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Methods and data analysis 

Mass spectrometry imaging data 

Mouse uterine and brain tissue MSI datasets used as examples in this study have been previously reported.1,2 

Uterine tissues from 2-month-old female mice were snap-frozen, and frozen sections were made with a 

cryostat. The mice were maintained on a C57BL6 mixed background and housed in the vivarium at the 

Cincinnati Children’s Hospital Medical Center according to NIH and institutional guidelines for laboratory 

animals. This protocol was approved by the Cincinnati Children’s Hospital Research Foundation 

Institutional Animal Care and Use Committee. Mouse uterine tissue was analyzed using nano-DESI MSI 

on a Q-Exactive HF-X Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped 

with a custom-designed nano-DESI source.3 Mass spectra were acquired in the m/z range of 133-2000 in 

both positive and negative ion modes with a spatial resolution of 10 μm. Positive mode MSI data for mouse 

brain tissue was obtained from METASPACE,4 a community resource that provides open access to MSI 

data. The specific data were acquired using MALDI MSI in the m/z range of 600-1000 with a spatial 

resolution of 20 μm. The dimensions of the two MSI datasets are listed in Table S1.  

Data pre-processing 

To generate ion images from MSI data, we used peak detection and m/z binning as described in our previous 

study.5 The signal intensity for each m/z in each pixel was extracted from the corresponding mass spectrum 

with a bin width of ± 10 ppm and normalized to the total ion current. To remove visual spikes, pixels with 

intensities > 0.999 quantile were reassigned with the 0.999 intensity quantile value. Ion images of mouse 

uterine tissue were resized to 96 x 96 pixels. Meanwhile, larger-size ion images of mouse brain tissue were 

resized to 224 x 224 pixels. Most pre-trained CNN models and Pytorch transform functions accept RGB 

images. Thus, raw pixel intensities of ion images were normalized between 0 and 255 and copied to 3 

channels. More specifically, we converted ion images into the PIL format before the data augmentation 

step. To benchmark our approach, we manually selected 367 mouse uterine ion images with distinct ion 

distributions and clustered them into 13 groups according to molecular colocalizations as shown in Fig. S6. 

For the unannotated mouse brain dataset, we detected 1101 peaks from the average spectrum and generated 

the corresponding ion images as shown in Fig. S8.   

Architecture of the self-supervised clustering  

We approached the challenge of molecular localization clustering as an image classification task. We aimed 

to re-train a CNN model for an individual MSI dataset to classify ion images based on the high-level spatial 

features without manual annotations. The model architecture is shown in Fig. 1. The pre-trained CNN 

(EfficientNet-B0) is re-trained by contrastive learning and self-labeling sequentially in a self-supervised 

manner. We use EfficientNet-B0, which has been trained on the ImageNet database. We used the 

EfficientNet-B0 model before the classification layer as an encoder. In our architecture, we firstly learned 

ion image representations through the contrastive learning. More specifically, SimCLR6 approach is 

adopted in this study. After this first phase of training, we fed ion images through the re-trained encoder to 

produce a set of feature vectors, which were then passed to a spectral clustering (SC) classifier to generate 

the initial labels for the classification task. To complete a learnable classification CNN, a linear classifier 

(a linear layer followed by a softmax function) was attached to the encoder and trained with the original 

ion images and initial labels as inputs. Finally, we utilized a self-labeling7 approach to fine-tune both the 

encoder and classifier, which allows the network to correct itself.  
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Contrastive learning 

Details of SimCLR implementation are shown in Fig. S1. The representation of an ion image is the output 

before the classification layer of EfficientNet-B0. A small multilayer perceptron with one hidden layer 

maps the representations to the projection space ( Z ) where the contrastive loss is applied. In the training 

step each ion image is used to generate a pair of augmentations. We treat two augmentations of one ion 

image as a positive pair ( , )i j . Then the loss function is defined as 

 

where 2N is the number of augmented images, ,i j Zz z , sim denotes the cosine similarity, 
[ ]k i1 denotes 

an indicator function evaluating to 1 iff  k i  and  is a temperature parameter with a default value of 

0.5. The final loss is computed across all positive pairs in the minibatch. To evaluate the quality of learned 

representations for mouse uterine benchmark, we used a linear evaluation and the nearest neighbor mining. 

