Electronic Supplementary Information

Multifunctional molecular ferroelectric with Chiral feature, High

Curie Temperature, Large Spontaneous Polarization and

Photoluminescence: (C₉H₁₄N)₂CdBr₄

Yu-Kong Li, Yuan-Yuan Lai, Ting-Ting Ying, Ding-Chong Han, Yu-Hui Tan,* Yun-Zhi Tang,* Peng-kang Du, Hao Zhang

Fig. S1 Crystal morphology of compound 1.

Fig. S2 Infrared spectrum of compound 1.

Fig. S4 Powder X-ray diffractograms of **1** collected in 300 K (**LTP**), refined by Le Bail method using the FULLPROF program. The lattice parameters obtained from the fitting: a= 11.15813(0.0046), b= 7.91511(0.00034), c= 13.94007(0.00061) Å (R_p = 7.56%, R_{wp} = 10.10%, R_{exp} = 1.14%).

Fig. S5 Structural refinement results of PXRD data for compound **1** in 405 K (**HTP**). The indexing of PXRD data reveals an orthorhombic lattice, and through the Le Bail refinements, we obtained the orthorhombic point group mmm. The refined cell parameters are a = 7.958 Å, b = 8.008 Å, c = 20.222 Å, $\alpha = \beta = \gamma = 90^{\circ}$, and V = 1288.7 Å³ ($R_p = 5.99\%$, $R_{wp} = 7.73\%$, $R_{exp} = 1.61\%$). These results are highly consistent, confirming the phase purity of the compound and high accuracy of the simulation methods.

Fig. S7. DSC curve of compound 1, temperature range 120-440 K.

Fig. S8 DSC cycle test of compound ${\bf 1}$ with the scan rate 15 K / min.

Fig. S9 Polarization hysteresis loops of compound 1 at low temperature.

Fig. S10 The Vertical PFM amplitude (a) and phase (b) mapping.

Fig. S11 Stacking diagram of compound 1. The red arrow reveals the direction of $P_{\rm s}$.

Fig. S12 $CdBr_4$ tetrahedrons are arranged around the spiral axis "S-shape".

Compounds	1	
Empirical formula formula	$C_{18}H_{28}Br_4CdN_2$	
Temperature (K)	300 K	
Crystal system	monoclinic	
Space group	P2 ₁	
<i>a</i> (Å)	11.1342(6)	
b (Å)	7.8950(4)	
<i>c</i> (Å)	13.9106(7)	
α/°	90	
<i>6</i> /°	96.953(2)	
γ/°	90	
V (Å ³)	1213.81(11)	
Z	2	
ρ calcg/cm ³	1.927	
µ/mm⁻¹	7.488	
F(000)	676.0	
R_1 , w $R_2[I > 2\sigma(I)]$	R ₁ = 0.0499, wR ₂ = 0.0807	
R_1 , w R_2 (all data)	$R_1 = 0.0770$, $wR_2 = 0.0898$	
Flack parameter	0.057(17)	

Table.S1 Crystal data and refinement parameters for 1

Table S2. Selected bond lengths (Å) for Compound 1

Compound	1		
Bond Lengths[Å]	Cd1-Br4	2.5788(13)	
	Cd1-Br1	2.5998(13)	
	Cd1-Br3	2.5961(13)	
	Cd1-Br2	2.5599(14)	
	N1-C1	1.466(13)	

N2-C10	1.446(15)
C2-C1	1.491(13)
C10-C11	1.492(15)

Table 53 Selected bond angles (*) for 1					
Compound	1				
	Br4-Cd1-Br1	104.81(5)			
	Br4-Cd1-Br3	113.96(5)			
	Br4-Cd1-Br1	106.48(4)			
Bond	Br2-Cd1-Br4	110.75(5)			
angles (°)	Br2-Cd1-Br1	107.25(5)			
	Br2-Cd1-Br3	112.93(5)			
	N1-C1-C2	112.5(9)			
	N2-C10-C11	114.0(10)			

Table S3 Selected hond angles (°) for 1

 Table S4 Hydrogen bonds parameters of 1.

D–H…A	D–H	H A	D A	∠D-H A
N1-H1A Br1	0.89	2.74	3.495(9)	144
N1-H1B […] Br4	0.89	2.69	3.476(9)	148
N1-H1C […] Br2	0.89	2.74	3.556(9)	155
N2-H2C […] Br1	0.89	2.61	3.424(10)	153
N1-H2D […] Br3	0.89	2.73	3.502(10)	146
N1-H2E […] Br3	0.89	2.57	3.374(10)	151

Calculation of ΔS and N

Compound 1:

In the heating cycle mode $\Delta SH = R \ln N1$

$$\Delta SH = \frac{T_1}{T_2} \frac{Q}{T} dT$$
$$\approx \frac{\Delta H}{T_c}$$

$$=\frac{8.942J^{-1}mol \times 704.46g^{-1}mol}{395K}$$

=15.95*J·mol⁻¹·K*⁻¹

$$N_{1} = \exp(\frac{\Delta S_{H}}{R}) = \exp(\frac{15.95J \cdot mol^{-1} \cdot K^{-1}}{8.314J \cdot mol^{-1} \cdot K^{-1}})$$

=6.75

In the cooling cycle mode $\Delta SC = R \ln N2$

$$\Delta SC = \frac{T_1}{T_2} \frac{Q}{T} dT$$
$$\approx \frac{\Delta H}{Tc}$$

 $=\frac{8.56 J^{-1} mo1 \times 704.46 g^{-1} mo1}{389 K}$

=15.15*J·mol⁻¹·K*⁻¹

$$N_2 = \exp(\frac{\Delta S_c}{R}) = \exp(\frac{15.15J \cdot moI^{-1} \cdot K^{-1}}{8.314J \cdot moI^{-1} \cdot K^{-1}})$$

=6.17