of the crude reaction mixture by PdCl₂ catalysis (Table S1, entry 9)

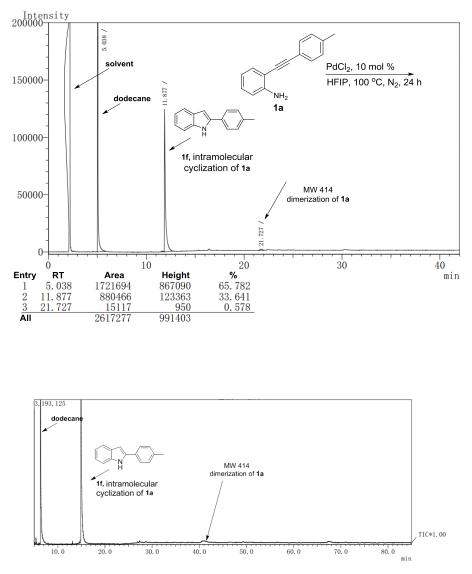


Figure S2. The GC and GC-MS charts of the crude reaction mixture of 1a by PdCl₂ catalysis

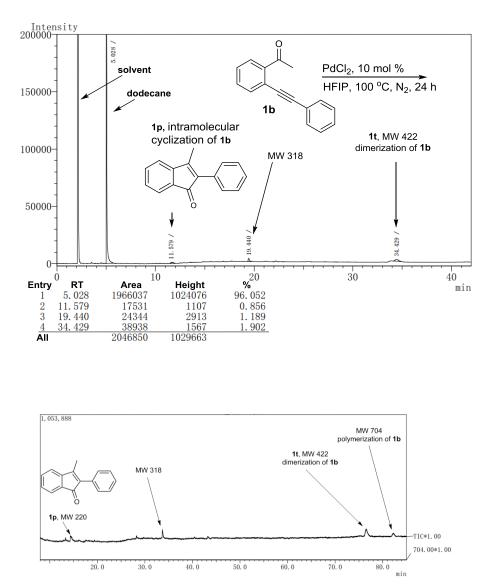
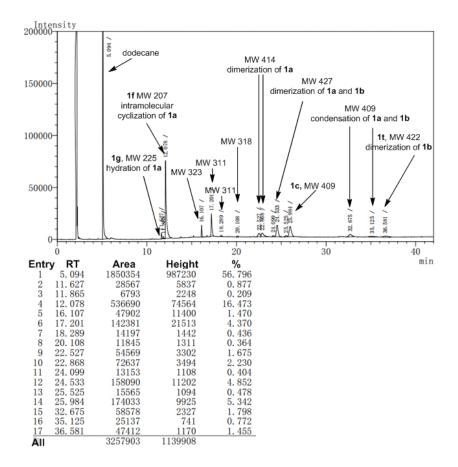



Figure S3. The GC and GC-MS charts of the crude reaction mixture of 1b by PdCl₂ catalysis

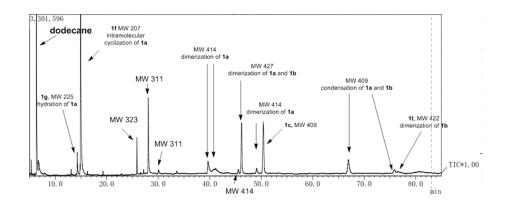


Figure S4. The GC and GC-MS charts of the crude reaction mixture by CuCl₂ catalysis (Table S1, entry 5)

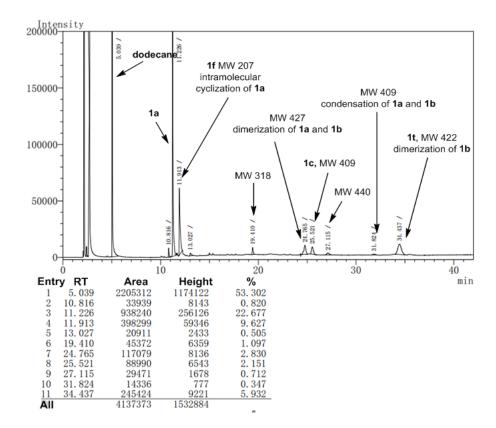


Figure S5. The GC chart of the crude reaction mixture by Pd(OAc)₂ catalysis in DMF (Table S1, entry 8)

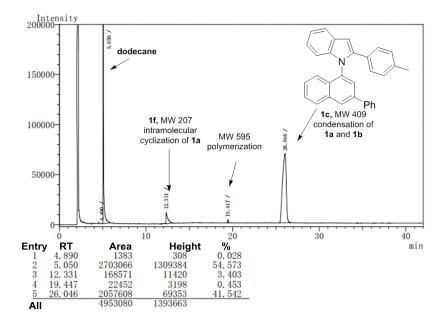


Figure S6. The GC chart of the crude reaction mixture by CuCl catalysis(Table S1, entry 1)

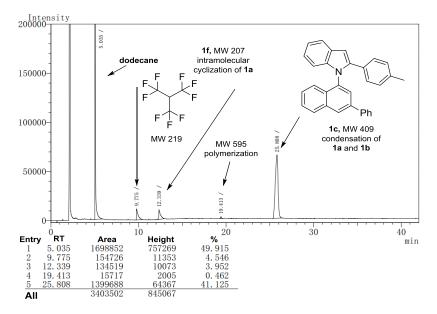


Figure S7. The GC chart of the crude reaction mixture by CuBr catalysis(Table S1, entry 2)

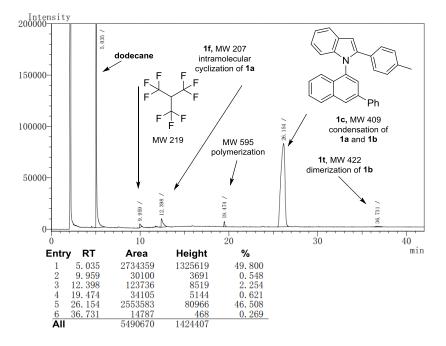
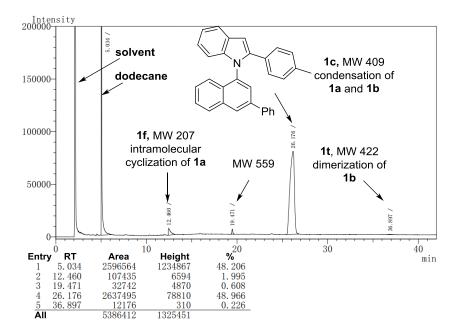



Figure S8. The GC chart of the crude reaction mixture by CuOAc catalysis (Table S1, entry 3)

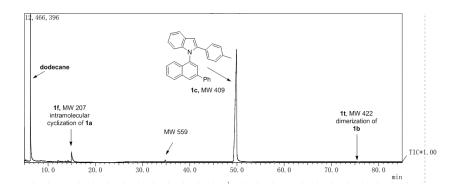
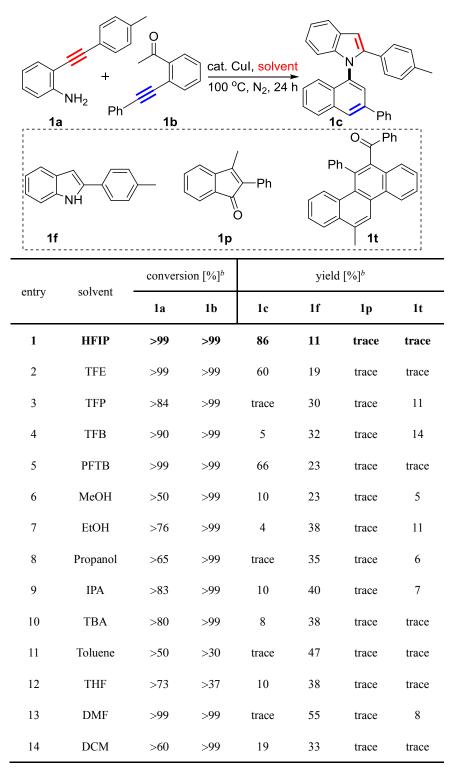



Figure S9. The GC chart of the crude reaction mixture by CuI catalysis (Table S1, entry 4)

Table S2. Solvent Screening

 $\label{eq:aReactions:1a} \ensuremath{a}\xspace(0.05\ensuremath{\,mmol}\xspace), \ensuremath{10}\xspace(0.05\ensuremath{\,mmol}\xspace), \ensuremath{100}\xspace(0.05\ensuremath{\,mmol}\xspace), \ensuremath{100}\ensuremath{100}\ensuremath{\,mmol}\xspace), \ensuremath{100}\ensuremath{\,mmol}\xspace), \ensuremath{\mmol}\xspace), \ensuremath{\mmol}\xspace), \ensuremat$

^bGC yield using dodecane as an internal standard.

^cTFE (2,2,2-Trifluoroethanol); TFP (3,3,3-Trifluoro-1-propanol); TFB (4,4,4-Trifluorobutanol); PFTB (Perfluoro-tert-butyl Alcohol); IPA(iso-Propyl alcohol); TBA (Tert- butyl alcohol).

Notes: Many byproducts have been detected, and different solvents gave different types and selectivities of products (Figures S10-S12). The products of the intramolecular cyclization product (**1***f*) of **1***a*, intramolecular cyclization (**1***p*) of **1***b*, dimerization (**1***t*) of **1***b* were selected to be shown in Table S2.

Intensity 200000 solvent 1c, MW 409 condensation of dodecane 150000-1a and 1b 100000-1f, MW 207 MW 559 intramolecular polymerization cyclization of 1a of 1a or 1b 50000-0-30 40 10 20 Ó Entry RT Height 1318444 % Area min Area 2706269 194921 24293 1913476 4838959 5. 051 12. 305 19. 448 55. 927 4. 028 0. 502 1 2 3 <u>4</u> All 12722 3498 <u>69502</u> 1404166 39.543 26.010

Selected GC and/or GC-MS charts of the reactions in different solvents

Figure S10. The GC chart of the crude reaction mixture in TFE (Table S2, entry 2)

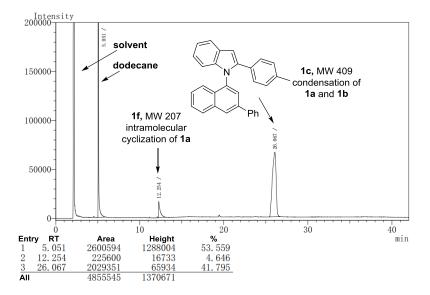
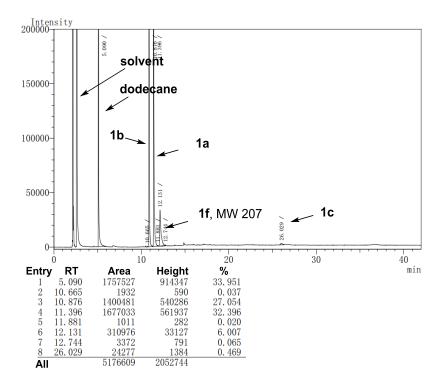



Figure S11. The GC chart of the crude reaction mixture in PFTB (Table S2, entry 5)

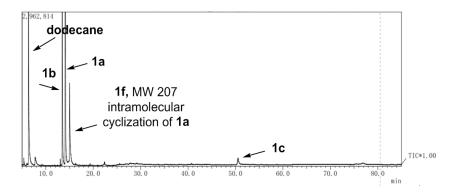
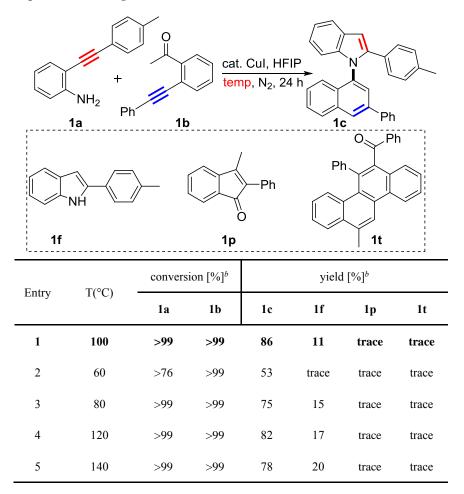



Figure S12. The GC and GC-MS charts of the crude reaction mixture in Toluene (Table S2, entry 11)

Table S3. Temperature Screening

^aReactions:1a (0.05 mmol), 1b (0.05 mmol), CuI (10 mol %), in HFIP (0.5 mL) at 100 °C under N₂ for 24 h.

^bGC yield using tridecane as an internal standard.

Notes: Different temperatures gave different selectivities of the product (Figures S13-14). The products of the intramolecular cyclization product (**If**) of **1a**, intramolecular cyclization (**Ip**) of **1b**, dimerization (**It**) of **1b** were selected to be shown in Table S3.

Selected GC charts of the reactions at different temperatures

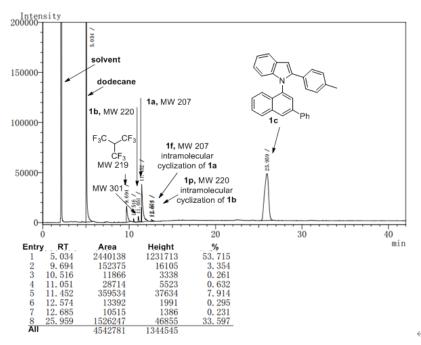


Figure S13. The GC chart of the crude reaction mixture at 60 °C (Table S3, entry 2)

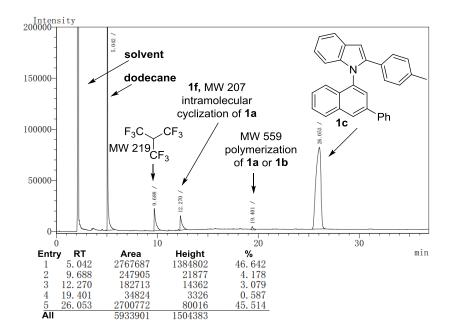
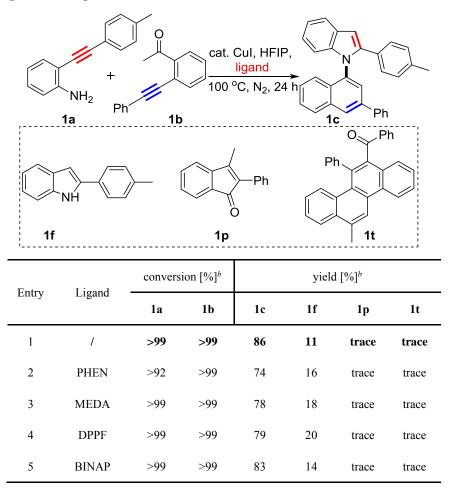
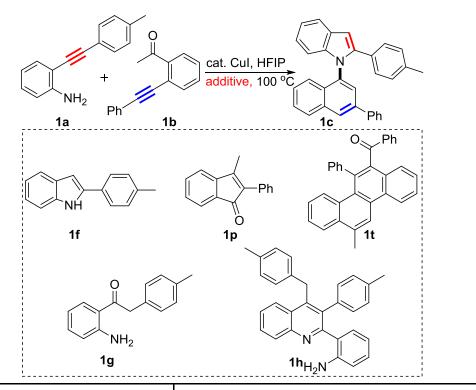



Figure S14. The GC chart of the crude reaction mixture at 120 °C (Table S3, entry 4)

Table S4. Ligand Screening

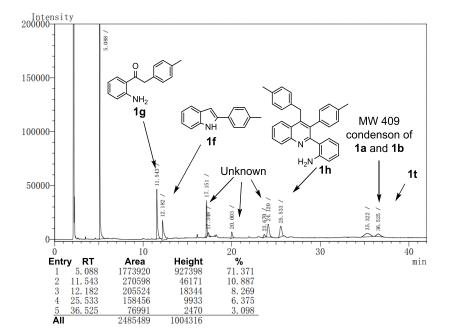


 ${}^{a}\mbox{Reactions:} 1a~(0.05~\mbox{mmol}),~1b~(0.05~\mbox{mmol}),~\mbox{CuI}~(10~\mbox{mol}~\%),~\mbox{in HFIP}~(0.5~\mbox{mL})~\mbox{at }100~\mbox{°C under}~N_{2}~\mbox{for }24~\mbox{h}.$

 $^b\mathrm{GC}$ yield using tridecane as an internal standard.

Notes: Additions of the ligands did not improve the yield of the desired products.

Table S5. Additive Screening



		Conv	ersion	yield [%] ^b					
Entry	Additive	[%	6] ^b		yieid [76]*				
	-	1a	1b	1c	1f	1p	1t	1g	1h
1	/	>99	>99	86	11	trace	trace	nd	nd
2	TsOH	>99	>99	trace	31	trace	5	27	10
3	HOAc	>99	>99	trace	25	trace	trace	15	trace
4	Na ₂ CO ₃	>99	>99	84	11	trace	trace	nd	nd
5	K ₃ PO ₄	>99	>99	87	9	trace	trace	nd	nd
6	t-BuOK	>99	>99	88	7	trace	trace	nd	nd
7	Cs ₂ CO ₃	>99	>99	91	5	trace	nd	nd	nd
8°	Cs ₂ CO ₃	>99	>99	88	8	trace	nd	nd	nd
9 ^d	Cs ₂ CO ₃	>99	>99	92	6	trace	trace	nd	nd

^{*a*}Reactions:**1a** (0.05 mmol), **1b** (0.05 mmol), CuI (10 mol %), additive (2.0 equiv) in HFIP (0.5 mL) at 100 °C under N₂ for 24 h. ^{*b*}Conversion and GC yield using dodecane as an internal standard. ^{*c*}additive (1.0 equiv). ^{*d*}additive (3.0 equiv).

Notes: Many byproducts have been detected, and different additives gave different types and selectivities of products (Figures S15-S16). The byproducts of the intramolecular cyclization product (**1f**) of **1a**, intramolecular cyclization (**1p**) of **1b**, dimerization (**1t**) of **1b** were selected to be shown in Table S5.

Selected GC and GC-MS charts of the reaction in the presence of different additives

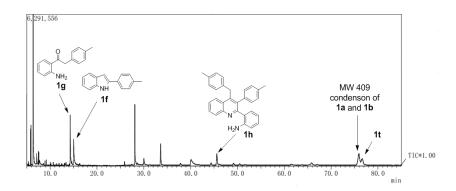


Figure S15. The GC and GC-MS charts of the crude reaction mixture in the presence of TsOH

(Table S5, entry 2)

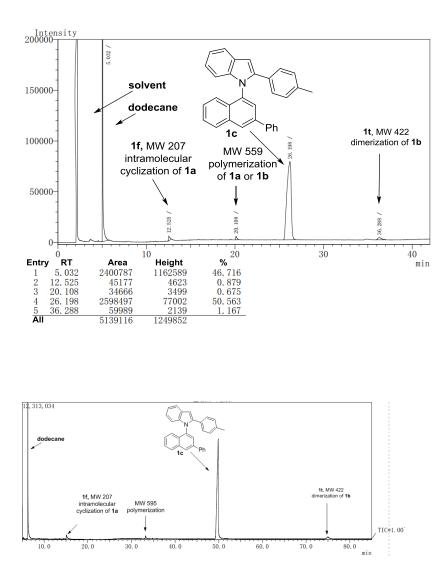
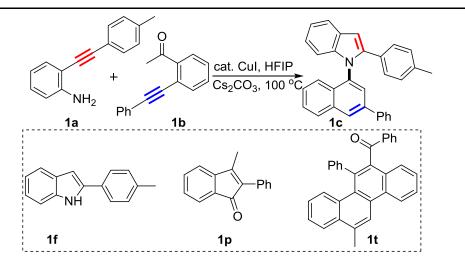
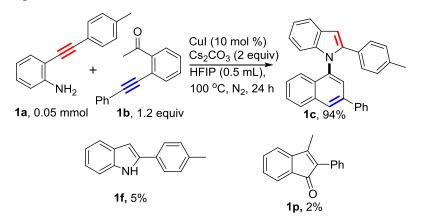



Figure S16. The GC and GC-MS charts of the crude reaction mixture in the presence of (2.0 equiv) Cs₂CO₃

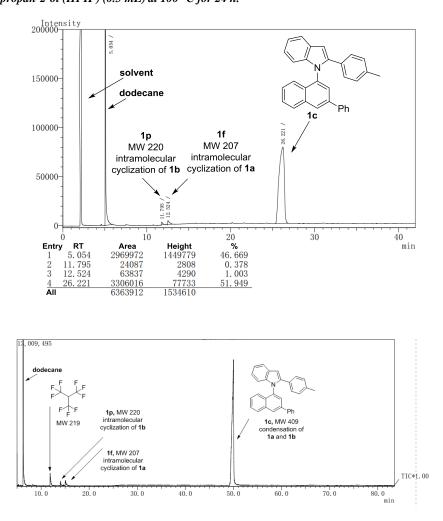
as additive (Table S5, entry 7)

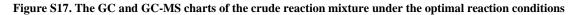
Table S6. Ratio of 1a and 1b Screening

Entry	1a (mmol)	1b (mmol)	conver	sion [%] ^b	yield [%] ^b			
	(initial)	()	1a	1b	1c	1f	1p	1t
1	0.12	0.10	>99	>99	85	10	trace	nd
2	0.10	0.10	>99	>99	91	5	trace	nd
3	0.10	0.11	>99	>99	92	7	trace	nd
4	0.10	0.12	>99	>99	94	5	2	nd
5	0.10	0.13	>99	>99	91	7	6	nd

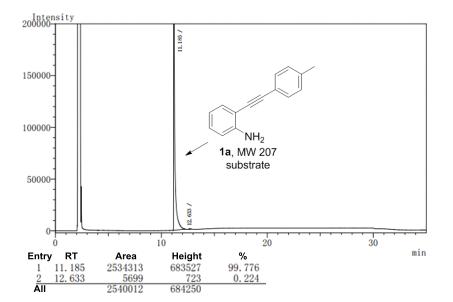


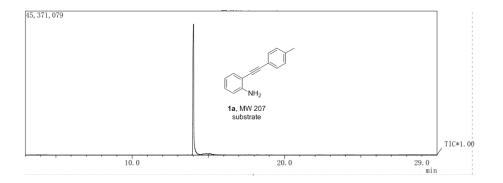
 $\label{eq:aReactions:1a, 1b, catalyst (10 mol %), Cs_2CO_3(2.0 equiv) in HFIP (0.5 mL) at 100 \ ^\circ C under N_2 \ for 24 \ h.$

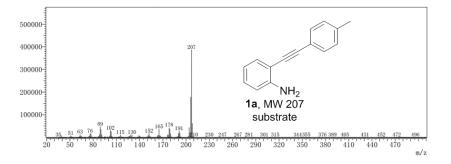

^bConversion and GC yield using dodecane as an internal standard.

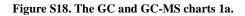

Notes: The different ratio of **1a** and **1b** gave different selectivities of products. The byproducts of the intramolecular cyclization product (**1f**) of **1a**, intramolecular cyclization (**1p**) of **1b**, dimerization (**1t**) of **1b** were selected to be shown in Table S6.

Scheme S2. The optimal reaction conditions

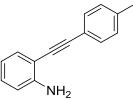

Optimal reaction conditions: treatment with 2-(p-tolylethynyl)aniline (1a, 0.05 mmol) and 2'phenylethynylacetophenone (1b, 1.2 equiv) in the presence of CuI (10 mol %), and Cs_2CO_3 (2 equiv) in 1,1,1,3,3,3hexafluoropropan-2-ol (HFIP) (0.5 mL) at 100 °C for 24 h.






(Table S6, entry 4)

3.2. GC, GC-MS Charts and NMR Spectrum of 1a, 1b, and Byproducts



2-(p-tolylethynyl)aniline (1a)

 $\overset{\text{NH}_2}{\longrightarrow} \overset{\text{I}_4}{\longrightarrow} \text{NMR} (400 \text{ MHz, CDCl}_3) \delta 7.39 (dd, J = 25.4, 7.2 \text{ Hz}, 3\text{H}), 7.14 (dd, J = 14.5, 7.4 \text{ Hz}, 3\text{H}), 6.71 (t, J = 7.2 \text{ Hz}, 2\text{H}), 4.26 (s, 2\text{H}), 2.37 (s, 3\text{H}).$

¹H NMR Spectrum of **1a**

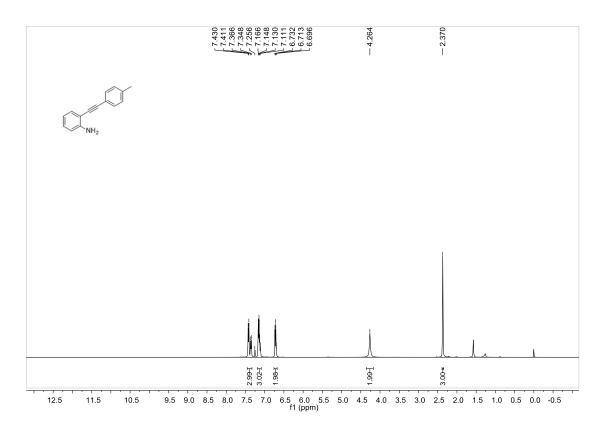
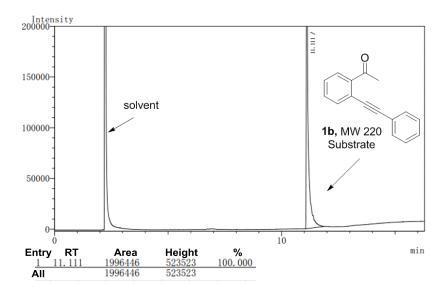
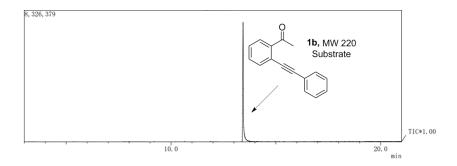
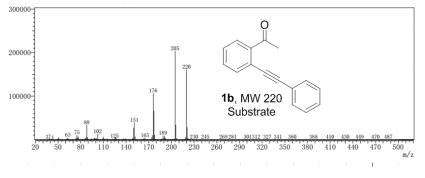
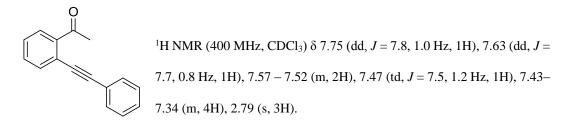





Figure S19. The ¹H and ¹³C NMR Spectrum of 1a.



1-(2-(phenylethynyl)phenyl)ethan-1-one (1b)

¹H NMR Spectrum of **1b**

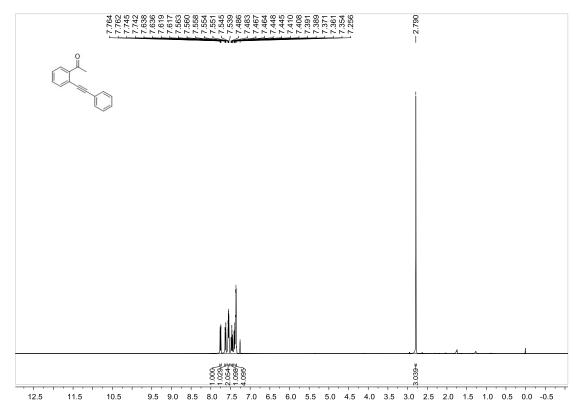
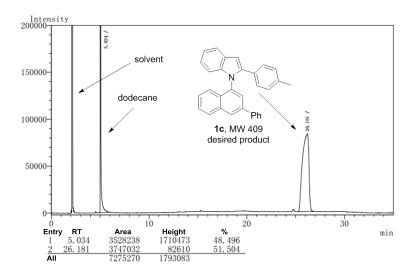
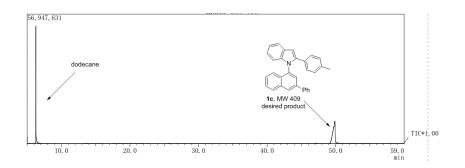
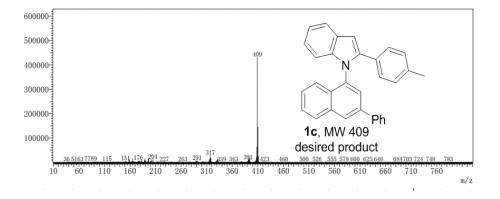
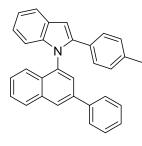
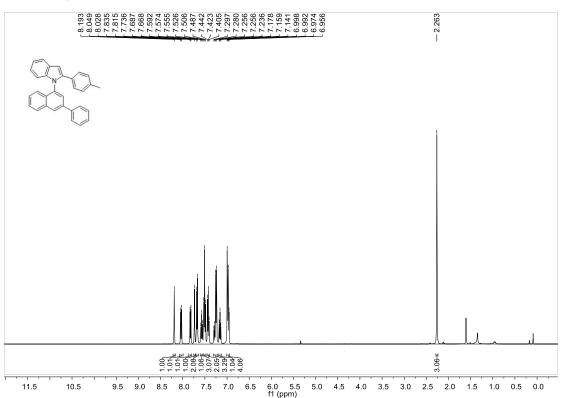




Figure S21. The ¹H and ¹³C NMR Spectrum of 1b.


Figure S22. The GC and GC-MS charts of 1c

1-(3-phenylnaphthalen-1-yl)-2-(p-tolyl)-1H-indole (1c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 94% yield (76.9 mg). mp 192–193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.75–7.71 (m, 1H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5

Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 3H), 7.42 (t, *J* = 7.4 Hz, 2H), 7.30–7.21 (m, 3H), 7.16 (t, *J* = 7.6 Hz, 1H), 7.01-6.94 (m, 4H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 140.1, 139.9, 138.2, 137.1, 135.9, 134.5, 130.4, 129.5, 128.9, 128.8, 128.5, 128.3, 128.0, 127.6, 127.2, 127.0, 126.9, 126.7, 126.0, 123.5, 122.0, 120.5, 120.3, 111.1, 102.8, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1828.

¹H NMR Spectrum of **1c**

¹³C NMR Spectrum of **1**c

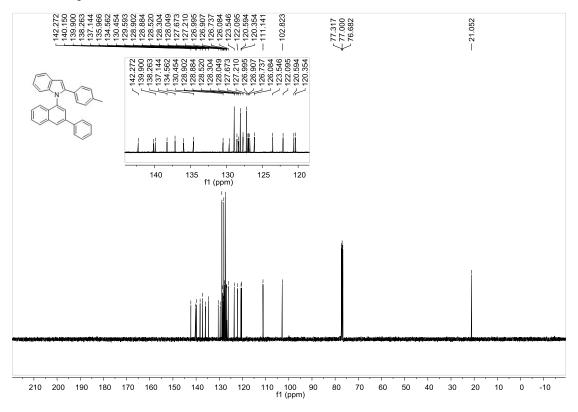
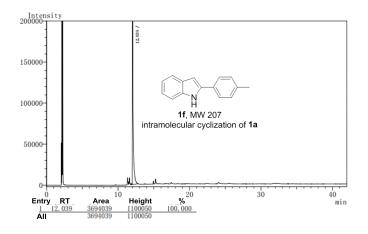
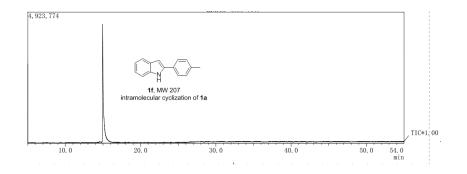
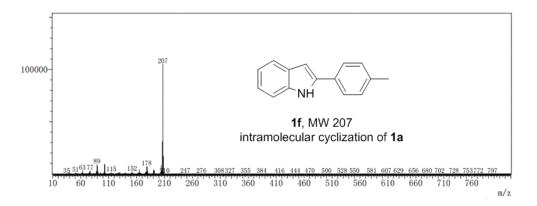
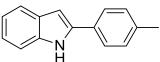
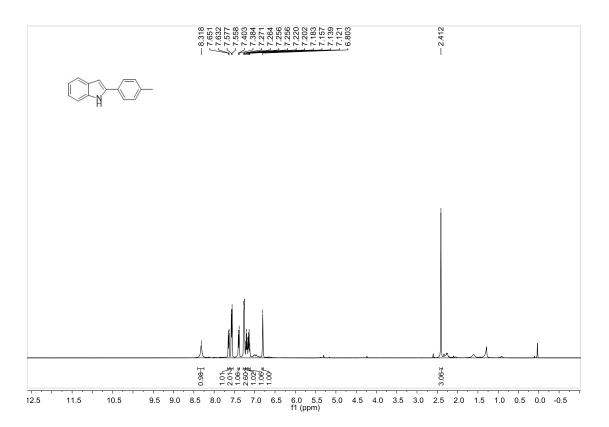




Figure S23. The ¹H and ¹³C NMR Spectrum of 1c


Figure S24. The GC and GC-MS charts of 1f

2-(p-tolyl)-1H-indole (1f)

H ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.29–7.24 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.80 (s, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 137.6, 136.6, 129.6, 129.5, 129.3, 125.0, 122.0, 120.4, 120.1, 110.7, 99.3, 21.2.

¹H NMR Spectrum of **1f**

¹³C NMR Spectrum of **1f**

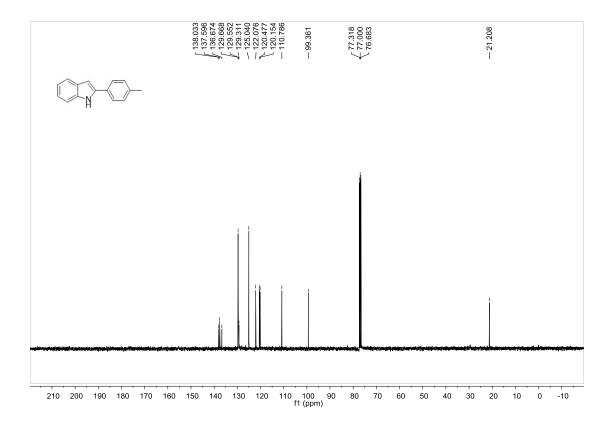
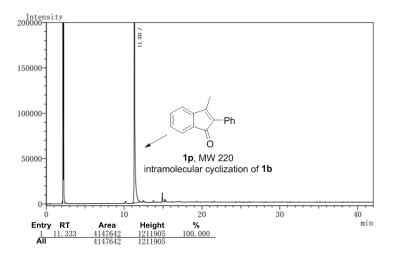
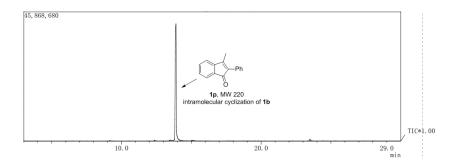




Figure S25. The ¹H and ¹³C NMR Spectrum of 1f

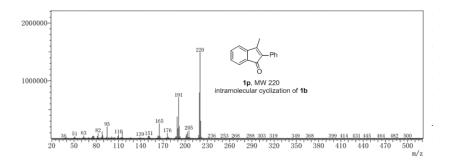
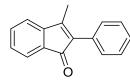
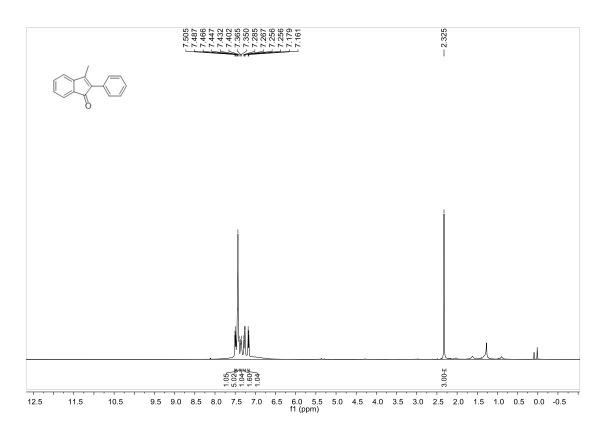



Figure S26. The GC and GC-MS charts of 1p


3-methyl-2-phenyl-1H-inden-1-one (1p)¹⁵

The title compound was prepared according to the procedure (Table S6, entry 5, six parallel experiments were conducted) and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky yellow

liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.0 Hz, 1H), 7.44–7.36 (m, 5H), 7.35–7.30 (m, 1H), 7.27–7.20 (m, 1H), 7.14 (d, J = 7.1 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 196.3, 154.6, 145.8, 133.5, 133.4, 131.1, 130.3, 129.5, 128.8, 128.2, 127.6, 122.0, 119.3, 12.5.

¹H NMR Spectrum of 1p

¹³C NMR Spectrum of **1p**

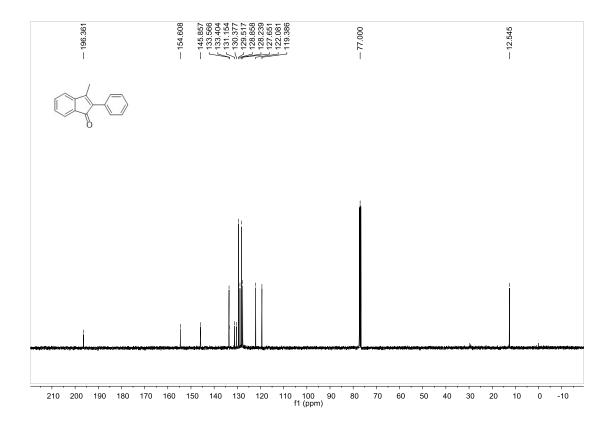
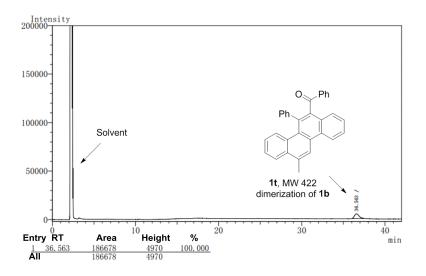
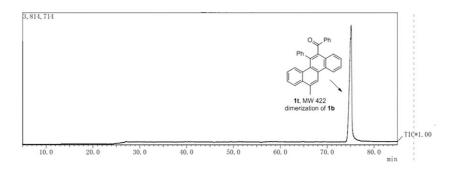




Figure S27. The ¹H and ¹³C NMR Spectrum of 1p

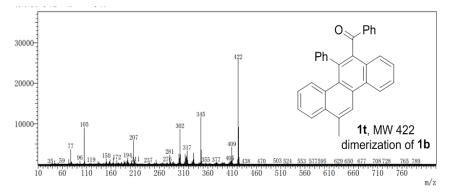
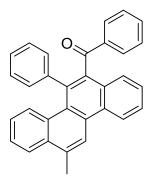
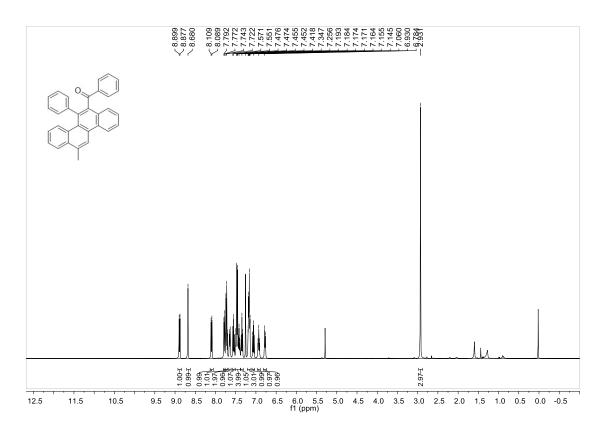



Figure S28. The GC and GC-MS charts of 1t


(12-methyl-5-phenylchrysen-6-yl)(phenyl)methanone (1t)

The title compound was prepared according to the procedure (Table S2, entry 4, six parallel experiments were conducted) and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (20/1) to afford a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 8.5 Hz, 1H), 8.68 (s, 1H), 8.10 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 8.2 Hz, 1H), 7.76–7.70 (m, 2H), 7.65 (d, J = 7.5 Hz, 1H), 7.58–7.52 (m, 1H), 7.51–7.44 (m, 3H), 7.47 (td, J = 8.6, 1.1 Hz, 3H), 7.42 (t, J = 7.6 Hz, 1H), 7.35 (t, J = 7.4 Hz, 1H), 7.21–7.13 (m, 3H), 7.09–7.03 (m, 1H), 6.93 (t, J = 7.5 Hz, 1H), 6.77 (d, J =

7.7 Hz, 1H), 2.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.0, 141.4, 137.9, 137.0, 134.8, 134.5, 133.1, 132.8, 131.4, 131.0, 130.3, 130.0, 129.3, 129.2, 129.0, 128.7, 128.7, 128.1, 128.0, 127.2, 127.2, 126.9, 126.0, 125.9, 125.8, 124.5, 124.1, 123.5, 121.4, 20.6.

¹H NMR Spectrum of **1**t

¹³C NMR Spectrum of **1t**

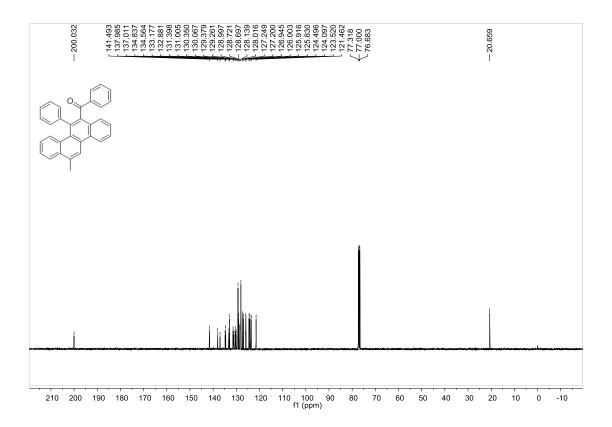
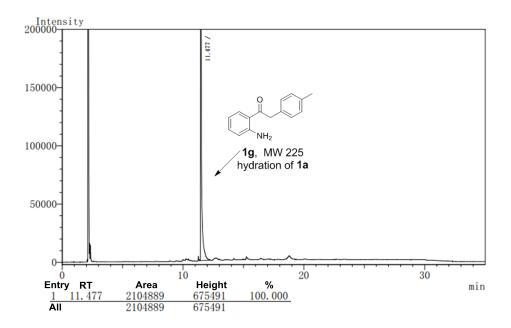
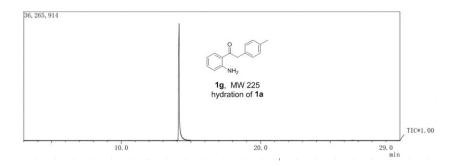




Figure S29. The ¹H and ¹³C NMR Spectrum of 1t

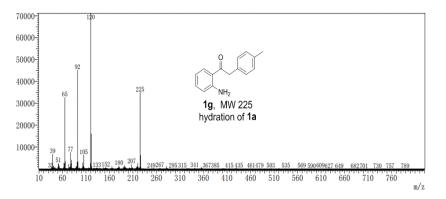
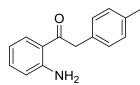



Figure S30. The GC and GC-MS charts of 1g

1-(2-aminophenyl)-2-(p-tolyl)ethan-1-one (1g)¹⁶

The title compound was prepared according to the procedure (Table S5, entry 2) and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white solid. ¹H NMR (400 MHz, CDCl₃) δ

7.84 (d, *J* = 8.1 Hz, 1H), 7.28–7.22 (m, 1H), 7.14 (s, 4H), 6.69–6.57 (m, 2H), 6.28 (s, 2H), 4.22 (s, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.1, 150.8, 136.2, 134.3, 132.2, 131.5, 129.2, 129.2, 117.5, 117.3, 115.7, 45.6, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₁₅NO 225.1154.

¹H NMR Spectrum of 1g

¹³C NMR Spectrum of **1g**

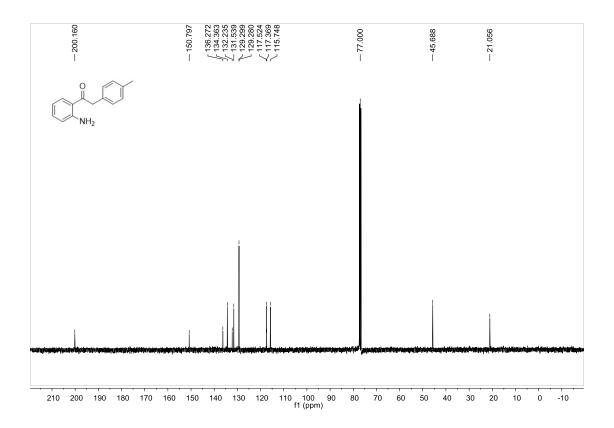
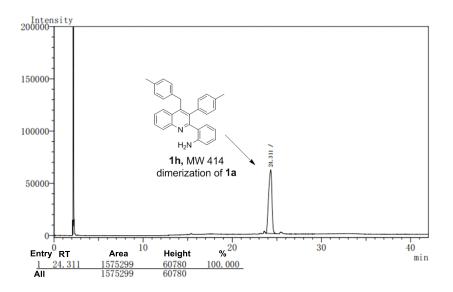
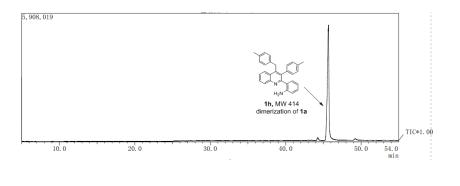




Figure S31. The ¹H and ¹³C NMR Spectrum of 1g

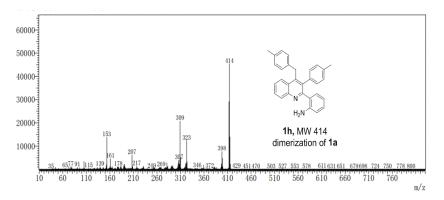
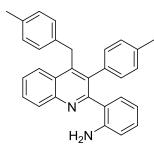
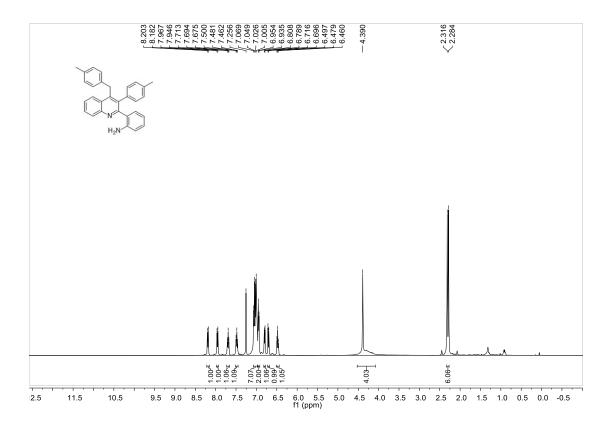



Figure S32. The GC and GC-MS charts of 1h


2-(4-(4-methylbenzyl)-3-(p-tolyl)quinolin-2-yl)aniline (1h)³

The title compound was prepared according to the procedure of Table S5, entry 2 (six parallel experiments were conducted), and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a light yellow solid, mp 200-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H),

7.69 (t, J = 7.5 Hz, 1H), 7.48 (t, J = 7.5 Hz, 1H), 7.09–6.97 (m, 7H), 6.94 (d, J = 7.4 Hz, 2H), 6.80 (d, J = 7.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.48 (t, J = 7.4 Hz, 1H), 4.39 (s, 2H), 4.29 (s, 2H), 2.30 (d, J = 12.8 Hz, 6H).¹³C NMR (101 MHz, CDCl₃) δ 158.7, 146.8 144.8, 144.6, 137.0, 136.5, 135.8, 135.3, 135.1, 131.1, 129.8, 129.6, 129.1, 128.9, 128.4, 128.4, 127.9, 126.7, 126.6, 126.2, 125.2, 117.5, 116.2, 35.1, 21.1, 20.8.

¹H NMR Spectrum of **1h**

¹³C NMR Spectrum of 1h

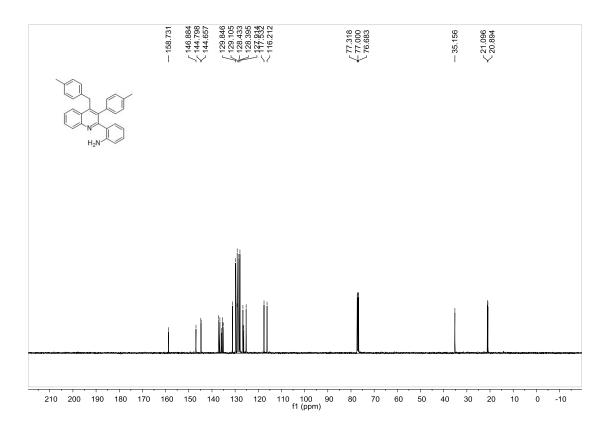
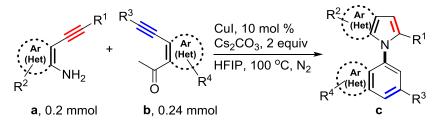
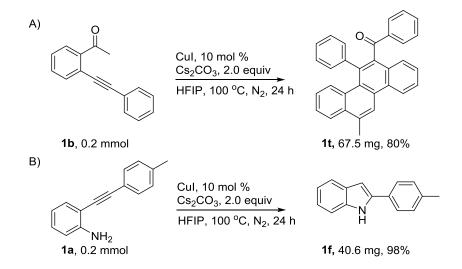



Figure S33. The ¹H and ¹³C NMR Spectrum of 1h

3.3. General Procedure for the Synthesis of C-N Axial Biaryl Compounds

A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, *o*-amino arylkyne **a** (0.2 mmol), and *o*-carbonyl arylalkyne **b** (0.24 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired C–N axial biaryl compounds.