In the linear evaluation, one average ion image was generated from each manually classified group of 

images as the centroid of the cluster. A linear classifier was subsequently trained on top of the frozen re-

trained encoder, with 13 average ion images and their corresponding annotated labels. Next, all original ion 

images were classified by the encoder and the updated linear classifier. The resulting classification accuracy 

is used as a proxy for the quality of image representation.6 In the nearest neighbor mining protocol, for each 

ion image, we searched its K nearest neighbors (K  [1, 30]) based on cosine distance in the representation 

space. We quantified the purity of the neighborhood by counting the annotation-matching pairs for each 

image and their nearest neighbors. We also visualized the learned representations using t-SNE with scikit-

learn default settings.  

Image clustering 

It has been demonstrated in a previous report7 and this study (Fig. 2e) that images with similar high-level 

spatial features are mapped together in the representation space using contrastive learning. To leverage the 

meaningful local neighborhoods, SC was adopted to cluster ion images as the classification pretext task. 

Based on the cosine distance, 10 nearest neighbors of each ion image were identified to construct a graph. 

Next, we used the discretization approach to cluster nodes in the graph after the Laplacian embeddings.8 

After the SC, we used the resulting classification labels to initialize a learnable linear classifier on top of 

the CNN encoder, which enables the following self-labeling process to fine-tune the model (step 2 in Fig. 

1). More specifically, the linear classifier is composed of a linear layer and a softmax function. We set the 

encoder in frozen mode and trained the classifier with original ion images and initial labels obtained from 

SC.  

Self-labeling 

As reported in a previous study, self-labeling improves the CNN model using a plain criterion: two 

independently augmented images from one ion should be classified into the same cluster. With this principle, 

the self-supervised training is able to enhance the generalization power of the model. In addition, only the 

confidently-classified ion images are included in this training.7 As shown in Fig. 2f and Fig. S5, we 

observed that the classification accuracy obtained for selected mouse uterine ion images increases with an 

increase in the softmax probability threshold. This indicates that the softmax probability threshold may be 

used to exclude falsely classified ion images from the training, which enhances the accuracy of the CNN 
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model in the self-labeling step. In the implementation, we empirically selected the probability threshold 

with respect to the sample population. More specifically, after the initialization of the linear classifier, we 

selected the 40% quantile of softmax probabilities as the threshold. The selected training data containing 

60% of the original ion images has a larger fraction of correctly classified images than the original data. 

Training samples were updated with the same probability threshold at every epoch, thus we gradually 

included more samples into the training (Fig. 2g). For each selected ion image, we applied a weak and a 

strong augmentations, respectively. Two pseudo labels were obtained after the encoder and classifier. A 

weighted cross-entropy loss was then applied to the minibatch of weakly augmented ion images to update 

the parameters of the CNN model.  

Clustering accuracy evaluation 

In this study, we used over-clustering to effectively capture the intra-class variance. The clustering accuracy 

was calculated using the following equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(ℂ, 𝕋) =
1

𝑁
∑ max𝑗|𝑐𝑖⋂𝑡𝑗|

𝑖

 

Where 1 2, , , Ic c c  is the set of predicted clusters, 1 2, , , Jt t t  is the set of ground truth 

classes, N  is the total number of ion images. In each cluster, the most frequent ground truth class was 

identified and assigned as a predicted class for the whole cluster. The accuracy was calculated by counting 

the correctly predicted ion images and dividing by N . 

Comparison of the self-supervised clustering with vector-based methods 

First, we evaluated the pairwise similarity measurements with different input data. In the current method, 

we used CNN feature vectors for the downstream classification task. For a comparative study, image vectors 

were generated by flattening the original images after 0.999 quantile hot spot removal as a pre-processing 

step. Three metrics, including Euclidean distance, cosine similarity, and Pearson correlation were calculated 

for comparison.  