3.4. Gram-scale Synthesis



A Schlenk tube of 100 mL equipped with a magnetic stir bar was charged with CuI (0.4 mmol, 10 mol %), Cs_2CO_3 (8 mmol, 2.0 equiv) in HFIP (20 mL); then, 2-(*p*-tolylethynyl)aniline **1a** (4.0 mmol) and 2'-phenylethynylacetophenone **1b** (4.8 mmol, 1.2 equiv) were added. The reaction mixture was heated at 100°C for 48 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford the desired 2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole **1c** in 85% yield (1.391 g).

4. Investigations of the Reaction Mechanism

4.1 Control Experiments

Scheme S3. Investigations of the cyclization of 1a and 1b

A) A schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, *ortho*-alkynylacetophenone (**1b**, 0.2 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford the (12-methyl-5-phenylchrysen-6-yl)(phenyl)methanone¹⁰ in 80% yield (**1t**, 67.5 mg) as a off-white powder. ¹H NMR (400 MHz, CDCl₃) δ 8.89 (d, *J* = 8.5 Hz, 1H), 8.68 (s, 1H), 8.10 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.76–7.70 (m, 2H), 7.65 (d, *J* = 7.5 Hz, 1H), 7.58–7.52 (m, 1H), 7.51–7.44 (m, 3H), 7.47 (td, *J* = 8.6, 1.1 Hz, 3H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.35 (t, *J* = 7.4 Hz, 1H), 7.21–7.13 (m, 3H), 7.09–7.03 (m, 1H), 6.93 (t, *J* = 7.5 Hz, 1H), 6.77 (d, *J* = 7.7 Hz, 1H), 2.93 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.0, 141.4, 137.9, 137.0, 134.8, 134.5, 133.1, 132.8, 131.4, 131.0, 130.3, 130.0, 129.3, 129.2, 129.0, 128.7, 128.7, 128.1, 128.0, 127.2, 127.2, 126.9, 126.0, 125.9, 125.8, 124.5, 124.1, 123.5, 121.4, 206.

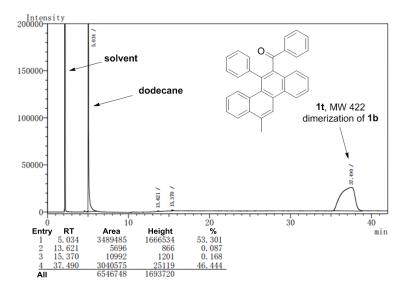


Figure S34. The GC chart of the crude reaction mixture of A.

B) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, 2-(*p*-tolylethynyl)aniline (**1a**, 0.2 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate (20/1) to afford the 2-(*p*-tolyl)-1H-indole² in 98% yield (**1f**, 40.6 mg) as a off-white powder. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.64 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.29–7.24 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.14 (t, *J* = 7.3 Hz, 1H), 6.80 (s, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 138.0, 137.6, 136.6, 129.6, 129.5, 129.3, 125.0, 122.0, 120.4, 120.1, 110.7, 99.3, 21.2.

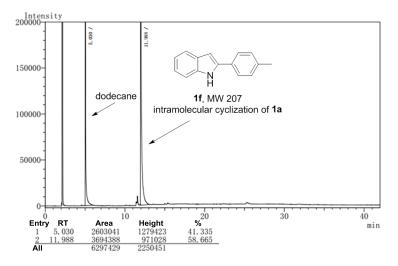
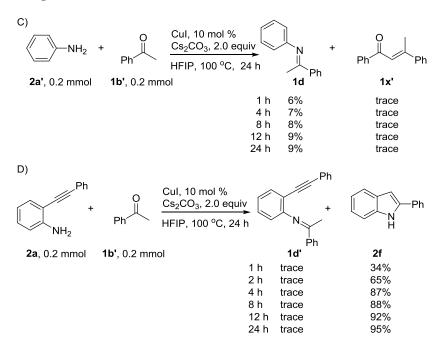
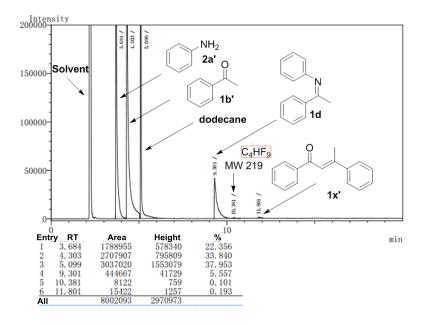




Figure S35. The GC chart of the crude reaction mixture of B

Scheme S4. Investigations of the condensation reaction of amines and ketones

C) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, anilines (**2a'**, 0.2 mmol) and acetophenone (**1b'**, 0.24 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 1 h, 2 h, 4 h, 8 h, 12 h, and 24 h under N₂.

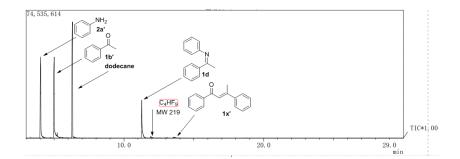


Figure S36. The GC and GC-MS charts of the crude reaction mixture of C for 24 h

D) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, *ortho*-alkynylanilines (**2a**, 0.2 mmol) and acetophenone (**1b'**, 0.24 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 1 h, 2 h, 4 h, 8 h, 12 h, and 24 h under N₂.

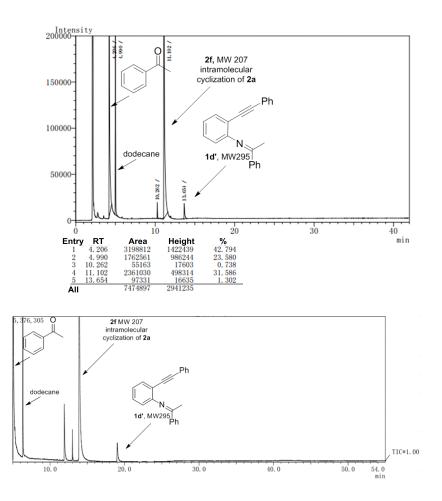
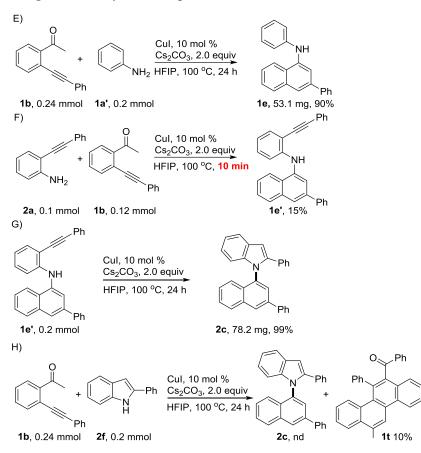



Figure S37. The GC and GC-MS charts of the crude reaction mixture of D for 24 h

Scheme S5. Investigations of the cyclization sequence

E) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, aniline (**1a'**, 0.2 mmol), and *ortho*-alkynylacetophenone (**1b**, 0.24 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired N,3-diphenylnaphthalen-1-amine¹¹ in 90% yield (**1e**, 53.1 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.83–7.81 (m, 1H), 7.73 (d, *J* = 7.2 Hz, 3H), 7.60–7.54 (m, 1H), 7.51 (t, *J* = 7.7 Hz, 3H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.34 (t, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 7.8 Hz, 2H), 7.00 (t, *J* = 7.3 Hz, 1H), 6.02 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.5, 140.9, 139.2, 138.8, 134.9, 129.3, 128.8, 128.7, 127.3, 127.2, 126.7, 126.5, 125.6, 121.6, 120.7, 120.5, 117.4, 115.1.

F) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.01 mmol, 10 mol %), Cs_2CO_3 (66 mg, 0.2 mmol, 2.0 equiv) in HFIP (1.0 mL); then, (0.1 mmol), and 2'-phenylethynylacetophenone **1b** (0.12 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in

IKA RCT basic) at 100 °C for 10min under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired **1e'** in 15% yield (29.6 mg from five parallel experiments). mp 165-167 °C. A white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.3 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.89 (s, 1H), 7.83 (s, 1H), 7.73 (d, *J* = 7.6 Hz, 2H), 7.58–7.44 (m, 7H), 7.42-7.33 (m, 4H), 7.17 (t, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.91 (s, 1H), 6.84 (t, *J* = 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.3, 140.8, 138.8, 137.8, 135.0, 132., 131.5, 129.6, 128.8, 128.4, 128.4, 128.0, 127.5, 127.3, 126.6, 126.1, 123.0, 122.2, 121.9, 118.8, 118.4, 113.5, 109.6, 95.8, 85.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 395.1674; found 395.1671.

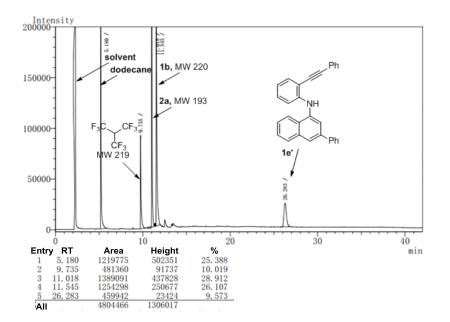


Figure S38. The GC and GC-MS charts of the crude reaction mixture of F for 10 min

G) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs_2CO_3 (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, 3-phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (**1e'**, 0.2 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired product **2c** in 99% yield (78.2 mg).

H) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol %), Cs₂CO₃ (130 mg, 0.4 mmol, 2.0 equiv) in HFIP (1.0 mL); then, 2-phenyl indoles (**2f**, 0.2 mmol), and *ortho*-

alkynylacetophenone (**1b**, 0.24 mmol, 1.2 equiv) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂.

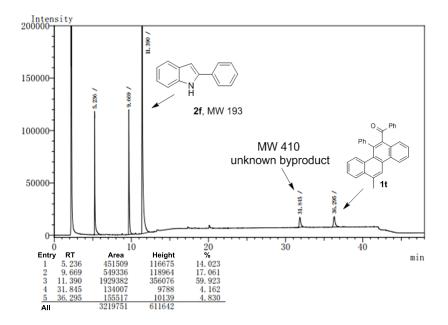
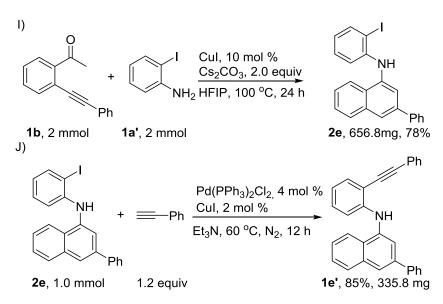
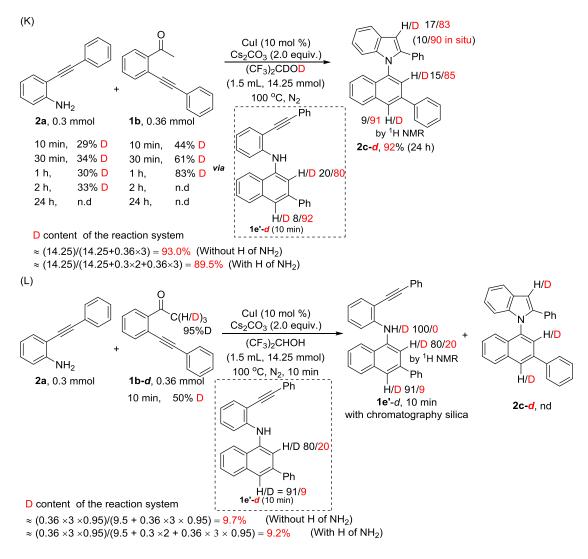



Figure S39. The GC and GC-MS charts of the crude reaction mixture of H

Scheme S6. The synthesis of 3-phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (1e')



I) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (38 mg, 0.2 mmol, 10 mol %), Cs₂CO₃ (1.3 g, 4 mmol, 2.0 equiv) in HFIP (10 mL); then, *o*-Iodoaniline (**1a'**, 2 mmol), and *ortho*-alkynylacetophenone (**1b**, 2 mmol) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired N-(2-iodophenyl)-3-phenylnaphthalen-1-amine in 78% yield (**2e**, 656.8 mg). Light yellow solid; mp 114–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 7.4 Hz, 1H), 7.96 (d, *J* = 7.9 Hz, 1H), 7.90 (s, 1H), 7.86–7.78 (m, 1H), 7.75–7.65 (m, 3H), 7.62–7.42 (m, 4H), 7.42–7.35 (m, 1H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.68–6.52 (m, 1H), 6.33 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.3, 140.6, 139.3, 138.8, 138.1, 135.0, 129.1, 128.8, 128.8, 127.9, 127.5, 127.3, 126.7, 126.1, 122.4, 122.1, 121.2, 118.7, 115.4, 87.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 421.0327; found 421.0325.

J) To a 25 mL Schlenk tube charged with N-(2-iodophenyl)-3-phenylnaphthalen-1-amin (**2e**, 1.0 mmol, 1.0 equiv), $Pd(PPh_3)_2Cl_2$ (0.04 mmol, 2 mol %), and CuI (0.08 mmol, 4 mol %) in degassed Et₃N (8 mL) was added aryl alkynes (1.2 mmol, 1.2 equiv), and the resulting solution was stirred at 60 °C for 12 h. Upon completion, the solvent was removed under reduced pressure, and the residue was extracted with EtOAc (3 x 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by a silica gel flash chromatography (petroleum ether/dichloromethane = 10/1) to afford a white powder in 85% yield (335.8 mg).

4.2 Deuterium Labeling Experiments

Scheme S7. The deuterium labeling experiments (Eq. K and Eq. L)

Note: Deuterium content of the "reaction system: deuterium content of the total H and D that could be exchanged. *2a* and *1b* cannot be detected at 4 h by GC and ¹H NMR.

K) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.03 mmol, 10 mol %), Cs₂CO₃ (195 mg, 0.6 mmol, 2.0 equiv.) in HFIP- d_2 (1.5 mL, 14.25 mmol, >98% D), then, 2-(phenylethynyl)aniline **2a** (57.9 mg, 0.3 mmol), and 2'-phenylethynylacetophenone **1b** (79.2 mg, 0.36 mmol, 1.2 equiv.) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂, and was extracted 100 ul for monitoring by ¹H NMR at 10 min, 30 min, 1 h, 2 h, and 24 h, respectively. In addition, the reaction mixture of 10 min and 24 h were extracted additional 200 ul for isolating the deuteration intermediate **1e'**-*d* and desired deuteration product **2c**-*d* with flash column chromatography on silica gel.

The parallel experiment was conducted with 24 h, after completion of the reaction, the reaction mixture was cooled to room temperature, the crude product was purified by flash column chromatography on silica gel to give the desired **2c-d** in 92% yield (109.0 mg).

L) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.03 mmol, 10 mol %), Cs₂CO₃ (195 mg, 0.6 mmol, 2.0 equiv.) in HFIP (1.5 mL, 14.25 mmol,), then, 2-(phenylethynyl)aniline **2a** (57.9 mg, 0.3 mmol), and 2'-phenylethynylacetophenone **1b-d** (79.2 mg, 0.36 mmol, 1.2 equiv., 95% D) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂, and was extracted 100 ul for monitoring by ¹H NMR at 10 min. In addition, the reaction mixture of 10 min was extracted additional 200 ul for isolating the deuteration intermediate **1e'-d** with flash column chromatography on silica gel.

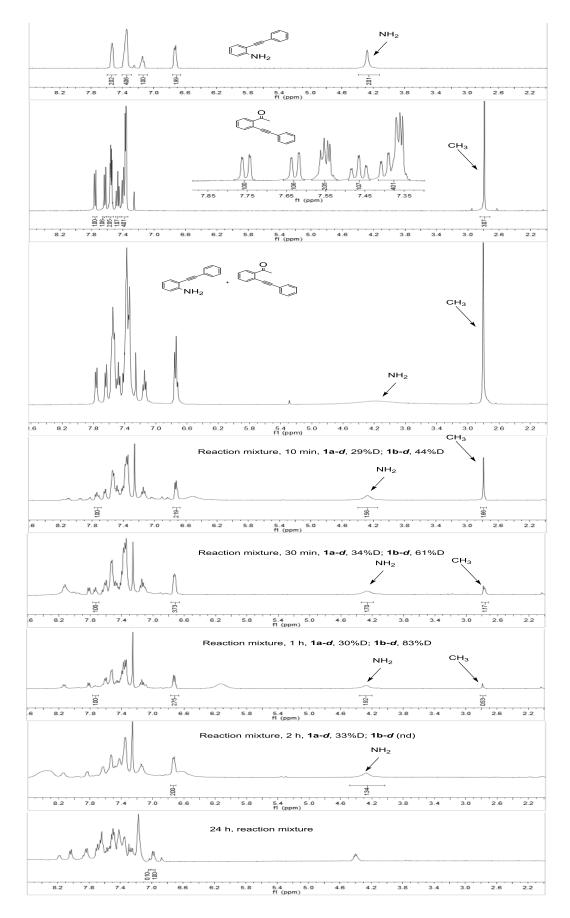


Figure S40. ¹H NMR Spectrum of Eq. (K) at 10 min, 30 min, 1 h, 2 h, and 24 h.

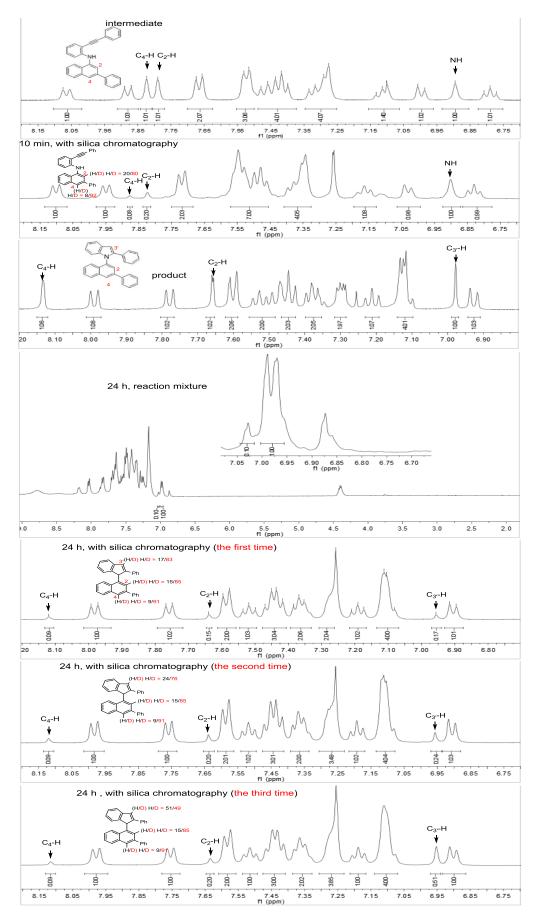
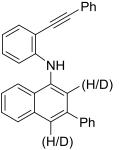
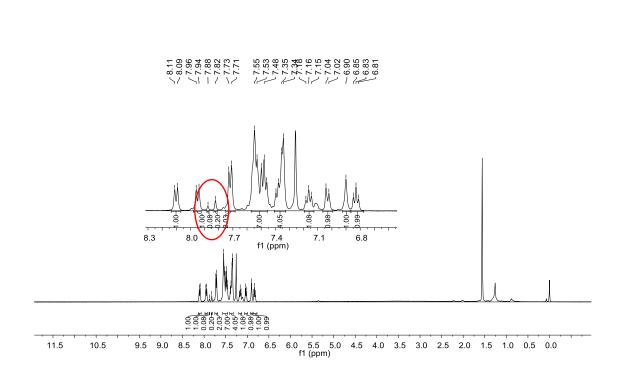



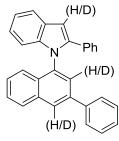
Figure S41. The ¹H NMR spectrum of Eq. (K) with silica chromatography at 10 min and 24 h.

3-Phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (1e'-d, Eq. K, 10 min, with silica

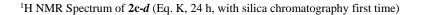
chromatography)

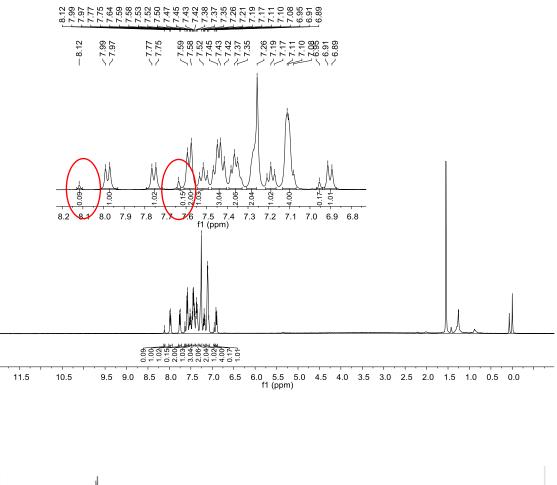


¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 1H), 7.88 (s, 0.08H), 7.82 (s, 0.20H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.58–7.43 (m, 7H), 7.41–7.32 (m, 4H), 7.16 (t, *J* = 7.7 Hz, 1H), 7.03 (d, *J* = 8.2 Hz, 1H), 6.90 (s, 1H), 6.83 (t, *J* = 7.4 Hz, 1H).


5.83 5.81

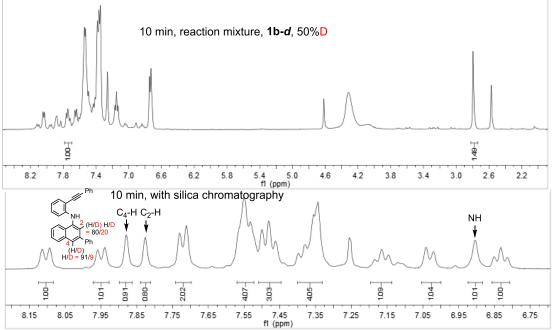
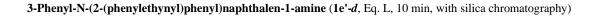
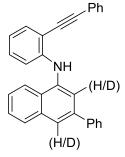
¹H NMR Spectrum of **1e'-***d* (Eq. K, 10 min, with silica chromatography)

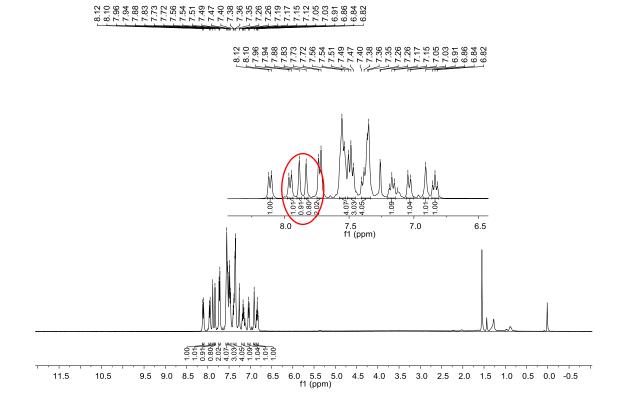

2,111 2,009 2,0000

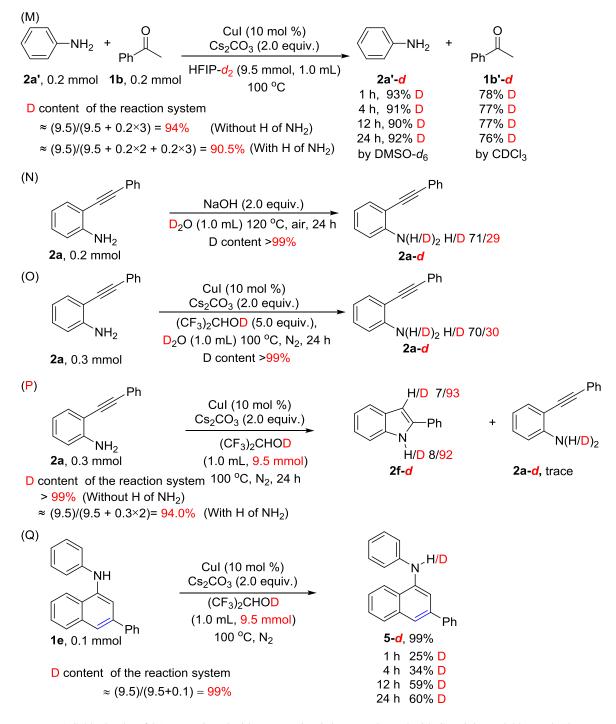


2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d, Eq. K, 24 h, with silica chromatography first time)

¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 0.09H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.64 (s, 0.15H), 7.58 (d, *J* = 7.6 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.44 (dd, *J* = 13.3, 7.7 Hz, 3H), 7.39–7.33 (m, 2H), 7.26 (s, 2H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.15–7.07 (m, 4H), 6.95 (s, 0.17H), 6.90 (d, *J* = 8.0 Hz, 1H).


Figure S42. The ¹H NMR spectrum of reaction mixture and with silica chromatography of Eq. (L) at 10 min.



¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.88 (s, 0.91H), 7.83 (s, 0.80H), 7.73 (d, *J* = 7.4 Hz, 2H), 7.58–7.53 (m, 4H), 7.52–7.45 (m, 3H), 7.41–7.35 (m, 4H), 7.17 (t, *J* = 7.7 Hz, 1H), 7.04 (d, *J* = 8.3 Hz, 1H), 6.91 (s, 1H), 6.84 (t, *J* = 7.4 Hz, 1H).

¹H NMR Spectrum of **1e'-d** (Eq. L, 10 min, with silica chromatography)

Scheme S8. Deuterium labeling experiments (Eq. M-Q)

M) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (3.8 mg, 0.02 mmol, 10 mol%), Cs₂CO₃ (132 mg, 0.4 mmol, 2.0 equiv.) in HFIP- d_2 (7.5 mmol), then, anilines **2a'** (0.2 mmol), and acetophenone **1b'** (0.2 mmol) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂, and was extracted 100 ul to monitor by ¹H NMR at 0 h, 1 h, 4 h, 12 h, and 24 h respectively.

We can observed the change about methyl of 1b'-d in CDCl₃, but the NH₂ of 2a'-d cannot be identified, as supplementary, ¹H NMR in DMSO- d_6 gave the change of NH₂ of 2a'-d.

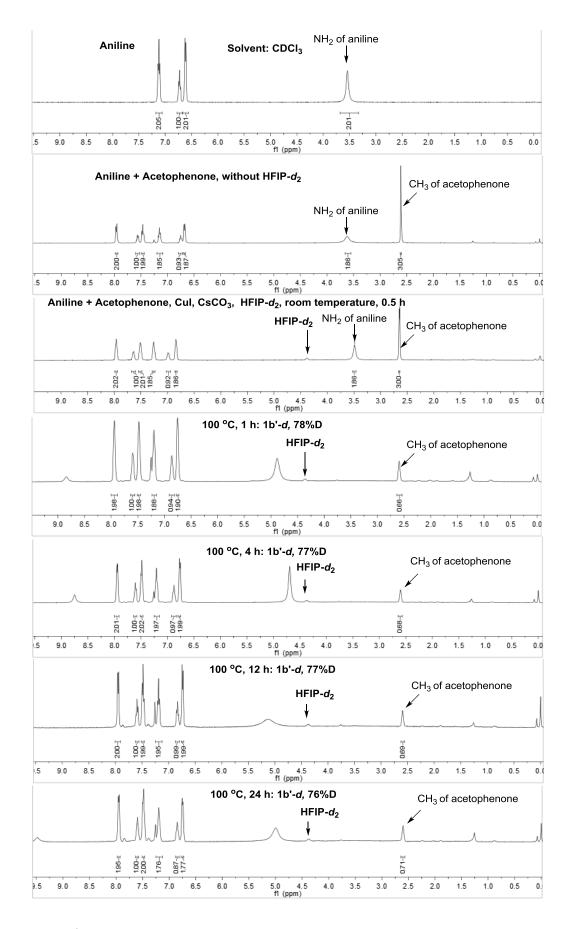
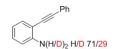
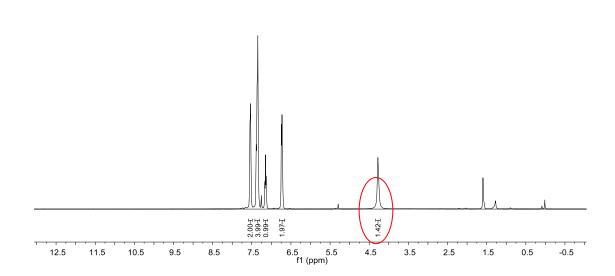


Figure 42. The ¹HNMR Spectrum of Eq. (M) in CDCl₃



Figure S43. The ¹HNMR Spectrum of Eq. (M) in DMSO-d₆

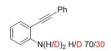

N) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with D_2O (1.0 mL), then, 2-(phenylethynyl)aniline **2a** (0.2 mmol) and NaOH (2.0 equiv.) were added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was extracted by CDCl₃, for identifying by ¹HNMR directly without column chromatography.

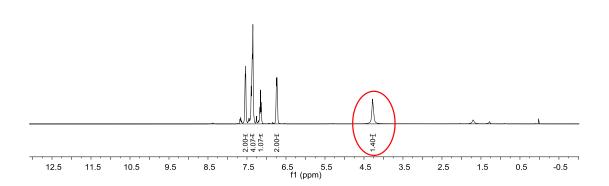

2-(phenylethynyl)aniline (2a-d) (Eq. N)

 $N(H/D)_2$

¹H NMR (400 MHz, CDCl₃) δ 7.58–7.49 (m, 2H), 7.42–7.30 (m, 4H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.74 (d, *J* = 6.8 Hz, 2H), 4.28 (s, **1.42**H).

¹H NMR Spectrum of 2a-d (Eq. N, 29% D)

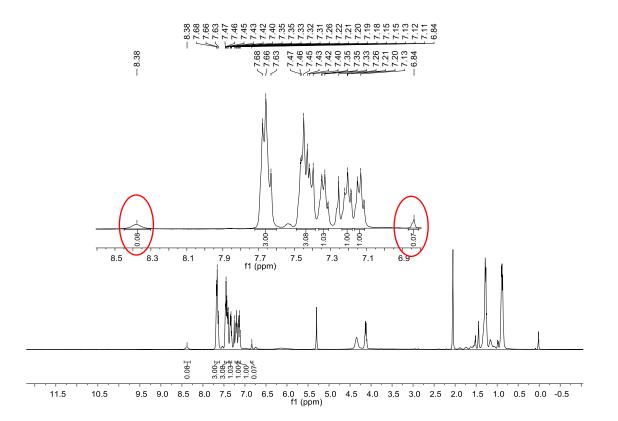

O) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.03 mmol, 10 mol %), Cs₂CO₃ (195 mg, 0.6 mmol, 2.0 equiv.), HFIP-OD (1.5 mmol, 5.0 equiv.) in D₂O (1.0 mL), then, 2- (phenylethynyl)aniline **2a** (0.3 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was extracted by CDCl₃, for identifying by ¹HNMR directly without column chromatography.


2-(phenylethynyl)aniline (2a-d) (Eq. O)

N(H/D)₂

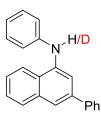
¹H NMR (400 MHz, CDCl₃) δ 7.58–7.50 (m, 2H), 7.41–7.31 (m, 4H), 7.15 (t, *J* = 7.7 Hz, 1H), 6.77–6.69 (m, 2H), 4.28 (s, **1.40H**).

¹H NMR Spectrum of 2a-d (Eq. O, 30% D)

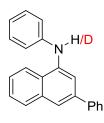


P) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (5.7 mg, 0.03 mmol, 10 mol %), Cs_2CO_3 (195 mg, 0.6 mmol, 2.0 equiv.) in HFIP-OD (1.0 mL, 9.5 mmol), then, 2-(phenylethynyl)aniline **2a** (0.3 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.

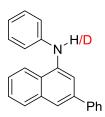
2-phenyl-1H-indole (2f-d) (Eq. P)


(H/D) (93% D) ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 8.38 (s, 0.08H), 7.66 (t, $J = 9.3$ Hz, 3H), 7.49–7.39 (m,
Ph 3H), 7.37–7.31 (m, 1H), 7.23–7.18 (m, 1H), 7.17–7.10 (m, 1H), 6.84 (s, 0.07H).
(H/D) (92% D)

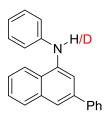
¹H NMR Spectrum of **2f-d** (Eq. P)


Q) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.01 mmol, 10 mol %), Cs₂CO₃ (66 mg, 0.2 mmol, 2.0 equiv.) in HFIP-OD (1.0 mL, 9.5 mmol), then, **1e** (0.1 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂, the reaction mixture was extracted 100 ul to monitor by ¹H NMR at 1 h, 4 h, 12 h, and 24 h respectively, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.

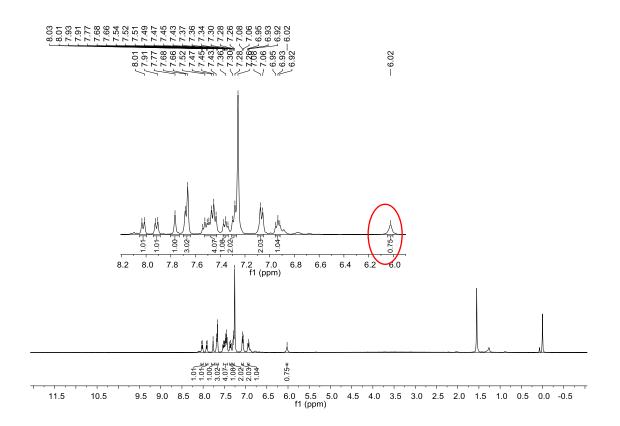
N,3-diphenylnaphthalen-1-amine (5-d, 1 h, Eq. Q)


¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 8.02 (d, J = 8.2 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H),
7.77 (s, 1H), 7.67 (d, J = 7.6 Hz, 3H), 7.56–7.40 (m, 4H), 7.38–7.32 (m, 1H), 7.29 (d,
 J = 7.5 Hz, 2H), 7.07 (d, J = 7.8 Hz, 2H), 6.93 (t, J = 6.7 Hz, 1H), 6.02 (s, 0.75H).

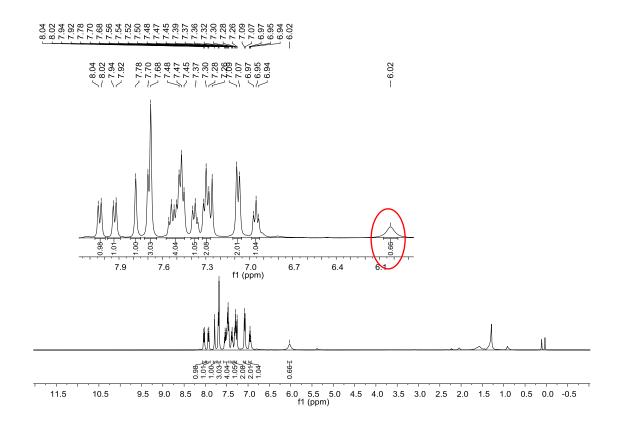
N,3-diphenylnaphthalen-1-amine (5-d, 4 h, Eq. Q)

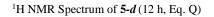

¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.2 Hz, 1H), 7.93 (d, *J* = 7.9 Hz, 1H), 7.78 (s, 1H), 7.69 (d, *J* = 7.7 Hz, 3H), 7.57–7.43 (m, 4H), 7.37 (t, *J* = 7.1 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.08 (d, *J* = 7.9 Hz, 2H), 6.95 (t, *J* = 7.1 Hz, 1H), 6.02 (s, 0.66H).

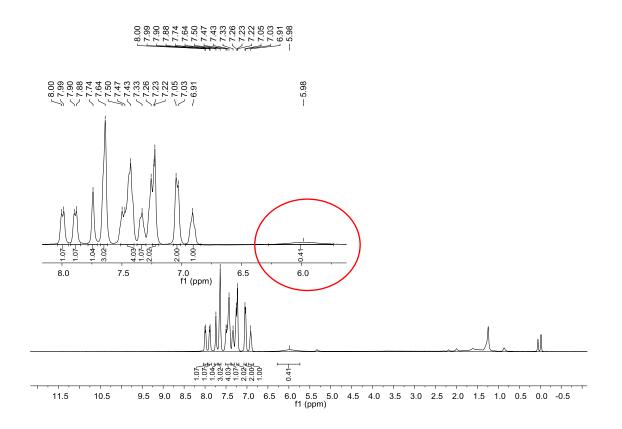
N,3-diphenylnaphthalen-1-amine (5-d, 12 h, Eq. Q)

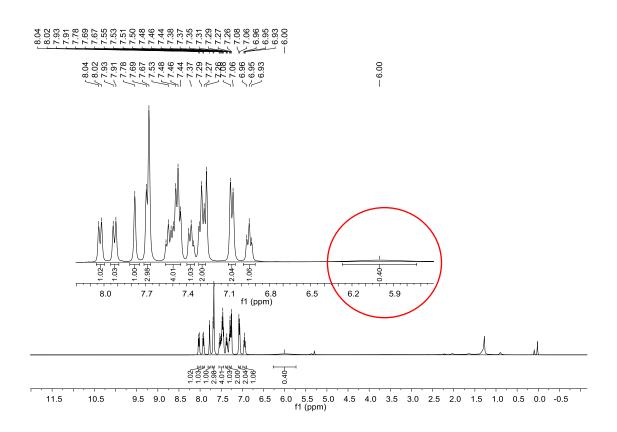


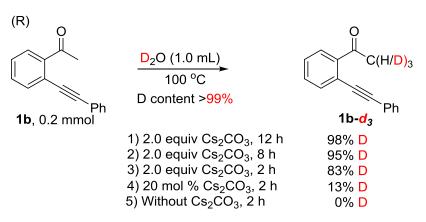
¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 7.5 Hz, 1H), 7.89 (d, *J* = 7.1 Hz, 1H), 7.74 (s, 1H), 7.64 (s, 3H), 7.53–7.39 (m, 4H), 7.33 (s, 1H), 7.30–7.18 (m, 4H), 7.04 (d, *J* = 7.2 Hz, 2H), 6.91 (s, 1H), 5.98 (s, 0.41H).


N,3-diphenylnaphthalen-1-amine (5-d, 24 h, Eq. Q)




¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.8 Hz, 1H), 7.78 (s, 1H), 7.68 (d, J = 7.5 Hz, 3H), 7.56–7.42 (m, 4H), 7.37 (t, J = 7.1 Hz, 1H), 7.28 (dd, J = 14.0, 6.6 Hz, 2H), 7.07 (d, J = 7.6 Hz, 2H), 6.95 (t, J = 7.1 Hz, 1H), 6.00 (s, 0.40H).


¹H NMR Spectrum of **5-***d* (4 h, Eq. Q)



¹H NMR Spectrum of **5-***d* (24 h, Eq. Q)

Scheme S9. Deuterium labeling experiments (Eq. R)

The reactions of 1b in D_2O under 2 equiv Cs_2CO_3 , could give the 1b- d_3 with 98% deuteration of the methyl group, however, D_2O did not react with 1b in absence of Cs_2CO_3 , which indicated that the base could facilitate the keto-enol tautomerization. The above results illustrated that the reaction proceeded via keto-enol tautomerization, dehydration, and hydrolysis.

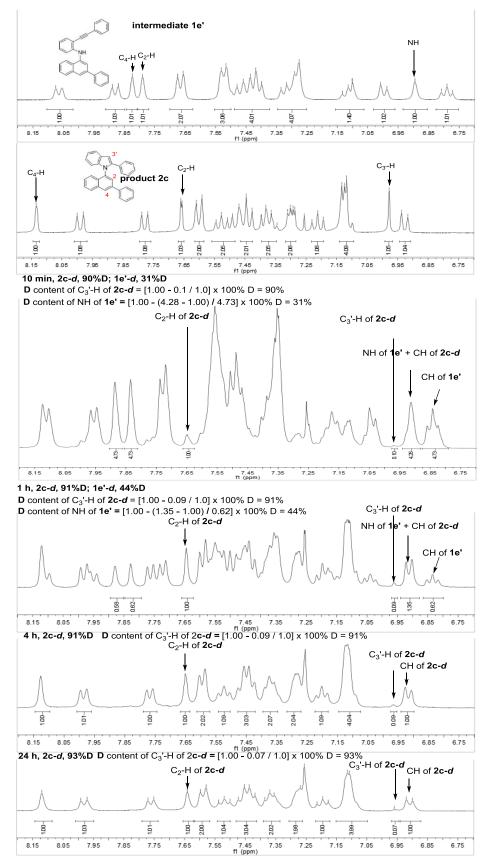
R) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with D₂O (1.0 mL); then, 2'phenylethynylacetophenone **1b** (0.2 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature. The crude product was purified by flash column chromatography on silica gel to give the desired **1b**-*d*₃.

2'-phenylethynylacetophenone (1b-d3)

$$\begin{array}{l} \textbf{(1) 2.0 equiv Cs_2CO_3, 12 h. ^1H NMR (400 MHz, CDCl_3) \delta 7.75 (d, J = 7.7 Hz, 1H), 7.63} \\ \textbf{(d, J = 7.7 Hz, 1H), 7.57-7.53 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.41-7.35 (m, 4H).} \\ \textbf{(2) 2.0 equiv Cs_2CO_3, 8 h. ^1H NMR (400 MHz, CDCl_3) \delta 7.76 (d, J = 7.7 Hz, 1H), 7.63} \\ \textbf{(d, J = 7.6 Hz, 1H), 7.57-7.52 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.42-7.34 (m, 4H), 2.72} \end{array}$$

(S, 0.15H).

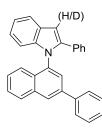
(3) **2.0 equiv Cs₂CO₃, 4 h**. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.6 Hz, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.57–7.52 (m, 2H), 7.47 (t, *J* = 7.3 Hz, 1H), 7.42–7.34 (m, 4H), 2.81–2.72 (m, 0.5H).


(4) 20 mol % Cs₂CO₃, 2 h. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 7.3 Hz, 1H), 7.63 (d, *J* = 7.2 Hz, 1H), 7.57–7.52 (m, 2H), 7.48 (t, *J* = 6.8 Hz, 1H), 7.43–7.33 (m, 4H), 2.80 (s, 2.60H).

(5) **Without Cs₂CO₃, 2 h**. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.3 Hz, 1H), (d, *J* = 7.2 Hz, 1H), 7.57–7.53 (m, 2H), 7.47 (t, *J* = 6.8 Hz, 1H)), 7.41–7.35 (m, 4H), 2.79 (s, 3H).

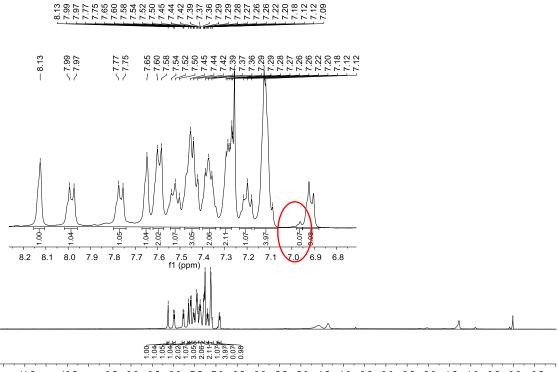
Scheme S10. The deuterium labeling experiments (Eq. S-V)

S) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.01 mmol, 10 mol %), Cs₂CO₃ (66 mg, 0.2 mmol, 2.0 equiv.) in HFIP-OD (9.5 mmol), then, 3-Phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (**1e'**) (0.1 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C, and was extracted 100 ul for monitoring by ¹H NMR at 10 min, 1 h, 4 h, and 24 h respectively, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.


 Calculation formula:
 D content of C3'-H of 2c-d = [1.00 - (D of C3'-H of 2c-d) / (D of C2-H of 2c-d)] x 100% D

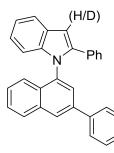
 D content of NH of 1e' = [1.00 - (D of (NH of 1e' + CH of 2c-d) - D of C2-H of 2c-d) / (D of CH of 1e')] x 100% D

 Figure S43.
 The ¹H NMR Spectrum of Eq. (S) at 10 min, 1 h, 2 h, and 24 h.

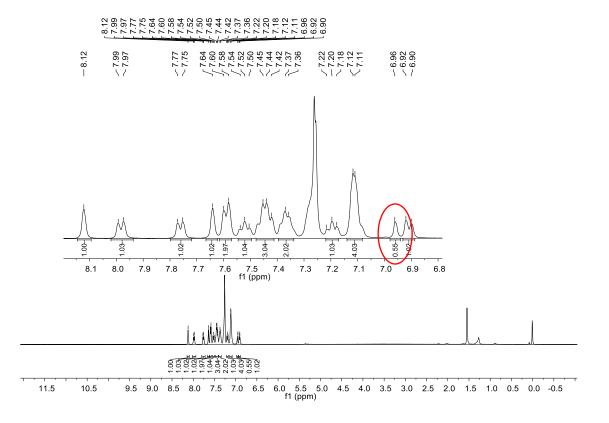

T) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (38 mg, 0.2 mmol, 2.0 equiv.), Cs_2CO_3 (66 mg, 0.2 mmol, 2.0 equiv.) in HFIP-OD (1.0 mL, 9.5 mmol), then, 3-Phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (**1e'**, 0.1 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 1 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.

2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d', 1 h, Eq. T)

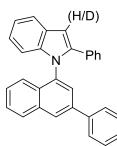
¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.98 (d, *J* = 8.0 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.65 (s, 1H), 7.59 (d, *J* = 7.1 Hz, 2H), 7.56–7.49 (m, 1H), 7.48–7.40 (m, 3H), 7.39–7.34 (m, 2H), 7.31–7.26 (m, 2H), 7.23–7.18 (m, 1H), 7.16–7.07 (m, 4H), 6.96 (s, 0.07H), 6.91 (d, *J* = 8.1 Hz, 1H).


¹H NMR Spectrum of **2c-***d*' (1 h, Eq. T)

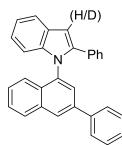
11.5 10.5 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 f1 (ppm)


U) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.01 mmol, 10 mol %), Cs_2CO_3 (66 mg, 0.2 mmol, 2.0 equiv.), HFIP-OD (2.38 mmol) in HFIP (2.38 mmol), then, 3-Phenyl-N-(2-(phenylethynyl)phenyl)naphthalen-1-amine (**1e'**) (0.1 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C for 24 h under N₂. After completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.

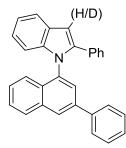
2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (Eq. U, 2c-d', 24 h)


¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.98 (d, *J* = 7.7 Hz, 1H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.64 (s, 1H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 6.6 Hz, 1H), 7.49–7.40 (m, 3H), 7.36 (d, *J* = 4.7 Hz, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.11 (d, *J* = 2.9 Hz, 4H), 6.96 (s, 0.55H), 6.91 (d, *J* = 8.0 Hz, 1H).

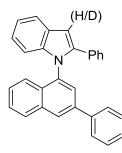
¹H NMR Spectrum of **2c-d'** (24 h, Eq. U)


V) A Schlenk tube of 25 mL equipped with a magnetic stir bar was charged with CuI (1.9 mg, 0.01 mmol, 10 mol %), Cs₂CO₃ (66 mg, 0.2 mmol, 2.0 equiv.), in HFIP-OD (9.5 mmol), then, **2c** (0.1 mmol) was added. The reaction mixture was stirred (800 r/min in IKA RCT basic) at 100 °C under N₂, and was extracted 100 ul to monitor by ¹H NMR at 1 h, 4 h, 12 h, and 24 h respectively, the solvent was removed under reduced pressure, and the residue was extracted with CDCl₃, for identifying by ¹HNMR directly without column chromatography.

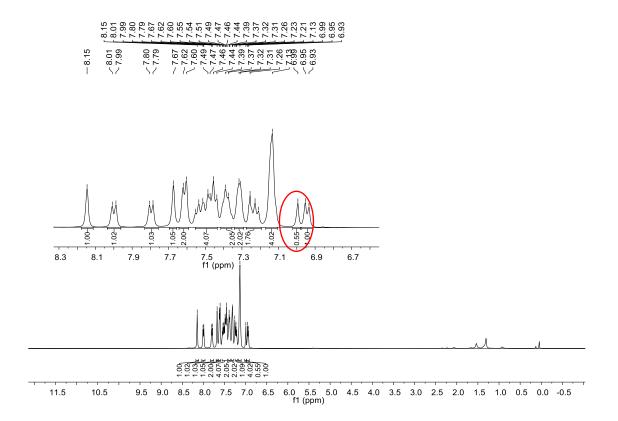
2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d', Eq. V, 1 h)

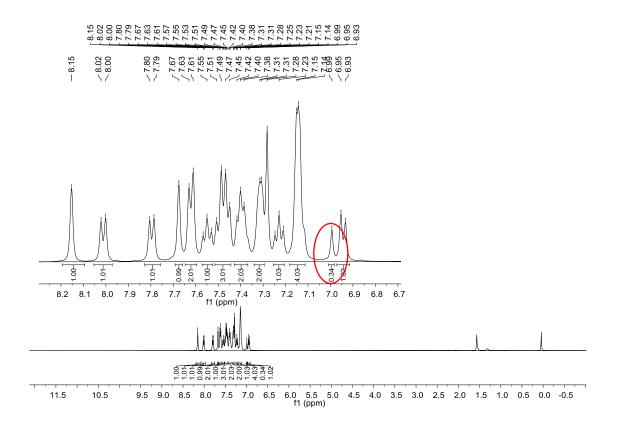

¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 7.80 (d, *J* = 7.6 Hz, 1H), 7.67 (s, 1H), 7.61 (d, *J* = 6.8 Hz, 2H), 7.57–7.43 (m, 4H), 7.38 (d, *J* = 6.6 Hz, 2H), 7.31 (d, *J* = 3.2 Hz, 2H), 7.28–7.20 (m, 1H), 7.13 (s, 4H), 6.99 (s, 0.55H), 6.94 (d, *J* = 8.0 Hz, 1H).

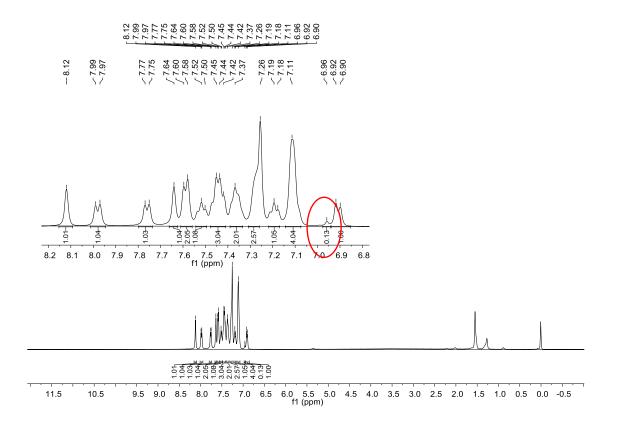
2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d', Eq. V, 4 h)


¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.80 (d, *J* = 7.7 Hz, 1H), 7.67 (s, 1H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.55 (t, *J* = 7.3 Hz, 1H), 7.48 (dd, *J* = 15.5, 8.0 Hz, 3H), 7.42–7.36 (m, 2H), 7.31 (d, *J* = 2.6 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 7.15 (d, *J* = 3.0 Hz, 4H), 6.99 (s, 0.34H), 6.94 (d, *J* = 8.1 Hz, 1H).

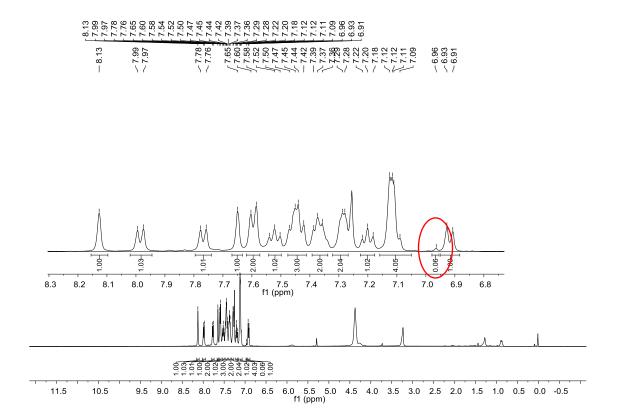
2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d', Eq. V, 12 h)


ⁱⁱⁱⁱ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.98 (d, J = 7.7 Hz, 1H), 7.76 (d, J = 7.2 Hz, 1H), 7.64 (s, 1H), 7.59 (d, J = 6.8 Hz, 2H), 7.51 (d, J = 6.5 Hz, 1H), 7.48–7.41 (m, 3H), 7.39–7.33 (m, 2H), 7.31–7.26 (m, 2H), 7.22–7.17 (m, 1H) (d, J = 6.8 Hz, 1H), 7.14–7.07 (m, 4H), 6.96 (s, 0.13H), 6.91 (d, J = 7.6 Hz, 1H).


2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c-d', Eq. V, 24 h)


¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.65 (s, 1H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.48–7.40 (m, 3H), 7.40–7.33 (m, 2H), 7.32–7.27 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.15–7.07 (m, 4H), 6.96 (s, 0.06H), 6.92 (d, *J* = 8.2 Hz, 1H).

¹H NMR Spectrum of **2c-***d*'(1 h, Eq. V)



¹H NMR Spectrum of **2c-***d*' (12 h, Eq. V)

¹H NMR Spectrum of **2c-d'** (24 h, Eq. V)

5. Asymmetric Synthesis.

Table S9. Optimization of the Conditions (Ligands and temperature)^a

	+ NH ₂ 2a	MeO 4	O Ph	conditions		79c
En	try	Ligand	Γ(°C)	t(h)	yield	ee
1	1	L1	40	72	31%	6%
2	2	L2	40	72	33%	23%
3	3	L3	40	72	30%	3%
2	1	L4	40	72	20%	11%
4	5	L5	40	72	17%	3%
6	6	L6	40	72	26%	5%
7	7	L7	40	72	22%	3%
8	3	L8	40	72	20%	2%
ç)	L9	40	72	18%	1%
1	0	L10	40	72	29%	4%
1	1	L11	40	72	19%	5%
1	2	L12	40	72	18%	5%
1	3	L13	40	72	25%	-9%
1	4	L14	40	72	30%	16%
1	5	L15	40	72	8%	-3%
1	6	L16	40	72	10%	4%
1	7	L17	40	72	8%	2%
1	8	L18	40	72	8%	8%
1	9	L19	40	72	8%	4%
2	0	L2	30	72	25%	21%
2	1	L2	50	72	40%	17%
2	2	L2	60	72	55%	15%
2	3	L2	70	72	67%	10%
2	4	L2	80	72	80%	7%
2	5	L2	90	72	88%	5%

^aReaction conditions: unless otherwise stated, all reactions were performed with **2a** (0.05 mmol), **4b** (0.06 mmol), CuI (5 mol%), Ligand (6 mol%), base (2.0 equiv, 0.1 mmol) in the solvent (0.5 mL) under N₂ protection. ^bGC yield based on **2a** using dodecane as internal standard.

Entry	Step 1	Step 2	yield	ee
1	CuI, 30 min + 100 °C	L1, 72 h + 40 °C	39%	8%
2	CuI, 30 min + 100 °C	L2, 72 h + 40 °C	42%	20%
3	CuI, 30 min + 100 °C	L4, 72 h + 40 °C	41%	12%
4	CuI, 30 min + 100 °C	L13, 72 h + 40 °C	42%	-10%
5	CuI, 30 min + 100 °C	L14, 72 h + 40 °C	40%	12%
6	CuI, 30 min + 100 °C	$Pd(OAc)_2 + L2, 72 h + 40 °C$	45%	8%
7	CuI, 30 min + 100 °C	PdCl ₂ +L2, 72 h+40 °C	48%	12%
8	CuI, 30 min + 100 °C	Pd ₂ (dba) ₃ +L2, 72 h+40 °C	44%	4%
9	CuI, 30 min + 100 °C	Pd(PPh ₃) ₄ +L2, 72 h+40 °C	40%	6%
10	CuI, 30 min + 100 °C	Pd(PPh ₃) ₂ Cl ₂ +L2, 72 h + 40 °C	45%	2%
11	CuI, 30 min + 100 °C	PdCl ₂ +L18, 72 h + 40 °C	52%	34%
12	CuI, 30 min + 100 °C	PdCl ₂ +L19, 72 h+40 °C	49%	16%
13	CuI, 30 min + 100 °C	Pd(OAc) ₂ +L18, 72 h+40 °C	44%	10%
14	CuI, 30 min + 100 °C	Pd(OAc) ₂ +L19, 72 h+40 °C	45%	12%
15	CuI, 30 min + 100 °C	PdCl ₂ +L18, 72 h + 50 °C	55%	32%
16	CuI, 30 min + 100 °C	PdCl ₂ +L18, 72 h+60 °C	58%	29%
17	CuI, 30 min + 100 °C	PdCl ₂ +L18, 72 h + 70 °C	58%	32%
18	CuI, 30 min + 100 °C	PdCl ₂ +L18, 72 h + 80 °C	81%	33%
19	CuI, 30 min + 100 °C	PdCl ₂ +L18, 24 h + 80 °C	80%	34%
20	CuI, 30 min + 100 °C	PdCl ₂ +L18, 24 h + 90 °C	84%	31%
21	CuI, 30 min + 100 °C	PdCl ₂ +L18, 24 h + 100 °C	88%	28%
22	CuI, 30 min + 90 °C	PdCl ₂ +L18, 24 h + 80 °C	86%	32%
23	CuI, 30 min + 80 °C	PdCl ₂ +L18, 24 h + 80 °C	87%	36%
24	CuI, 30 min + 70 °C	PdCl ₂ +L18, 24 h + 80 °C	87%	34%
25	CuI, 30 min + 60 °C	PdCl ₂ +L18, 24 h + 80 °C	82%	30%
26	CuI, 0 min + 80 °C	$PdCl_2 + L18, 24 h + 80 °C$	83%	20%
27	CuI, 10 min + 80 °C	$PdCl_2 + L18, 24 h + 80 \ ^{o}C$	82%	24%
28	CuI, 20 min + 80 °C	$PdCl_2 + L18, 24 h + 80 {}^{o}C$	84%	28%
29	CuI, 40 min + 80 °C	$PdCl_{2} + L18, 24 h + 80 \ ^{o}C$	85%	34%
30	CuI, 50 min + 80 °C	$PdCl_2 + L18, 24 h + 80 ^{o}C$	85%	38%
31	CuI, 60 min + 80 °C	$PdCl_2 + L18, 24 h + 80 ^{o}C$	86%	36%
32	CuI, 70 min + 80 °C	$PdCl_2 + L18, 24 h + 80 ^{o}C$	88%	35%
33	CuI, 50 min + 80 °C	$PdCl_2 + L18, 20 h + 80 ^{o}C$	86%	36%
34	CuI, 50 min + 80 °C	$PdCl_2 + L18, 15 h + 80 ^{o}C$	85%	40%
35	CuI, 50 min + 80 °C	$PdCl_2 + L18, 10 h + 80 ^{\circ}C$	76%	32%
36	CuI, 50 min + 80 °C	$PdCl_2 + L18, 5 h + 80 ^{o}C$	70%	26%
37°	CuI, 50 min + 80 °C	$PdCl_2 + L18, 15 h + 80 ^{o}C$	85%	38%
38 ^d	CuI, 50 min + 80 °C	$PdCl_2 + L18, 15 h + 80 °C$	85%	40%

Table S10. Optimization of the Conditions (catalysts, ligands, temperature, and time)^a

^aGC yield based on **2a** using dodecane as internal standard. ^b Step 1: **2a** (0.05 mmol), **4b** (0.06 mmol), CuI (5 mol %), Cs₂CO₃ (2.0 equiv, 0.1 mmol) in HFIP (0.5 mL) under N₂ protection, Step 2: Pd catalyst (5 mol%) and Ligand (6 mol%) were added in the shelenk tube. ^c Ligand (5 mol%). ^d Ligand (7 mol%).

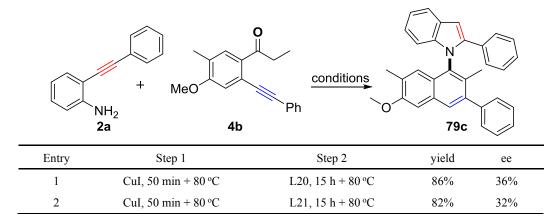
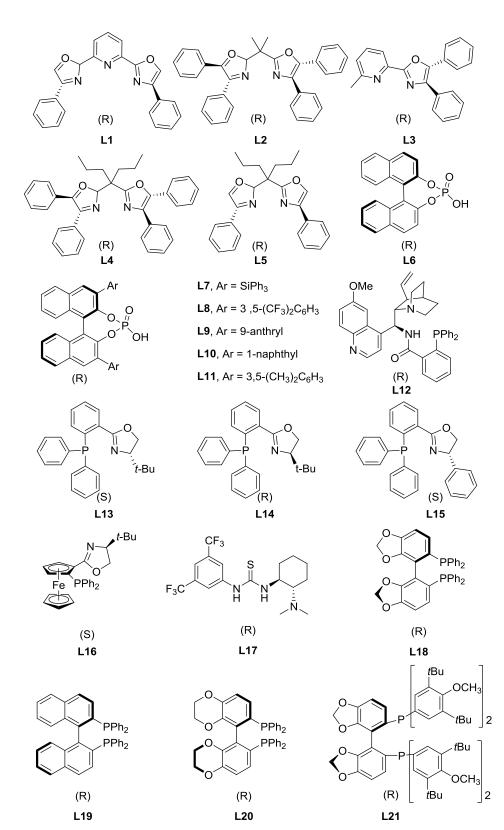
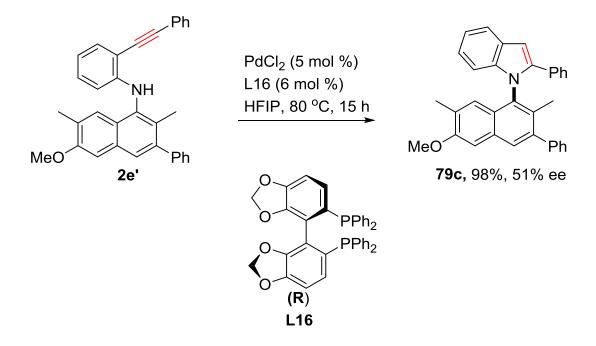
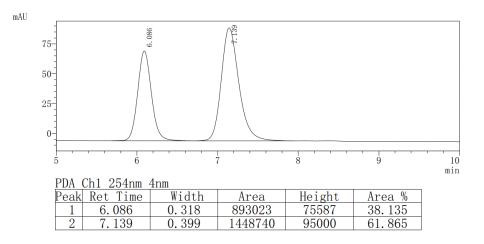
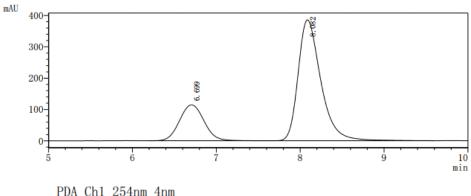




Table S11. Further Optimization of the Reaction Conditions (P ligand)^a

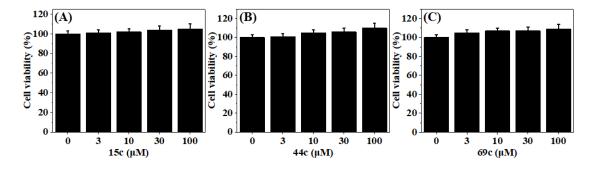

Figure S45. The chiral ligands in Table S9, S10 and S11

Scheme S11. The control experiment of the asymmetric synthesis of axially chiral naphthylindoles


Enantioselective of Table S9, entry 2.

Enantioselective of Table S10, entry 38.

Enantioselective of Scheme S11.



1 1	11	Uni 20 mm	111111			
Pe	ak	Ret Time	Width	Area	Height	Area %
	1	6.699	0.538	2338066	114525	24.359
	2	8.082	0.485	7260279	385690	75.641

6. MTT assay and Enzyme-linked immunosorbent assay

6.1 MTT assay

Cell viability was determined by the MTT method following the manufacturer's instructions. In all assays, the compounds were quickly dissolved in DMSO and diluted in sterile culture medium before being added to the cell culture (DMSO concentration < 0.1% (v/v)). Microglial BV-2 cells were seeded in 96-well plates at a density of 1×10^4 cells/well. After 12 h, compounds of designated concentrations (3, 10, 30 and 100 μ M) were added. After 24 h, cells were incubated with culture medium containing 10 μ l of 5 mg/ml MTT solution (Sigma-Aldrich) for 4 h at 37 °C. Plates were then centrifuged to remove the supernatants, and the crystals were dissolved in 150 μ L of DMSO. The spectrophotometrical absorbance of the samples was measured using a quantified microplate reader at a wavelength of 490 nm.

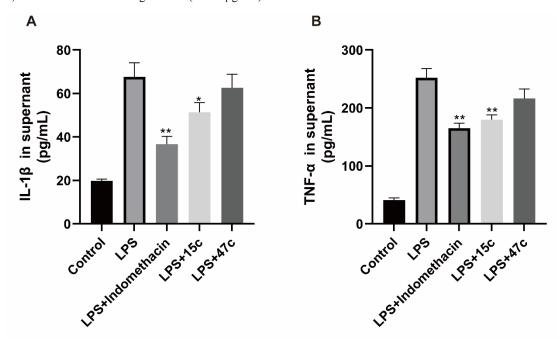


Figure S46. A) Cell viability was assessed by MTT assay in BV-2 cells after treatment with various concentrations of compound **15c** (0,3,10,30 and 100 μ M) for 24 h. Each experiment was repeated three times in triplicate. Statistical analysis was performed using one-way analysis of variance (ANOVA) with Dunnett' post hoc test. B) Cell viability was assessed by MTT assay in BV-2 cells after treatment with various concentrations of compound **44c** (0, 3,10,30 and 100 μ M) for 24 h. Each experiment was repeated three times in triplicate. Statistical analysis was performed using one-way analysis of variance (ANOVA) with Dunnett' post hoc test. C) Cell viability was assessed by MTT assay in BV-2 cells after treatment with Dunnett' post hoc test. C) Cell viability was assessed by MTT assay in BV-2 cells after treatment with Dunnett' post hoc test. C) Cell viability was assessed by MTT assay in BV-2 cells after treatment with Dunnett' post hoc test. C) Cell viability was assessed by MTT assay in BV-2 cells after treatment with various concentrations of compound **69c** (0, 3,10, 30 and 100 μ M) for 24 h. Each experiment was repeated three times in triplicate. Statistical analysis was performed using one-way analysis of variance (ANOVA) with Dunnett' post hoc test. C) Cell viability was assessed by MTT assay in BV-2 cells after treatment with various concentrations of compound **69c** (0, 3,10, 30 and 100 μ M) for 24 h. Each experiment was repeated three times in triplicate. Statistical analysis was performed using one-way analysis of variance (ANOVA) with Dunnett' post hoc test.

6.2 Enzyme-linked immunosorbent assay

To evaluate the anti-inflammatory bioactivity of this new type of naphthylindole with reported reference compound, we detected the effect of **indomethacin** (an indole derivative, non-steroidal anti-inflammatory drug),

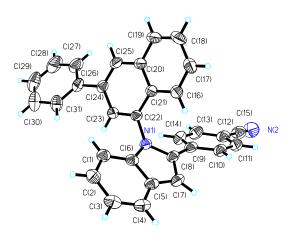
compound **15c**, and compound **47c** on the expression of 1L-1β and TNF-α in BV-2 microglial cells by using a commercial ELISA kit (PEPROTECH, USA). BV-2 microglial cells were pretreated with **indomethacin** (10µM) and compounds **15c** (10µM), **47c** (1µM) for 1 h before being stimulated with LPS (1 µg/mL) for another 24 h. **Indomethacin** and compound **15c** both attenuated LPS-induced 1L-1β (Figure 37, A) and TNF-α (Figure 37, B) secretion in BV-2 microglial cells (LPS 1 µg/mL) compared with the LPS group (only LPS), **P* < 0.05, ***P* < 0.01, versus the LPS group. Compound **47c** also attenuated LPS-induced 1L-1β (Figure S47, A) and TNF-α (Figure S47, B) activation in BV-2 microglial cells (LPS 1 µg/mL).

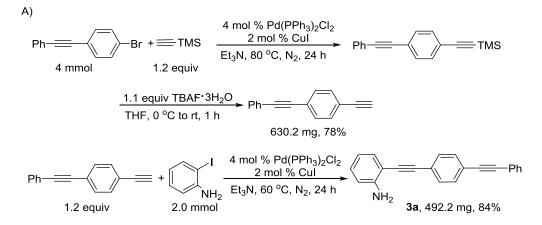
Figure S47 The BV-2 cells were pretreated with positive control indomethacin (non-steroidal anti-inflammatory drug, 10 μ M) and compounds **15c** (10 μ M), **47c** (1 μ M) for 1 h, then incubated with LPS (1 μ g/mL) for 24 h. The concentrations of IL-1 β (A) and TNF- α (B) in the supernatants were quantified using a commercial ELISA kit (PEPROTECH, USA). (A) IL-1 β (B) TNF- α . *P < 0.05, **P < 0.01, versus the LPS group.

6.3 ELISA

Supernatants of BV-2 microglial cells were collected and processed (1500 rpm, 10 min, 4 °C). Il-1 β and TNF- α , levels were evaluated by ELISA, according to the manufacturer's instructions (PeproTech,USA). Cytokine levels were measured in a plate reader at 405 nm, with wavelength correction at 650 nm. Cytokine concentrations (pg/mL) were determined using a standard calibration curve.

7. X-ray Crystallographic Data of 15c



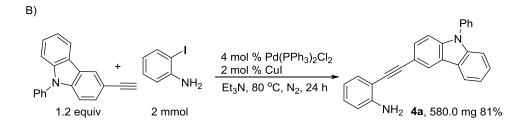

Figure S48. X-ray crystal structure of compound 15c (CCDC number: 2082723)

$C_{31}H_{20}N_2$
420.49
293(2)
monoclinic
P21/c
18.4424(11)
17.3145(11)
7.3180(5)
90.00
93.009(2)
90.00
2333.6(3)
4
1.197
0.070
880.0
0.30 imes 0.28 imes 0.25

Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.7 to 50.02
Index ranges	$-21 \le h \le 21, -20 \le k \le 20, -8 \le l \le 8$
Reflections collected	22244
Independent reflections	4097 [R(int) = 0.0281]
Data/restraints/parameters	4097/0/298
Goodness-of-fit on F ²	1.085
Final R indexes [I>=2σ (I)]	$R_1 = 0.0393, wR_2 = 0.1025$
Final R indexes [all data]	$R_1 = 0.0422, wR_2 = 0.1048$
Largest diff. peak/hole / e Å ⁻³	0.15/-0.20

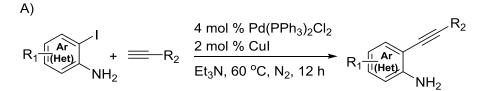
8. Preparation of Substrates

8.1. Synthesis of the o-Amino Arylalkynes

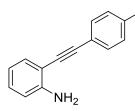


The preparations of this compound was performed according to a literature reference.¹² A Schlenk tube of 100 mL equipped with a magnetic stir bar was charged with Pd(PPh₃)₂Cl₂ (112.2 mg, 0.16 mmol, 4 mol %), CuI (15.2 mg, 0.08 mmol, 2 mol %), and 1-bromo-4-(phenylethynyl)benzene (1.028 g, 4 mmol) in triethylamine (16.0 mL); then, ethynyltrimethylsilane (490.0 mg, 5.0 mmol) were added. The reaction mixture was stirred at 80 °C 24 h under N₂. After the starting material was consumed, the mixture was quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over anhydrous Na₂SO₄ and concentrated in vacuo. Then the reaction mixture was filtered through a pad of silica gel and washed with diethyl ether. The solvent was evaporated under the reduced pressure to afford trimethyl((4-(phenylethynyl)phenyl)ethynyl)silane as a crude product, which was used directly without further purification for the next step.

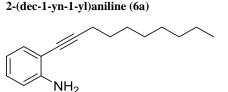
To a solution of the above crude product in in THF (16 mL) was added TBAF·3H₂O (1.271 g, 4.4 mmol, 1.1 equiv) at 0 °C. The resulting solution was warmed up to room temperature and stirred for 1 h. Then the mixture was quenched with NH₄Cl solution and extracted with dichloromethane. The combined organic extracts were washed with water and brine, and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the 1-ethynyl-4-(phenylethynyl)benzene (630.2 mg, 78%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.62–7.57 (m, 2H), 7.53 (s, 4H), 7.42–7.36 (m, 3H), 3.23 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 131.9, 131.5, 131.3, 128.4, 128.3, 123.6, 122.8, 121.8, 91.3, 88.8, 83.2, 78.9.


A Schlenk tube of 50 mL equipped with a magnetic stir bar was charged with Pd(PPh₃)₂Cl₂ (56.1 mg, 0.08 mmol, 4 mol%), CuI (7.6 mg, 0.04 mmol, 2 mol %), and 1-ethynyl-4-(phenylethynyl)benzene (404.0 mg, 2.4 mmol) in triethylamine (8 mL); then, *o*-iodoaniline (438.0 mg, 2 mmol) were added. The reaction mixture was stirred at

60 °C for 24 h under N₂. After the starting material was consumed, the mixture was quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the desired 2-((4-(phenylethynyl)phenyl)ethynyl)aniline (492.2 mg, 84%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.47 (m, 6H), 7.41–7.32 (m, 4H), 7.16 (t, *J* = 7.6 Hz, 1H), 6.83–6.60 (m, 2H), 4.29 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 132.1, 131.5, 131.5, 131.3, 129.9, 128.4, 128.3, 123.1, 122.9, 118.0, 114.3, 107.6, 94.4, 91.2, 89.0, 87.8.

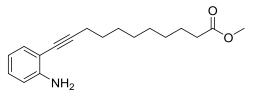

A Schlenk tube of 50 mL equipped with a magnetic stir bar was charged with Pd(PPh₃)₂Cl₂ (56.1 mg, 0.2 mmol, 4 mol %), CuI (7.6 mg, 0.1 mmol, 2 mol %), and 3-bromo-9-phenyl-9*H*-carbazole (640.8 mg, 2.4 mmol) in triethylamine (8 mL); then, *o*-iodoaniline (438.0 mg, 2 mmol) were added. The reaction mixture was stirred at 60 °C for 24 h under N₂. After the starting material was consumed, the mixture was quenched with saturated NH₄Cl solution and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over anhydrous Na₂SO₄ and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel to give the desired 2-((9-phenyl-9H-carbazol-3-yl)ethynyl)aniline (580.0 mg, 81%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 8.15 (d, *J* = 7.7 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 2H), 7.57 (t, *J* = 7.7 Hz, 3H), 7.52-7.46 (m, 1H), 7.43 (t, *J* = 8.7 Hz, 3H), 7.39 – 7.29 (m, 1H), 7.16 (t, *J* = 7.7 Hz, 1H), 6.78 – 6.73 (m, 2H), 4.34 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.6, 141.3, 140.4, 137.2, 132.0, 129.9, 129.4, 129.2, 127.7, 127.0, 126.4, 123.7, 123.3, 122.8, 120.4, 120.4, 117.9, 114.4, 114.2, 109.9, 109.8, 108.5, 95.8, 84.1. HRMS (EI) m/z: [M]+ calcd for C₂₆H₁₈N₂ 358.1470; found 358.1472.

General procedure for the synthesis of ortho-alkynylanilines


The preparations of 1-(2-bromo-4-(dimethylamino)phenyl)ethanone was performed according to a literature reference.¹⁴ To a 100 mL Schlenk tube charged with 2-Iodoaniline (2 mmol, 1.0 equiv), Pd(PPh₃)₂Cl₂ (0.04 mmol, 2 mol %), and CuI (0.08 mmol, 4 mol %) in degassed Et₃N (5 mL) was added aryl alkynes (2.4 mmol, 1.2 equiv), and the resulting solution was stirred at 60 °C for 12 h. Upon completion, the solvent was removed under reduced pressure, and the residue was extracted with EtOAc (3 x 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by a silica gel flash chromatography (petroleum ether / ethyl acetate = 10 / 1) to afford products.

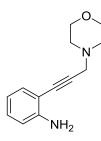
2-((4-iodophenyl)ethynyl)aniline (5a)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 78% yield (497.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 7.9 Hz, 2H), 7.39 (d, J = 7.5 Hz, 1H), 7.27 (d, J = 8.0 Hz, 2H), 7.18 (t, J = 7.6 Hz, 1H), 6.80–6.70 (m, 2H), 4.28 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 137.4, 132.8, 132.1, 129.9,


122.7, 118.0, 114.3, 107.4, 93.9, 93.7, 87.3. HRMS (EI) m/z: [M]+ calcd for C₁₄H₁₀I 318.9858; found 318.9854.

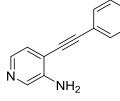
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a yellow oil in 88%

yield (403.4 mg). ¹H NMR (400 MHz, CDCl₃) & 7.34–7.18 (m, 1H), 7.09 (t, J = 7.7 Hz, 1H), 6.68 (t, J = 7.6 Hz, 2H), 4.17 (s, 2H), 2.48 (t, J = 7.0 Hz, 2H), 1.63 (dd, J = 14.4, 7.2 Hz, 2H), 1.53 - 1.43 (m, 2H), 1.40-1.27 (m, 8H), 0.92 (t, J = 5.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 147.5, 131.9, 128.6, 117.7, 114.0, 108.9, 95.7, 76.9, 31.7, 29.1, 29.0, 28.9, 22.6, 19.5, 14.0. HRMS (EI) m/z: [M]+ calcd for C₁₆H₂₃N 229.1830; found 229.1831.


methyl 11-(2-aminophenyl)undec-10-ynoate (7a)

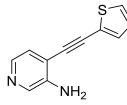
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 86% yield (493.6 mg). ¹H NMR (400

MHz, CDCl₃) δ 7.22 (d, *J* = 7.6 Hz, 1H), 7.04 (t, *J* = 7.6 Hz, 1H), 6.67-6.59 (m, 2H), 4.16 (s, 2H), 3.64 (s, 3H), 2.44 (t, *J* = 7.0 Hz, 2H), 2.29 (t, *J* = 7.5 Hz, 2H), 1.66 – 1.52 (m, 4H), 1.44 (s, 2H), 1.31 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 147.5, 131.8, 128.6, 117.5, 113.9, 108.7, 95.4, 51.2, 33.8, 28.9, 28.9, 28.7, 28.6, 24.7, 19.4. HRMS (EI) m/z: [M]+ calcd for C₁₈H₂₅NO₂ 287.1885; found 287.1882.


2-(3-morpholinoprop-1-yn-1-yl)aniline (8a)

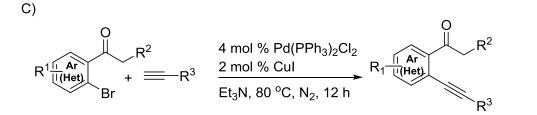
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 88% yield (380.4 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.24 (s, 1H), 7.08 (t, *J* = 7.7 Hz, 1H), 6.65 (t, *J* = 9.1 Hz, 2H), 4.16 (s, 2H), 3.74 (d, *J* = 3.7 Hz, 4H), 3.55 (s, 2H), 2.62 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 147.7, 132.1, 129.3, 117.5, 114.0, 107.4,

89.0, 82.0, 66.6, 52.2, 48.0. HRMS (EI) m/z: [M]+ calcd for $C_{13}H_{16}N_2O$ 216.1263; found 216.1268.

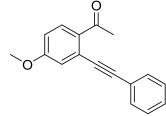

4-(phenylethynyl)pyridin-3-amine (9a)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 81% yield (314.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.96 (d, *J* = 4.4 Hz, 1H), 7.53 (d, *J* = 3.0 Hz, 2H), 7.37 (s, 3H), 7.18 (d,

J = 4.3 Hz, 1H), 4.32 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 138.8, 136.9, 131.5, 128.9, 128.4, 124.9, 122.1, 114.5, 98.2, 83.2. HRMS (EI) m/z: [M]+ calcd for C₁₃H₁₀N₂ 194.0844; found 194.0845.


4-(thiophen-2-ylethynyl)pyridin-3-amine (10a)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 83% yield (332.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.95 (s, 1H), 7.57 (s, 1H), 7.32 (s, 1H), 7.18 (dd, *J* = 11.0, 4.1 Hz, 2H), 4.25 (s, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 143.0, 138.9, 136.9, 129.6, 129.5, 125.7, 124.9, 121.2, 114.6, 93.3, 82.8.


HRMS (EI) m/z: [M]+ calcd for C13H10N2 200.0408; found 200.0405.

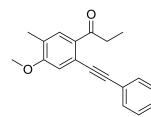
8.2. Synthesis of the *o*-Carbonyl Arylalkynes

The preparations of 1-(2-bromo-4-(dimethylamino)phenyl)ethanone was performed according to a literature reference.¹³ To a 100 mL Schlenk tube charged with 1-(2-bromophenyl)ethanone (398.1 mg, 2.0 mmol), Pd(PPh₃)₂Cl₂ (0.04 mmol, 2 mol %), and CuI (0.08 mmol, 4 mol %) in degassed Et₃N (5 mL) was added alkynes (2.4 mmol, 1.2 equiv), and the resulting solution was stirred at 80 °C for 12 h. Upon completion, the solvent was removed under reduced pressure, and the residue was extracted with EtOAc (3 x 5 mL). The combined organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by a silica gel flash chromatography (petroleum ether / ethyl acetate = 20 / 1) to afford products in good yields ranging from 75% to 93%.

1-(4-methoxy-2-(phenylethynyl)phenyl)ethan-1-one (2b)

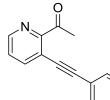
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 93% yield (465.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, *J* = 8.8 Hz, 1H), 7.60–7.54 (m, 3.0 Hz, 2H),

7.39 – 7.35 (m, 3H), 7.11 (d, J = 2.6 Hz, 1H), 6.91 (dd, J = 8.8, 2.6 Hz, 1H), 3.87 (s, 3H), 2.77 (s, 3H). HRMS (EI) m/z: [M]+ calcd for C17H14O2 250.0994; found 250.0992.


1- (4-methoxy-5-methyl-2-(phenylethynyl)phenyl)ethan-1-one (3b)

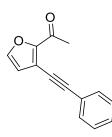
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 91% yield (480.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.66 (s, 1H), 7.58-7.53 (m, 2H), 7.37–7.32 (m, 3H), 6.99 (s, 1H),

3.87 (s, 3H), 2.77 (s, 3H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 198.2, 159.9, 132.4, 131.7, 131.3, 128.5, 128.3, 127.4, 122.9, 121.4, 114.3, 94.2, 89.3, 55.4, 29.7, 16.0. HRMS (EI) m/z: [M]+ calcd for C₁₈H₁₆O₂ 264.1150; found 264.1153.


1-(4-methoxy-5-methyl-2-(phenylethynyl)phenyl)propan-1-one (4b)

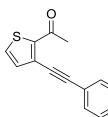
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 88% yield (489.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.62 (s, 1H), 7.58–7.54 (m, 2H), 7.38–7.34 (m, 3H), 7.00 (s, 1H),

3.88 (s, 3H), 3.18 (q, *J* = 7.3 Hz, 2H), 2.24 (s, 3H), 1.23 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 202.0, 159.7, 132.6, 131.5, 131.4, 128.5, 128.4, 127.6, 123.0, 120.9, 114.4, 93.7, 89.2, 55.5, 34.7, 16.1, 8.7. HRMS (EI) m/z: [M]+ calcd for C₁₉H₁₈O₂ 278.1307; found 278.1304.


1-(3-(phenylethynyl)pyridin-2-yl)ethan-1-one (5b)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 85% yield (375.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.94 (d, *J* = 7.8 Hz, 1H), 7.61 (s, 2H), 7.46–7.32 (m, 4H), 2.74 (s, 3H). ¹³C NMR

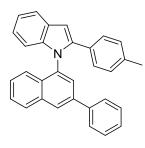
(101 MHz, CDCl₃) δ 199.1, 154.3, 147.2, 141.6, 131.9, 128.9, 128.3, 125.3, 122.7, 118.5, 96.4, 86.1, 27.4. HRMS (EI) m/z: [M]+ calcd for C₁₅H₁₁NO 221.0841; found 221.0839.


1-(3-(phenylethynyl)furan-2-yl)ethan-1-one (6b)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 84% yield (353.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 3H), 7.38 (s, 3H), 6.64 (s, 1H), 2.66 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.8, 152.6, 145.5, 131.6, 129.1, 128.4, 122.3, 115.5, 114.4, 97.6, 80.8, 27.5. HRMS (EI) m/z: [M]+

calcd for $C_{14}H_{10}O_2$ 210.0681; found 210.0684.

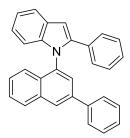
1-(3-(pyridin-3-ylethynyl)thiophen-2-yl)ethan-1-one (7b)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ ethyl acetate (20/1) to afford a white powder in 75% yield (340.5 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.76 (s, 1H), 8.58 (s, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.57–7.53 (m, 1H), 7.33–7.28 (m,

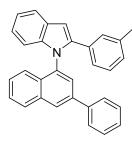
1H), 7.27–7.22 (m, 1H), 2.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.4, 151.9, 149.2, 145.9, 138.2, 132.7, 131.8, 124.3, 123.1, 119.6, 92.7, 87.5, 28.8. HRMS (EI) m/z: [M]+ calcd for C₁₃H₁₉NOS 227.0405; found 227.0406.

9. Characterization Data for the Products


1-(3-phenylnaphthalen-1-yl)-2-(p-tolyl)-1H-indole (1c)

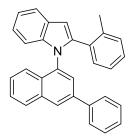
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 94% yield (76.9 mg). mp 192–193 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.75–7.71 (m, 1H), 7.68 (d, *J* = 7.5 Hz, 2H), 7.57 (t, *J* = 7.5

Hz, 1H), 7.51 (t, J = 7.9 Hz, 3H), 7.42 (t, J = 7.4 Hz, 2H), 7.30–7.21 (m, 3H), 7.16 (t, J = 7.6 Hz, 1H), 7.01-6.94 (m, 4H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.2, 140.1, 139.9, 138.2, 137.1, 135.9, 134.5, 130.4, 129.5, 128.9, 128.8, 128.5, 128.3, 128.0, 127.6, 127.2, 127.0, 126.9, 126.7, 126.0, 123.5, 122.0, 120.5, 120.3, 111.1, 102.8, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1828.


2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (2c)

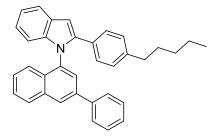
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 95% yield (75.0 mg) mp 187–188 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.67–7.65 (m, 1H), 7.62–7.58 (m, 2H), 7.56–7.41 (m, 5H), 7.41–7.34 (m, 2H), 7.32–7.28 (m,

2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.15–7.11 (m, 3H), 6.98 (s, 1H), 6.93 (d, *J* = 8.2 Hz, 1H). ¹³C NMR δ (101 MHz, CDCl₃) 142.1, 140.2, 139.9, 138.3, 135.8, 134.6, 132.5, 130.4, 128.9, 128.6, 128.3, 128.2, 128.1, 127.7, 127.4, 127.2, 127.0, 126.9 126.8, 126.1, 123.5, 122.3, 120.7, 120.5, 111.2, 103.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₁N 395.1674; found 395.1680.


1-(3-phenylnaphthalen-1-yl)-2-(m-tolyl)-1H-indole (3c)

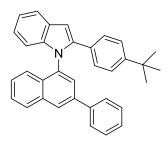
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 81% yield (66.3 mg). mp 174–175 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.67 (s, 1H), 7.62 (d, *J* = 7.5 Hz, 2H), 7.52 (t, *J* = 7.3 Hz, 1H),

7.49–7.42 (m, 3H), 7.41–7.34 (m, 2H), 7.24–7.17 (m, 2H), 7.11 (t, *J* = 7.3 Hz, 1H), 7.02–6.89 (m, 5H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 140.1, 139.9, 138.2, 137.6, 135.9, 134.5, 132.3, 130.4, 129.0, 128.9, 128.5, 128.2, 128.1, 127.9, 127.6, 127.2, 126.9, 126.9, 126.7, 126.1, 125.1, 123.5, 122.2, 120.6, 120.4, 111.1, 103.1, 21.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1832.


1-(3-phenylnaphthalen-1-yl)-2-(o-tolyl)-1H-indole (4c)

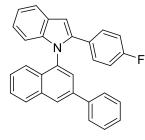
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 68% yield (55.6 mg). mp 162–163 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.83 (d, *J* = 7.9 Hz, 1H), 7.58–7.50 (m, 5H), 7.50–7.38 (m, 4H), 7.30–7.23 (m, 2H), 7.21–7.09 (m, 3H), 7.03–6.95 (m,

2H), 6.86 (s, 1H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.1, 140.0, 138.9, 138.0, 137.4, 135.2, 134.4, 132.2, 131.1, 130.0, 129.9, 128.8, 128.5, 128.1, 128.0, 127.5, 127.1, 126.7, 126.5, 125.9, 124.9, 123.7, 122.0, 120.4, 120.4, 111.3, 104.5, 20.6. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1824.


2-(4-pentylphenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (5c)

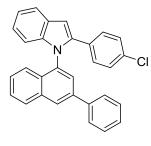
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 85% yield (79.1 mg). mp 156–157 °C.¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.64–7.62 (m,

1H), 7.60–7.57 (m, 2H), 7.56–7.47 (m, 2H), 7.47–7.41 (m, 2H), 7.42–7.34 (m, 2H), 7.23–7.17 (m, 3H), 7.13–7.08 (m, 1H), 6.97–6.88 (m, 4H), 2.58–2.40 (m, 2H), 1.59–1.44 (m, 2H), 1.33–1.14 (m, 4H), 0.84 (t, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.3, 142.1, 140.1, 139.9, 138.3, 135.9, 134.5, 130.4, 129.7, 128.8, 128.5, 128.3, 128.2, 128.0, 127.6, 127.2, 126.9, 126.9, 126.8, 126.0, 123.6, 122.0, 120.5, 120.3, 111.1, 102.8, 35.4, 31.3, 30.8, 22.4, 13.9. HRMS (EI) m/z: [M]⁺ calcd for C₃₅H₃₁N 465.2457; found 465.2461.


2-(4-(tert-butyl)phenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (6c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 84% yield (75.8 mg). mp 202–203 °C.¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.59–7.57 (m, 1H), 7.57-7.49 (m, 4H), 7.45-7.34 (m, 4H), 7.22-7.12 (m, 5H), 7.08 (t, J = 7.4 Hz, 1H), 6.95 (s, 1H), 6.86 (d, J = 8.2 Hz,

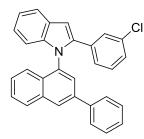
1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) & 150.3, 142.1, 140.1, 140.0, 138.4, 135.9, 134.6, 130.4, 129.5, 128.9, 128.5, 128.3, 127.8, 127.6, 127.2, 127.0, 126.9, 126.9, 126.1, 125.1, 123.7, 122.1, 120.6, 120.3, 111.2, 102.9, 34.4, 31.1. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₉N 451.2300; found 451.2298.


2-(4-fluorophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (7c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 81% yield (66.9 mg). mp 210–211 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.78 (d, J = 7.8 Hz, 1H), 7.67–7.65 (m, 1H), 7.62–7.58 (m, 2H), 7.53 (t, J = 7.5 Hz,

1H), 7.50–7.42 (m, 3H), 7.41–7.34 (m, 2H), 7.32–7.28 (m, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.15–7.10 (m, 3H), 6.98 (s, 1H), 6.93 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.1 (d, J = 247.5 Hz), 141.0, 140.1, 139.8, 138.3, 135.6, 134.6, 130.3, 129.8 (d, J = 8.1 Hz), 128.9, 128.6 (d, J = 3.4 Hz), 128.6, 128.1, 127.7, 127.2, 127.1, 127.0, 126.7, 126.2, 123.3, 122.4, 120.6 (d, J = 28.6 Hz), 115.3, 115.1, 111.2, 103.2. ¹⁹F NMR (376 MHz, CDCl₃): δ -114.2 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 413.1580; found 413.1577.

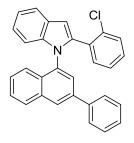
2-(4-chlorophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (8c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 86% yield (73.8 mg). mp 210–211 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.77 (d, J = 7.8 Hz, 1H), 7.67–7.65 (m, 1H), 7.63 (d, J = 8.1 Hz, 2H), 7.54 (t, J =

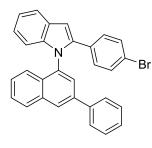
7.3 Hz, 1H), 7.46 (t, J = 7.5 Hz, 2H), 7.43–7.34 (m, 3H), 7.24–7.18 (m, 3H), 7.15–7.05 (m, 3H), 6.96 (s, 1H), 6.92

(d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 140.3, 139.7, 138.3, 135.5, 134.6, 133.3, 130.9, 130.3, 129.2, 128.9, 128.6, 128.4, 128.1, 127.8, 127.2, 127.1, 127.0, 126.6, 126.3, 123.2, 122.6, 120.8, 120.5, 111.2, 103.5. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1280.


2-(3-chlorophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (9c)

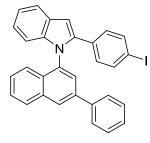
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 77% yield (66.1 mg). mp 159–160 °C.¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.00 (d, *J* = 8.3 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.70–7.68(m, 1H), 7.66–7.62 (m, 2H), 7.56–7.51 (m, 1H),

7.50–7.43 (m, 3H), 7.42–7.36 (m, 3H) 7.25–7.20 (m, 1H), 7.17–7.11 (m, 1H), 7.10–7.07 (m, 1H), 7.05–7.02 (m, 1H), 7.00–6.97 (m, 2H), 6.94 (d, *J* = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.4, 140.3, 139.8, 138.3, 135.4, 134.6, 134.2, 134.0, 130.2, 129.3, 128.9, 128.6, 128.2, 128.0, 127.7, 127.3, 127.2, 127.2, 127.0, 126.7, 126.4, 125.9, 123.2, 122.7, 120.8, 120.7, 111.2, 103.9. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1288.


2-(2-chlorophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (10c)

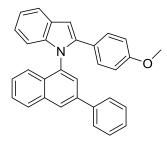
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 72% yield (61.8 mg). mp 166–167 °C.¹H NMR (400 MHz, CDCl₃) δ 8.04 (s, 1H), 7.92 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.73-7.69 (m, 1H), 7.58 (d, *J* = 7.8 Hz, 2H), 7.53–7.43 (m, 4H), 7.41–7.35 (m, 2H), 7.31 (d, *J*

= 8.0 Hz, 1H), 7.27–7.20 (m, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 7.11–7.04 (m, 1H), 7.01–6.94 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 139.0, 138.4, 137.9, 135.0, 134.4, 134.3, 132.3, 131.8, 130.1, 129.6, 129.2, 128.9, 128.4, 127.8, 127.6, 127.1, 126.7, 126.6, 126.5, 126.0, 125.9, 123.7, 122.4, 120.7, 120.6, 111.2, 105.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1281.


1- (4-bromophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (11c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 79% yield (74.7 mg). mp 234–235 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.67–7.65 (m, 1H), 7.63 (d, *J* = 7.8 Hz, 2H), 7.58–7.51 (m,

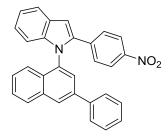
1H), 7.50–7.44 (m, 2H), 7.43–7.35 (m, 3H), 7.28–7.18 (m, 3H), 7.17–7.08 (m, 3H), 6.96 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H).
¹³C NMR (101 MHz, CDCl₃) δ 140.8, 140.3, 139.7, 138.3, 135.5, 134.6, 131.4, 131.3, 130.3, 129.5, 128.9, 128.6, 128.1, 127.8, 127.2, 127.2, 127.1, 126.6, 126.3, 123.2, 122.5, 121.5, 120.8, 120.6, 111.2, 103.6. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀BrN 473.0799; found 473.0795.


2-(4-iodophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (12c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 79% yield (82.3 mg). mp 244–245 °C.¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.67–7.58 (m, 3H), 7.53 (t, *J* = 6.8 Hz, 1H), 7.49–7.41 (m,

4H), 7.41–7.33 (m, 3H), 7.20 (t, *J* = 7.3 Hz, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.01 (d, *J* = 7.7 Hz, 2H), 6.96 (s, 1H), 6.90 (d, *J* = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.8, 140.3, 139.7, 138.3, 137.3, 135.5, 134.6, 132.0, 130.3, 129.6, 128.9, 128.6, 128.1, 127.8, 127.2, 127.2, 127.1, 126.6, 126.3, 123.2, 122.6, 120.8, 120.6, 111.2, 103.6, 93.2. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀IN 521.0640; found 521.0642.

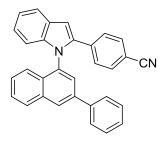
2-(4-methoxyphenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (13c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 88% yield (74.8 mg). mp 205–206 °C.¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.67–7.65 (m, 1H), 7.62 (d, *J* = 7.7 Hz, 2H), 7.52

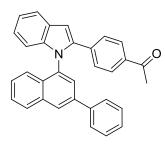
(t, J = 7.4 Hz, 1H), 7.47–7.41 (m, 3H), 7.39–7.33 (m, 2H), 7.22–7.15 (m, 3H), 7.08 (t, J = 7.7 Hz, 1H), 6.90–6.85 (m, 2H), 6.65 (d, J = 8.7 Hz, 2H), 3.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.9, 142.0, 140.0, 139.9, 138.3,

135.9, 134.5, 130.4, 129.4, 128.9, 128.5, 128.3, 127.7, 127.2, 127.0, 126.9, 126.7, 126.1, 125.0, 123.5, 121.9, 120.58, 120.2, 113.6, 111.0, 102.3, 55.1. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃NO 425.1780; found 425.1782.