Next, we evaluated the clustering accuracy of two established machine learning methods that rely on image 

vectors: a density based clustering analysis with nonlinear dimensionality reduction9 and Ward hierarchical 

clustering5.The Uniform Manifold Approximation and Projection (UMAP) was performed using the umap-

learn package with the following parameters: n_components = 3, n_neighbors=5, min_dist=0.5, metric = 

'cosine'.  We note that these parameters were optimal for visualizing and grouping of image vectors, but 

were not best suited for the CNN feature vectors (Fig. 2d as reference). Nevertheless, we used the same 

UMAP parameters in Fig. 4c and 4d for the visualization of both results for an objective comparison 

between them. Hierarchical Density-based Spatial Clustering for Applications with Noise (HDBSCAN) 

was performed to cluster UMAP representations using default parameters except for “min_cluster_size”. 

We tuned “min_cluster_size” in order to obtain either 13 or 20 clusters. In all the HDBSCAN clustering 

results, the number of noise data points was less than ten. In the Ward hierarchical clustering, each vector 

was normalized to the range of [0, 1]. The method was implemented using scipy package 

(scipy.cluster.hierarchy.linkage) with the following parameters: method='ward', metric='euclidean'.” 

Isotopic recall evaluation 

Isotopic recall is a metric reported in a previous study10 to evaluate the performance of ion image clustering. 

Isotopic ion images were identified based on the m/z shift and Pearson correlation of the ion image with 

that of the candidate monoisotopic peak. Specifically, mass spectral features separated from each other by 
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m/z 1.003 with a tolerance of m/z 0.01  were assigned as candidate isotopic peaks. Second, ion images of 

isotopic peaks should have a Pearson correlation greater than 0.5. For the self-supervised clustering results, 

we counted the number of isotopic images that were correctly clustered together and divided it by the total 

number of identified isotopes. This fraction gives the isotopic recall, which is in the range of 0 to 1.  

Data augmentation 

Data augmentation is crucial for contrastive learning and self-labeling. We systematically studied the 

impact of data augmentation operators as listed in Table S3. For each single augmentation operation, we 

randomly sampled a parameter interval for an image transformation function. Moreover, we classified the 

compositions of data augmentation operators into three classes. Medium augmentation was used in 

SimCLR, while weak and strong augmentations were used in self-labeling.  

Model training protocal 

For SimCLR training step, we used Adam optimizer with the initial learning rate of 0.001. A cosine 

annealing with a period of training epochs was used to decay the learning rate. According to the previous 

report, SimCLR benefits from larger batch sizes.6 In our implementation, we used the largest batch size 

allowed by the GPU memory and trained for 100 iterations. For the self-labeling step, an Adam optimizer 

with the initial learning rate of 0.0001 and the same cosine annealing schedular were used. We trained the 

CNN for 300 iterations. We implemented the model training on Google Colaboratory, a cloud computing 

platform. Using the NVIDIA Tesla P100-16GB GPU, the total training time for mouse uterine MSI 

benchmark and mouse brain MSI dataset was about 15 and 45 minutes, respectively.  
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Table S1. Information of benchmark mouse uterine dataset and unannotated mouse brain dataset.  

 

Table S2. Accuracy of spectral clustering results with 20 clusters at conditions of varying neighborhood 

sizes. Ion image representations were generated by encoder shown in Fig. 2d.   

 

Table S3. A summary of image augmentation operator parameters. The kernel size in Gaussian blur is set 

to be 10% of the image height/width. Off-tissue mask was not applied to unannotated dataset.  

 

 

Table S4. Comparison of the classification accuracy of different image vector-based clustering methods 

on benchmark data. 

 

 

Parameters Benchmark dataset Unannotated dataset

Tissue type Mouse uterine Mouse brain

Ionization methods nano-DESI MALDI

Spatial resolution (μm) 10 20

Raw pixel number 58×920 240×220

Resized pixel number 96×96 224×224

Polarity mode Positive and negative Positive

Mass range (m/z ) 135-1000 600-1000

Image number 367 1101

Number of neighbors 3 5 8 10 15 20 30

Accuracy (%) 67.8 ± 2.4 92.3 ± 1.0 92.8 ± 0.1 92.2 ± 0.3 90.8 ± 0.7 88.8 ± 2.1 85.8 ± 0.8

Augmentation class Transformation Parameter Interval

       Gaussian blur sigma [0.001, 0.4]

       Gaussian noise sigma [0.001, 0.1]