2-(4-nitrophenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (14c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a yellow powder in 68% yield (59.8 mg). mp 244–245 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.99 (d, *J* = 8.6 Hz, 2H), 7.83 (d, *J* = 7.7 Hz, 1H), 7.73–7.70 (m, 1H), 7.66

(d, J = 7.4 Hz, 2H), 7.62-7.55 (m, 1H), 7.52–7.38 (m, 7H), 7.32–7.24 (m, 1H), 7.24–7.14 (m, 2H), 6.99 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 146.4, 140.9, 139.5, 139.2, 138.8, 138.4, 135.2, 134.7, 130.1, 129.0, 128.8, 128.1, 127.9, 127.8, 127.4, 127.3, 127.1, 126.6, 126.5, 123.7, 123.5, 122.9, 121.3, 121.1, 111.4, 105.8. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀N₂O₂ 440.1525; found 440.1527.


2-(1-(3-phenylnaphthalen-1-yl)-1H-indol-2-yl)benzonitrile (15c)

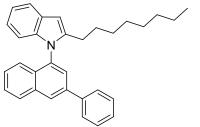
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 76% yield (63.8 mg). mp 222–223 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.66 (s, 1H), 7.62 (d, *J* = 7.9 Hz, 2H), 7.56 (t, *J*

= 7.2 Hz, 1H), 7.47 (t, J = 7.4 Hz, 2H), 7.44–7.33 (m, 7H), 7.23 (d, J = 7.7 Hz, 1H), 7.16 (t, J = 7.6 Hz, 1H), 7.08 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.7, 139.6, 139.5, 138.4, 136.8, 135.2, 134.6, 131.9, 130.0, 129.0, 128.7, 128.1, 127.9, 127.3, 127.2, 127.1, 126.5, 126.5, 123.4, 123.0, 121.1, 121.0, 118.6, 111.3, 110.5, 105.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₀N₂ 420.1626; found 420.1624.


1-(4-(1-(3-phenylnaphthalen-1-yl)-1H-indol-2-yl)phenyl)ethan-1-one (16c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 75% yield (65.6 mg). mp 189–190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.72–7.66 (m, 3H), 7.62 (d, *J* = 7.4 Hz,

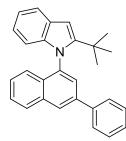
2H), 7.54 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.7 Hz, 3H), 7.41–7.34 (m, 4H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.08 (s, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 140.7, 140.6, 139.7, 138.4, 137.0, 135.6, 135.5, 134.6, 130.2, 129.0, 128.7, 128.3, 128.0, 127.8, 127.3, 127.2, 127.1, 126.6, 126.4, 123.2, 123.1, 121.0, 120.8, 111.3, 104.8, 26.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₂₃NO 437.1780; found 437.1785.


2-(4-(phenylethynyl)phenyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (17c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 80% yield (79.2 mg). mp 199–200 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.67

(s, 1H), 7.61 (d, *J* = 7.5 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.47–7.40 (m, 5H), 7.35 (t, *J* = 7.3 Hz, 2H), 7.32-7.24 (m, 7H), 7.23–7.17 (m, 1H), 7.11 (t, *J* = 7.5 Hz, 1H), 7.00 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.3, 140.4, 139.7, 138.4, 135.7, 134.6, 132.3, 131.5, 131.4, 130.2, 128.9, 128.6, 128.2, 128.2, 127.8, 127.7, 127.2, 127.1, 127.0, 126.6, 126.2, 123.3, 123.1, 122.6, 122.0, 120.8, 120.6, 111.2, 103.8, 90.2, 89.1. HRMS (EI) m/z: [M]⁺ calcd for C₃₈H₂₅N 495.1987; found 495.1979.

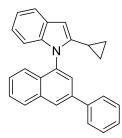
2-octyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (18c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 92% yield (79.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.26 (s, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.86 (s, 1H), 7.80 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J*

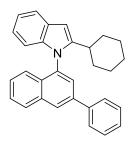
= 7.8 Hz, 1H), 7.61–7.50 (m, 3H), 7.48–7.35 (m, 2H), 7.19 (t, *J* = 9.5 Hz, 2H), 7.07 (t, *J* = 7.5 Hz, 1H), 6.88 (d, *J* =

8.1 Hz, 1H), 6.60 (s, 1H), 2.55 (t, J = 7.5 Hz, 2H), 1.66–1.55 (m, 2H), 1.32–1.02 (m, 10H), 0.87 (t, J = 6.9 Hz, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 143.0, 139.8, 139.0, 138.4, 135.1, 134.6, 130.6, 129.0, 128.5, 128.1, 127.7, 127.2, 127.0, 127.0, 126.5, 126.4, 123.2, 121.0, 119.9, 119.6, 110.2, 100.0, 31.7, 29.2, 29.0, 29.0, 28.5, 26.9, 22.5, 14.0.
HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₃₃N 431.2613; found 431.2611.


3- (tert-butyl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (19c)

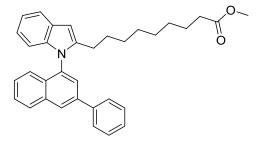
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 80% yield (60.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.01 (d, *J* = 8.4 Hz, 1H), 7.99–7.95 (m, 1H), 7.78 (d, *J* = 7.9 Hz, 2H), 7.68 (d, *J* = 7.8 Hz, 1H), 7.52 (t, *J* = 7.6 Hz, 3H), 7.46–7.39 (m, 1H), 7.36–7.29 (m,

1H), 7.13 (t, J = 7.4 Hz, 1H), 7.03–6.94 (m, 2H), 6.65 (s, 1H), 6.56 (d, J = 8.2 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 151.3, 140.8, 139.8, 138.0, 137.3, 134.4, 131.6, 129.0, 128.3, 128.2, 127.8, 127.2, 126.9, 126.9, 126.6, 123.9, 121.4, 119.9, 119.7, 110.4, 99.7, 33.4, 30.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₂₅N 375.1987; found 375.1990.


2-cyclopropyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (20c)

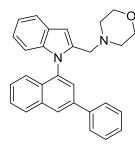
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 83% yield (59.6 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 8.05 (d, *J* = 8.2 Hz, 1H), 7.93–7.90 (m, 1H), 7.88–7.74 (m, 2H), 7.67 (d, *J* = 7.8 Hz, 1H), 7.61–7.48 (m, 3H), 7.48–7.36 (m, 2H), 7.31–7.25 (m, 1H), 7.19–

7.12 (m, 1H), 7.11–7.02 (m, 1H), 6.87 (d, *J* = 8.1 Hz, 1H), 6.35 (s, 1H), 1.68–1.47 (m, 1H), 0.8–0.73 (m, 3H), 0.73– 0.64 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 145.1, 139.9, 139.2, 138.4, 135.3, 134.6, 130.7, 129.0, 128.4, 127.9, 127.7, 127.2, 126.9, 126.9, 126.6, 126.3, 123.5, 121.1, 120.0, 119.7, 110.1, 96.9, 8.3, 8.1, 7.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₂₁N 359.1674; found 359.1670.


4-cyclohexyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (21c)

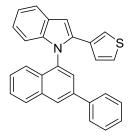
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 86% yield (69.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.87–7.84 (m, 1H), 7.82–7.76 (m, 2H), 7.69 (d, *J* = 7.8 Hz, 1H), 7.60–7.50 (m, 3H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.37 (t, *J* = 7.6 Hz,

1H), 7.20–7.10 (m, 2H), 7.03 (t, J = 7.6 Hz, 1H), 6.79 (d, J = 8.2 Hz, 1H), 6.58 (s, 1H), 2.46–2.36 (m, 1H), 2.07–1.98 (m, 1H), 1.82–1.74 (m, 1H), 1.74–1.67 (m, 1H), 1.66–1.56 (m, 2H), 1.54–1.42 (m, 2H), 1.27–0.90 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 148.6, 139.9, 138.9, 138.3, 135.2, 134.6, 130.8, 129.0, 128.5, 128.1, 127.8, 127.2, 127.1, 127.0, 126.5, 126.4, 123.2, 121.0, 119.9, 119.7, 110.4, 98.2, 36.0, 34.3, 33.1, 26.3, 25.9. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₇N 401.2143; found 401.2138.


Methyl 9-(1-(3-phenylnaphthalen-1-yl)-1H-indol-2-yl)nonanoate (22c)

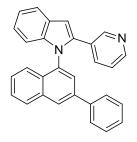
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (5/1) to afford a sticky pale yellow liquid in 78% yield (76.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.10 (d, *J* = 8.2 Hz,

1H), 7.94 (s, 1H), 7.86 (d, J = 7.5 Hz, 2H), 7.80 (d, J = 7.7 Hz, 1H), 7.65–7.54 (m, 3H), 7.52–7.40 (m, 2H), 7.32–7.21 (m, 2H), 7.13 (t, J = 7.5 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.69 (s, 1H), 3.75 (s, 3H), 2.64 (t, J = 7.3 Hz, 2H), 2.35 (t, J = 7.4 Hz, 2H), 1.72–1.58 (m, 4H), 1.40–1.18 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 142.7, 139.7, 139.0, 138.2, 135.1, 134.6, 130.6, 128.9, 128.4, 128.0, 127.6, 127.1, 126.9, 126.9, 126.3, 126.2, 123.1, 121.0, 119.8, 119.6, 110.1, 100.0, 51.2, 33.8, 28.8, 28.4, 26.8, 24.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₃₅NO₂ 489.2688; found489.2679.


4-((1-(3-phenylnaphthalen-1-yl)-1H-indol-2-yl)methyl)morpholine (23c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (5/1) to afford a sticky pale yellow liquid in 79% yield (66.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 8.03 (d, *J* = 8.2 Hz, 1H), 7.90 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.8 Hz, 1H), 7.60–7.47 (m, 3H), 7.42 (t, *J* = 7.3

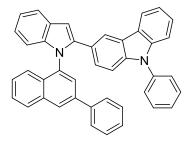
Hz, 1H), 7.35 (t, J = 7.6 Hz, 1H), 7.23–7.02 (m, 3H), 6.90 (d, J = 8.1 Hz, 1H), 6.70 (s, 1H), 3.53–3.28 (m, 6H), 2.24 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 139.9, 139.4, 138.1, 137.8, 135.1, 134.5, 130.7, 129.0, 128.4, 127.8, 127.4, 127.1, 126.8, 126.8, 126.4, 126.1, 123.4, 121.9, 120.2, 120.1, 110.6, 103.2, 66.7, 54.7, 53.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₂₆N₂O 418.2045; found 418.2042.


1-(3-phenylnaphthalen-1-yl)-2-(thiophen-3-yl)-1H-indole (24c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 88% yield (70.6 mg). mp 207-208 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 8.06 (d, J = 8.1 Hz, 1H), 7.86–7.76 (m, 2H), 7.73 (d, J = 7.8 Hz, 2H), 7.61–7.46 (m, 3H), 7.45–7.35 (m, 3H), 7.28–7.22(m, 1H), 7.19–7.09 (m,

3H), 7.08–7.03 (m, 1H), 6.97–6.90 (m, 1H), 6.75–6.70 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 140.0, 139.7, 138.4, 137.0, 135.8, 134.6, 132.8, 130.5, 128.9, 128.5, 128.0, 127.7, 127.3, 127.2, 127.1, 126.8, 126.5, 125.0, 123.3, 122.3, 121.4, 120.6, 120.3, 110.8, 102.3. HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₁₉NS 401.1238; found 401.1233.

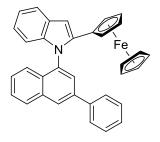
1- (3-phenylnaphthalen-1-yl)-2-(pyridin-3-yl)-1H-indole (25c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 88% yield (70.0 mg). mp 165–166 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 8.37 (s, 1H), 8.16 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 7.8 Hz, 1H), 7.69 (s, 1H), 7.62 (d, *J* = 7.4 Hz, 2H), 7.53 (t, *J* = 7.2 Hz, 1H),

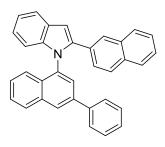
7.49–7.42 (m, 3H), 7.41–7.34 (m, 3H), 7.27–7.20 (m, 1H), 7.16 (t, J = 7.5 Hz, 1H), 7.05 (s, 1H), 7.04–6.98 (m, 1H), 6.96 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.9, 148.2, 140.4, 139.6, 138.4, 138.3, 135.1, 134.7,

134.6, 130.2, 128.9, 128.6, 128.0, 127.7, 127.3, 127.1, 127.1, 126.7, 126.5, 123.0, 122.9, 120.9, 120.7, 111.2, 104.1. HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₂₀N₂ 396.1626; found 396.1628.


9-phenyl-3-(1-(3-phenylnaphthalen-1-yl)-1H-indol-2-yl)-9H-carbazole (26c)

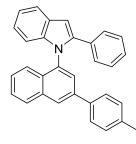
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (5/1) to afford a white powder in 63% yield (70.6 mg). mp 255-256 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.16 (s, 1H), 8.11 (s, 1H), 7.96 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 7.7 Hz, 1H), 7.83–7.73 (m, 2H), 7.61

(d, *J* = 7.6 Hz, 2H), 7.54–7.46 (m, 4H), 7.46–7.36 (m, 5H), 7.36–7.30 (m, 3H), 7.30–7.25 (m, 2H), 7.24–7.18 (m, 2H), 7.14–7.07 (m, 2H), 7.03 (s, 1H), 6.94 (d, *J* = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.1, 141.1, 140.2, 140.1, 139.9, 138.3, 137.3, 136.2, 134.5, 130.7, 129.7, 128.8, 128.5, 128.5, 127.6, 127.4, 127.2, 127.0, 126.9, 126.9, 126.3, 126.1, 126.0, 124.5, 123.5, 123.2, 121.9, 120.5, 120.2, 120.1, 120.0, 111.1, 109.8, 109.4, 102.6. HRMS (EI) m/z: [M]⁺ calcd for C₄₂H₂₈N₂ 560.2252; found 560.2255.


5-cyclohexyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (27c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a red powder in 70% yield (70.4 mg). mp 215–216 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.87 (s, 1H), 7.77 (d, *J* = 7.8 Hz, 2H), 7.70 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.5 Hz,

1H), 7.49 (t, J = 7.5 Hz, 2H), 7.40 (t, J = 7.5 Hz, 2H), 7.31 (d, J = 8.4 Hz, 1H), 7.17 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.6 Hz, 1H), 6.95 (s, 1H), 6.81 (d, J = 8.1 Hz, 1H), 4.11 (s, 1H), 4.05 (s, 1H), 4.01 (s, 1H), 3.97–3.91 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 140.2, 140.0, 139.7, 138.3, 136.0, 134.5, 130.9, 129.0, 128.5, 128.3, 127.8, 127.2, 127.1, 127.1, 126.9, 126.5, 123.5, 121.4, 120.4, 119.5, 110.4, 100.8, 69.7, 68.4, 68.3, 67.6, 67.1.HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₅FeN 503.1336; found 503.1339.


1-(naphthalen-2-yl)-1-(3-phenylnaphthalen-1-yl)-1H-indole (28c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 82% yield (73.0 mg). mp 237–238 °C.¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 8.0–7.95 (m, 1H), 7.84–7.79 (m, 2H), 7.77–7.73 (m, 1H), 7.69–7.64 (s, 1H), 7.61–7.48 (m, 6H),

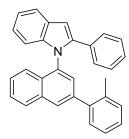
7.44–7.33 (m, 7H), 7.25–7.20 (m, 1H), 7.17–7.08 (m, 2H), 6.99–6.92 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 140.4, 139.8, 138.3, 135.9, 134.6, 133.0, 132.3, 130.4, 129.9, 128.8, 128.5, 128.3, 128.0, 127.6, 127.4, 127.1, 127.1, 127.1, 126.9, 126.7, 126.2, 126.0, 125.9, 125.9, 123.4, 122.4, 120.7, 120.5, 111.2, 103.8. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₃N 445.1830; found 445.1831.

2-phenyl-1-(3-(p-tolyl)naphthalen-1-yl)-1H-indole (29c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 93% yield (76.1 mg). mp 214–215 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.68–7.65 (m, 1H), 7.58–7.44 (m, 5H), 7.40–7.35 (m, 1H),

7.33–7.27 (m, 3H), 7.22 (t, *J* = 7.4 Hz, 1H), 7.14–7.10 (m, 4H), 6.98 (s, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 2.41 (s, 3H).
¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.1, 138.2, 137.6, 137.0, 135.7, 134.6, 132.5, 130.2, 129.6, 128.4, 128.2, 128.2, 128.1, 127.3, 127.0, 126.8, 126.8, 126.7, 125.7, 123.5, 122.2, 120.6, 120.4, 111.2, 103.2, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1837.

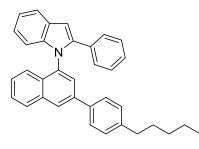
2-phenyl-1-(3-(m-tolyl)naphthalen-1-yl)-1H-indole (30c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 82% yield (67.1 mg). mp 171–172 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 8.03 (d, *J* = 8.1 Hz, 1H),

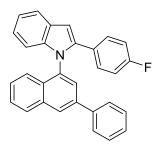
7.84 (d, J = 7.8 Hz, 1H), 7.74–7.71 (m, 1H), 7.59–7.52 (m, 2H), 7.49–7.45 (m, 2H), 7.44–7.34 (m, 4H), 7.31–7.23 (m, 2H), 7.21–7.15 (m, 4H), 7.04 (s, 1H), 7.00 (d, J = 8.2 Hz, 1H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ

142.1, 140.1, 139.8, 138.5, 138.4, 135.7, 134.5, 132.4, 130.3, 128.8, 128.5, 128.4, 128.2, 128.1, 128.1, 128.0, 127.3, 126.9, 126.8, 126.8, 126.0, 124.2, 123.4, 122.2, 120.6, 120.4, 111.2, 103.2, 21.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1829.


2-phenyl-1-(3-(o-tolyl)naphthalen-1-yl)-1H-indole (31c)

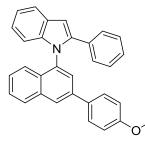
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 65% yield (53.2 mg). mp 163–164 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.66 (s, 1H), 7.56–7.44 (m, 2H), 7.45–7.27 (m, 6H), 7.27–7.17 (m, 2H), 7.15–7.09 (m, 4H), 6.98

(s, 1H), 6.93 (d, *J* = 8.2 Hz, 1H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.2, 139.9, 138.6, 138.4, 135.7, 134.6, 132.5, 130.3, 128.8, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.3, 126.9, 126.9, 126.9, 126.1, 124.3, 123.5, 122.3, 120.7, 120.5, 111.2, 103.3, 21.5. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1831.


1-(3-(4-pentylphenyl)naphthalen-1-yl)-2-phenyl-1H-indole (32c)

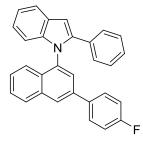
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 87% yield (80.9 mg). mp 170–171 °C.¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.66–7.63 (m,

1H), 7.53–7.42 (m, 4H), 7.37–7.31 (m, 1H), 7.30–7.25 (m, 3H), 7.24–7.22 (m, 1H), 7.19 (t, J = 7.6 Hz, 1H), 7.12–7.07 (m, 4H), 6.96 (s, 1H), 6.91 (d, J = 8.2 Hz, 1H), 2.70–2.62 (t, J = 7.6 Hz, 2H), 1.70–1.60 (m, 2H), 1.38–1.31 (m, 4H), 0.93 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.6, 142.1, 140.2, 138.2, 137.1, 135.7, 134.6, 132.5, 130.2, 129.0, 128.4, 128.2, 128.1, 128.1, 127.3, 127.0, 126.8, 126.8, 126.7, 125.7, 123.4, 122.2, 120.6, 120.4, 111.2, 103.2, 35.5, 31.4, 31.1, 22.5, 14.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₅H₃₁N 465.2457; found 465.2454.


1-(3-(4-(tert-butyl)phenyl)naphthalen-1-yl)-2-phenyl-1H-indole (33c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 90% yield (81.2 mg). mp 199–200 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.70–7.68 (m, 1H), 7.58 (d, *J* = 8.3 Hz, 2H), 7.54–7.45

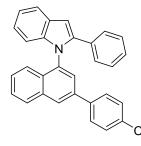
(m, 4H), 7.40–7.35 (m, 1H), 7.33-7.28 (m, 2H), 7.25–7.20 (m, 1H), 7.16–7.11 (m, 4H), 6.99 (s, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 142.1, 140.1, 138.1, 136.9, 135.7, 134.6, 132.4, 130.2, 128.5, 128.2, 128.1, 128.1, 127.3, 126.8, 126.8, 126.6, 125.8, 125.8, 123.5, 122.2, 120.6, 120.4, 111.2, 103.2, 34.5, 31.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₉N 451.2300; found 451.2302.


(3-(4-methoxyphenyl)naphthalen-1-yl)-2-phenyl-1H-indole (34c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 92% yield (78.2 mg). mp 218–219 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 7.7 Hz, 1H), 7.60 (s, 1H), 7.55–7.48 (m, 3H), 7.45 (d, *J* = 8.4 Hz, 1H),

7.34 (t, *J* = 7.6 Hz, 1H), 7.30–7.25 (m, 2H), 7.20 (t, *J* = 7.4 Hz, 1H), 7.06–7.13 (m, 4H), 7.00–6.94 (m, 3H), 6.91 (d, *J* = 8.2 Hz, 1H), 3.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 142.1, 140.1, 137.9, 135.7, 134.6, 132.5, 132.3, 130.0, 128.4, 128.2, 128.2, 128.1, 127.3, 126.8, 126.7, 126.5, 125.3, 123.5, 122.2, 120.6, 120.48, 114.3, 111.2, 103.2, 55.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃NO 425.1780; found 425.1781.

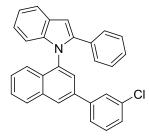
1-(3-(4-fluorophenyl)naphthalen-1-yl)-2-phenyl-1H-indole (35c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 86% yield (71.0 mg). mp 210–211 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.98 (d, *J* = 8.2 Hz, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.58–7.49 (m, 5H), 7.43–7.36 (m, 1H), 7.32–7.27 (m, 2H),

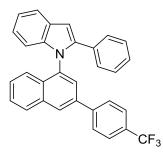
7.25–7.19 (m, 1H), 7.16–7.09 (m, 6H), 6.99 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 162.7

(d, *J*= 247.3 Hz), 142.1, 140.2, 137.4, 136.10 (d, *J*= 3.3 Hz), 136.0, 134.6, 132.5, 130.3, 128.9, 128.8, 128.5, 128.3, 128.2, 128.2, 127.4, 127.1, 127.1, 126.6, 126.0, 123.6, 122.4, 120.70 (d, *J*= 17.5 Hz), 115.87 (d, *J*= 21.5 Hz), 111.2, 103.4. ¹⁹F NMR (376 M, CDCl₃): δ -114.7 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 413.1580; found 413.1582.


1-(3-(4-chlorophenyl)naphthalen-1-yl)-2-phenyl-1H-indole (36c)

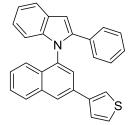
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 89% yield (76.4 mg). mp 212–213 °C.¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.76 (d, *J* = 7.8 Hz, 1H), 7.56–7.44 (m, 5H), 7.41-7.35 (m, 3H), 7.28–7.23 (m, 3H),

7.19 (t, J = 7.4 Hz, 1H), 7.13–7.09 (m, 4H), 6.96 (s, 1H), 6.89 (d, J = 8.0 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 140.1, 138.3, 137.0, 136.0, 134.5, 133.8, 132.4, 130.4, 129.0, 128.5, 128.4, 128.2, 128.2, 128.6, 127.3, 127.2, 127.1, 126.4, 126.0, 123.6, 122.3, 120.7, 120.5, 111.1, 103.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1285.


1- (3-(3-chlorophenyl)naphthalen-1-yl)-2-phenyl-1H-indole (37c)

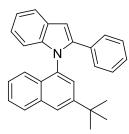
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 77% yield (66.1 mg). mp 180–181 °C.¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 8.00 (d, *J* = 8.1 Hz, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.60–7.51 (m, 4H), 7.46–7.39 (m, 2H), 7.38–7.33 (m, 2H),

7.31–7.27 (m, 2H), 7.26–7.20 (m, 1H), 7.16–7.10 (m, 4H), 6.99 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H). ¹³C NMR (101MHz, CDCl₃) δ 142.0, 141.7, 140.1, 136.8, 136.0, 134.8, 134.4, 132.4, 130.5, 130.1, 128.6, 128.3, 128.2, 128.1, 127.6, 127.4, 127.3, 127.1, 126.4, 126.3, 125.3, 123.5, 122.3, 120.7, 120.5, 111.1, 103.4, 77.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1290.


2-phenyl-1-(3-(4-(trifluoromethyl)phenyl)naphthalen-1-yl)-1H-indole (38c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 85% yield (78.7 mg). mp 222-223 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.67 (q, *J* = 8.6 Hz, 4H), 7.60–7.52 (m, 3H), 7.46–

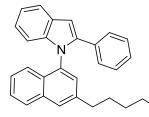
7.38 (m, 1H), 7.28–7.24 (m, 2H), 7.21 (t, J = 7.4 Hz, 1H), 7.16–7.07 (m, 4H), 6.97 (s, 1H), 6.90 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 143.4, 142.1, 140.1, 136.8, 136.2, 134.4, 132.4, 130.7, 128.7, 128.3, 128.2, 128.1, 127.5, 127.4, 127.4, 127.2, 126.6, 126.4, 125.8 (q, J = 1.7 Hz), 123.6, 122.4, 120.8, 120.6, 111.1, 103.5. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.46 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₀ F₃C 463.1548; found 463.1545.


2-phenyl-1-(3-(thiophen-3-yl)naphthalen-1-yl)-1H-indole (39c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 76% yield (61.0 mg). mp 176–177 °C.¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 7.9 Hz, 1H), 7.68–

7.65 (m, 1H), 7.51 (t, J = 7.5 Hz, 1H), 7.48–7.43 (m, 3H), 7.42–7.39 (m, 1H), 7.39–7.34 (m, 1H), 7.33–7.30 (m, 2H), 7.23 (t, J = 7.5 Hz, 1H), 7.16–7.10 (m, 4H), 6.99 (s, 1H), 6.92 (d, J = 8.2 Hz, 1H). ¹³C NMR (101MHz, CDCl₃) δ 142.0, 141.1, 140.1, 135.8, 134.6, 133.0, 132.4, 130.3, 128.3, 128.2, 128.1, 128.1, 127.3, 127.0, 126.8, 126.6, 126.1, 126.1, 125.1, 123.5, 122.3, 121.0, 120.7, 120.5, 111.2, 103.2. HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₁₉NS 401.1238; found 401.1233.

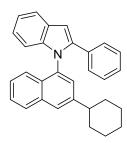
1-(3-(tert-butyl)naphthalen-1-yl)-2-phenyl-1H-indole (40c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 84% yield (63.0 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.83 (s, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.53–7.47 (m, 2H), 7.39–7.33 (m, 2H), 7.25–7.19 (m, 3H), 7.15–7.10 (m, 4H), 6.97 (s, 1H), 6.92 (d, *J* =

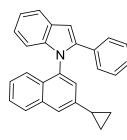
8.2 Hz, 1H), 1.28 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 148.4, 142.2, 139.8, 134.7, 134.2, 132.5, 129.2, 128.3,

128.2, 128.2, 127.9, 127.1, 126.6, 126.3, 126.2, 123.3, 123.1, 122.1, 120.5, 120.4, 111.4, 103.0, 34.7, 30.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₂₇N 377.2143; found 377.2145.


1-(3-hexylnaphthalen-1-yl)-2-phenyl-1H-indole (41c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 80% yield (64.5 mg). mp 155–156 °C.¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.82

(d, J = 7.8 Hz, 1H), 7.74 (s, 1H), 7.55–7.50 (m, 2H), 7.39–7.35 (m, 1H), 7.31–7.27 (m, 3H), 7.24 (s, 1H), 7.19–7.14 (m, 4H), 7.01 (s, 1H), 6.93 (d, J = 8.2 Hz, 1H), 2.77 (t, J = 7.4 Hz, 2H), 1.35–1.29 (m, 8H), 0.95 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.4, 140.2, 135.1, 134.5, 132.6, 129.7, 128.7, 128.2, 128.0, 127.8, 127.2, 127.0, 126.5, 126.1, 123.5, 122.2, 120.6, 120.5, 111.3, 103.1, 35.7, 31.7, 31.0, 28.6, 22.6, 14.1. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₉N 403.2300; found 403.2302.


3-(3-cyclohexylnaphthalen-1-yl)-2-phenyl-1H-indole (42c)

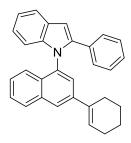
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 85% yield (68.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.74 (s, 1H), 7.53–7.44 (m, 2H), 7.35 (t, *J* = 7.6 Hz, 1H), 7.28–7.20 (m, 4H), 7.18–7.11 (m, 4H), 6.99 (s, 1H), 6.91

(d, *J* = 8.2 Hz, 1H), 2.71–2.59 (m, 1H), 1.97–1.83 (m, 4H), 1.78 (d, *J* = 12.9 Hz, 1H), 1.60(s, 1H), 1.47–1.36 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 145.4, 142.1, 140.0, 134.9, 134.4, 132.5, 129.7, 128.2, 128.1, 127.9, 127.9, 127.5, 127.1, 126.3, 126.0, 125.0, 123.4, 122.1, 120.5, 120.4, 111.3, 102.9, 44.1, 34.2, 33.9, 26.7, 26.7, 26.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₇N 401.2143; found 401.2140.

1-(3-cyclopropylnaphthalen-1-yl)-2-phenyl-1H-indole (43c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 81% yield (58.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.69 (s, 1H), 7.54–7.46 (m, 2H), 7.38–7.32 (m, 1H), 7.32–7.23 (m, 3H), 7.21–7.13 (m, 4H), 7.04 (d, *J*= 1.5 Hz, 1H),

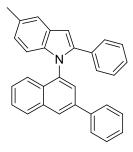
7.01 (s, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 2.15–1.93 (m, 1H), 1.06–1.01 (m, 2H), 0.82–0.75 (m, 1H), 0.63–0.58 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 141.5, 140.0, 135.2, 134.3, 132.5, 129.5, 128.1, 128.0, 127.5, 127.2, 126.5, 125.9, 125.5, 124.5, 123.4, 122.1, 120.5, 120.4, 111.2, 103.0, 15.4, 9.6, 9.1. HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₂₁N 359.1674; found 359.1675.


2-(4-(2-phenyl-1H-indol-1-yl)naphthalen-2-yl)ethan-1-ol (44c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 59% yield (42.8 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.84 (d, *J* = 7.6 Hz, 1H),

7.80 (s, 1H) , 7.63 (d, J = 8.4 Hz, 1H), 7.58 (t, J = 7.5 Hz, 1H), 7.48–7.39 (m, 1H), 7.32–7.24 (m, 3H), 7.23–7.12 (m, 5H), 7.03 (s, 1H), 6.94 (d, J = 8.2 Hz, 1H), 3.78 (t, J = 6.3 Hz, 2H), 3.02–2.90 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 139.9, 136.0, 135.3, 134.4, 132.5, 129.8, 128.5, 128.3, 128.2, 128.0, 127.9, 127.8, 127.3, 126.7, 126.5, 123.5, 122.2, 120.6, 120.5, 111.2, 103.3, 63.2, 38.8. HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₂₁NO 363.1623; found 363.1624.

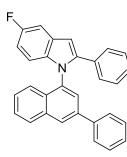
1-(3-(cyclohex-1-en-1-yl)naphthalen-1-yl)-2-phenyl-1H-indole (45c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 75% yield (59.9 mg). mp 196–197 °C.¹H NMR (400 MHz, CDCl₃) δ 7.92–7.85 (m, 2H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.55 (s, 1H), 7.50–7.41 (m, 1H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.36–7.32 (m, 3H), 7.33–7.27 (m, 1H), 7.23–7.19 (m, 1H),

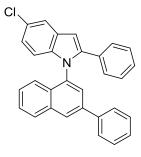
7.15–7.11 (m, 3H), 6.98–6.96 (m, 1H), 6.90 (d, J = 7.9 Hz, 1H), 6.20 (s, 1H), 2.57–2.40 (m, 2H), 2.23 (s, 2H), 1.86–1.1.78 (m, 2H), 1.74–1.64 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 142.0, 140.2, 139.5, 135.3, 135.0, 134.3, 132.5,

130.1, 128.3, 128.1, 128.1, 128.0, 127.2, 126.5, 126.3, 126.2, 125.0, 123.4, 123.3, 122.1, 120.5, 120.3, 111.2, 103.0, 27.1, 25.9, 22.9, 22.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₅N 399.1987; found 399.1983.


5-methyl-2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (46c)

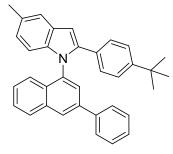
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 90% yield (73.6 mg). mp 189–190 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.69–7.59 (m, 4H), 7.56–7.43 (m, 4H), 7.41–7.34 (m, 2H), 7.31–7.23 (m, 2H), 7.14–7.07 (m, 3H), 7.05 (d, *J* = 8.0 Hz,

1H), 6.93 (s, 1H), 6.71 (s, 1H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl3) δ 141.6, 140.6, 139.9, 138.3, 136.0, 134.5, 132.6, 132.2, 130.4, 128.9, 128.5, 128.0, 127.6, 127.2, 127.1, 127.0, 126.9, 126.7, 126.0, 123.6, 122.4, 120.1, 111.0, 103.1, 21.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1828.


5-fluoro-2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (47c)

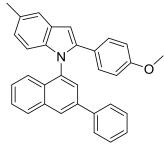
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 80% yield (66.1 mg). mp 167–168 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.66 (s, 1H), 7.61 (d, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.50–7.35 (m, 6H), 7.33–7.28 (m, 2H), 7.17–

7.11 (m, 3H), 6.94 (s, 1H), 6.91–6.80 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 158.4 (d, *J* = 235.4 Hz), 143.6, 139.7, 138.3, 136.7, 135.6, 134.6, 132.1, 130.2, 128.9, 128.6, 128.5, 128.4, 128.1 (d, *J* = 1.9 Hz), 127.7, 127.6, 127.2, 127.1, 127.0, 126.7, 126.3, 111.9 (d, *J* = 9.6 Hz), 110.6, 110.4, 105.2 (d, *J* = 23.6 Hz), 103.1 (d, *J* = 4.5 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -123.6 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 413.1580; found 413.1585.


1-chloro-2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (48c)

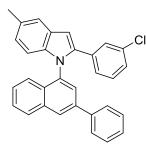
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 83% yield (71.2 mg). mp 156–157 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 8.02 (d, *J* = 8.2 Hz, 1H), 7.79(s, 1H), 7.69 (s, 1H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.53–7.45

(m, 3H), 7.44–7.38 (m, 2H), 7.36–7.31 (m, 2H), 7.19–7.15 (m, 3H), 7.11 (d, J = 8.7 Hz, 1H), 6.95 (s, 1H), 6.86 (d, J = 8.7 Hz, 1H). ¹³C NMR (101MHz, CDCl₃) δ 143.3, 139.6, 138.5, 138.3, 135.3, 134.5, 131.9, 130.1, 129.2, 128.9, 128.6, 128.1, 127.7, 127.6, 127.1, 127.0, 126.6, 126.3, 126.2, 123.1, 122.5, 119.8, 112.2, 102.6. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1286.


2-(4-(tert-butyl)phenyl)-5-methyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (49c)

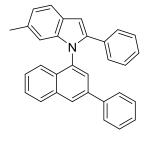
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 88% yield (81.8 mg). mp 191-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 8.01 (d, *J* = 8.2 Hz, 1H), 7.62–7.51 (m, 6H), 7.48–7.31 (m, 4H), 7.21 (d, *J* = 8.5 Hz, 2H), 7.16

(d, J = 8.5 Hz, 2H), 6.96–6.86 (m, 2H), 6.78 (d, J = 8.3 Hz, 1H), 2.50 (s, 3H), 1.22 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.1, 142.1, 140.0, 138.6, 138.3, 136.1, 134.5, 130.4, 129.8, 129.6, 128.8, 128.5, 128.5, 127.7, 127.6, 127.2, 126.9, 126.8, 126.8, 126.0, 125.1, 123.7, 123.6, 120.0, 110.9, 102.5, 34.4, 31.1, 21.4. HRMS (EI) m/z: [M]+ calcd for C₃₅H₃₁N 465.2457; found 465.2459.


2-(4-methoxyphenyl)-5-methyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (50c)

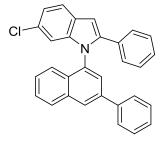
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 90% yield (79.0 mg). mp 211–212 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (s, 1H), 7.99 (d, *J* = 8.2 Hz, 1H), 7.68–7.61 (m, 3H), 7.57–7.50 (m, 2H), 7.50–7.43 (m, 3H), 7.38 (t, *J* =

7.5 Hz, 2H), 7.22 (d, J = 8.6 Hz, 2H), 6.94 (d, J = 8.3 Hz, 1H), 6.86–6.78 (m, 2H), 6.66 (d, J = 8.6 Hz, 2H), 3.68 (s, 3H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.8, 142.0, 139.9, 138.5, 138.2, 136.1, 134.5, 130.4, 129.8, 129.3, 128.9, 128.5, 128.5, 127.6, 127.2, 126.9, 126.8, 126.6, 125.9, 125.1, 123.6, 123.5, 119.9, 113.6, 110.7, 101.9, 55.0, 21.4. HRMS (EI) m/z: [M]⁺ calcd for C_{32H25}NO 439.1936; found 439.1937.


2-(3-chlorophenyl)-5-methyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (51c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 78% yield (69.1 mg). mp 177–178 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.67 (s, 1H), 7.63 (d, *J* = 7.4 Hz, 2H), 7.59–7.51 (m, 2H), 7.47 (t, *J* = 7.6 Hz, 2H),

7.44–7.35 (m, 4H), 7.08 (d, J = 7.7 Hz, 1H), 7.04–6.94 (m, 3H), 6.92 (s, 1H), 6.83 (d, J = 8.4 Hz, 1H), 2.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 140.48, 139.86, 138.87, 138.38, 135.67, 134.61, 134.37, 133.98, 130.32, 130.19, 129.28, 128.95, 128.6, 128.26, 128.1, 127.7, 127.2, 127.1, 127.0, 126.6, 126.3, 125.9, 124.3, 123.3, 120.3, 110.9, 103.5, 21.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₂ClN 443.1441; found 443.1443.


6-methyl-2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (52c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 89% yield (72.8 mg). mp 169–170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (s, 1H), 8.00 (d, *J* = 8.2 Hz, 1H), 7.72–7.60 (m, 4H), 7.57–7.42 (m, 4H), 7.42–7.34 (m, 2H), 7.31–7.27 (m, 2H), 7.14–

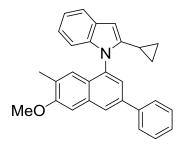
7.09 (m, 3H), 7.05 (d, *J* = 8.0 Hz, 1H), 6.93 (s, 1H), 6.72 (s, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.60, 140.66, 139.93, 138.30, 136.03, 134.56, 132.65, 132.26, 130.49, 128.92, 128.52, 128.09, 128.06, 127.68, 127.22, 127.15, 127.01, 126.93, 126.75, 126.07, 123.60, 122.45, 120.15, 111.05, 103.15, 21.78. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃N 409.1830; found 409.1825.

6-chloro-2-phenyl-1-(3-phenylnaphthalen-1-yl)-1H-indole (53c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white sticky liquid in 81% yield (69.5 mg). mp 176-177 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.2 Hz, 1H), 7.98 (d, *J* = 7.9 Hz, 2H), 7.82 (s, 1H), 7.74 (d, *J* = 7.5 Hz, 2H), 7.59–7.48 (m, 6H),

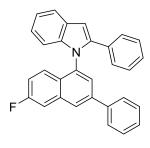
7.47-7.35 (m, 5H), 6.87 (s, 2H), 6.79 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 147.8, 140.4, 138.8, 136.7,

135.6, 135.0, 133.1, 131.5, 128.9, 128.6, 128.5, 128.4, 127.6, 127.3, 126.8, 126.4, 123.5, 122.6, 122.0, 120.6, 118.6, 112.7, 107.4, 96.4, 84.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀ClN 429.1284; found 429.1288.


1-(3-cyclopropylnaphthalen-1-yl)-6-methyl-2-phenyl-1H-indole (54c)

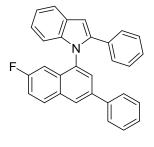
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 80% yield (59.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.1 Hz, 1H), 7.73–7.63 (m, 2H), 7.54–7.45 (m, 2H), 7.37–7.32 (m, 1H), 7.29–7.24 (m, 2H), 7.18–7.13 (m, 3H), 7.08

(d, J = 8.0 Hz, 1H), 7.05–7.03 (m, 1H), 6.95 (s, 1H), 6.71 (s, 1H), 2.38 (s, 3H), 2.07–1.95 (m, 1H), 1.07–0.94 (m, 2H), 0.86–0.71 (m, 1H), 0.68–0.51 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.57, 141.49, 140.53, 135.43, 134.32, 132.65, 132.11, 129.64, 128.01, 127.52, 127.02, 126.58, 125.98, 125.93, 125.53, 124.41, 123.52, 122.35, 120.10, 111.08, 102.96, 21.75, 15.42, 9.68, 9.22. HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₂₃N 373.1830; found 373.1832.


2-cyclopropyl-1-(6-methoxy-7-methyl-3-phenylnaphthalen-1-yl)-1H-indole (55c)

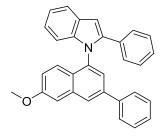
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 84% yield (67.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.88–7.83 (m, 2H), 7.81–7.79 (m, 1H), 7.74 (d, *J* = 7.8 Hz, 1H), 7.57 (t, *J* = 7.6 Hz, 2H), 7.46 (t, *J*

= 7.4 Hz, 1H), 7.35 (s, 1H), 7.26–7.20 (m, 1H), 7.18–7.10 (m, 2H), 7.01 (d, *J* = 8.1 Hz, 1H), 6.42 (s, 1H), 4.06 (s, 3H), 2.33 (s, 3H), 1.71–1.62 (m, 1H), 0.93–0.76 (s, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 157.6, 145.1, 140.2, 139.1, 137.9, 134.8, 134.4, 129.9, 128.8, 127.9, 127.5, 127.1, 125.9 124.8, 121.0, 119.8 119.6, 110.1, 104.9, 96.6, 55.3, 16.9, 8.4, 8.1, 7.7. HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₂₅NO 403.1936; found 403.1935.

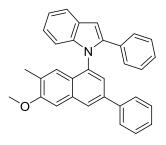

5-(6-fluoro-3-phenylnaphthalen-1-yl)-2-phenyl-1H-indole (56c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 91% yield (75.2 mg). mp 225–226 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.78 (d, *J* = 7.8 Hz, 1H), 7.63 (s, 1H), 7.62–7.57 (m, 3H), 7.45 (t, *J* = 7.4 Hz, 3H), 7.38 (t, *J* = 7.3 Hz,

1H), 7.31–7.27 (m, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.17–7.10 (m, 5H), 6.97 (s, 1H), 6.93 (d, J = 8.1 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.2 (d, J = 247.9 Hz), 142.0, 140.1, 139.6 (d, J = 13.0 Hz), 136.0, 135.5 (d, J = 9.3 Hz), 132.3, 128.9, 128.3, 128.1 (d, J = 5.6 Hz), 127.9, 127.4, 127.3, 127.2, 126.3, 126.2, 126.0 (d, J=2.0Hz), 125.3 (d, J = 5.4 Hz), 122.4, 120.7 (d, J = 23.2 Hz), 117.4, 117.2, 111.7, 111.5, 111.0, 103.4. ¹⁹F NMR (376 MHz, CDCl₃) δ - 113.3 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 413.1580; found 413.1581.

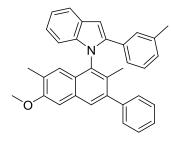

1-(7-fluoro-3-phenylnaphthalen-1-yl)-2-phenyl-1H-indole (57c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 87% yield (71.9 mg). mp 228–229 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.98 (dd, *J* = 9.0, 5.5 Hz, 1H), 7.80 (d, *J* = 7.8 Hz, 1H), 7.73 (s, 1H), 7.60 (d, *J* = 7.4 Hz, 2H), 7.46 (t, *J* =


7.5 Hz, 2H), 7.38 (t, J = 7.3 Hz, 1H), 7.34–7.27 (m, 3H), 7.26–7.21 (m, 1H), 7.18–7.13 (m, 4H), 7.09 (dd, J = 10.2, 2.2 Hz, 1H), 6.99 (s, 1H), 6.95 (d, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 161.4 (d, J = 248.2 Hz), 141.9, 139.9, 139.6, 137.7 (d, J = 2.6 Hz), 135.5 (d, J = 5.7 Hz), 132.3, 131.6, 131.4 (d, J = 9.0 Hz), 131.1, 131.0, 128.9, 128.3, 128.1, 127.7, 127.4, 127.1, 125.9, 122.5, 120.7 (d, J = 21.9 Hz), 117.6, 117.4, 110.9, 107.3, 107.1, 103.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -111.4 (s, 1F). HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₀FN 413.1580; found 413.1577.

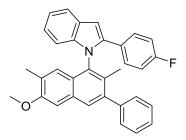
1-(6-methoxy-3-phenylnaphthalen-1-yl)-2-phenyl-1H-indole (58c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 91% yield (77.4 mg). mp 180–181 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.84 (d, *J* = 7.7 Hz, 1H), 7.66 (d, *J* = 7.4 Hz, 2H), 7.59 (s, 1H), 7.52–7.36 (m, 6H), 7.33 (s, 1H), 7.30–7.25 (m, 1H), 7.22–7.14 (m, 4H), 7.09 (d, J = 9.1 Hz, 1H), 7.09–6.98 (m, 2H), 3.96 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 158.3, 142.0, 140.1, 140.0, 138.9, 136.0, 135.8, 132.5, 128.8, 128.2, 128.1, 127.6, 127.3, 127.1, 125.8, 125.1, 124.9, 124.3, 122.2, 120.6, 120.4, 119.7, 111.1, 106.4, 103.2, 55.2. HRMS (EI) m/z: [M]⁺ calcd for C₃₁H₂₃NO 425.1780; found 425.1777.


1-(6-methoxy-7-methyl-3-phenylnaphthalen-1-yl)-2-phenyl-1H-indole (59c)

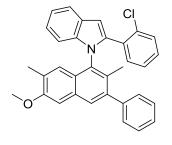
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a pale yellow powder in 85% yield (74.6 mg). mp 188–189 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 7.8 Hz, 2H), 7.48–7.40 (m, 3H), 7.37–7.28 (m, 3H), 7.27–

7.19 (m, 3H), 7.16–7.09 (m, 4H), 6.99–6.94 (m, 2H), 3.98 (s, 3H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.5, 142.0, 140.2, 140.2, 137.9, 135.0, 134.8, 132.6, 130.0, 128.8, 128.2, 128.1, 127.4, 127.2, 127.1, 125.6, 124.6, 124.2,124.2,122.2, 120.5, 120.4, 111.3, 105.0, 103.0, 55.3, 17.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₂H₂₅NO 439.1936; found 439.1938.


1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-2-(m-tolyl)-1H-indole (60c)

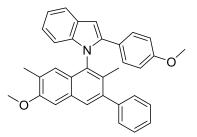
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 79% yield (73.8 mg). mp 200–201 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.76 (s, 1H), 7.47–7.41 (m, 2H), 7.40–7.32 (m, 3H), 7.26–7.18 (m, 3H), 7.17–7.07

(m, 3H), 6.98 (d, *J* = 8.4 Hz, 3H), 6.82 (d, *J* = 8.1 Hz, 1H), 3.96 (s, 3H), 2.28 (s, 3H), 2.24 (s, 3H), 1.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 141.9, 141.6, 140.8, 138.8, 137.0, 132.9, 132.2, 131.1, 130.0, 129.8, 129.3, 128.8, 128.3, 128.0, 127.7, 127.4, 126.9, 126.6, 124.2, 122.0, 120.3, 120.2, 111.0, 104.4, 101.8, 55.2, 21.0, 17.0, 15.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₉NO 467.2249; found 467.2245.


2-(4-fluorophenyl)-1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-1H-indole (61c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a light yellow solid in 88% yield (82.9 mg). mp 184-185 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.8 Hz, 1H), 7.72 (s, 1H), 7.45–7.38 (m, 2H), 7.37–7.32 (m, 1H), 7.29 (d, J = 7.5 Hz, 2H),

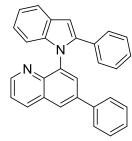
7.23–7.16 (m, 3H), 7.14–7.08 (m, 2H), 7.04 (s, 1H), 6.93 (s, 1H), 6.87–6.75 (m, 3H), 3.95 (s, 3H), 2.20 (s, 3H), 1.67 (s, 3H). 13 C NMR (101 MHz, CDCl₃) δ 157.1, 141.5, 140.9, 140.8, 138.8, 132.5, 132.3, 131.1, 130.2, 129.4, 129.3, 128.9, 128.2, 128.1, 127.9, 127.0, 126.5, 124.0, 122.3, 120.5, 120.4, 115.3, 115.0, 111.2, 104.6, 102.2, 55.3, 17.15, 15.8. 1 H NMR (400 MHz, CDCl₃) 19 F NMR (376 MHz, CDCl₃) δ -57.54 (s). HRMS (EI) m/z: [M]⁺ calcd for C₃₃H₂₆FNO 471.1988; found 471.1985.


2-(2-chlorophenyl)-1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-1H-indole (62c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 72% yield (70.2 mg). mp 179–180°C. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.8 Hz, 1H), 7.67 (s, 1H), 7.48–7.42 (m, 2H), 7.39 (d, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 7.3 Hz, 2H), 7.28–7.23

(m, 1H), 7.19 (t, *J* = 7.4 Hz, 1H), 7.11 (s, 1H), 7.09–7.03 (m, 3H), 7.01 (d, *J* = 7.6 Hz, 1H), 6.93–6.87 (m, 2H), 3.92 (s, 3H), 2.25 (s, 3H), 1.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.9, 141.6, 140.6, 137.9, 137.5, 133.6, 132.0, 131.9, 131.2, 131.1, 130.0, 129.8, 129.3, 128.6, 128.0, 127.7, 127.6, 126.9, 126.5, 125.5, 124.2, 122.4, 120.7, 120.4, 111.2, 105.8, 104.3, 55.2, 16.9, 16.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₃H₂₆ClNO 487.1703; found 487.1705.

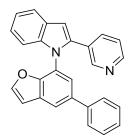
1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-2-(4-methoxyphenyl)-1H-indole (63c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 78% yield (75.4 mg). mp 205-206 °C. δ 7.82–7.70 (m, 2H), 7.46–7.40 (m, 2H), 7.40–7.32 (m, 3H), 7.25–7.17 (t, *J* = 8.3 Hz, 3H), 7.16 (s, 1H), 7.14–7.08 (m, 2H),

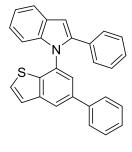
6.93 (s, 1H), 6.80 (d, J = 8.1 Hz, 1H), 6.71 (d, J = 8.1 Hz, 2H), 3.96 (s, 3H), 3.73 (s, 3H), 2.23 (s, 3H), 1.74 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 158.9, 157.0, 141.7, 141.5, 140.8, 138.7, 132.8, 132.2, 131.1, 130.0, 129.3, 128.8, 128.3, 128.0, 127.7, 126.9, 126.6, 125.3, 124.2, 121.8, 120.3, 120.1, 113.6, 111.0, 104.5, 101.4, 55.2, 55.0, 17.0, 15.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₉NO₂ 483.2198; found 483.2195.


6-phenyl-8-(2-phenyl-1H-indol-1-yl)quinoline (64c)

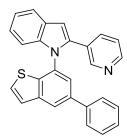
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate(5/1) to afford a light yellow solid in 76% yield (60.2 mg). mp 170–171 °C ¹H NMR (400 MHz, CDCl₃) δ 8.85 (s, 1H), 8.25 (d, *J* = 8.3 Hz, 1H), 8.06 (s, 1H), 7.86 (s, 1H), 7.77 (d, *J* = 7.7 Hz, 1H), 7.57 (d, *J* = 7.4 Hz, 2H), 7.49-7.30 (m, 4H), 7.30–7.35 (m, 2H),

7.20 (t, J = 7.3 Hz, 1H), 7.17–7.08 (m, 4H), 6.99 (d, J = 7.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 150.8, 144.0, 142.4, 140.1, 139.2, 138.9, 136.8, 136.2, 133.1, 129.7, 129.4, 128.9, 128.5, 128.4, 128.0, 127.9, 127.2, 127.0, 125.4, 122.1, 122.0, 120.7, 120.5, 111.22, 103.70. HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₂₀N₂ 396.1626; found 396.1624.


1-(5-phenylbenzofuran-7-yl)-2-(pyridin-3-yl)-1H-indole (65c)

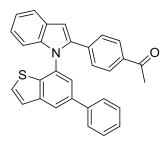
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate(5/1) to afford a light yellow solid in 78% yield (60.2 mg). mp 175–176 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.43 (s, 1H), 7.84 (s, 1H), 7.79–7.73 (m, 1H), 7.56–7.48 (m, 5H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.0 Hz, 1H), 7.28–7.19 (m, 3H), 7.09 (s, 1H),

6.99 (s, 1H), 6.83 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 149.2, 149.0, 148.3, 146.2, 140.35, 139.3, 137.6, 137.4, 134.9, 130.0, 128.8, 128.3, 127.3, 127.3, 123.4, 123.0, 122.8, 122.6, 121.1, 120.9, 119.5, 110.9, 107.2, 104.8. HRMS
(EI) m/z: [M]⁺ calcd for C₂₇H₁₈N₂O 386.1419; found 386.1417.


2-phenyl-1-(5-phenylbenzo[b]thiophen-7-yl)-1H-indole (66c)

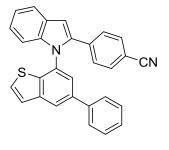
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 81% yield (64.96 mg). mp 213–214 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.08–8.05 (m, 1H), 7.75 (d, *J*= 7.7 Hz, 1H), 7.56–7.50 (m, 2H), 7.48–7.46(m, 1H), 7.45–7.40 (m, 4H), 7.37–7.33 (m, 3H), 7.23–7.15 (m, 5H), 7.13–7.09

(m, 1H), 6.93 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 141.9, 141.0, 140.2, 138.7, 138.7, 137.6, 133.7, 132.4, 128.8, 128.5, 128.1, 128.0, 128.0, 127.4, 127.2, 124.3, 124.2, 122.3, 121.5, 120.9, 120.6, 111.1, 104.0. HRMS (EI) m/z:
[M]⁺ calcd for C₂₈H₁₉NS 401.1238; found 401.1239.

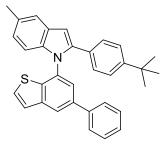

1-(5-phenylbenzo[b]thiophen-7-yl)-2-(pyridin-3-yl)-1H-indole (67c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 77% yield (61.9 mg). mp 155–156 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 8.41 (s, 1H), 8.10 (s, 1H), 7.79 (d, *J* = 7.6 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.53 (d, *J* = 6.8 Hz, 2H), 7.48–7.41 (m, 4H), 7.37 (t, *J* = 7.0 Hz, 1H),

7.29–7.18 (m, 2H), 7.14 (d, J = 7.9 Hz, 1H), 7.06 (s, 1H), 7.01 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 148.4, 142.0, 139.9, 138.9, 137.4, 137.1, 134.6, 133.0, 128.8, 128.4, 128.3, 128.1, 127.5, 127.2, 124.4, 124.0, 122.9, 122.9, 121.9, 121.1, 120.8, 111.0, 104.9. HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₁₈N₂S 402.1191; found 402.1195.

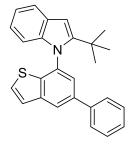

1-(4-(1-(5-phenylbenzo[b]thiophen-7-yl)-1H-indol-2-yl)phenyl)ethan-1-one (68c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 69% yield (61.1 mg). mp 179–180 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 7.75 (d, *J* = 7.1 Hz, 3H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.51 (s, 1H), 7.46–7.39 (m, 6H), 7.39–7.32 (m, 1H),


7.24–7.16 (m, 2H), 7.12 (d, J = 7.7 Hz, 1H), 7.03 (s, 1H), 2.96–2.03 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.4, 142.0, 140.0, 139.4, 139.3, 138.9, 137.5, 137.0, 135.6, 133.5, 128.9, 128.3, 128.2, 127.6, 127.2, 124.4, 123.9, 123.1, 121.7, 121.2, 121.0, 111.1, 105.6, 26.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₁NOS 443.1344; found 443.1341.

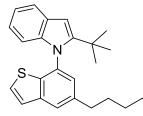
4-(1-(5-phenylbenzo[b]thiophen-7-yl)-1H-indol-2-yl)benzonitrile (69c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 75% yield (63.9 mg). mp 221–222 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (s, 1H), 7.78 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.51 (s, 1H), 7.49–7.35 (m, 9H), 7.26–7.19 (m, 2H), 7.14 (d, J = 7.6 Hz, 1H), 7.05 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 139.8, 139.3, 139.0, 138.4, 137.3, 136.8, 133.1, 132.0, 128.9, 128.2, 128.1, 127.9, 127.6, 127.2, 124.5, 123.8, 123.5, 121.9, 121.4, 121.1, 118.6, 111.2, 110.6, 106.1. HRMS (EI) m/z: [M]⁺ calcd for C₂₉H₁₈N₂S 426.1191; found 426.1190.


2-(4-(tert-butyl)phenyl)-5-methyl-1-(5-phenylbenzo[b]thiophen-7-yl)-1H-indole (70c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 85% yield (80.1 mg). mp 182–183 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (s, 1H), 7.62 (s, 1H), 7.54 (d, *J* = 7.2 Hz, 2H), 7.50–7.43 (m, 5H), 7.40 (d, *J* = 6.8 Hz, 1H), 7.34 (d, *J* = 7.8

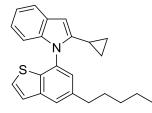
Hz, 2H), 7.31–7.21 (m, 2H), 7.08 (s, 2H), 6.94 (s, 1H), 2.58 (s, 3H), 1.33 (s, 9H). 13 C NMR (101 MHz, CDCl₃) δ 150.2, 141.7, 141.1, 140.3, 138.6, 137.5, 136.9, 134.0, 130.0, 129.6, 128.8, 128.7, 128.0, 127.7, 127.3, 127.2, 125.1, 124.3, 124.3, 123.6, 121.3, 120.2, 110.8, 103.2, 34.4, 31.1, 21.4. HRMS (EI) m/z: [M]⁺ calcd for C₃₃H₂₉NS 471.2021; found 471.2023.


2-(tert-butyl)-1-(5-phenylbenzo[b]thiophen-7-yl)-1H-indole (71c)

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 87% yield (66.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (s, 1H), 7.75–7.69 (m, 3H), 7.65 (d, *J* = 7.7 Hz, 1H), 7.53–7.44 (m, 4H), 7.40 (t, *J* = 7.1 Hz, 1H), 7.13 (t, *J* = 7.3 Hz, 1H), 7.03 (t, *J* = 7.6 Hz, 1H), 6.69–6.55 (m,

2H), 1.31 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 141.6, 140.1, 139.7, 139.3, 138.5, 135.1, 128.9, 128.0, 127.5, 127.3, 127.2, 126.2, 124.2, 122.1, 121.4, 120.1, 119.8, 110.1, 100.2, 33.3, 30.6. HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₂₃NS 381.1551; found 381.1550.

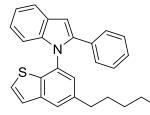
2-(tert-butyl)-1-(5-hexylbenzo[b]thiophen-7-yl)-1H-indole (72c)



The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a yellow liquid in 80% yield (62.3 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (s, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.40–

7.34 (m, 2H), 7.30 (s, 1H), 7.17–7.07 (m, 1H), 7.05–6.97 (m, 1H), 6.62–6.51 (m, 2H), 2.85–2.76 (m, 2H), 1.78–1.67

(m, 2H), 1.39–1.29 (m, 6H), 1.28–1.24 (m, 9H), 0.94–0.87 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 150.2, 141.3, 140.0, 139.2, 138.1, 134.4, 127.7, 127.3, 127.3, 123.7, 123.3, 121.3, 120.0, 119.8, 110.1, 100.0, 35.6, 33.3, 31.6, 31.5, 30.6, 28.8, 22.5, 14.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₆H₃₁NS 389.2177; found 389.2172.


2-cyclopropyl-1-(5-hexylbenzo[b]thiophen-7-yl)-1H-indole (73c)

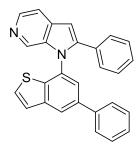
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a yellow liquid in 82% yield (61.2 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.60 (d, *J* = 7.7 Hz, 1H), 7.40 (dd,

J = 12.4, 5.4 Hz, 2H), 7.12 (t, J = 7.4 Hz, 1H), 7.05 (t, J = 7.5 Hz, 1H), 6.89 (d, J = 8.0 Hz, 1H), 2.81 (t, J = 7.6 Hz, 2H), 1.77–1.67 (m, 2H), 1.67–1.58 (m, 1H), 1.41–1.29 (m, 6H), 0.94–0.85 (m, 3H), 0.85–0.66 (m, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 144.1, 141.5, 140.3, 137.6, 136.6, 132.4, 128.1, 127.2, 125.8, 123.9, 122.9, 120.9, 120.0, 119.8, 110.1, 97.4, 35.6, 31.7, 31.6, 28.8, 22.5, 14.0, 8.5, 8.0, 7.4. HRMS (EI) m/z: [M]⁺ calcd for C₂₅H₂₇NS 373.1864; found 373.1863.


1-(5-hexylbenzo[b]thiophen-7-yl)-2-phenyl-1H-indole (74c)

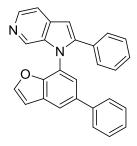
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a sticky pale yellow liquid in 84% yield (68.7 mg). ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 1H), 7.65 (s,

1H), 7.38 (d, J = 5.4 Hz, 1H), 7.33 (d, J = 5.4 Hz, 1H), 7.29–7.24 (m, 2H), 7.23–7.12 (m, 5H), 7.05 (d, J = 8.0 Hz, 1H), 7.00 (s, 1H), 6.90 (s, 1H), 2.67 (t, J = 7.5 Hz, 2H), 1.57–1.50 (m, 2H), 1.30–1.19 (m, 6H), 0.88 (t, J = 6.7 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 141.5, 141.0, 140.2, 138.6, 136.0, 133.0, 132.5, 128.5, 128.0, 128.0, 127.3, 125.8, 123.8, 122.7, 122.1, 120.7, 120.5, 111.1, 103.7, 35.5, 31.6, 31.4, 28.5, 22.5, 14.0.HRMS (EI) m/z: [M]⁺ calcd for C₂₈H₂₇NS 409.1864; found 409.1866.


2-phenyl-1-(3-(p-tolyl)naphthalen-1-yl)-1H-pyrrolo[2,3-c]pyridine (75c)

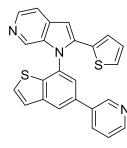
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/ethyl acetate(5/1) to afford a light yellow solid in 85% yield (69.7 mg). mp 199–200 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.42–8.24 (m, 2H), 8.14 (s, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.65 (s, 1H), 7.58–7.44 (m, 3H), 7.37 (s, 2H), 7.30 (d, *J* = 6.7 Hz, 2H), 7.26–

7.20 (m, 2H), 7.20–7.09 (m, 3H), 6.94 (s, 1H), 2.39 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 145.5, 139.6, 138.2, 137.7, 136.7, 134.6, 134.4, 134.3, 133.0, 131.3, 129.8, 129.6, 128.6, 128.5, 128.3, 128.3, 127.2, 127.1, 127.0, 126.5, 126.4, 122.8, 114.7, 102.3, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₃₀H₂₂N₂ 410.1783; found 410.1785.


2-phenyl-1-(5-phenylbenzo[b]thiophen-7-yl)-1H-pyrrolo[2,3-c]pyridine(76c)

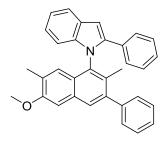
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 79% yield (63.5 mg). mp 149–150 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.50 (s, 1H), 8.37 (s, 1H), 8.10 (s, 1H), 7.64 (s, 1H), 7.52 (d, *J* = 7.2 Hz, 2H), 7.47 (s, 1H), 7.46–7.39 (m, 4H), 7.38–7.32 (m, 3H), 7.24–7.17(m, 3H),

6.90 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 144.3, 142.1, 139.9, 138.9, 137.2, 134.1, 133.4, 132.4, 131.3, 128.8, 128.4, 128.3, 128.1, 127.6, 127.2, 124.5, 124.0, 122.1, 103.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₁₈N₂S 402.1191; found 402.1193.


2-phenyl-1-(5-phenylbenzofuran-7-yl)-1H-pyrrolo[2,3-c]pyridine (77c)

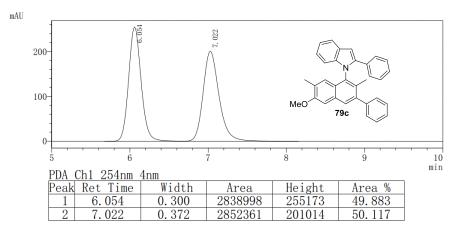
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 85% yield (65.6 mg). mp 135–136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.57 (s, 1H), 8.41–8.32 (m, 1H), 7.84 (s, 1H), 7.65–7.60 (m, 1H), 7.53 (s, 1H), 7.48–7.44 (m, 2H), 7.44–7.38 (m, 3H), 7.37–7.31 (m, 3H), 7.29–7.21 (m, 3H),

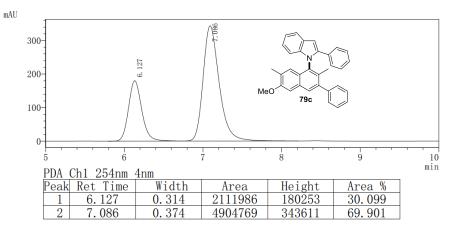
6.95–6.81 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 149.0, 146.3, 144.6, 140.2, 139.9, 137.3, 135.6, 134.1, 133.4, 131.4, 130.0, 128.8, 128.6, 128.3, 128.2, 127.3, 127.3, 123.4, 121.9, 119.7, 114.8, 107.2, 103.0. HRMS (EI) m/z: [M]⁺ calcd for C₂₇H₁₈N₂O 386.1419; found 386.1418.


1-(5-(pyridin-3-yl)benzo[b]thiophen-7-yl)-2-(thiophen-2-yl)-1H-pyrrolo[2,3-c]pyridine (78c)

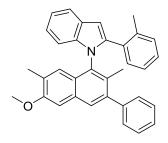
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane (10/1) to afford a white powder in 59% yield (48.3 mg). mp 136–136 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.80–8.20 (m, 3H), 8.16–8.13 (m, 1H), 7.84 (d, *J* = 7.9 Hz, 1H), 7.70–7.55 (m, 1H), 7.50–7.47 (m, 3H), 7.35 (s, 1H), 7.17 (dd, *J* = 5.1, 2.9 Hz,

1H), 7.03 (dd, J = 5.1, 1.2 Hz, 1H), 6.95–6.93 (m, 1H), 6.90 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 148.7, 148.2, 142.2, 139.9, 139.1, 135.6, 134.4, 133.1, 132.7, 131.4, 129.5, 129.5, 128.8, 128.3, 127.1, 125.8, 125.7, 124.4, 123.6, 123.6, 122.5, 102.2. HRMS (EI) m/z: [M]⁺ calcd for C₂₄H₁₅N₃S₂ 409.0707; found 409.0710.

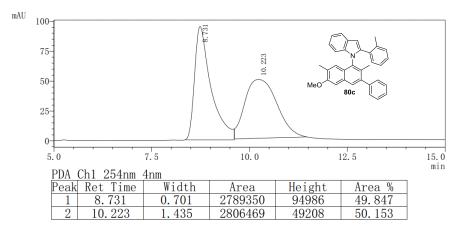

1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-2-phenyl-1H-indole (79c)

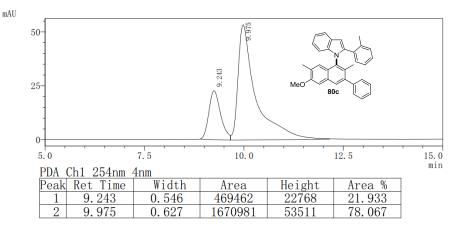

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 85% yield (77.0 mg). mp 188–189 °C. The ee (40% ee) of **79c** was determined by HPLC analysis using a Daicel CHIRALPACK OD column; 1% *i*-Pr-OH in hexane; flow rate, 1.0 mL/min;

35 °C; retention times: 6.1 min (minor), 7.1 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 7.8 Hz, 1H), 7.71 (s, 1H), 7.43–7.31 (m, 3H), 7.30–7.25 (m, 4H), 7.23–7.06 (m, 7H), 6.99 (s, 1H), 6.79 (d, J = 8.1 Hz, 1H), 3.94 (s, 3H), 2.20 (s, 3H), 1.68 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 141.9, 141.6, 140.9, 138.9, 132.8, 132.7, 132.3, 131.1, 130.1, 129.3, 128.3, 128.1, 128.0, 127.8, 127.6, 127.3, 127.0, 126.6, 124.2, 122.2, 120.4, 120.4, 111.2, 104.5, 102.3, 55.3, 17.1, 15.8 .HRMS (EI) m/z: [M]⁺ calcd for C_{33H27}NO 453.2093; found 453.2092.

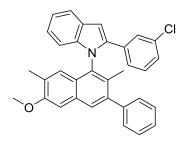

Racemic:

Enantioselective:

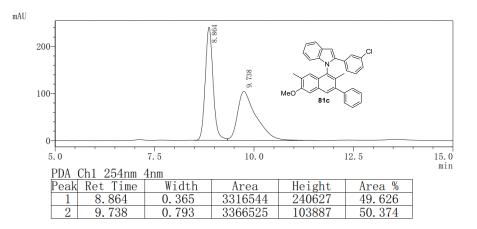

1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-2-(o-tolyl)-1H-indole (80c)

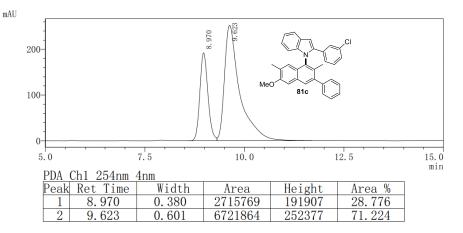

The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 70% yield (65.4 mg). mp 197–198 °C. The ee (56% ee) of **80c** was determined by HPLC analysis using a Daicel CHIRALPACK OD column; 1% *i*-Pr-OH in hexane; flow rate, 1.0 mL/min;

35 °C; retention times: 9.2 min (minor), 10.0 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.7 Hz, 1H), 7.64 (s, 1H), 7.46–7.40 (m, 2H), 7.40–7.34 (m, 1H), 7.31 (d, *J* = 7.4 Hz, 2H), 7.25–7.12 (m, 3H), 7.10–7.04 (m, 2H), 7.01 (s, 1H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.90–6.80 (m, 3H), 3.92 (m, 3H), 2.54 (s, 3H), 2.23 (s, 3H), 1.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 156.8, 141.7, 140.6, 140.2, 137.9, 136.7, 132.2, 132.1, 131.7, 130.9, 130.4, 129.9, 129.5, 129.2, 128.0, 127.9, 127.5, 126.9, 126.6, 124.7, 124.3, 121.9, 120.2, 120.2, 111.2, 104.4, 55.2, 20.9, 16.9, 16.3. HRMS (EI) m/z: [M]⁺ calcd for C₃₄H₂₉NO 467.2249; found 467.2247.

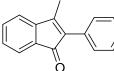

Racemic:

Enantioselective:

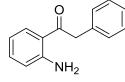

1-(3-chlorophenyl)-1-(6-methoxy-2,7-dimethyl-3-phenylnaphthalen-1-yl)-1H-indole (81c)


The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a white powder in 75% yield (73.1 mg). mp 185–186 °C. The ee (43%) of **81c** was determined by HPLC analysis using a Daicel CHIRALPACK OD column; 1% *i*-Pr-OH in hexane; flow rate, 1.0

mL/min; 35 °C; retention times: 9.0 min (minor), 9.6 min (major). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.73 (s, 1H), 7.47–7.40 (m, 2H), 7.39–7.30 (m, 4H), 7.21 (t, *J* = 7.3 Hz, 1H), 7.16–7.09 (m, 3H), 7.06–6.99 (m, 3H), 6.97 (s, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 3.94 (s, 3H), 2.19 (s, 3H), 1.73 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 141.5, 140.9, 140.0, 139.0, 134.4, 133.9, 132.3, 131.1, 130.2, 129.3, 128.1, 128.0, 128.0, 127.6, 127.2, 127.0, 126.4, 125.3, 123.8, 122.7, 120.6, 111.2, 104.6, 103.0, 55.3, 17.1, 15.7. HRMS (EI) m/z: [M]⁺ calcd for C₃₃H₂₆CINO 487.1703; found 487.1701.

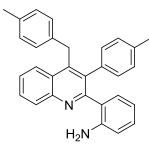

Racemic:

Enantioselective:


3-methyl-2-phenyl-1H-inden-1-one (1p)¹⁵

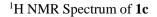
The title compound was prepared according to the general procedure and purified by chromatography on silica gel and eluted with petroleum column ether/dichloromethane(20/1) to afford a sticky yellow liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 7.0 Hz, 1H), 7.44–7.36 (m, 5H), 7.35–7.30 (m, 1H), 7.27–7.20 (m, 1H), 7.14 (d, J = 7.1 Hz,

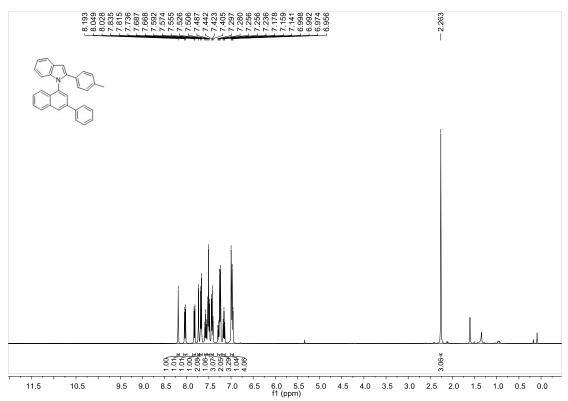
1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) & 196.3, 154.6, 145.8, 133.5, 133.4, 131.1, 130.3, 129.5, 128.8, 128.2, 127.6, 122.0, 119.3, 12.5.


1-(2-aminophenyl)-2-(p-tolyl)ethan-1-one (1g)¹⁶

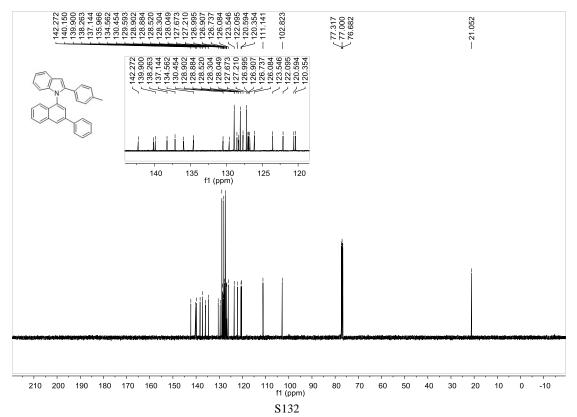
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a crystalline white solid. ¹H NMR (400 MHz,

CDCl₃) δ 7.84 (d, J = 8.1 Hz, 1H), 7.28–7.22 (m, 1H), 7.14 (s, 4H), 6.69–6.57 (m, 2H), 6.28 (s, 2H), 4.22 (s, 2H), 2.33 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 200.1, 150.8, 136.2, 134.3, 132.2, 131.5, 129.2, 129.2, 117.5, 117.3, 115.7, 45.6, 21.0. HRMS (EI) m/z: [M]⁺ calcd for C₁₅H₁₅NO 225.1154.

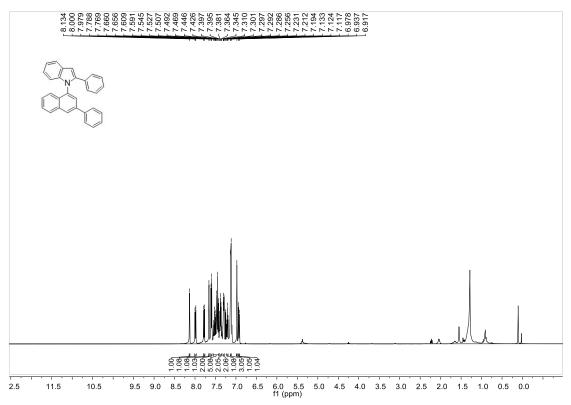

2-(4-(4-methylbenzyl)-3-(p-tolyl)quinolin-2-yl)aniline (1h)³

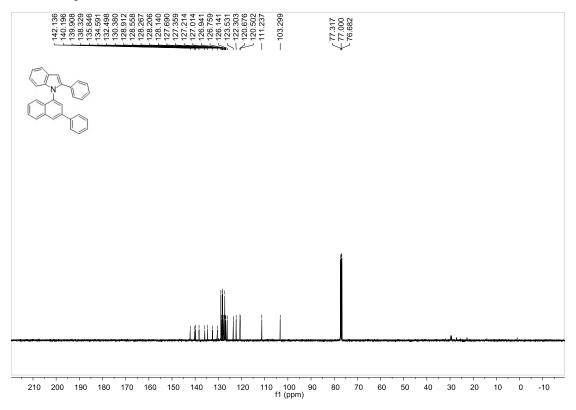


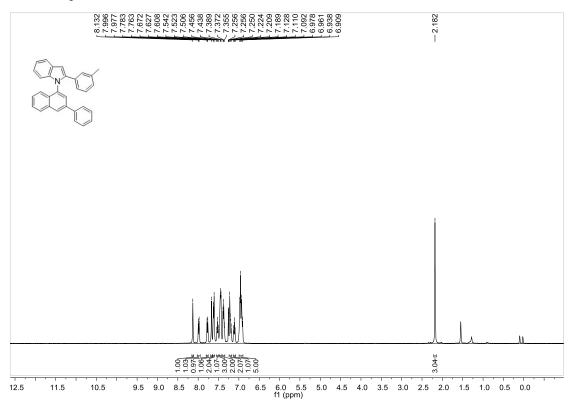
The title compound was prepared according to the general procedure and purified by column chromatography on silica gel and eluted with petroleum ether/dichloromethane(10/1) to afford a light yellow solid, mp 200-201 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.48 (t, *J* = 7.5 Hz, 1H), 7.09–6.97 (m, 7H), 6.94 (d, *J* =

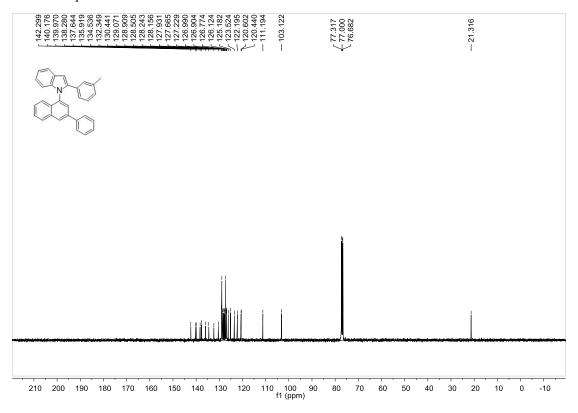

7.4 Hz, 2H), 6.80 (d, J = 7.5 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.48 (t, J = 7.4 Hz, 1H), 4.39 (s, 2H), 4.29 (s, 2H),
2.30 (d, J = 12.8 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 158.7, 146.8, 144.8, 144.6, 137.0, 136.5, 135.8, 135.3,

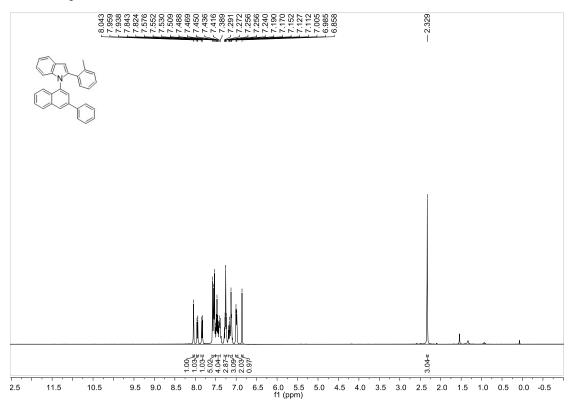
10. Copies of ¹H, ¹³C and ¹⁹C NMR Spectra of the Products