       Color Jitter 
brightness, contrast, 

saturation, hue
0.25, 0.25, 0.25, 0.2

    Off-tissue mask N/A N/A

       Gaussian blur sigma [0.01, 0.75]

       Gaussian noise sigma [0.001, 0.2]

       Color Jitter 
brightness, contrast, 

saturation, hue
0.5, 0.5, 0.5, 0.2

       Gaussian blur sigma [0.1, 2]

       Gaussian noise sigma [0.001, 0.4]

       Color Jitter 
brightness, contrast, 

saturation, hue
0.5, 0.5, 0.5, 0.2

    Off-tissue mask N/A N/A

Medium

Strong

Weak

Clustering method Number of clusters Accuracy (%)

Ward Hierarchical Clustering 13 70.2

UMAP + HDBSCAN 13 58.3 ± 2.1

Self-Supervised Clustering 13 84.0 ± 3.1

Ward Hierarchical Clustering 20 80.9

UMAP + HDBSCAN 20 68.4 ± 2.0

Self-Supervised Clustering 20 92.7 ± 2.1
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Table S5. A variety of pairwise similarity measurements for image vector and CNN feature vectors. 

 
 

 

 

 

 

  

Euclidean distance Cosine similarity Pearson similarity Euclidean distance Cosine similarity Pearson similarity

pos, 739.4681 35.5 0.720 0.609 23.2 0.420 0.406

pos, 868.5243 38.7 0.685 0.564 18.6 0.695 0.687

neg, 684.6076 23.5 0.745 0.724 25.6 0.626 0.560

pos, 793.5930 35.7 0.595 0.553 18.4 0.785 0.759

pos, 594.3172 32.8 0.596 0.552 22.0 0.530 0.496

pos, 707.5007 33.7 0.563 0.521 10.3 0.873 0.865

neg, 309.5065 44.3 0.573 0.466 32.8 0.232 0.186

pos, 838.5600 47.6 0.513 0.398 27.5 0.420 0.399

3 pos, 820.6181

4 neg, 293.5339

CNN feature vector

1 pos, 875.5700

2 neg, 471.2616

Group Reference ion Other ion
Image vector
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Figure S1. The framework of SimCLR. 

 
Figure S2. Contrastive learning with strong geometry-changing augmentations. (a) Illustration of 

strong geometry-changing augmentations used in current study. (b) Linear evaluation of re-trained CNN 

encoder with individual augmentation shown in panel a. Results of transfer learning and SimCLR without 

data augmentation are also listed for comparison. 
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Figure S3. Generalization power provided by composite image augmentation strategy.   

 
Figure S4. The impact of training time on learned image representations during contrastive learning. 

(a) t-SNE visualizations of learned representations with different training epochs. (b) Contrastive losses 

during trainings with different epoch settings. (c) Linear evaluation of re-trained CNN encoder with 

different epoch settings.  
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Figure S5. Relationships between classification accuracy and confidently classified image fraction 

obtained from (a) CNN model which was trained by initial labels and classified ion images into 20 groups. 

(b) CNN model which was trained by self-labeling and classified ion images into 13 groups and (c) CNN 

model which was trained by self-labeling and classified ion images into 20 groups. Each data point was 

calculated from an ion image subset which was selected by a softmax probability threshold. 
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Figure S6. Manual classification of 367 ion images in the mouse uterine benchmark.  
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Figure S7. Self-supervised clustering results of 367 ion images in the mouse uterine benchmark. 
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Figure S8. Four groups of ion images for pairwise similarity measurement discussion. 

 

Figure S9. Dendrogram and sorted image vectors in Ward hierarchical clustering results. A zoom-in image 

shows that three ion images (shown in Fig. 4a) are clustered together. Although Ward hierarchical clustering 

is able to capture major patterns in input data, it cannot differentiate between the ion image of m/z 739.4681 

and two other ion images used in this example. 
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Figure S10. 1101 ion images in the MALDI mouse brain dataset. 
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Figure S11. Self-supervised clustering results of 1101 ion images in the MALDI mouse brain dataset. 
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Figure S12. t-SNE visualizations of ion image representations obtained from (a) EfficientNet-B0 and (b) 

re-trained CNN encoder.   
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