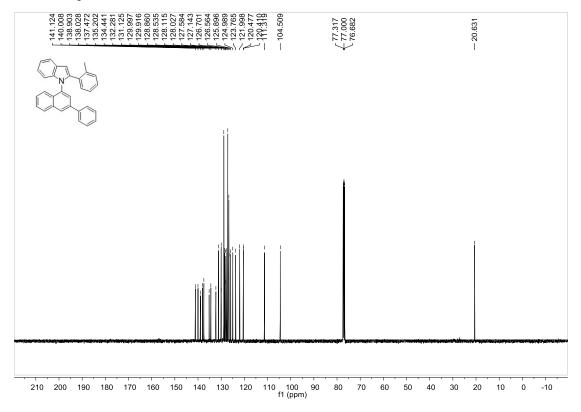


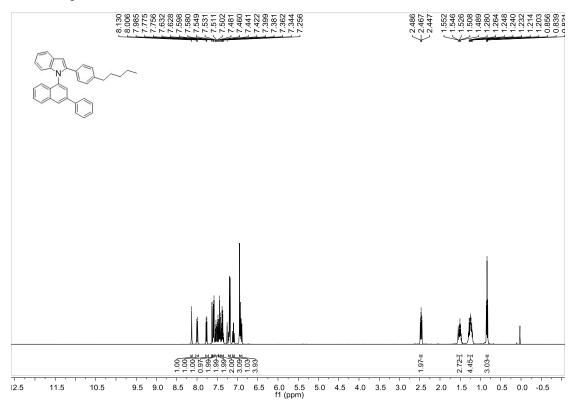

¹³C NMR Spectrum of **1c**

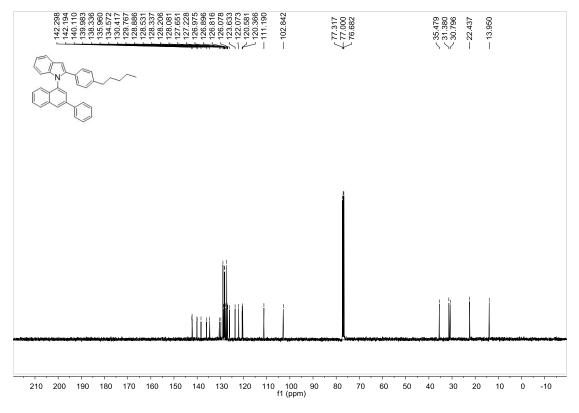

¹H NMR Spectrum of 2c

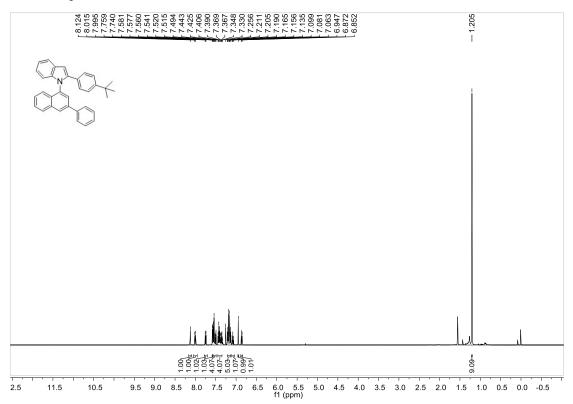

¹³C NMR Spectrum of **2c**

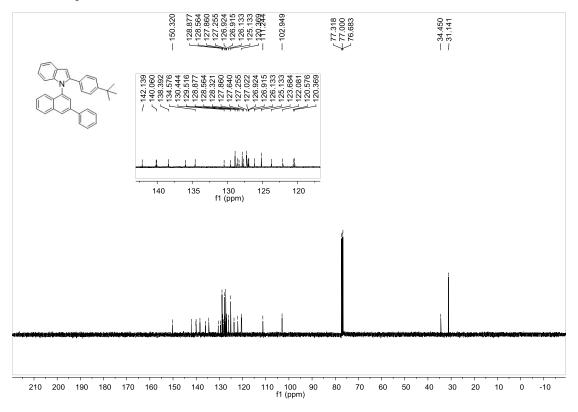

¹H NMR Spectrum of **3c**

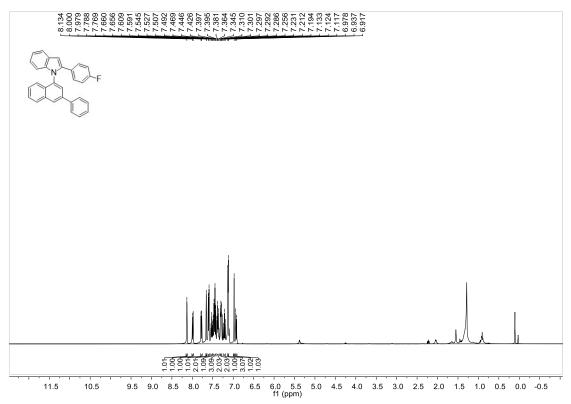

¹³C NMR Spectrum of **3c**

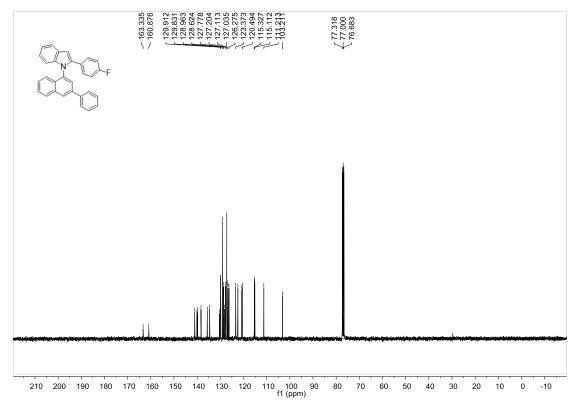

¹H NMR Spectrum of 4c

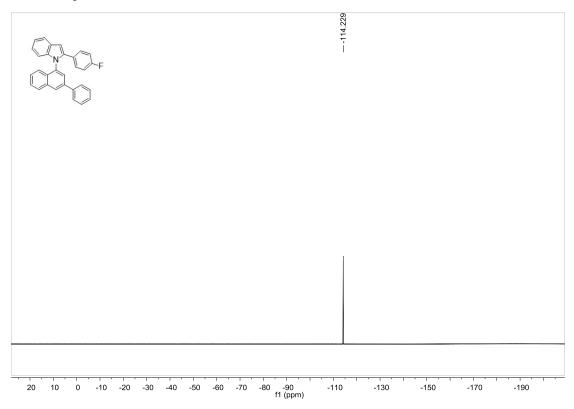

¹³C NMR Spectrum of **4**c

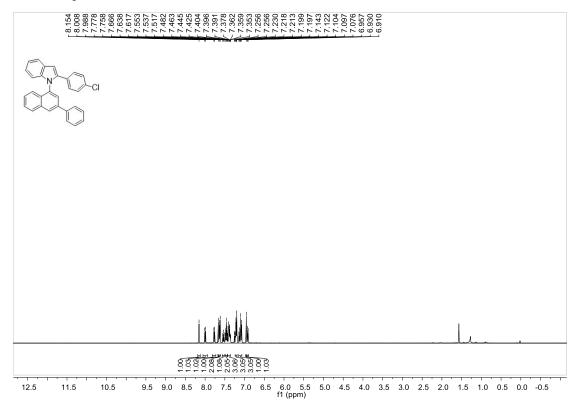

¹H NMR Spectrum of **5**c

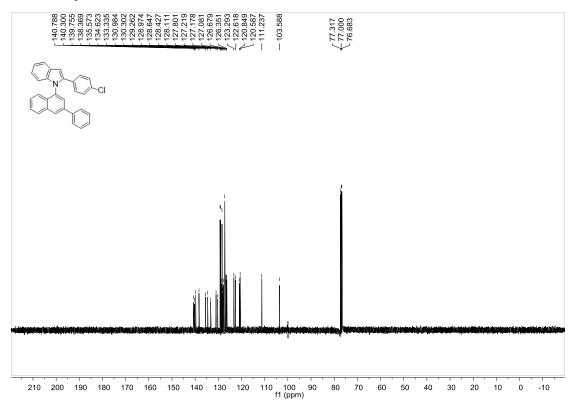

¹³C NMR Spectrum of **5**c

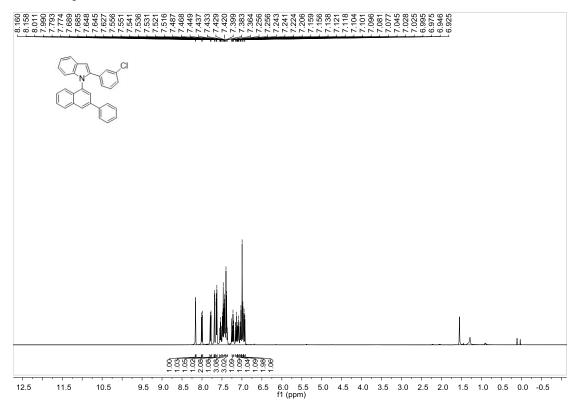

¹H NMR Spectrum of 6c

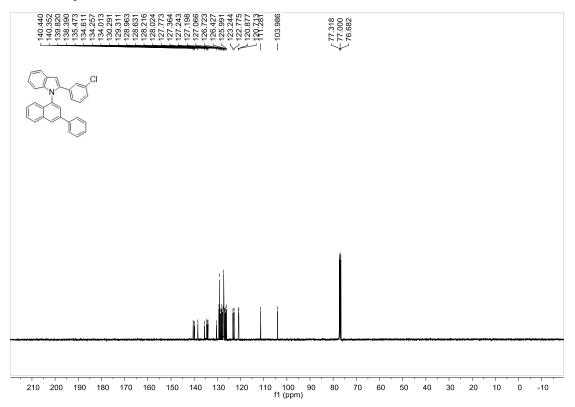

¹³C NMR Spectrum of 6c

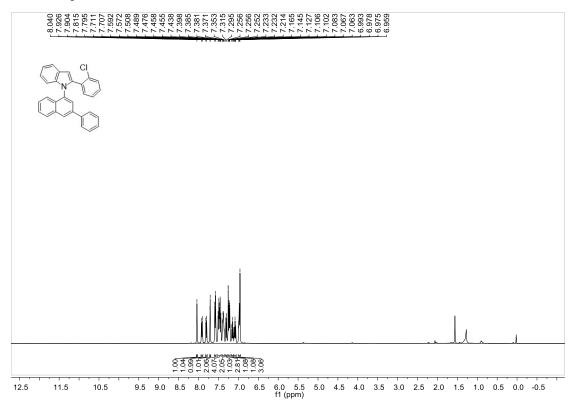

¹H NMR Spectrum of **7c**

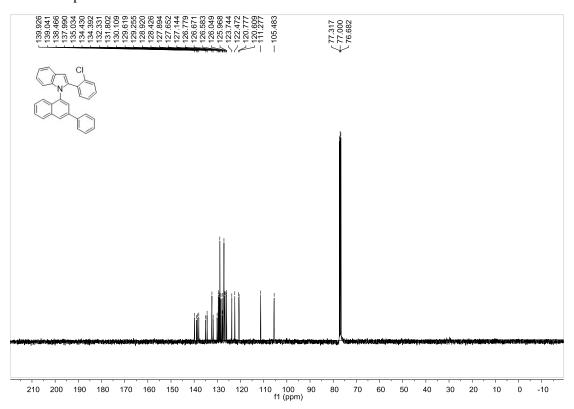

¹³C NMR Spectrum of **7c**

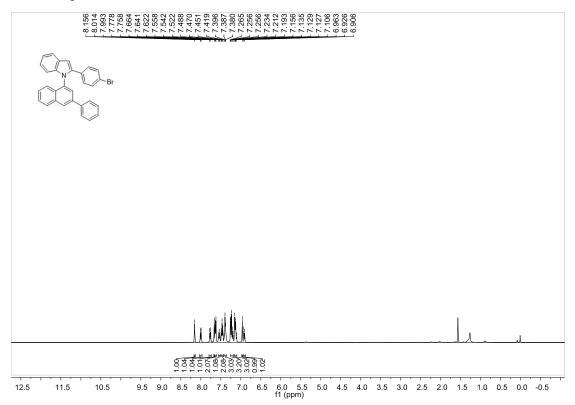

¹⁹F NMR Spectrum of **7c**

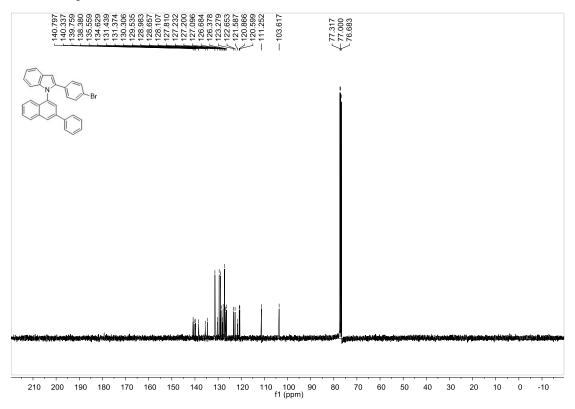

¹H NMR Spectrum of 8c

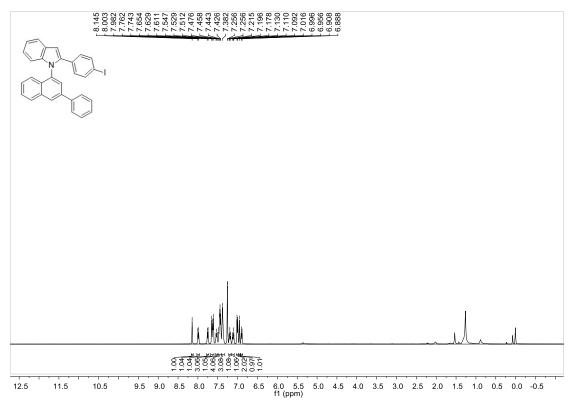

¹³C NMR Spectrum of 8c

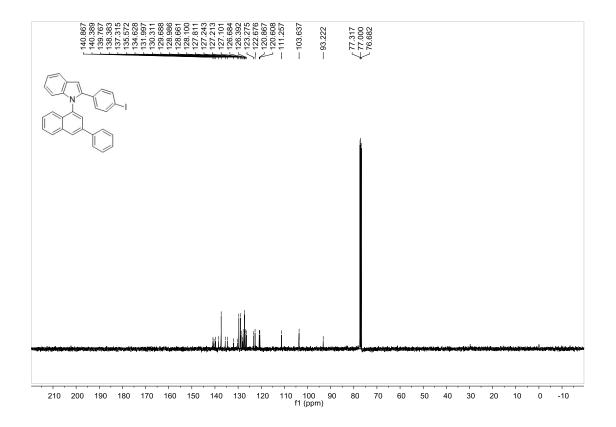

¹H NMR Spectrum of **9c**

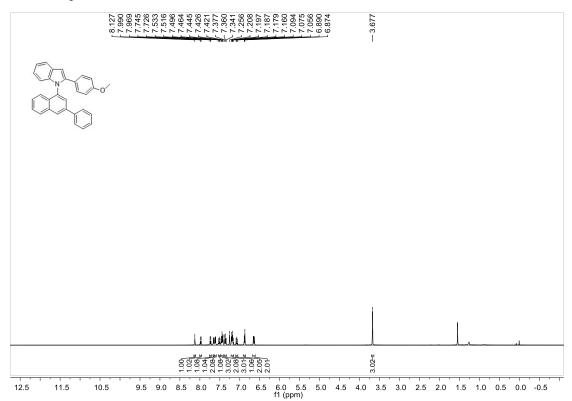

¹³C NMR Spectrum of **9c**

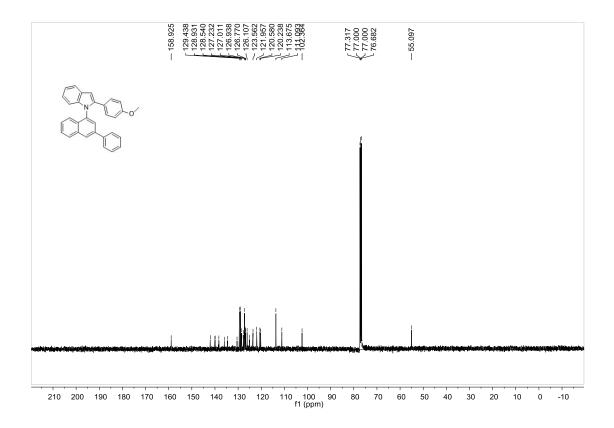

¹H NMR Spectrum of **10c**

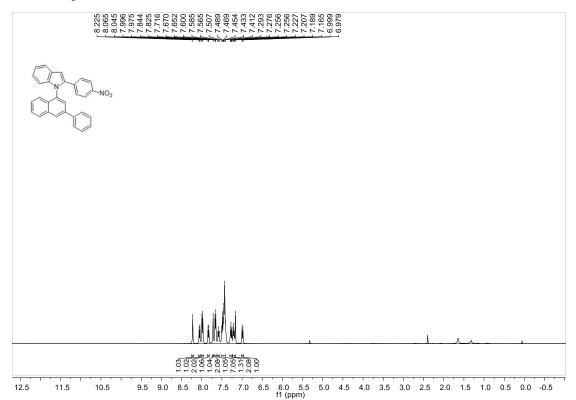

¹³C NMR Spectrum of **10c**

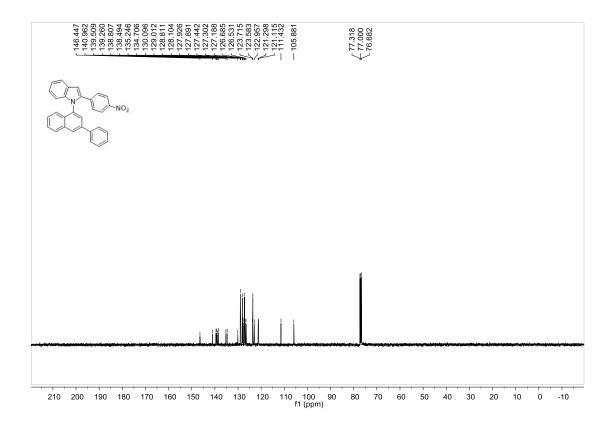

¹H NMR Spectrum of **11c**

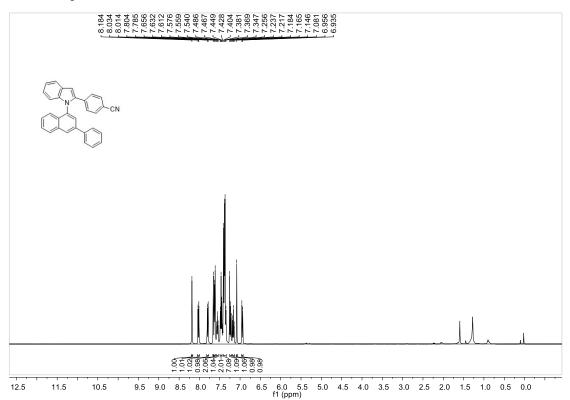

¹³C NMR Spectrum of **11c**

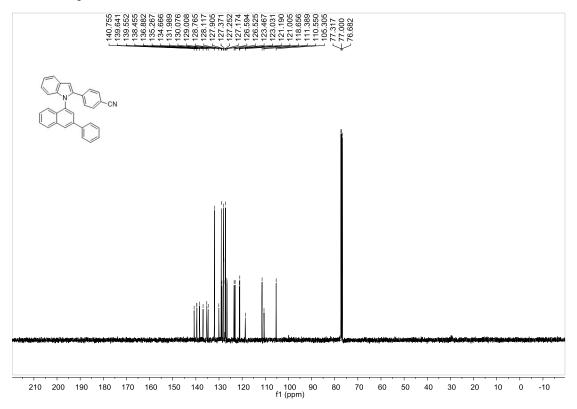

¹H NMR Spectrum of **12c**

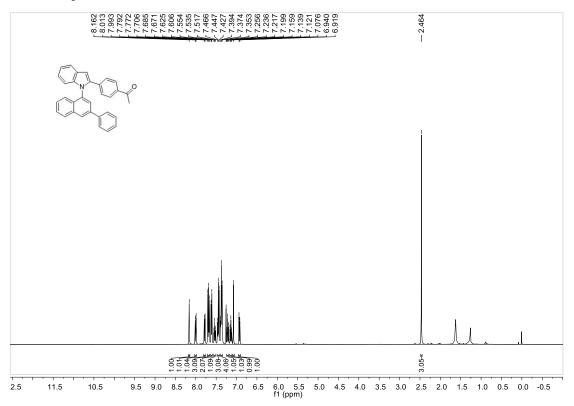

¹³C NMR Spectrum of **12c**

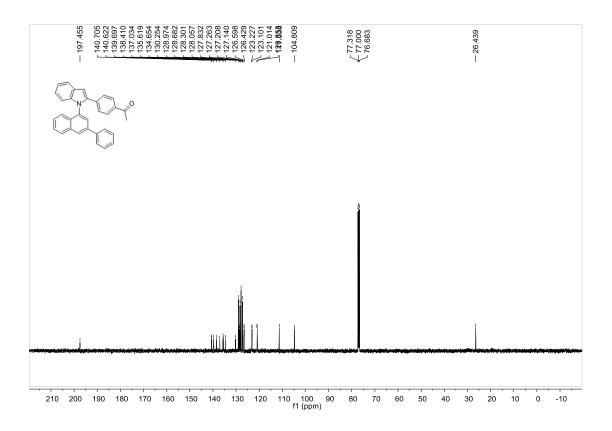

¹H NMR Spectrum of 13c

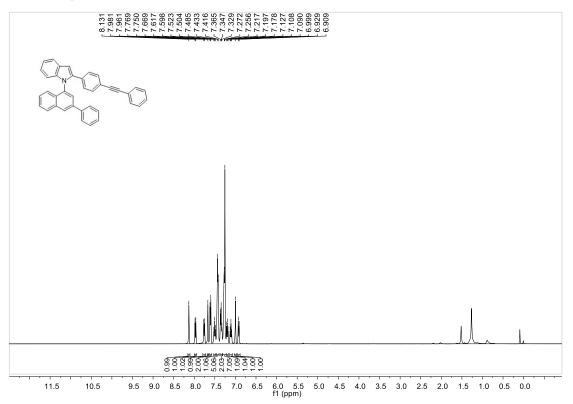

¹³C NMR Spectrum of **13c**

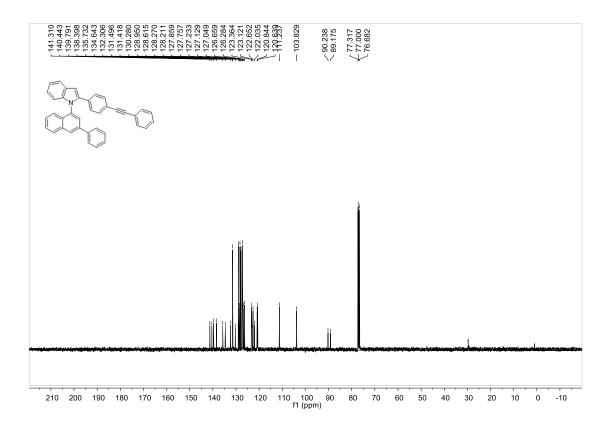

¹H NMR Spectrum of 14c

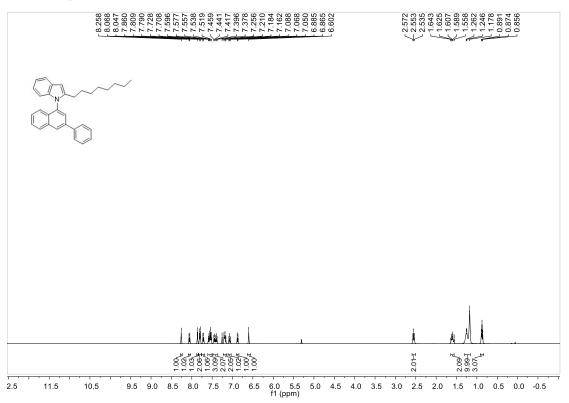

¹³C NMR Spectrum of **14c**

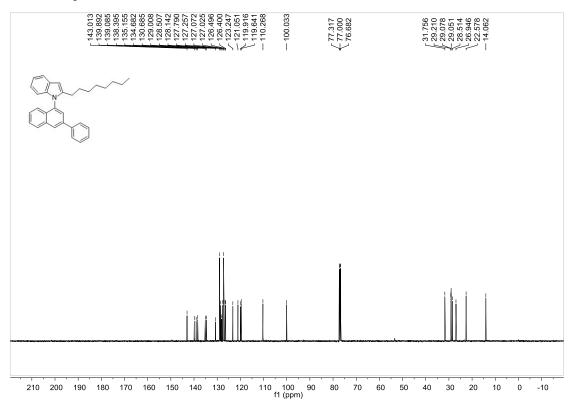

¹H NMR Spectrum of 15c

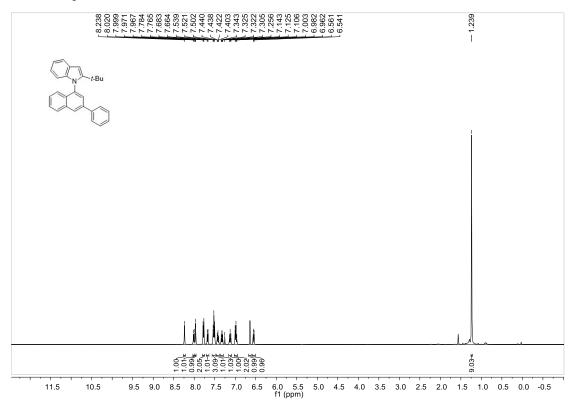

¹³C NMR Spectrum of **15c**

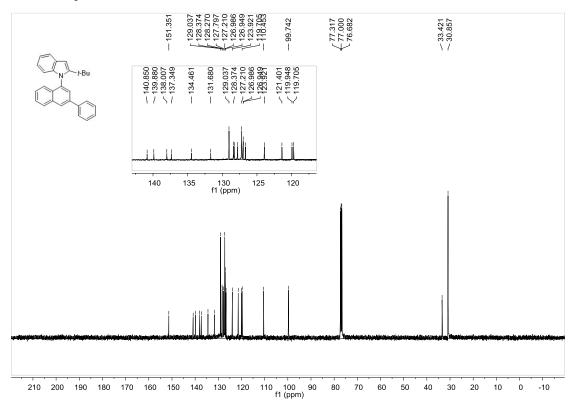

¹H NMR Spectrum of **16c**


¹³C NMR Spectrum of **16c**

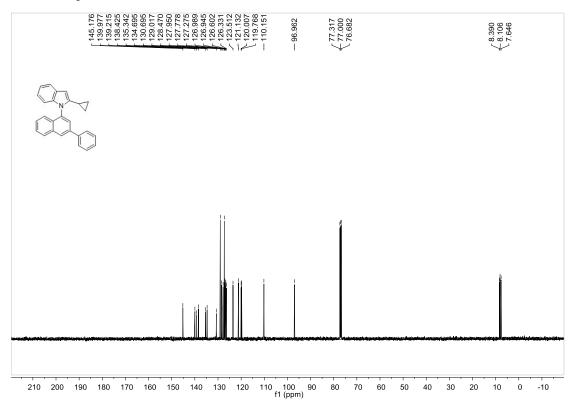

¹H NMR Spectrum of **17c**

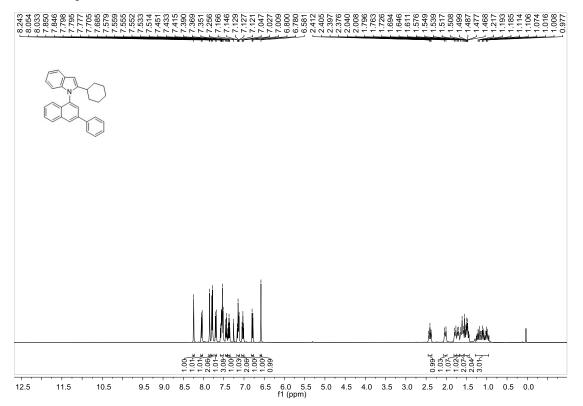

¹³C NMR Spectrum of **17c**

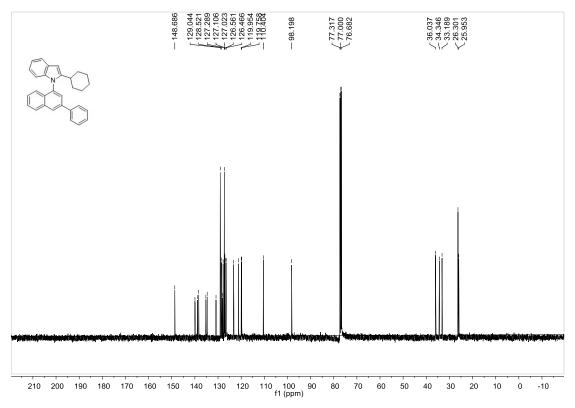

¹H NMR Spectrum of **18c**


¹³C NMR Spectrum of **18c**

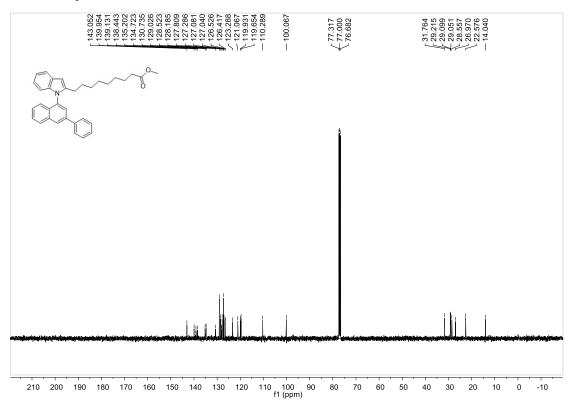
¹H NMR Spectrum of **19c**

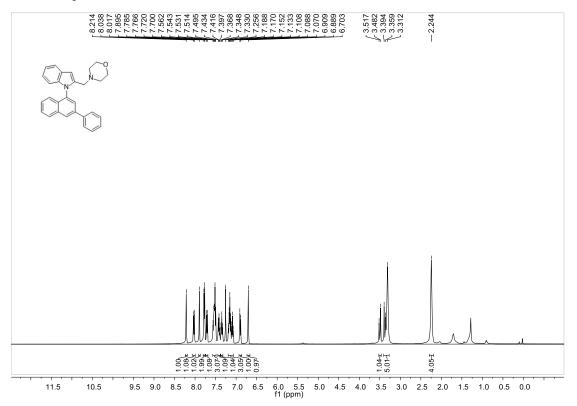

¹³C NMR Spectrum of **19c**

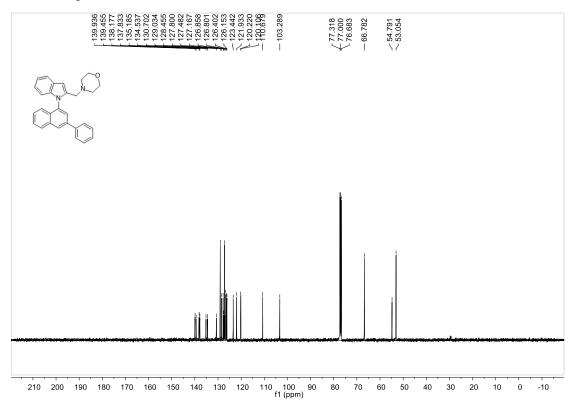

¹H NMR Spectrum of 20c

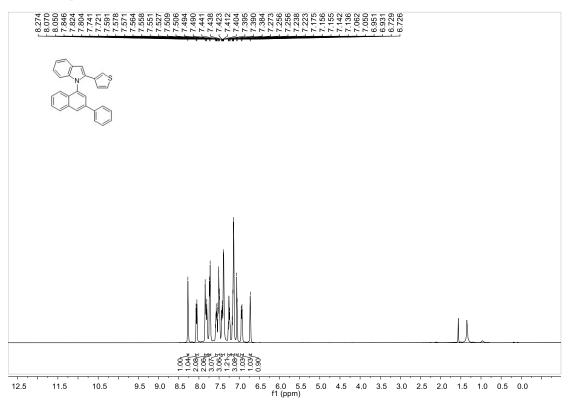

¹³C NMR Spectrum of **20c**

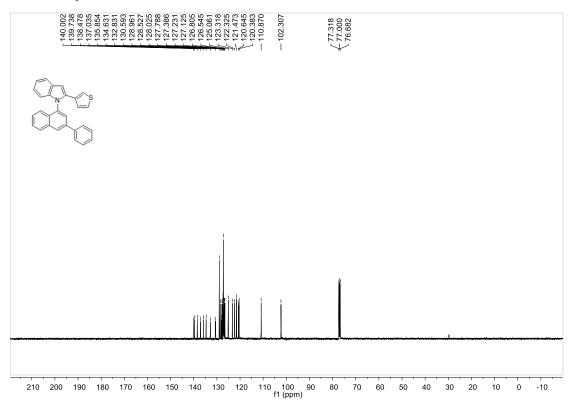
¹H NMR Spectrum of 21c

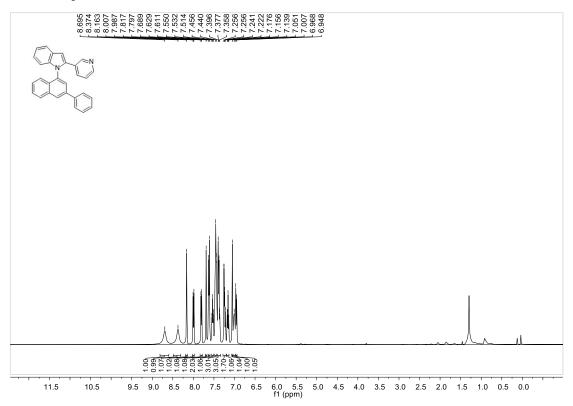

¹³C NMR Spectrum of **21c**

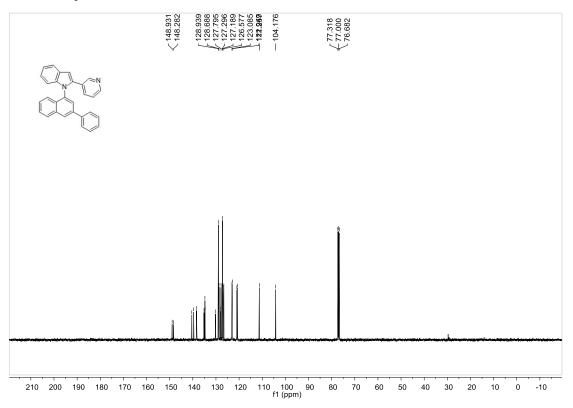

¹H NMR Spectrum of 22c

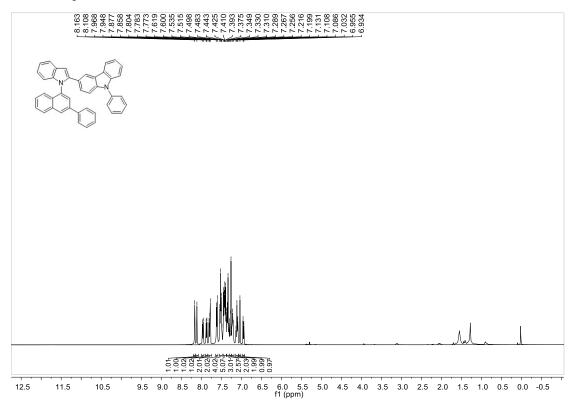

¹³C NMR Spectrum of **22c**

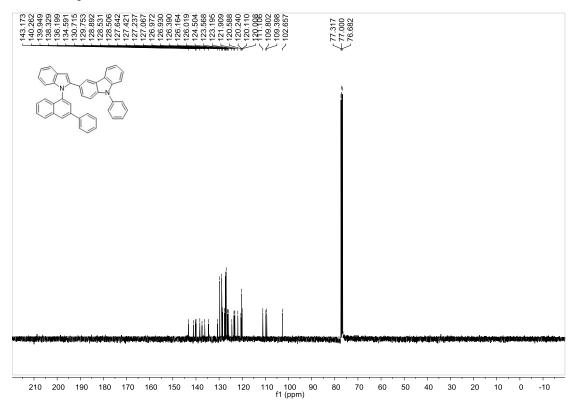

¹H NMR Spectrum of 23c

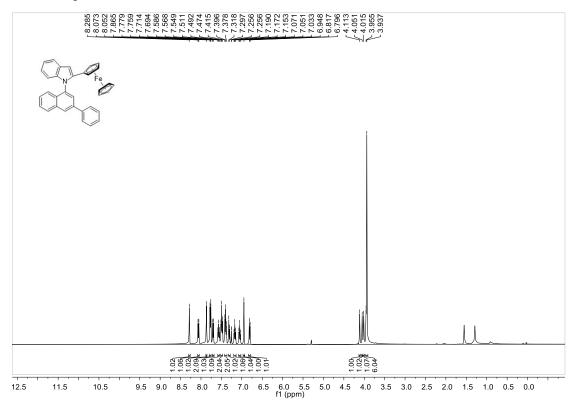

¹³C NMR Spectrum of 23c

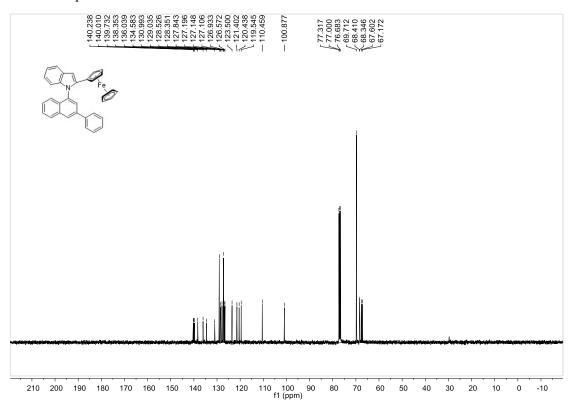

¹H NMR Spectrum of **24c**

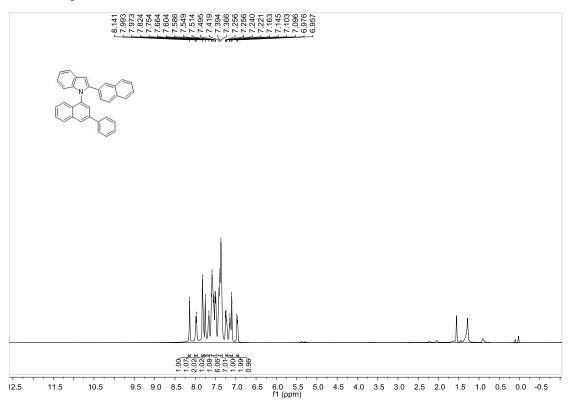

¹³C NMR Spectrum of 24c

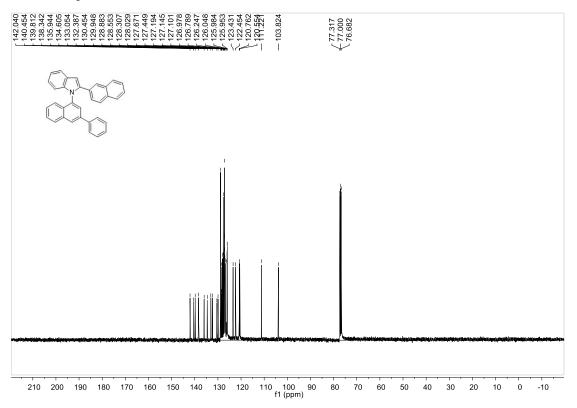

¹H NMR Spectrum of 25c

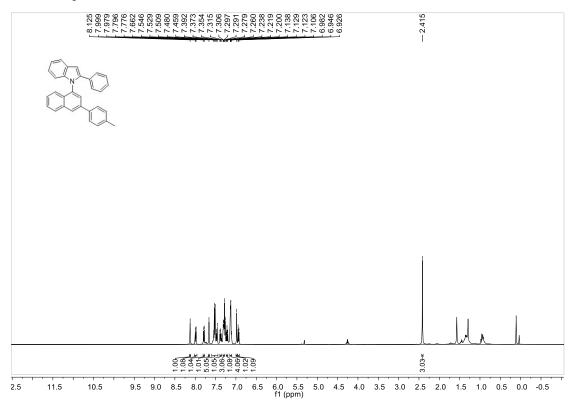

¹³C NMR Spectrum of 25c

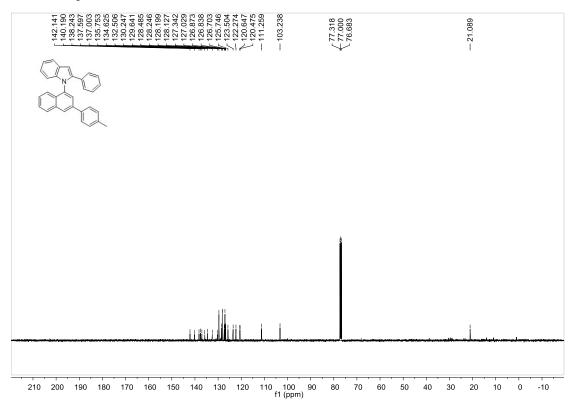

¹H NMR Spectrum of 26c


¹³C NMR Spectrum of **26c**

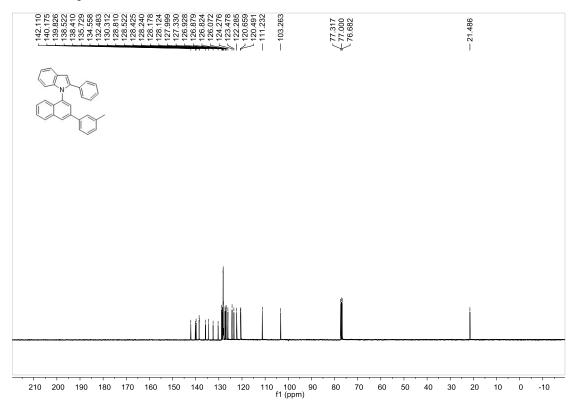

¹H NMR Spectrum of 27c

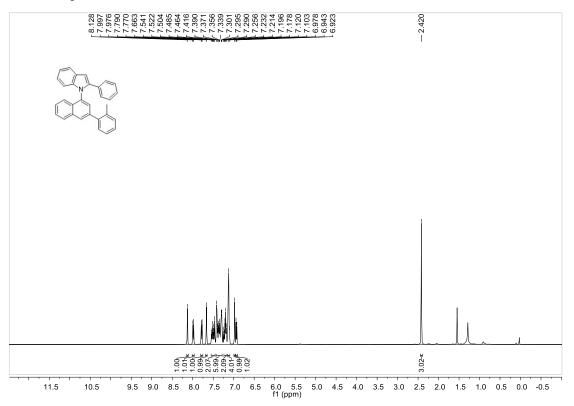

¹³C NMR Spectrum of **27c**

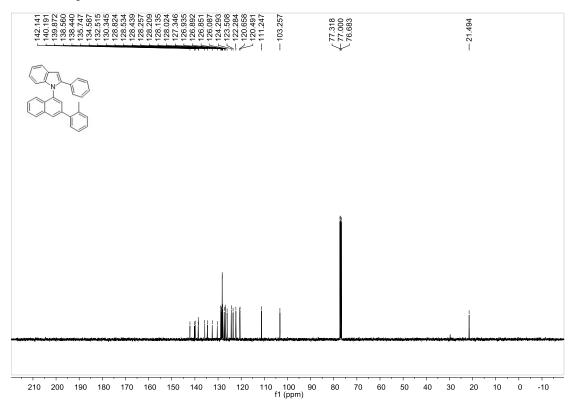

¹H NMR Spectrum of **28c**

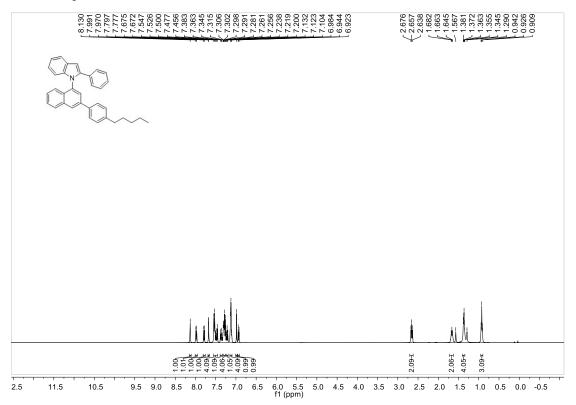

¹³C NMR Spectrum of **28c**

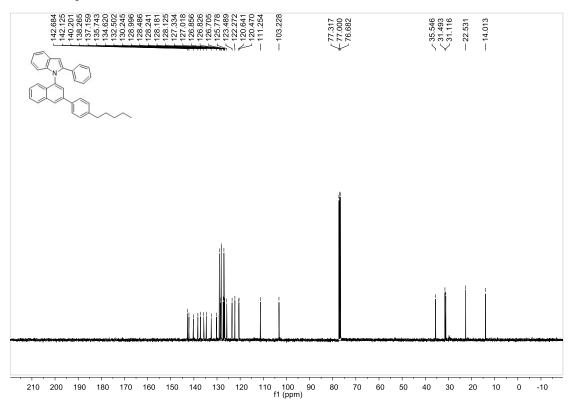
¹H NMR Spectrum of **29c**

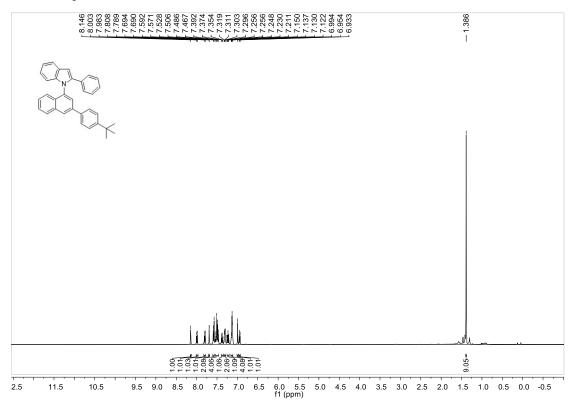

¹³C NMR Spectrum of **29c**

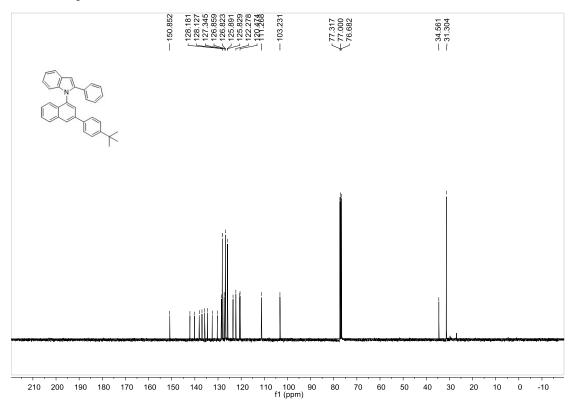

¹H NMR Spectrum of **30c**

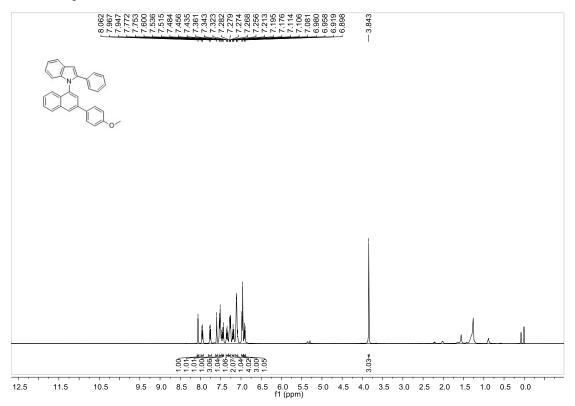

¹³C NMR Spectrum of **30c**

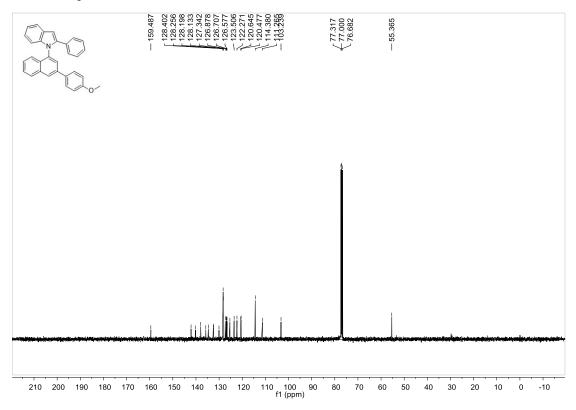

¹H NMR Spectrum of **31c**

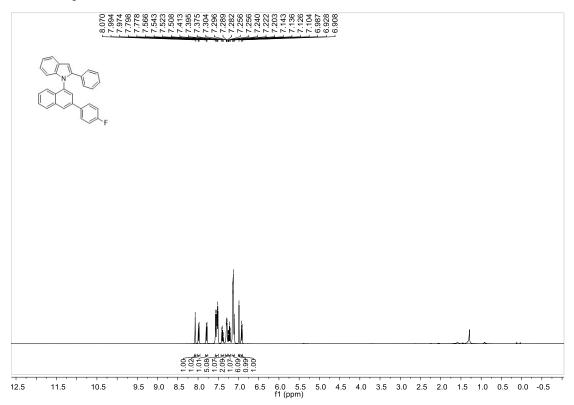

¹³C NMR Spectrum of **31c**

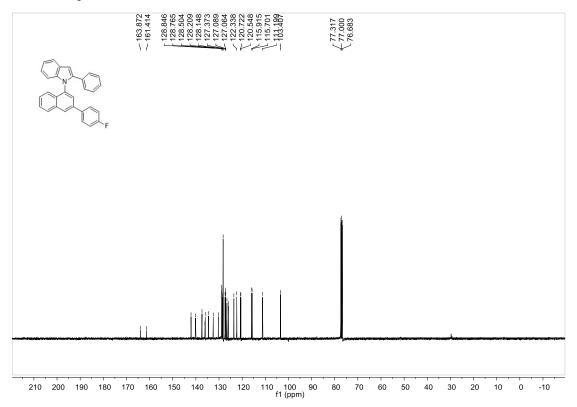

¹H NMR Spectrum of 32c

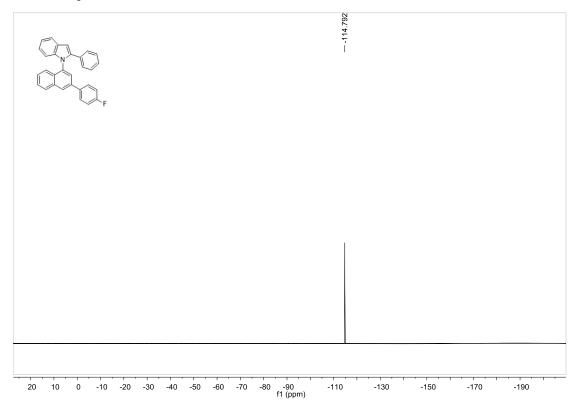

¹³C NMR Spectrum of **32c**

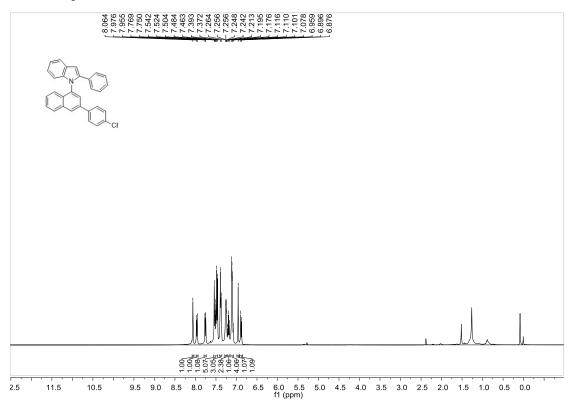

¹H NMR Spectrum of 33c

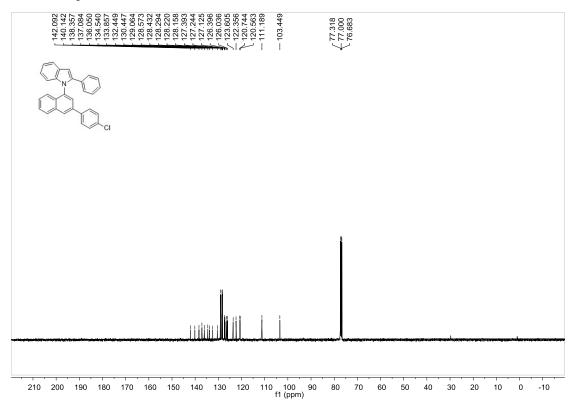

¹³C NMR Spectrum of **33c**

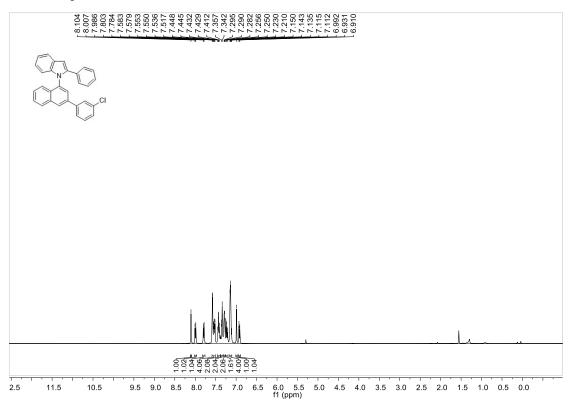

¹H NMR Spectrum of **34c**

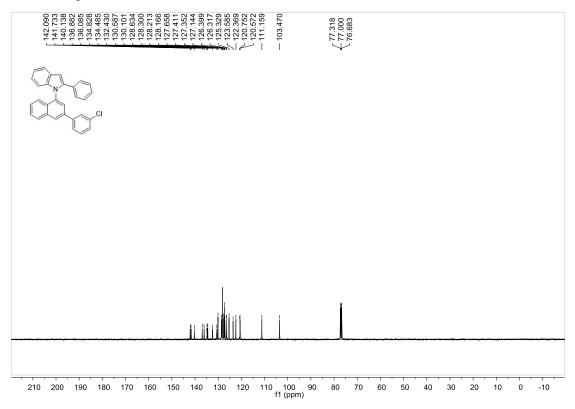

¹³C NMR Spectrum of **34c**

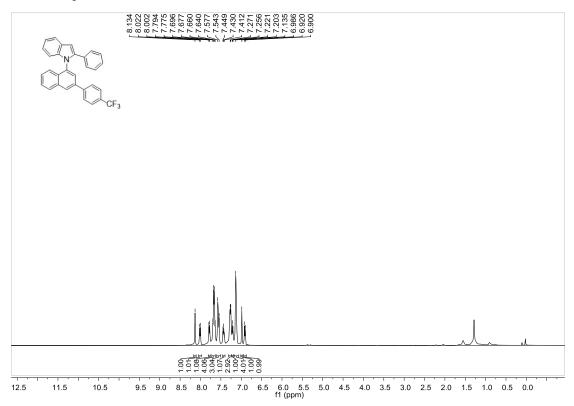

¹H NMR Spectrum of **35c**

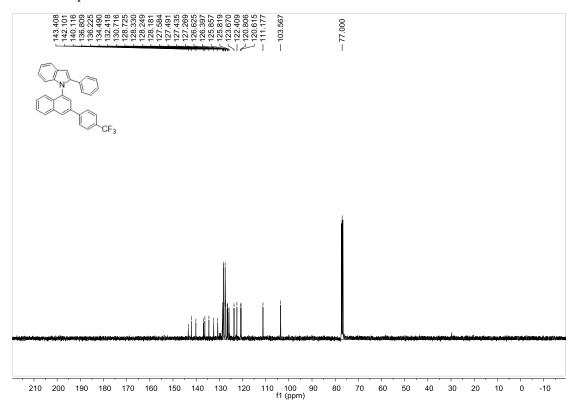

¹³C NMR Spectrum of **35c**

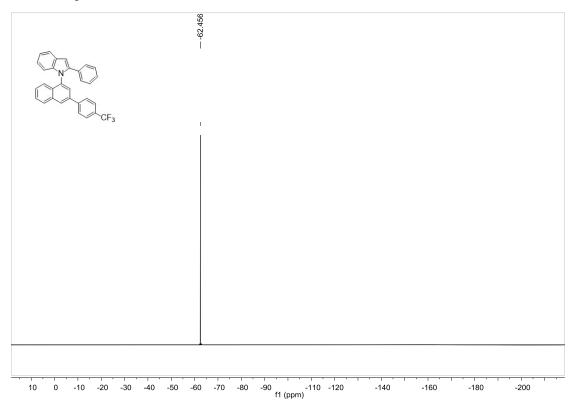

¹⁹F NMR Spectrum of **35c**

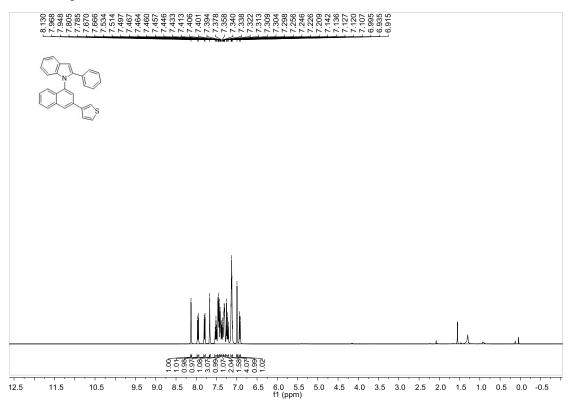

¹H NMR Spectrum of **36c**

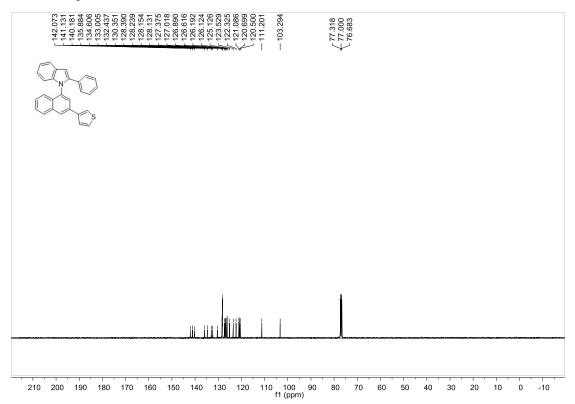

¹³C NMR Spectrum of **36c**

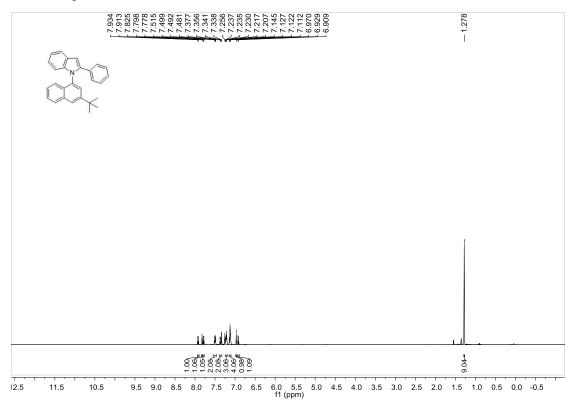

¹H NMR Spectrum of **37c**

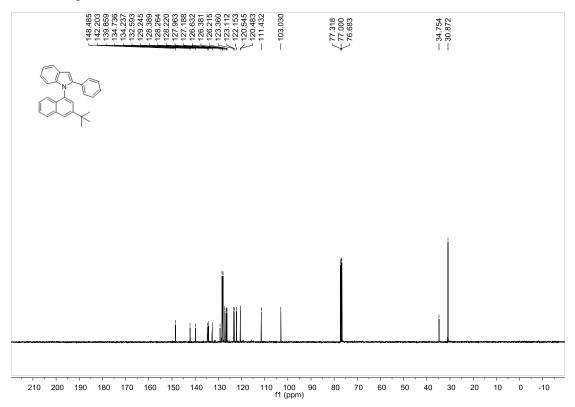

¹³C NMR Spectrum of **37c**

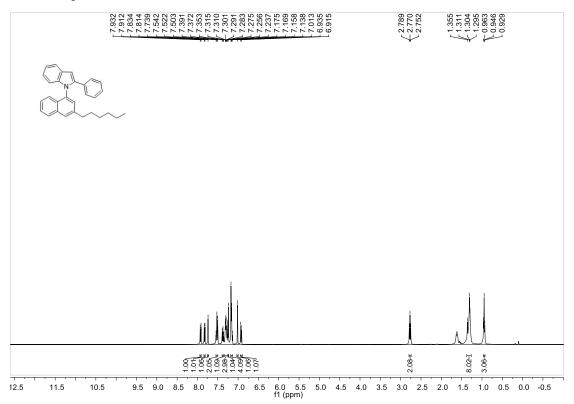

¹H NMR Spectrum of **38c**

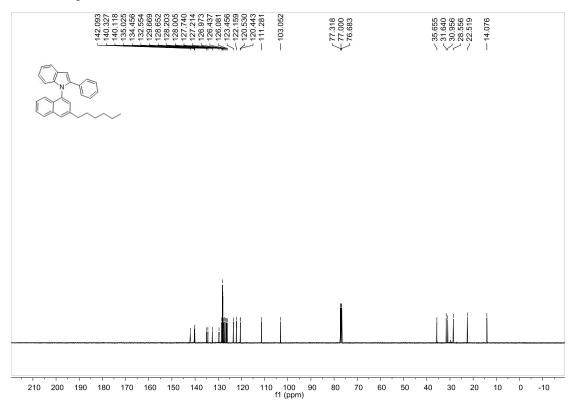

¹³C NMR Spectrum of **38c**

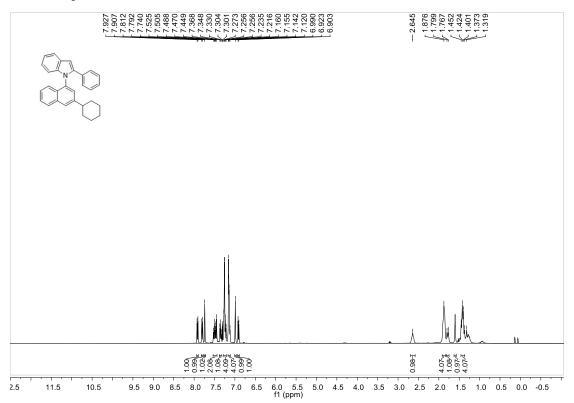

¹⁹F NMR Spectrum of **38c**

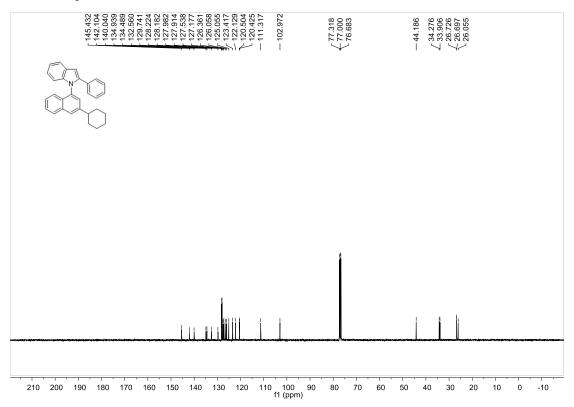

¹H NMR Spectrum of **39c**

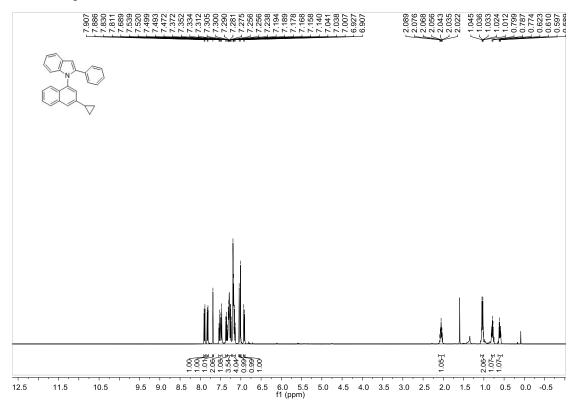

¹³C NMR Spectrum of **39c**

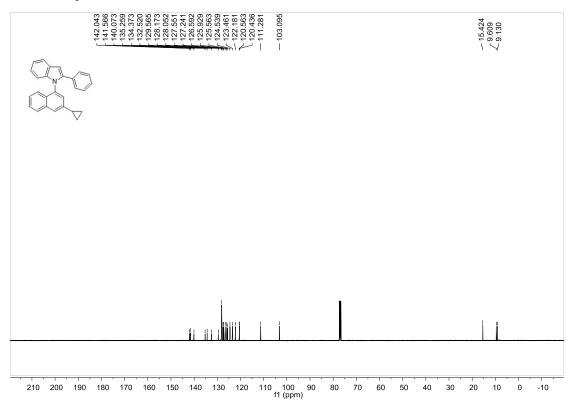

¹H NMR Spectrum of 40c

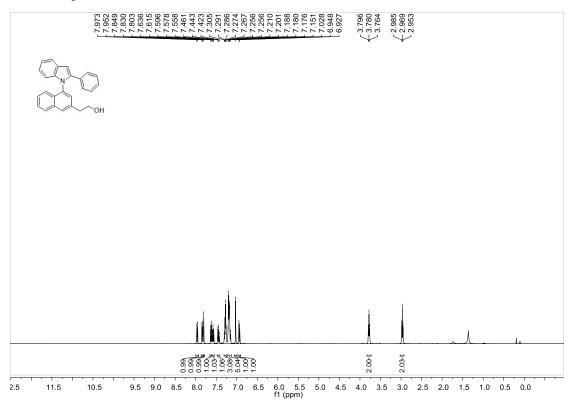

¹³C NMR Spectrum of **40c**

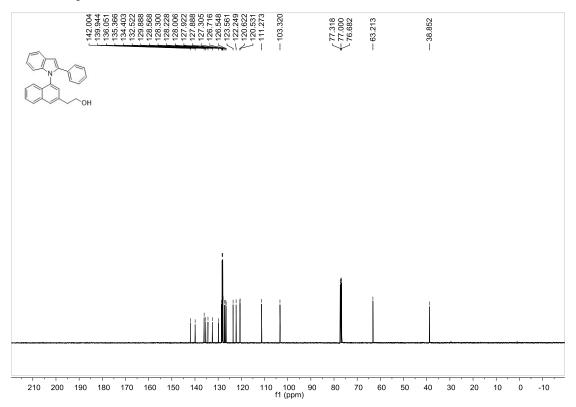

¹H NMR Spectrum of **41c**

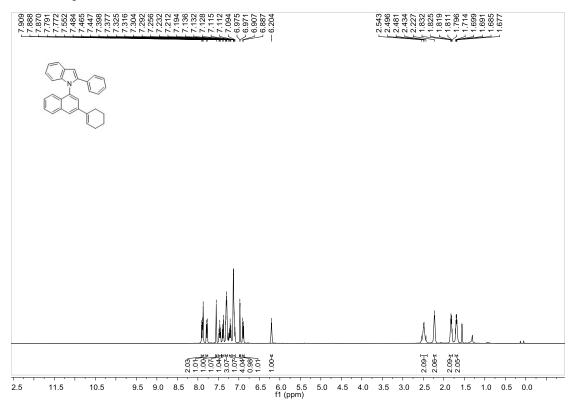

¹³C NMR Spectrum of **41c**

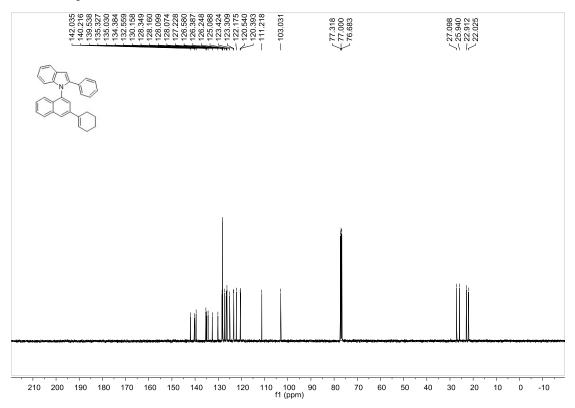

¹H NMR Spectrum of 42c

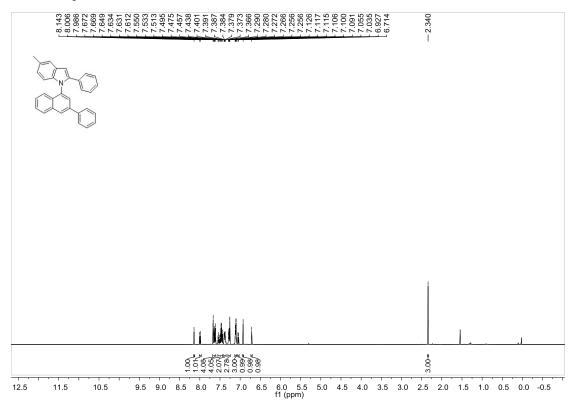

¹³C NMR Spectrum of **42c**

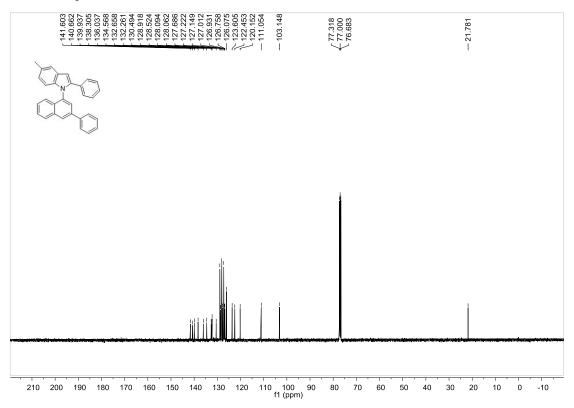

¹H NMR Spectrum of 43c

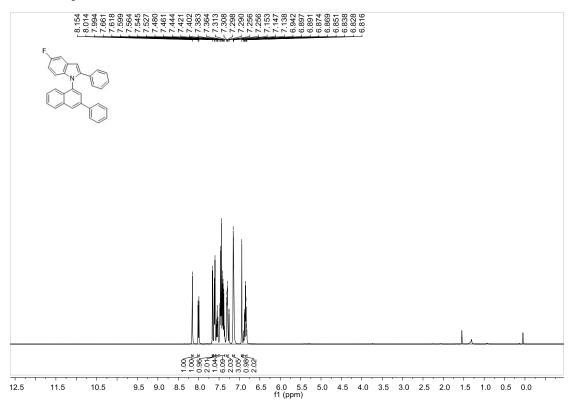

¹³C NMR Spectrum of **43c**

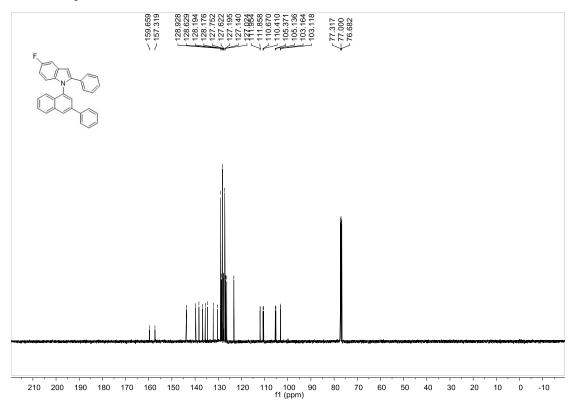

¹H NMR Spectrum of **44c**

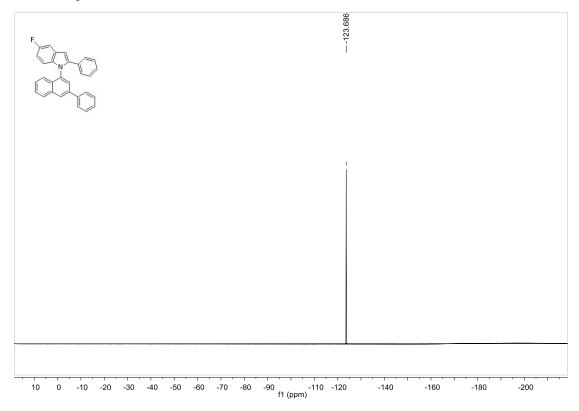

¹³C NMR Spectrum of 44c

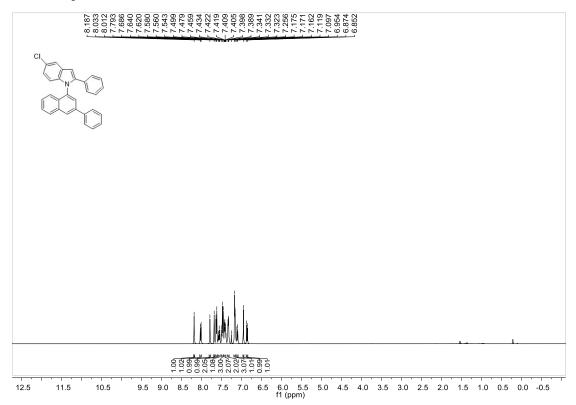

¹H NMR Spectrum of 45c

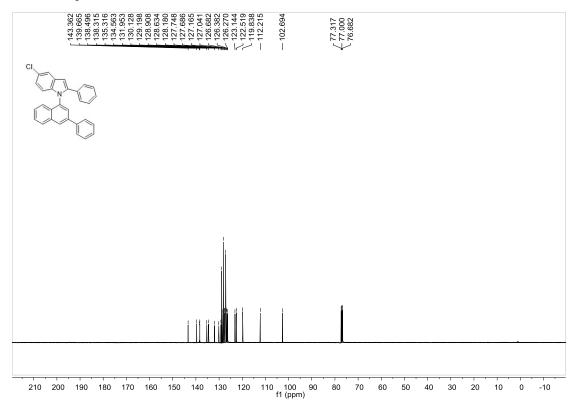

¹³C NMR Spectrum of **45c**

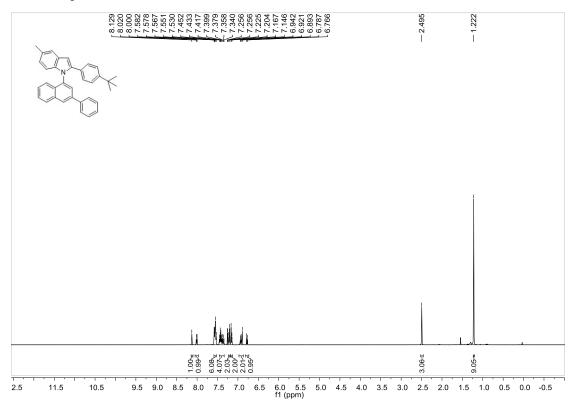

¹H NMR Spectrum of 46c

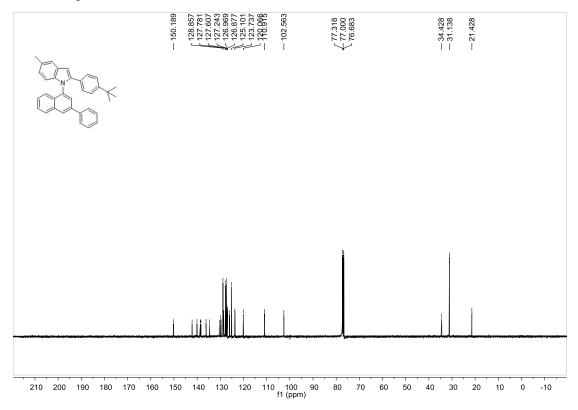

¹³C NMR Spectrum of **46c**

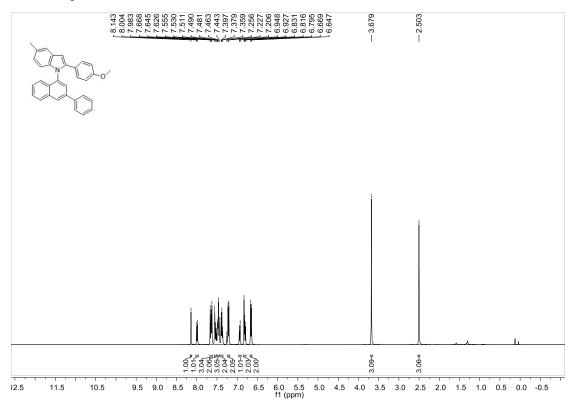

¹H NMR Spectrum of **47c**

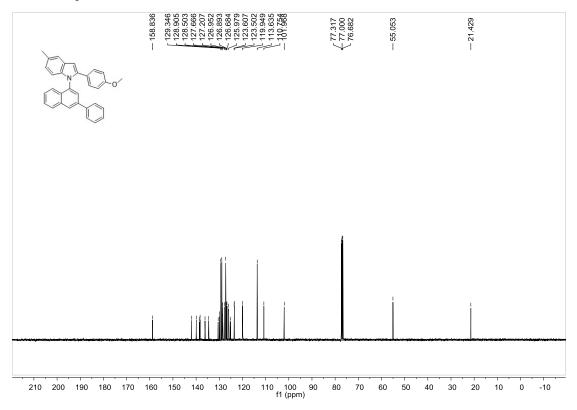

¹³C NMR Spectrum of **47c**

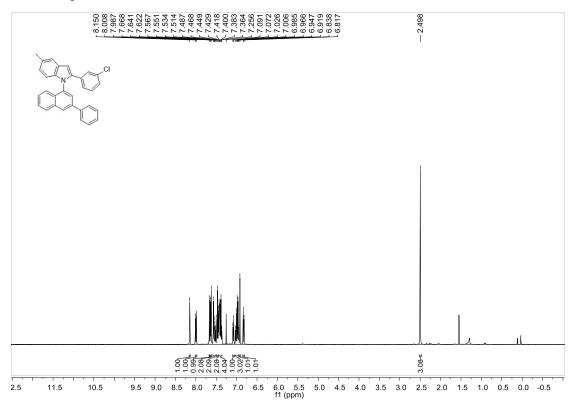

¹⁹F NMR Spectrum of **47c**

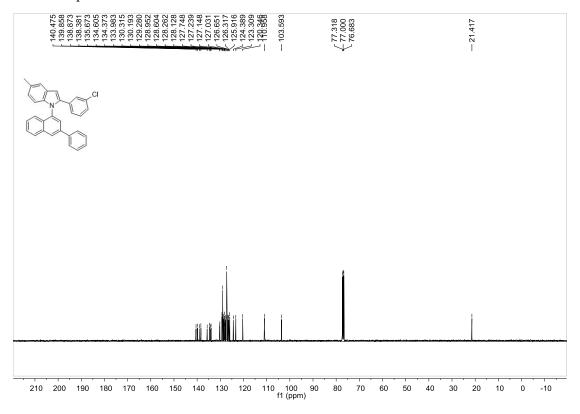

¹H NMR Spectrum of **48c**

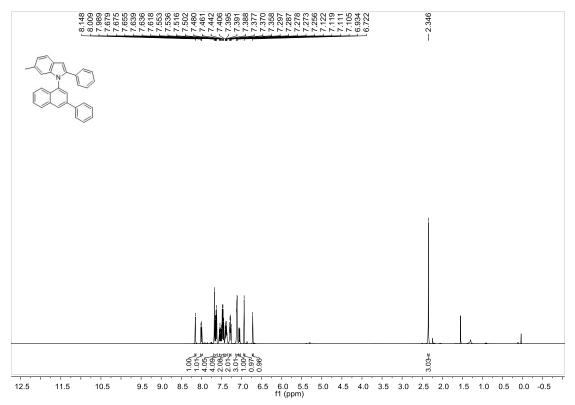

¹³C NMR Spectrum of **48c**

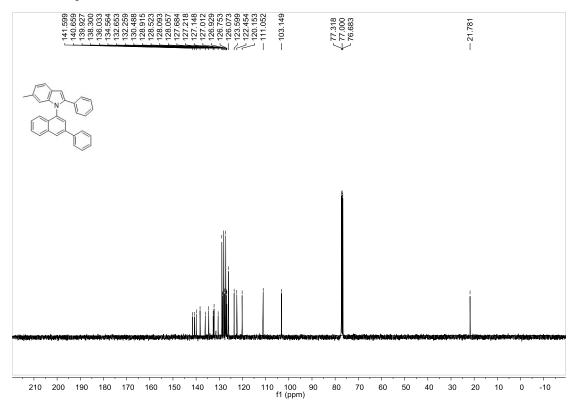

¹H NMR Spectrum of **49c**

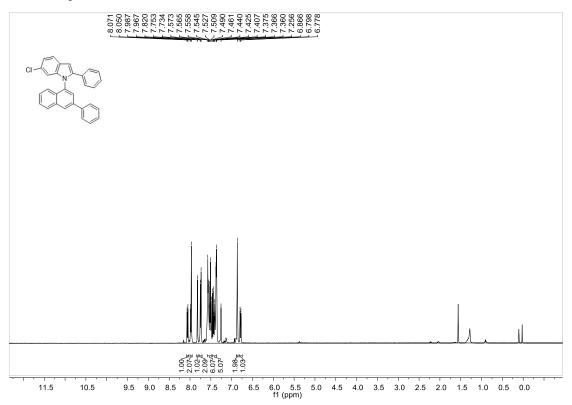

¹³C NMR Spectrum of **49c**

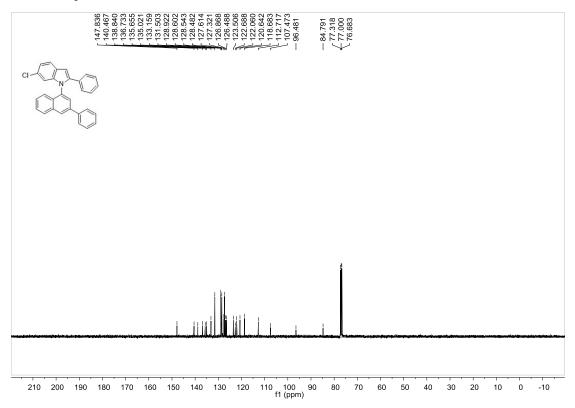

¹H NMR Spectrum of **50c**

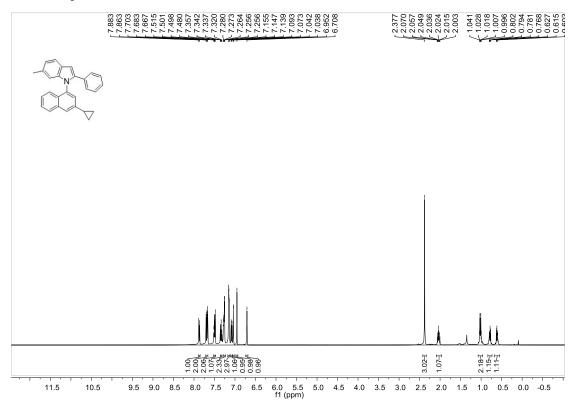

¹³C NMR Spectrum of **50c**

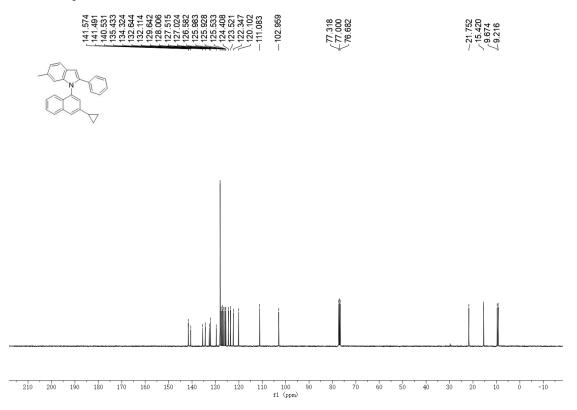

¹H NMR Spectrum of **51c**

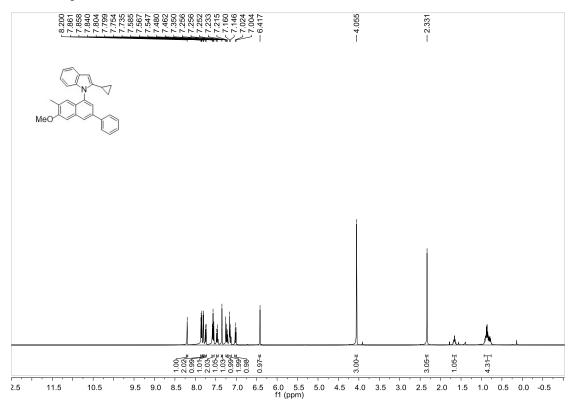

¹³C NMR Spectrum of **51c**

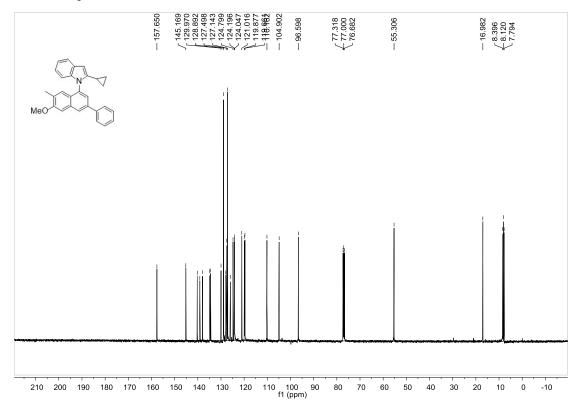

¹H NMR Spectrum of **52c**

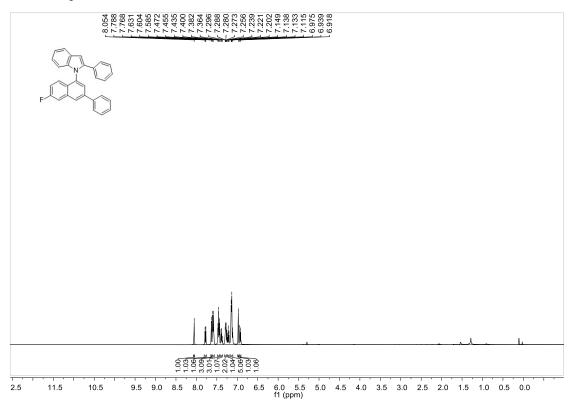

¹³C NMR Spectrum of **52c**

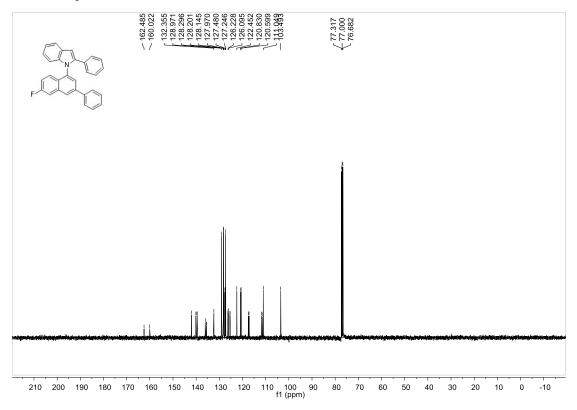

¹H NMR Spectrum of **53c**

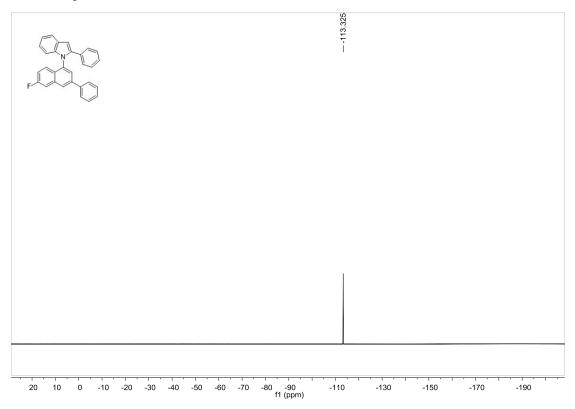

¹³C NMR Spectrum of **53c**

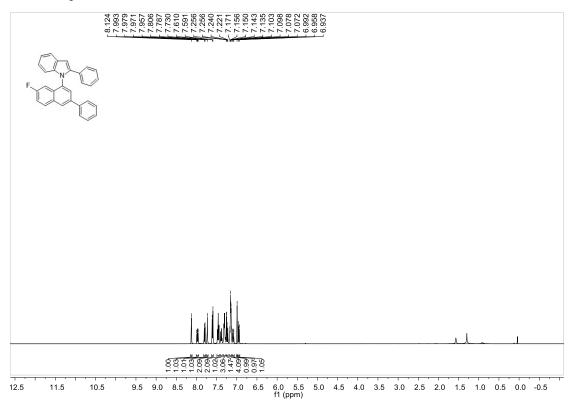

¹H NMR Spectrum of **54c**

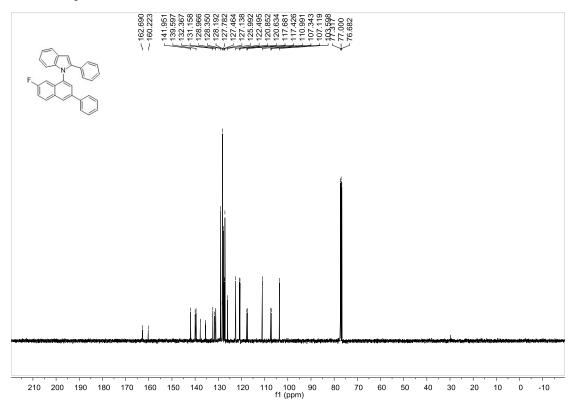

¹³C NMR Spectrum of **54c**

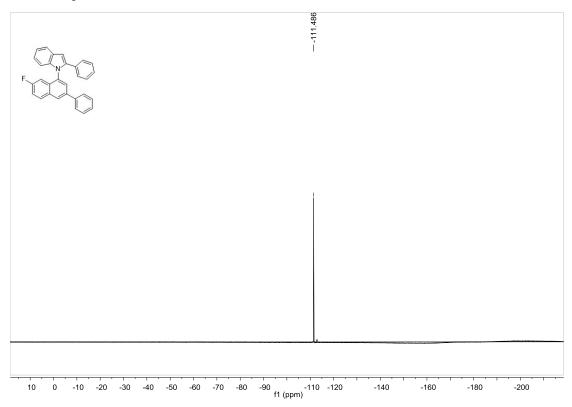

¹H NMR Spectrum of **55c**

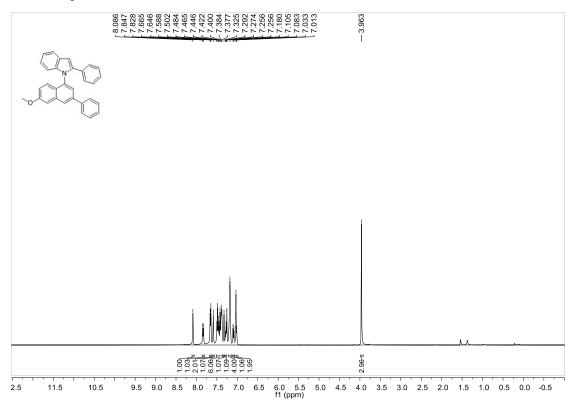

¹³C NMR Spectrum of **55c**

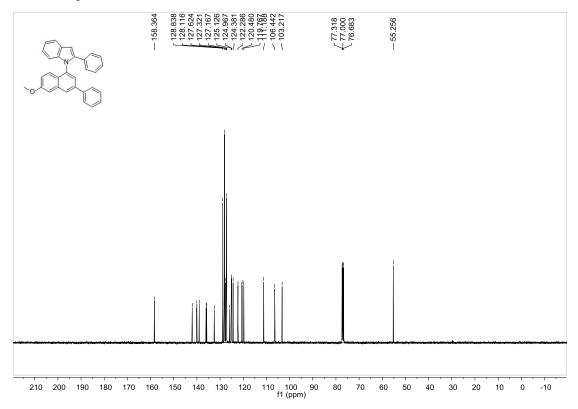

¹H NMR Spectrum of **56c**

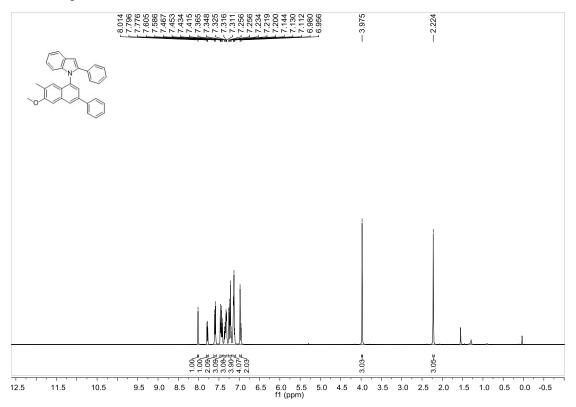

¹³C NMR Spectrum of **56c**

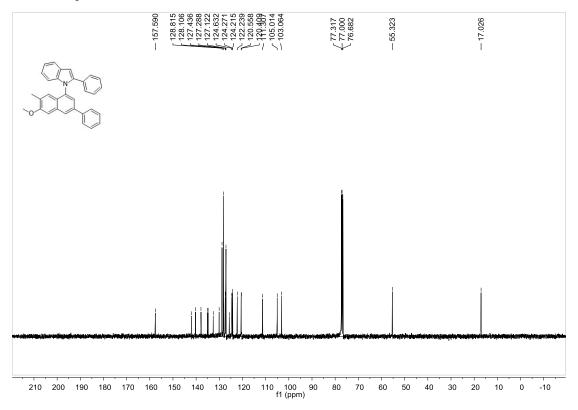

¹⁹F NMR Spectrum of **56c**

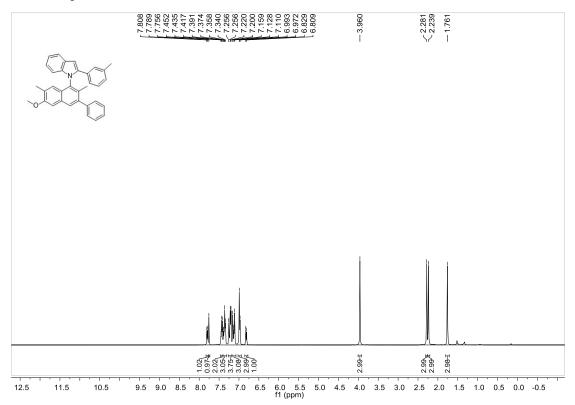

1 H NMR Spectrum of **57c**

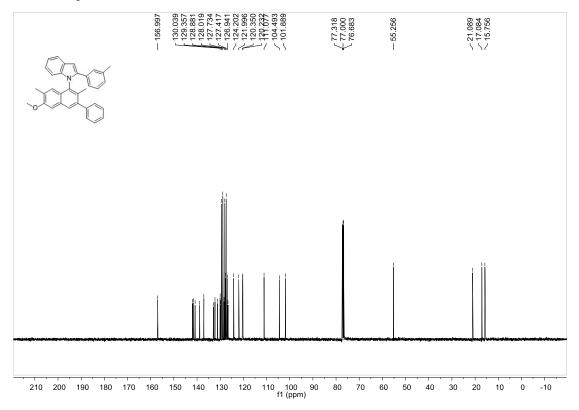

¹³C NMR Spectrum of **57c**

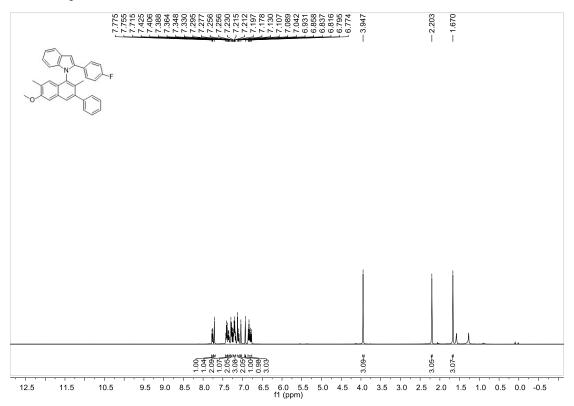

¹⁹F NMR Spectrum of **57c**

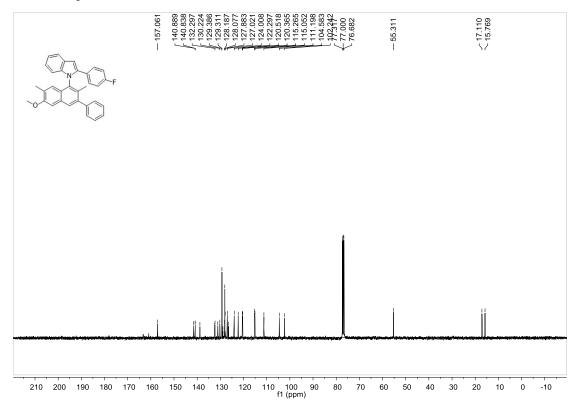

¹H NMR Spectrum of **58c**

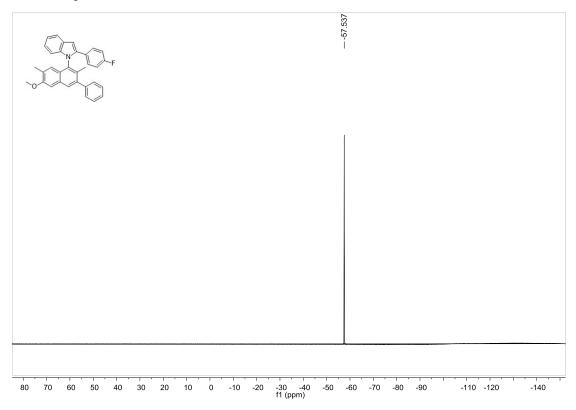

¹³C NMR Spectrum of **58c**

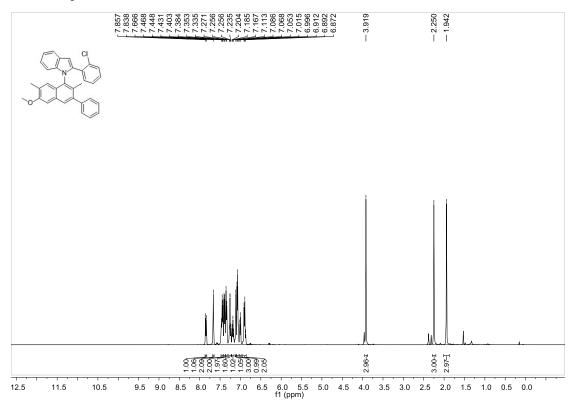

¹H NMR Spectrum of **59c**

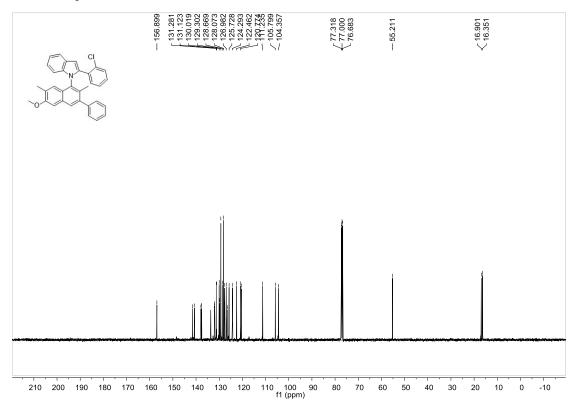

¹³C NMR Spectrum of **59c**

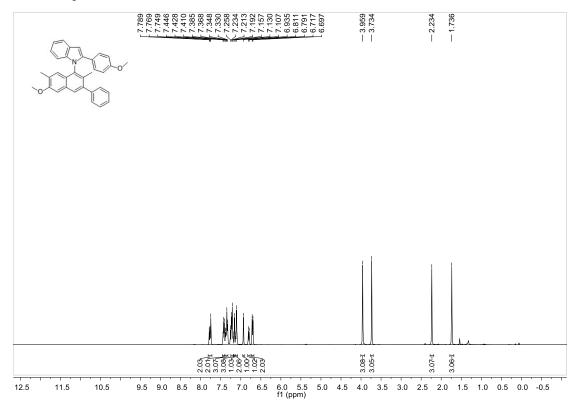

¹H NMR Spectrum of **60c**

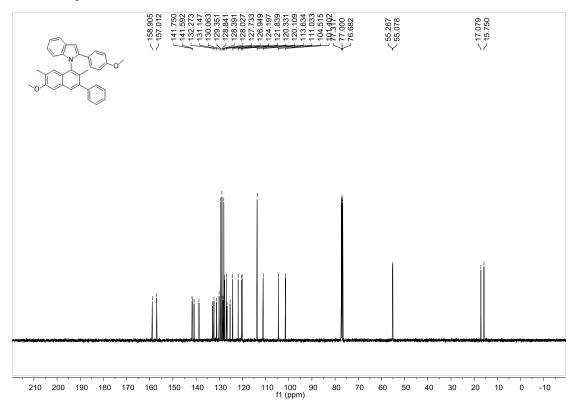

¹³C NMR Spectrum of **60c**

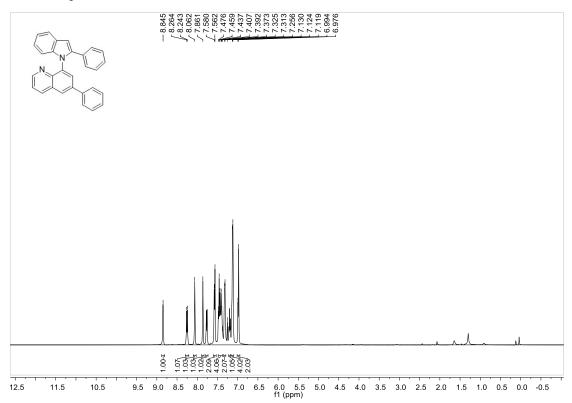

¹H NMR Spectrum of **61c**

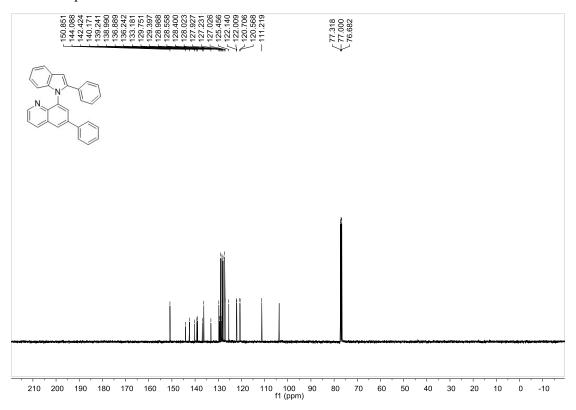

¹³C NMR Spectrum of **61c**

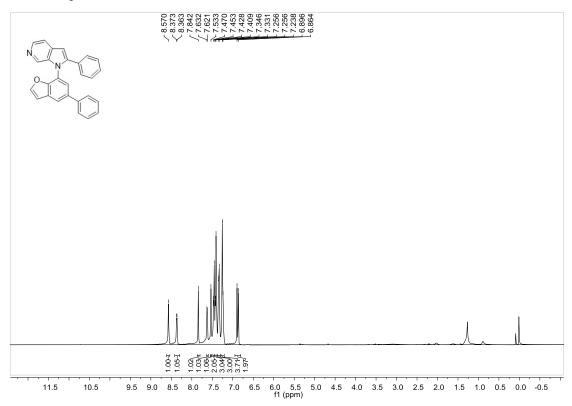

¹⁹F NMR Spectrum of 61c

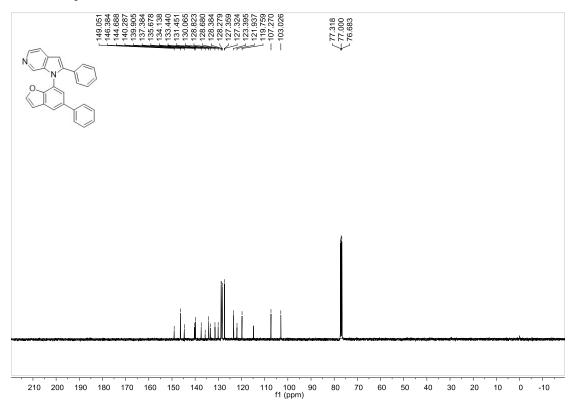

¹H NMR Spectrum of 62c

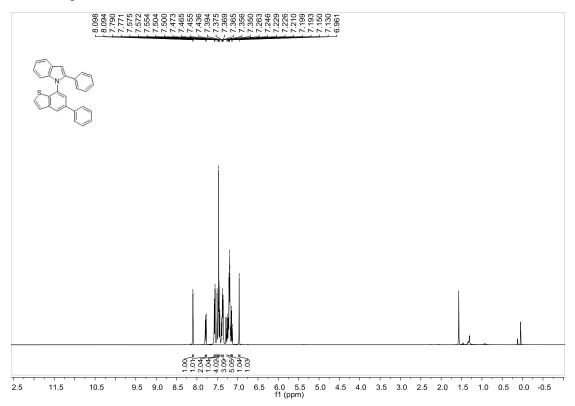

¹³C NMR Spectrum of 62c

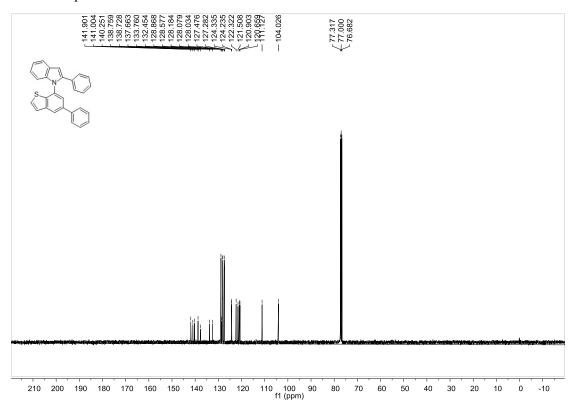

¹H NMR Spectrum of **63c**

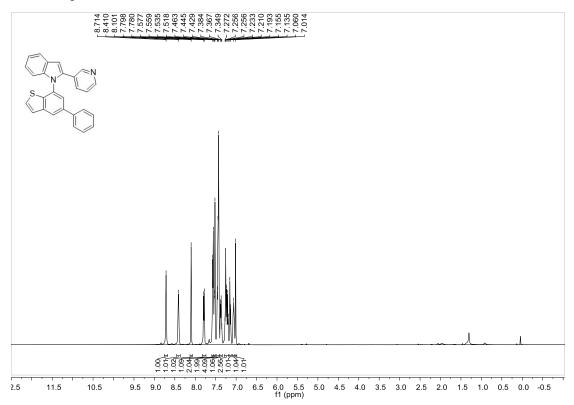

¹³C NMR Spectrum of **63c**

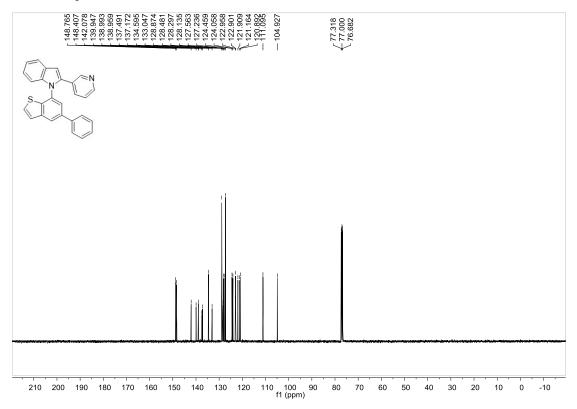

¹H NMR Spectrum of **64c**

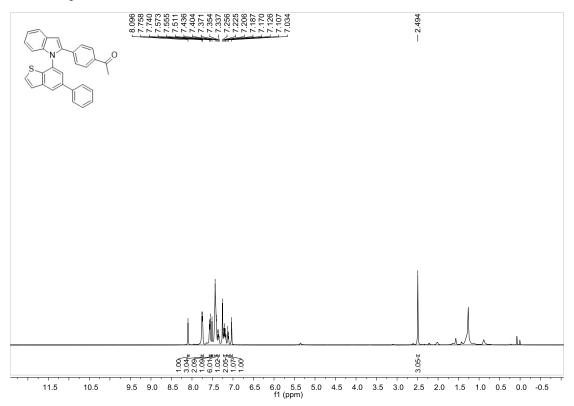

¹³C NMR Spectrum of **64c**

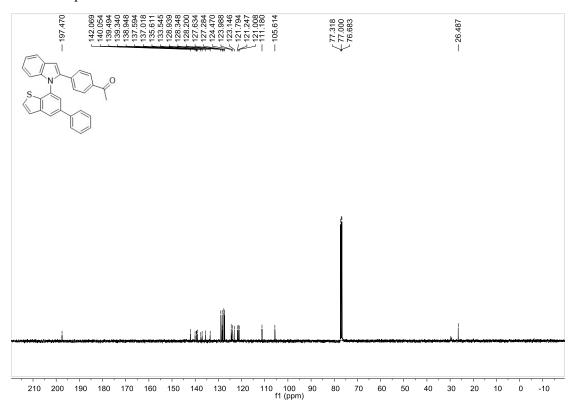

¹H NMR Spectrum of **65c**

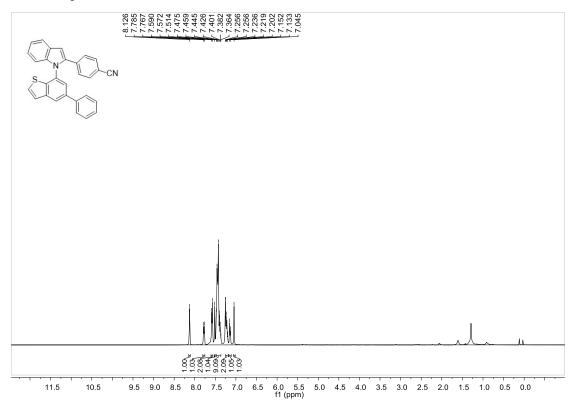

¹³C NMR Spectrum of **65c**

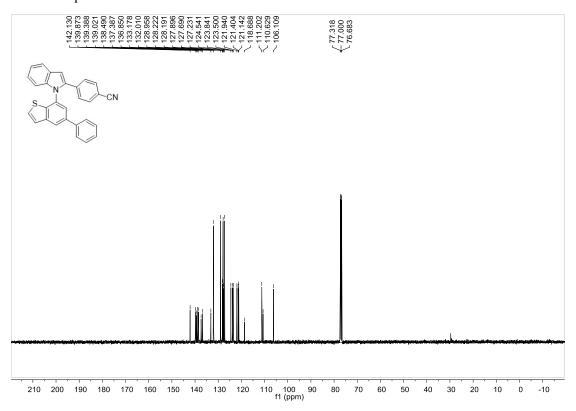

¹H NMR Spectrum of **66c**

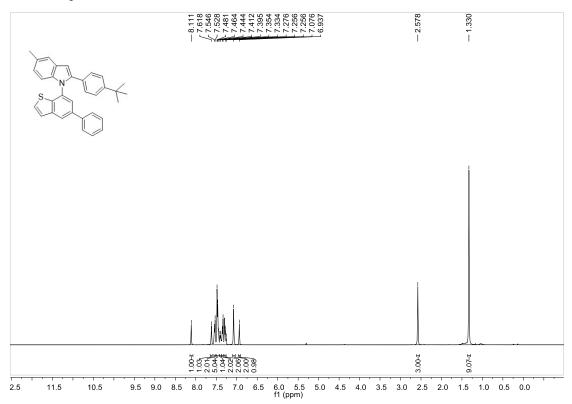

¹³C NMR Spectrum of **66c**

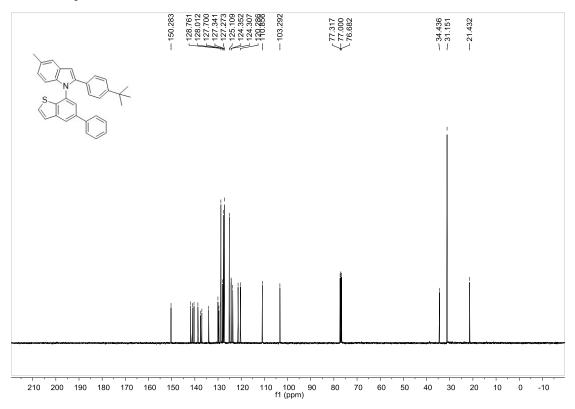

¹H NMR Spectrum of 67c

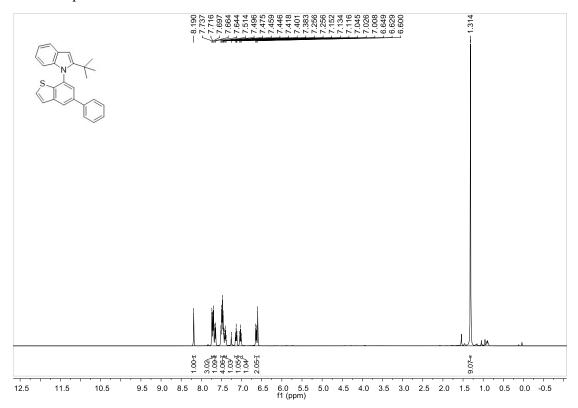

¹³C NMR Spectrum of **67c**

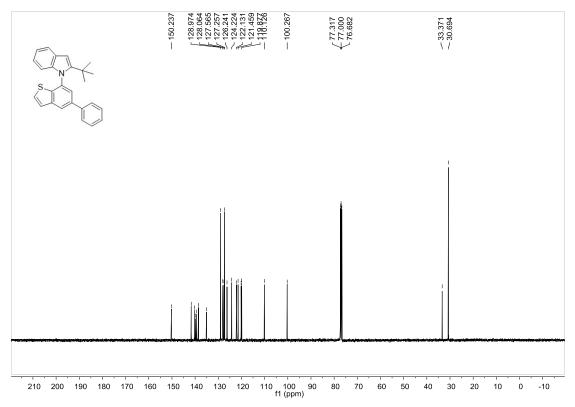

¹H NMR Spectrum of **68c**

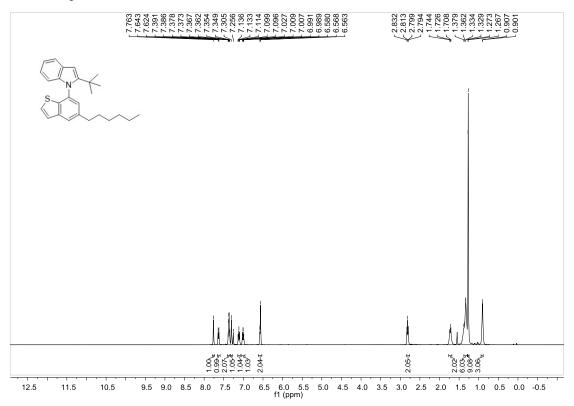

¹³C NMR Spectrum of **68c**

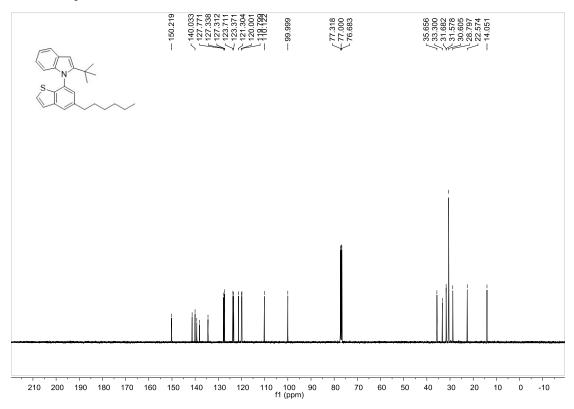

¹H NMR Spectrum of **69c**

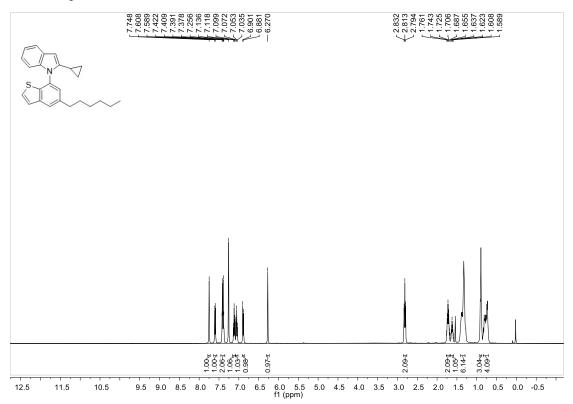

¹³C NMR Spectrum of **69c**

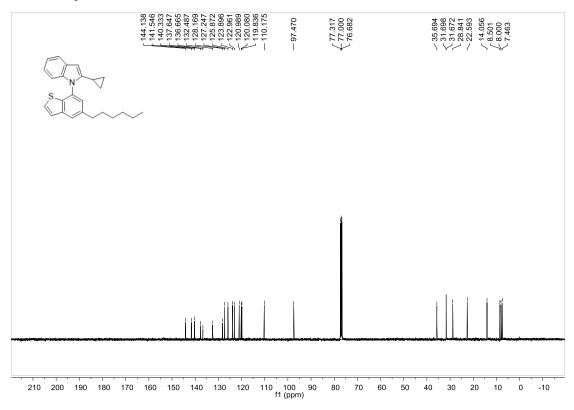

¹H NMR Spectrum of **70c**

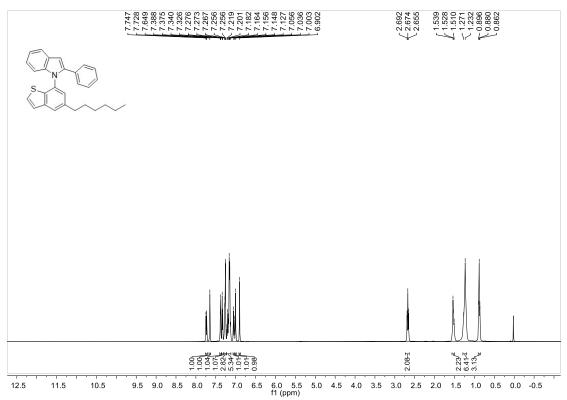

¹³C NMR Spectrum of **70c**

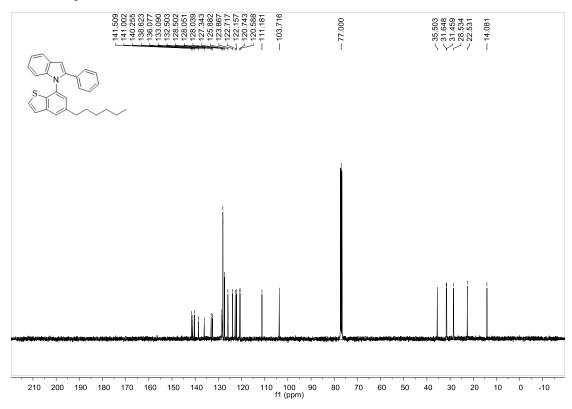

¹H NMR Spectrum of **71c**

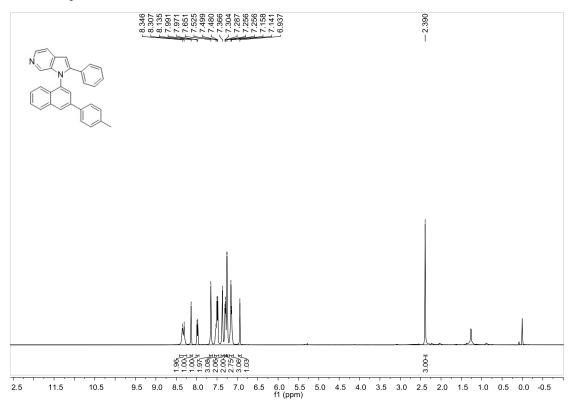

¹³C NMR Spectrum of **71c**

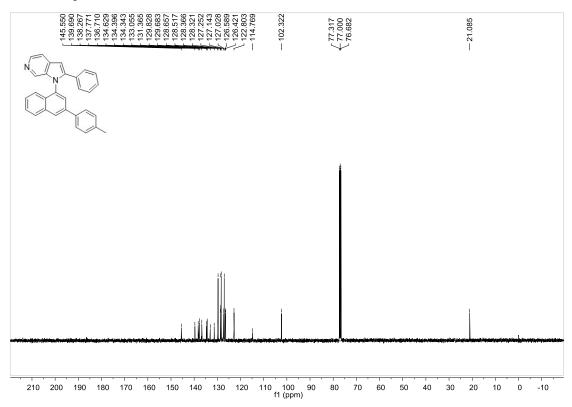

¹H NMR Spectrum of **72c**

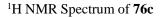

¹³C NMR Spectrum of **72c**

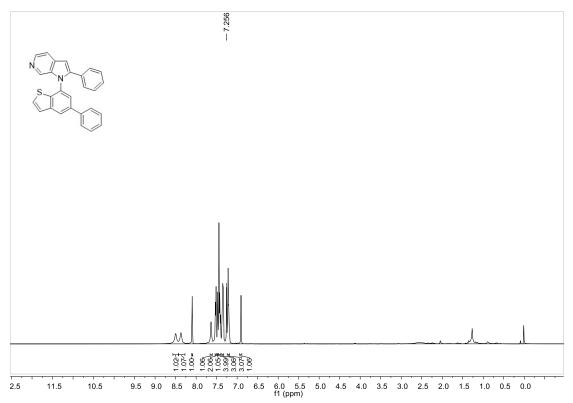

¹H NMR Spectrum of **73c**

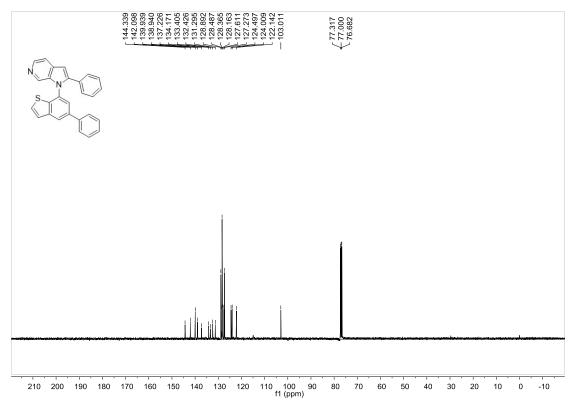

¹³C NMR Spectrum of **73c**

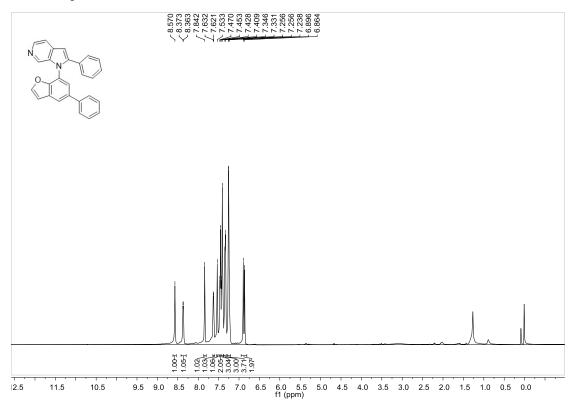

¹H NMR Spectrum of **74c**

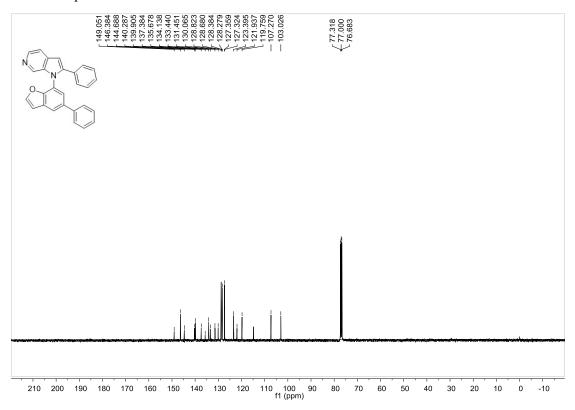

¹³C NMR Spectrum of **74c**

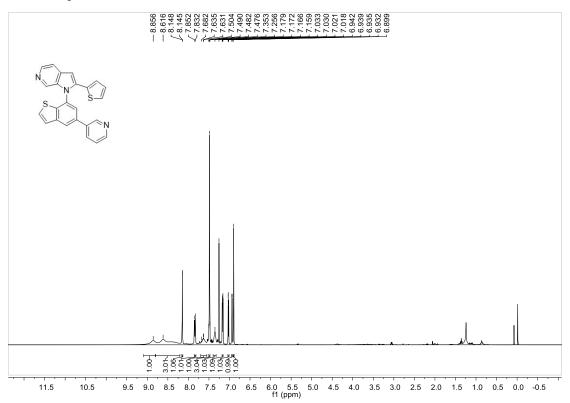


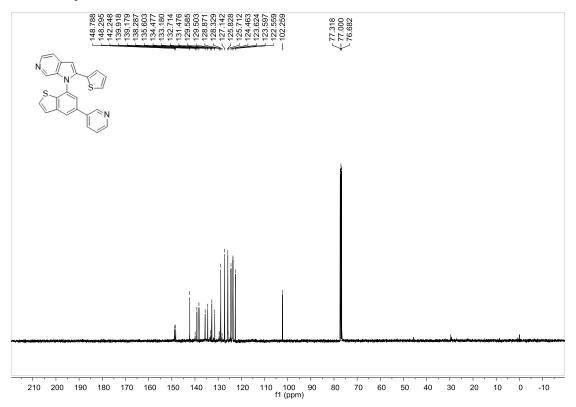

¹H NMR Spectrum of **75c**

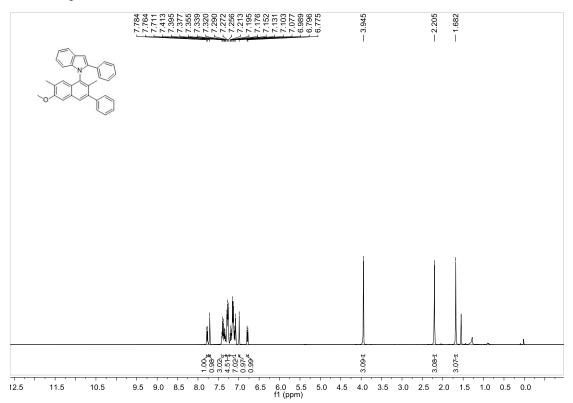

¹³C NMR Spectrum of **75c**

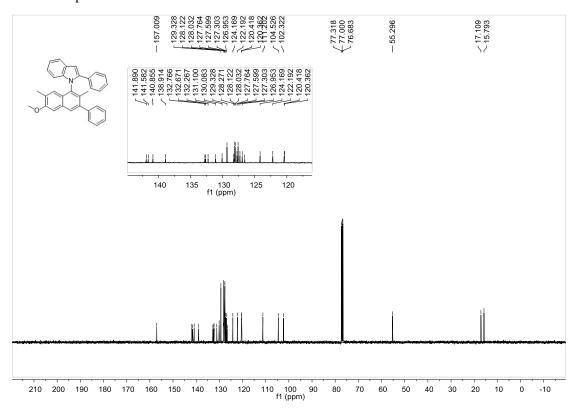


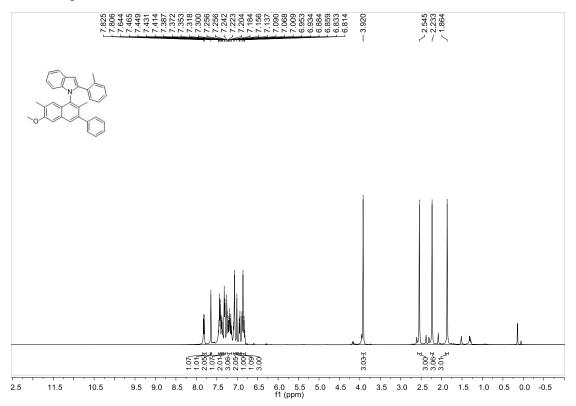

¹³C NMR Spectrum of **76c**

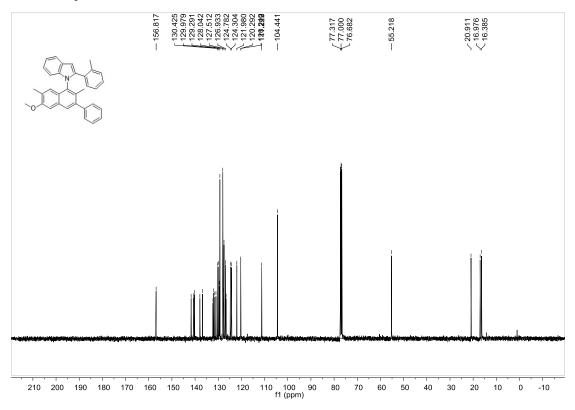

¹H NMR Spectrum of **77c**

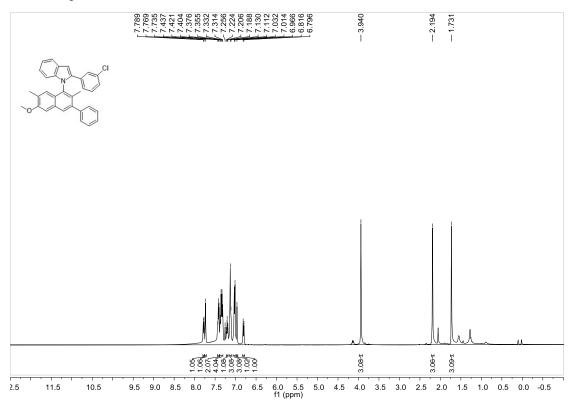

¹³C NMR Spectrum of **77c**

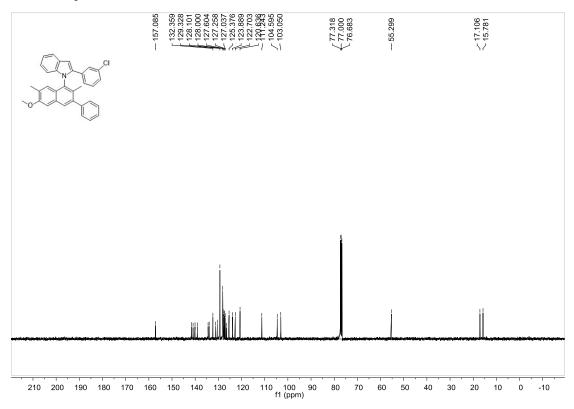

¹H NMR Spectrum of **78c**

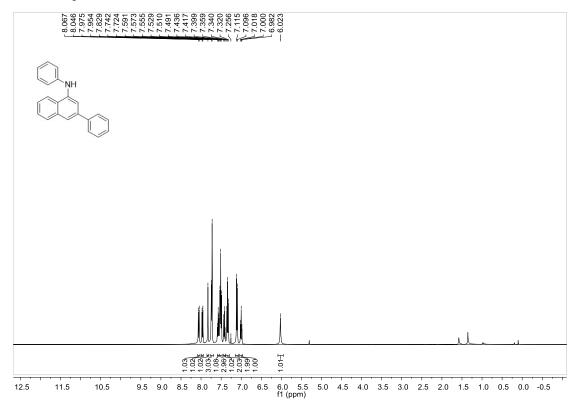

¹³C NMR Spectrum of **78c**

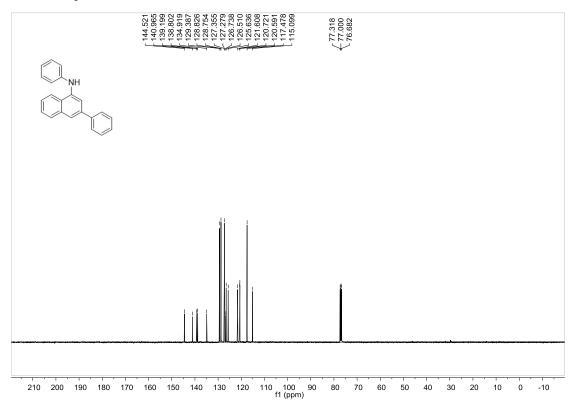

¹H NMR Spectrum of **79c**

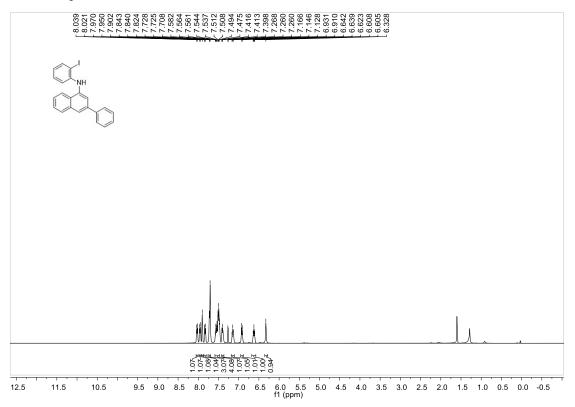

¹³C NMR Spectrum of **79c**


¹H NMR Spectrum of **80c**

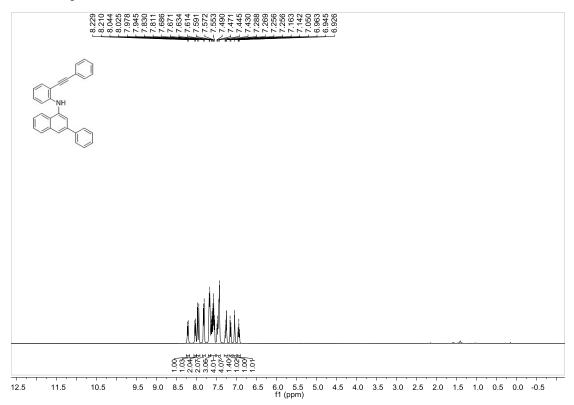

¹³C NMR Spectrum of 80c

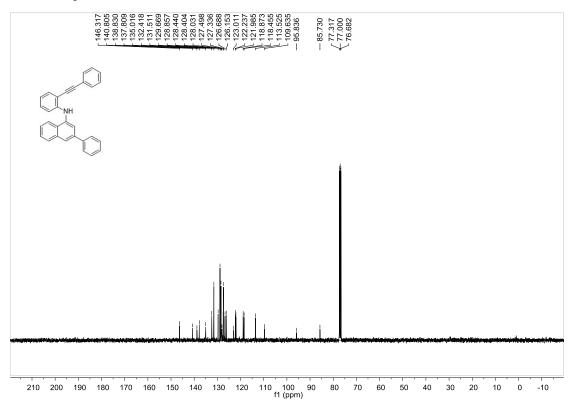

¹H NMR Spectrum of **81c**

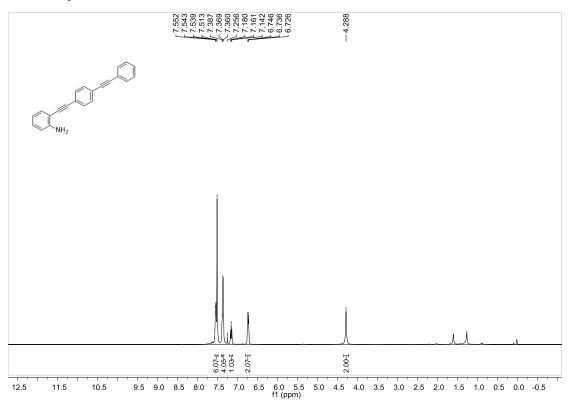

¹³C NMR Spectrum of **81c**

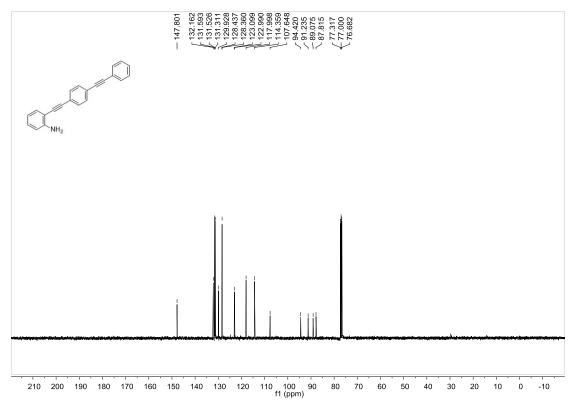

¹H NMR Spectrum of **1e**

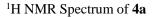
¹³C NMR Spectrum of **1e**

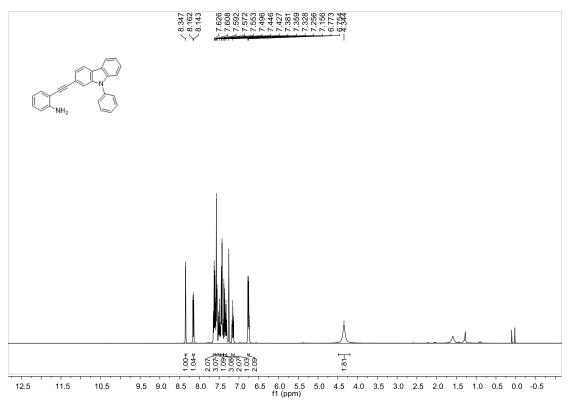

¹H NMR Spectrum of 2e

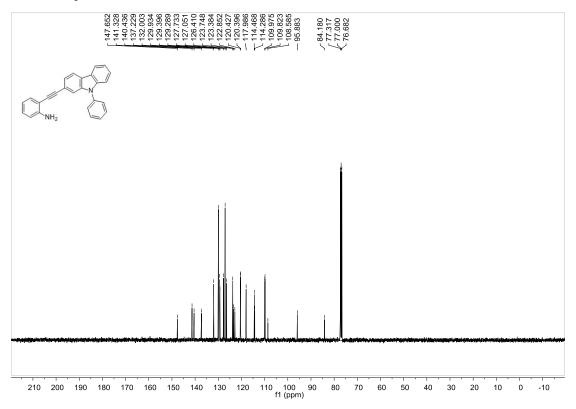

¹³C NMR Spectrum of 2e

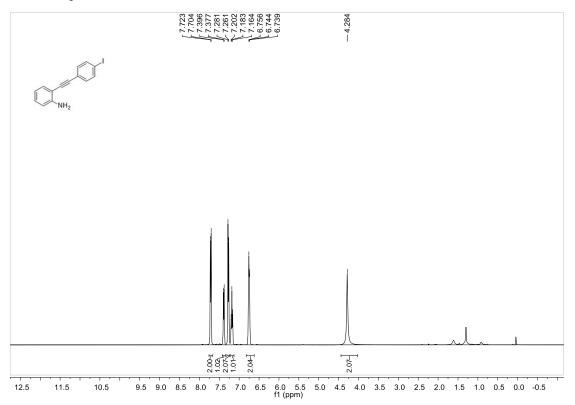

¹H NMR Spectrum of **1e'**

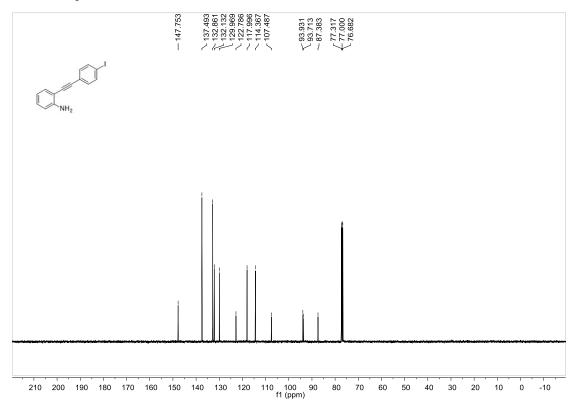

¹³C NMR Spectrum of **1e'**

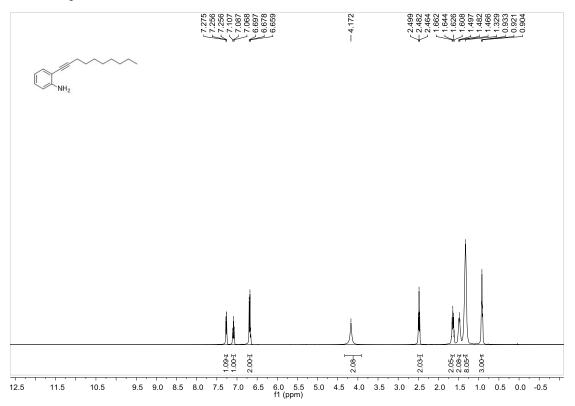


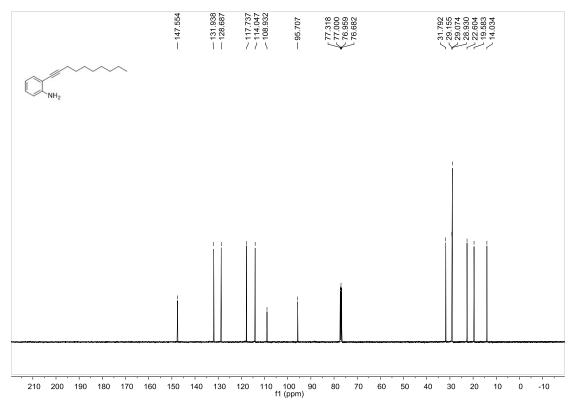

¹H NMR Spectrum of **3a**

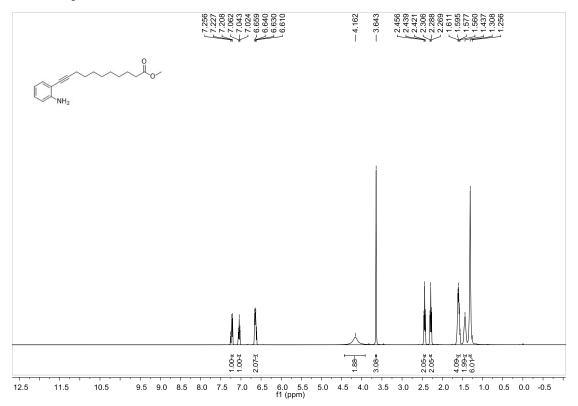

¹³C NMR Spectrum of **3a**

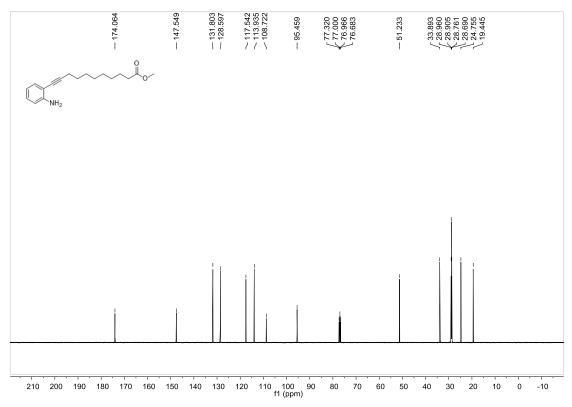


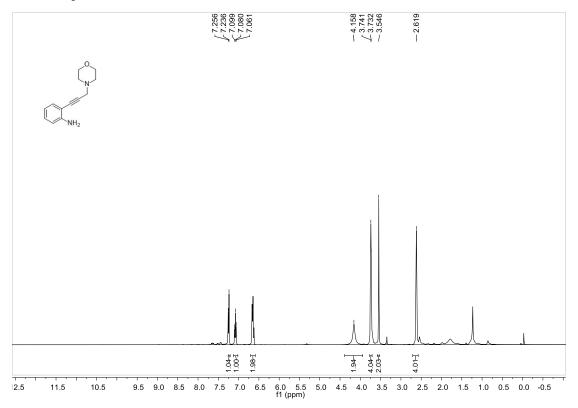

¹³C NMR Spectrum of 4a

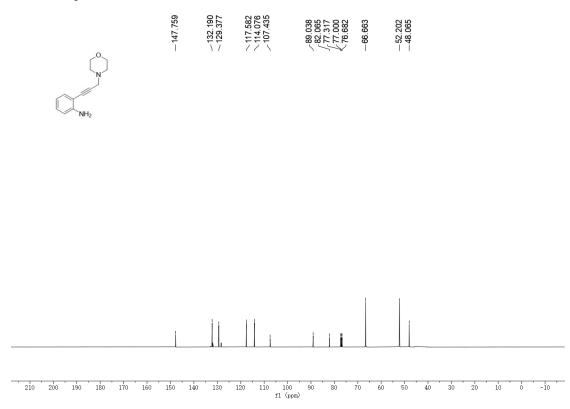

¹H NMR Spectrum of **5a**

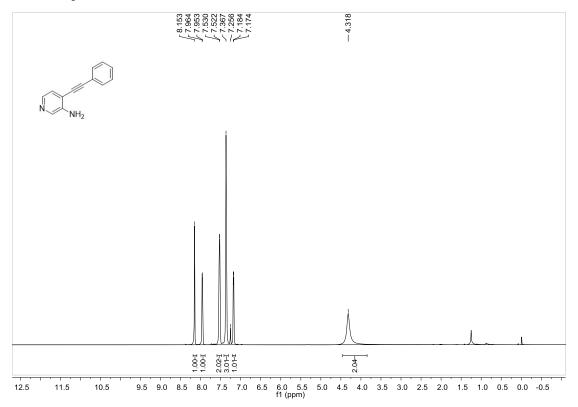

¹³C NMR Spectrum of **5a**

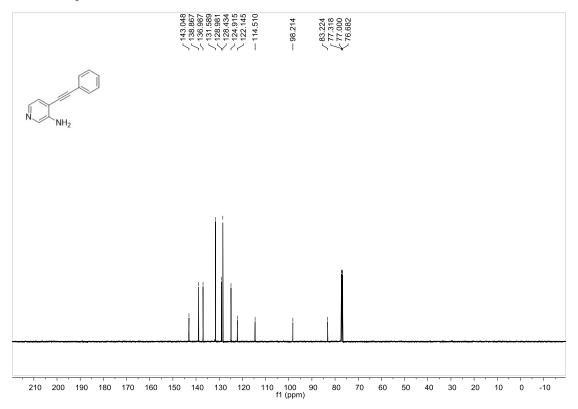

¹H NMR Spectrum of **6a**

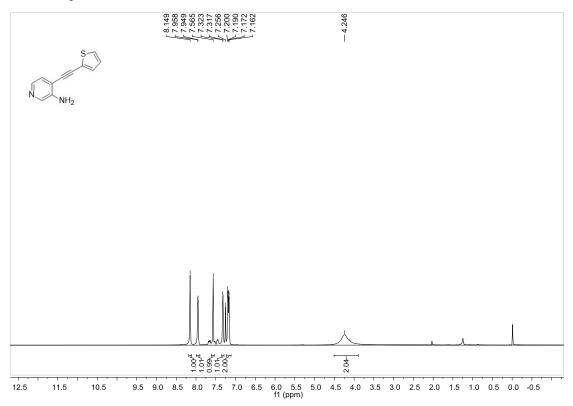

¹³C NMR Spectrum of 6a

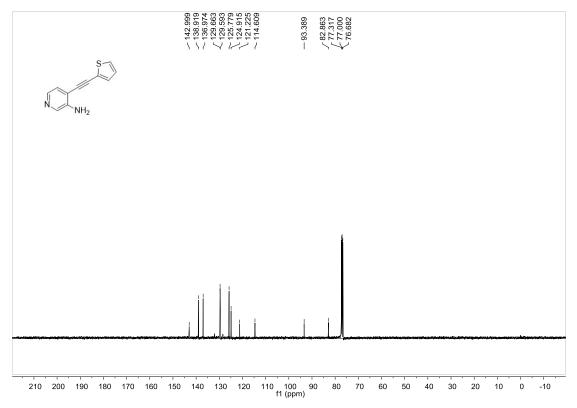

¹H NMR Spectrum of 7a

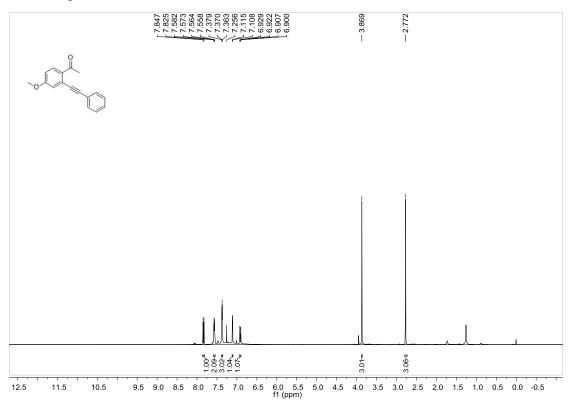


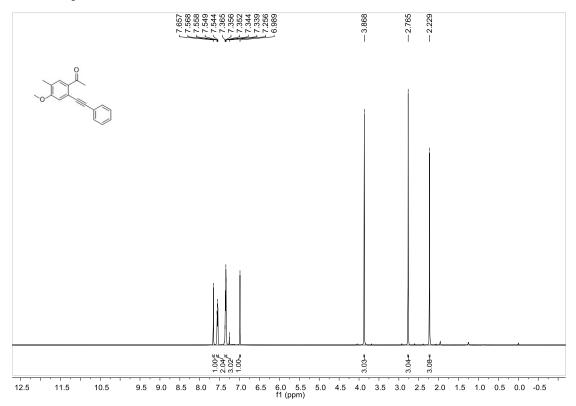

¹H NMR Spectrum of 8a

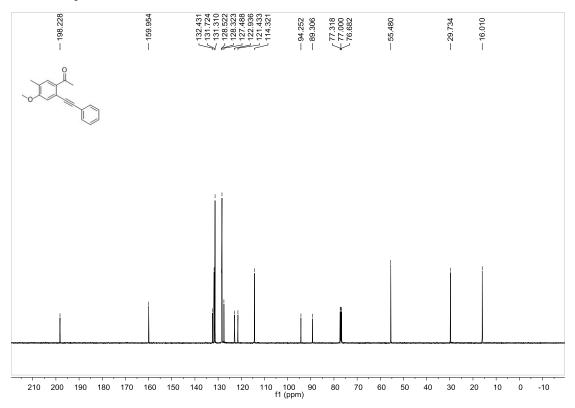

¹³C NMR Spectrum of 8a

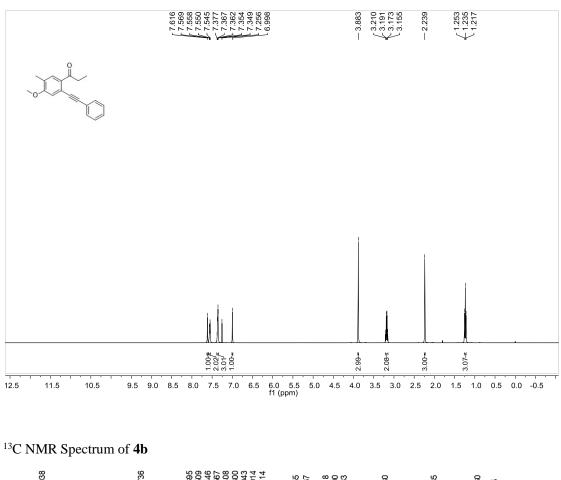

¹H NMR Spectrum of **9a**

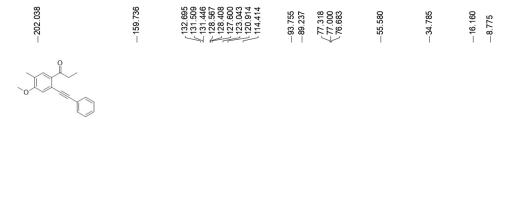

¹³C NMR Spectrum of **9a**

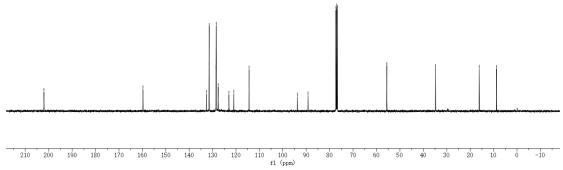

¹H NMR Spectrum of **10a**

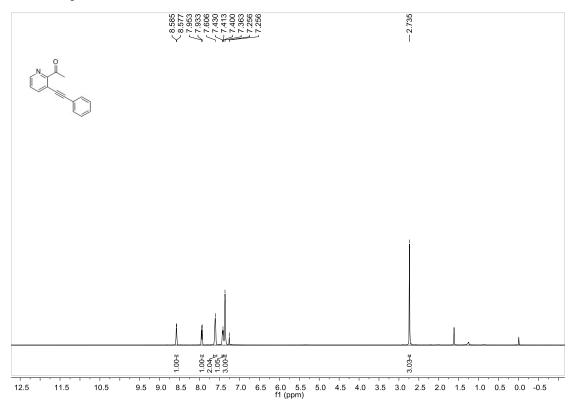

¹³C NMR Spectrum of 10a

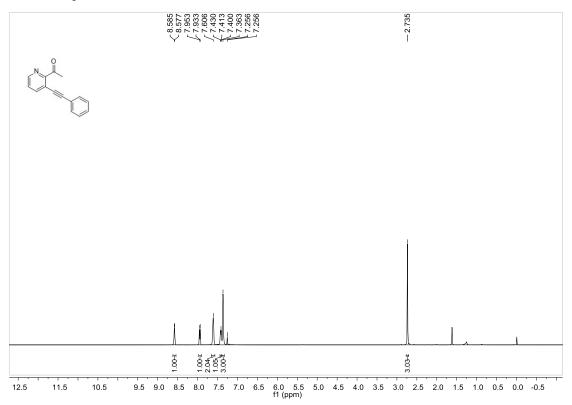

¹H NMR Spectrum of **2b**

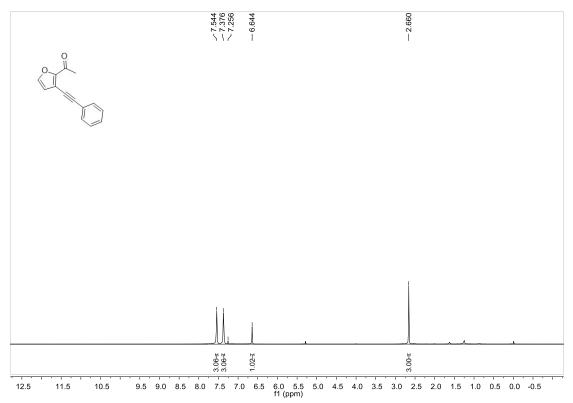

¹H NMR Spectrum of **3b**

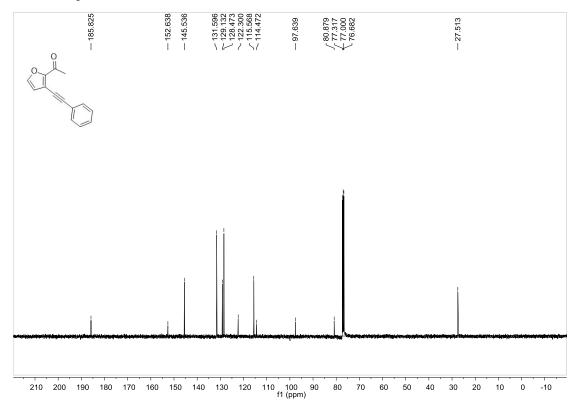


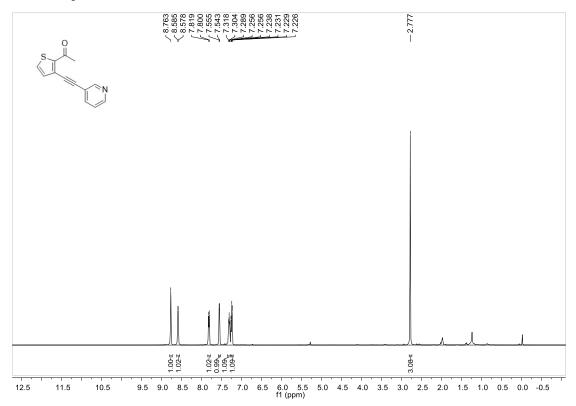

¹³C NMR Spectrum of 3b

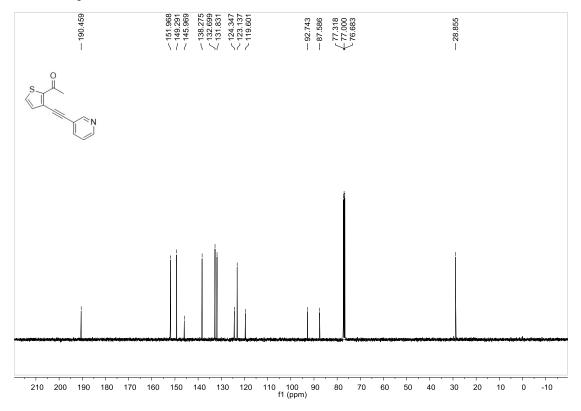

¹H NMR Spectrum of **4b**

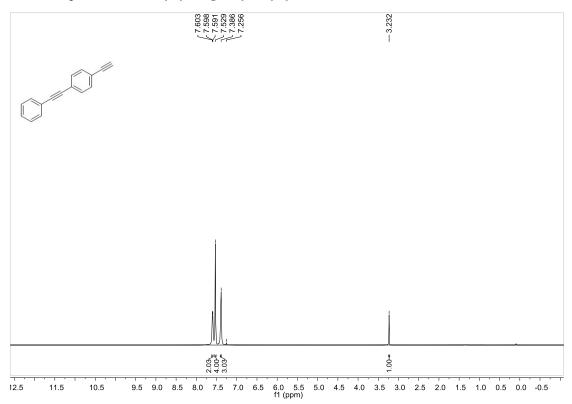


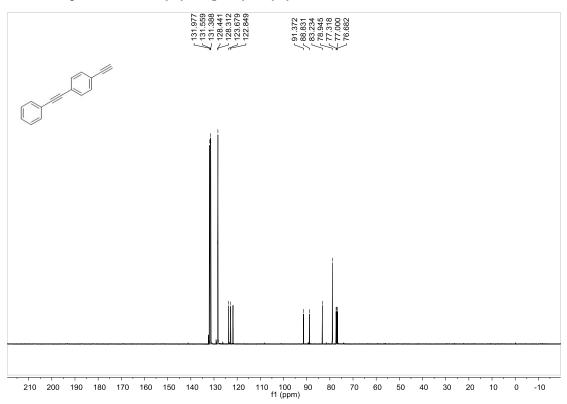

¹H NMR Spectrum of **5b**

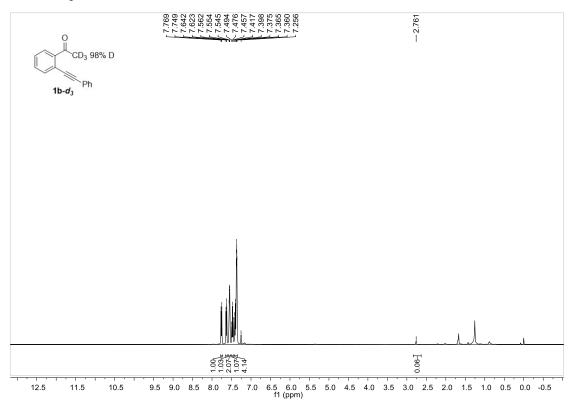

¹³C NMR Spectrum of **5b**

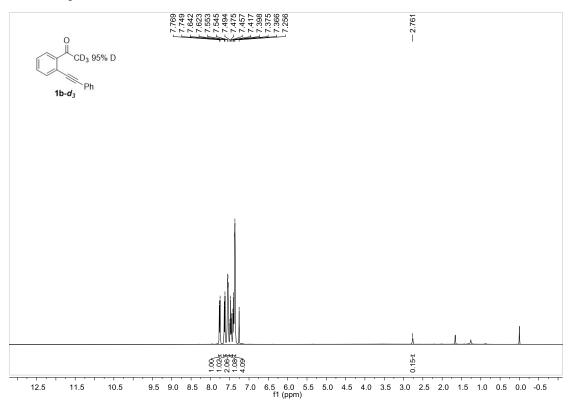

¹H NMR Spectrum of **6b**

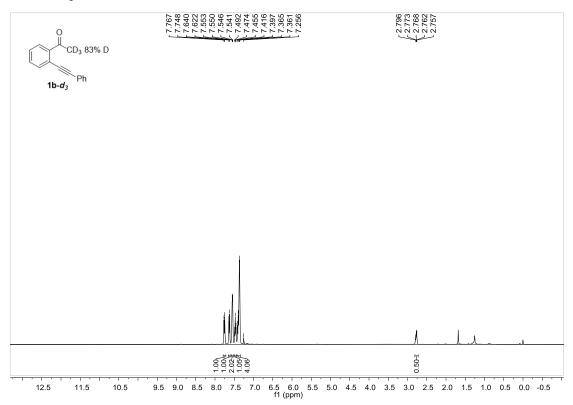

¹³C NMR Spectrum of **6b**

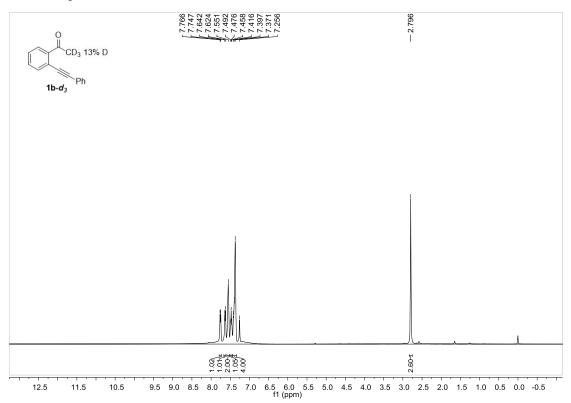

¹H NMR Spectrum of **7b**

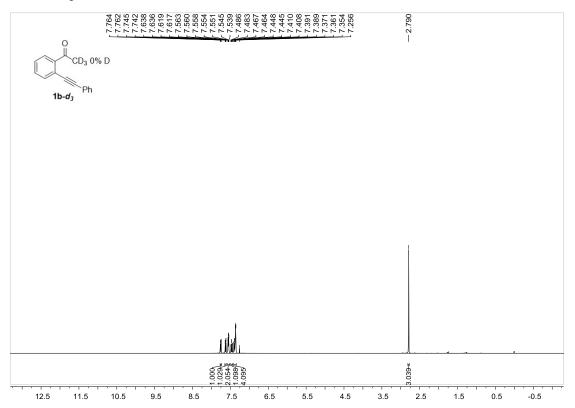

¹³C NMR Spectrum of **7b**


¹H NMR Spectrum of **1-ethynyl-4-(phenylethynyl)benzene**


¹³C NMR Spectrum of 1-ethynyl-4-(phenylethynyl)benzene


¹H NMR Spectrum of *1b-d*₃ (98% D)


¹H NMR Spectrum of *1b-d*₃ (95% D)


¹H NMR Spectrum of *1b-d*₃ (83% D)

¹H NMR Spectrum of *1b-d*₃ (13% D)

¹H NMR Spectrum of $1b-d_3$ (0% D)

11. References

- [1] C. Zhang, M. Liu, M. Ding, H. Xie, F. Zhang, Org. Lett. 2017, 19, 3418-3421.
- [2] a) J. E. Perea-Buceta, T. Wirtanen, O. V. Laukkanen, M. K. Makela, M. Nieger, M. Melchionna, N. Huittinen, J. A. Lopez-Sanchez, J. Helaja, *Angew. Chem., Int. Ed.* 2013, *52*, 11835-11839; b) C. N. Voth, G. R. Dake, *Eur. J. Org. Chem.* 2020, *2020*, 744-748; c) P. Rubio-Marques, M. A. Rivero-Crespo, A. Leyva-Perez, A. Corma, *J. Am. Chem. Soc.* 2015, *137*, 11832-11837; d) B. Li, Z. Ju, M. Zhou, K. Su, D. Yuan, *Angew. Chem., Int. Ed.* 2019, *58*, 7687-7691; e) W. C. Yang, X. B. Chen, K. L. Song, B. Wu, W. E. Gan, Z. J. Zheng, J. Cao, L. W. Xu, *Org. Lett.* 2021, *23*, 1309-1314; f) S. Yuan, D. Q. Zhang, J. Y. Zhang, B. Yu, H. M. Liu, *Org. Lett.* 2020, *22*, 814-817.
- [3] R. Jia, B. Li, X. Zhang, X. Fan, Org. Lett. 2020, 22, 6810-6815.
- [4] K. Sakthivel, K. Srinivasan, Eur. J. Org. Chem. 2011, 2011, 2781-2784.
- [5] S. T. Yuan, H. Zhou, L. Zhang, J. B. Liu, G. Qiu, Org. Biomol. Chem. 2017, 15, 4867-4874.
- [6] a) N. Chernyak, S. I. Gorelsky, V. Gevorgyan, Angew. Chem., Int. Ed. 2011, 50, 2342-2345; b) L. Song, G. Tian, E. V. Van der Eycken, Chem.-Eur. J. 2019, 25, 7645-7648.
- [7] M. E. Domaradzki, Y. Long, Z. She, X. Liu, G. Zhang, Y. Chen, J. Org. Chem. 2015, 80, 11360-11368.
- [8] S. Barbosa, M. Ottone, M. de Almeida, G. Lage, M. Almeida, D. Nelson, W. dos Santos, G. Clososki, N. Lopes, S. Klein, L. Zanatta, J. Braz. Chem. Soc. 2018.
- [9] a) T. Miao, Z. Y. Tian, Y. M. He, F. Chen, Y. Chen, Z. X. Yu, Q. H. Fan, Angew. Chem., Int. Ed. 2017, 56, 4135-4139; b) M. Terada, F. Li,
 Y. Toda, Angew. Chem., Int. Ed. 2014, 53, 235-239.
- [10] B. Guo, L. Zheng, L. Yang, R. Hua, J. Org. Chem. 2014, 79, 4352-4357.
- [11] M. Zhang, W. Ruan, H. J. Zhang, W. Li, T. B. Wen. J. Org. Chem. 2016. 81, 1696–1703.
- [12] M. Chen, N. Sun, H. Chen, Y. Liu. Chem. Commun. 2016, 52, 6324–6327.
- [13] J. Garcia, J. Sorrentino, E. J. Diller, D. Chapman, T. R. Woydziak. Synthetic Commun, 2016, 46, 475–481.
- [14] L. Z. Yu, Y. Wei, M. Shi. Chem. Commun. 2017, 53, 8980–8983.
- [15] H. Tsukamoto, Y. Kondo. Org. Lett. 2007, 9, 4227-4230.
- [16] H. P. Lin, N. Ibrahim, O. Provot, M. Alami, A. Hamze. RSC Adv. 2018, 8, 11536-11542.