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Methods and data analysis
Mass spectrometry imaging data

Mouse uterine and brain tissue MSI datasets used as examples in this study have been previously reported.?
Uterine tissues from 2-month-old female mice were snap-frozen, and frozen sections were made with a
cryostat. The mice were maintained on a C57BL6 mixed background and housed in the vivarium at the
Cincinnati Children’s Hospital Medical Center according to NIH and institutional guidelines for laboratory
animals. This protocol was approved by the Cincinnati Children’s Hospital Research Foundation
Institutional Animal Care and Use Committee. Mouse uterine tissue was analyzed using nano-DESI MSI
on a Q-Exactive HF-X Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA) equipped
with a custom-designed nano-DESI source.® Mass spectra were acquired in the m/z range of 133-2000 in
both positive and negative ion modes with a spatial resolution of 10 um. Positive mode MSI data for mouse

brain tissue was obtained from METASPACE,* a community resource that provides open access to MSI
data. The specific data were acquired using MALDI MSI in the m/z range of 600-1000 with a spatial
resolution of 20 um. The dimensions of the two MSI datasets are listed in Table S1.

Data pre-processing

To generate ion images from MSI data, we used peak detection and m/z binning as described in our previous
study.® The signal intensity for each m/z in each pixel was extracted from the corresponding mass spectrum
with a bin width of £10 ppm and normalized to the total ion current. To remove visual spikes, pixels with
intensities > 0.999 quantile were reassigned with the 0.999 intensity quantile value. lon images of mouse
uterine tissue were resized to 96 x 96 pixels. Meanwhile, larger-size ion images of mouse brain tissue were
resized to 224 x 224 pixels. Most pre-trained CNN models and Pytorch transform functions accept RGB
images. Thus, raw pixel intensities of ion images were normalized between 0 and 255 and copied to 3
channels. More specifically, we converted ion images into the PIL format before the data augmentation
step. To benchmark our approach, we manually selected 367 mouse uterine ion images with distinct ion
distributions and clustered them into 13 groups according to molecular colocalizations as shown in Fig. S6.
For the unannotated mouse brain dataset, we detected 1101 peaks from the average spectrum and generated
the corresponding ion images as shown in Fig. S8.

Architecture of the self-supervised clustering

We approached the challenge of molecular localization clustering as an image classification task. We aimed
to re-train a CNN model for an individual MSI dataset to classify ion images based on the high-level spatial
features without manual annotations. The model architecture is shown in Fig. 1. The pre-trained CNN
(EfficientNet-BO0) is re-trained by contrastive learning and self-labeling sequentially in a self-supervised
manner. We use EfficientNet-B0O, which has been trained on the ImageNet database. We used the
EfficientNet-BO model before the classification layer as an encoder. In our architecture, we firstly learned
ion image representations through the contrastive learning. More specifically, SimCLR® approach is
adopted in this study. After this first phase of training, we fed ion images through the re-trained encoder to
produce a set of feature vectors, which were then passed to a spectral clustering (SC) classifier to generate
the initial labels for the classification task. To complete a learnable classification CNN, a linear classifier
(a linear layer followed by a softmax function) was attached to the encoder and trained with the original
ion images and initial labels as inputs. Finally, we utilized a self-labeling” approach to fine-tune both the
encoder and classifier, which allows the network to correct itself.
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Contrastive learning

Details of SImCLR implementation are shown in Fig. S1. The representation of an ion image is the output
before the classification layer of EfficientNet-B0. A small multilayer perceptron with one hidden layer
maps the representations to the projection space ( Z ) where the contrastive loss is applied. In the training
step each ion image is used to generate a pair of augmentations. We treat two augmentations of one ion
image as a positive pair (i, j) . Then the loss function is defined as

exp (sim (zi ,zj) / ’r)

EU = —log

2N
1

k=1

[k=i]

exp(siln(zj,zk)/v')

where 2N is the number of augmented images, z, Z, €Z, sim denotes the cosine similarity, 1[k¢i]denotes

an indicator function evaluating to 1 iff k =i and 7 is a temperature parameter with a default value of
0.5. The final loss is computed across all positive pairs in the minibatch. To evaluate the quality of learned
representations for mouse uterine benchmark, we used a linear evaluation and the nearest neighbor mining.
In the linear evaluation, one average ion image was generated from each manually classified group of
images as the centroid of the cluster. A linear classifier was subsequently trained on top of the frozen re-
trained encoder, with 13 average ion images and their corresponding annotated labels. Next, all original ion
images were classified by the encoder and the updated linear classifier. The resulting classification accuracy
is used as a proxy for the quality of image representation.® In the nearest neighbor mining protocol, for each
ion image, we searched its K nearest neighbors (K e [1, 30]) based on cosine distance in the representation
space. We quantified the purity of the neighborhood by counting the annotation-matching pairs for each
image and their nearest neighbors. We also visualized the learned representations using t-SNE with scikit-
learn default settings.

Image clustering

It has been demonstrated in a previous report’ and this study (Fig. 2e) that images with similar high-level
spatial features are mapped together in the representation space using contrastive learning. To leverage the
meaningful local neighborhoods, SC was adopted to cluster ion images as the classification pretext task.
Based on the cosine distance, 10 nearest neighbors of each ion image were identified to construct a graph.
Next, we used the discretization approach to cluster nodes in the graph after the Laplacian embeddings.®
After the SC, we used the resulting classification labels to initialize a learnable linear classifier on top of
the CNN encoder, which enables the following self-labeling process to fine-tune the model (step 2 in Fig.
1). More specifically, the linear classifier is composed of a linear layer and a softmax function. We set the
encoder in frozen mode and trained the classifier with original ion images and initial labels obtained from
SC.

Self-labeling

As reported in a previous study, self-labeling improves the CNN model using a plain criterion: two
independently augmented images from one ion should be classified into the same cluster. With this principle,
the self-supervised training is able to enhance the generalization power of the model. In addition, only the
confidently-classified ion images are included in this training.” As shown in Fig. 2f and Fig. S5, we
observed that the classification accuracy obtained for selected mouse uterine ion images increases with an
increase in the softmax probability threshold. This indicates that the softmax probability threshold may be
used to exclude falsely classified ion images from the training, which enhances the accuracy of the CNN
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model in the self-labeling step. In the implementation, we empirically selected the probability threshold
with respect to the sample population. More specifically, after the initialization of the linear classifier, we
selected the 40% quantile of softmax probabilities as the threshold. The selected training data containing
60% of the original ion images has a larger fraction of correctly classified images than the original data.
Training samples were updated with the same probability threshold at every epoch, thus we gradually
included more samples into the training (Fig. 2g). For each selected ion image, we applied a weak and a
strong augmentations, respectively. Two pseudo labels were obtained after the encoder and classifier. A
weighted cross-entropy loss was then applied to the minibatch of weakly augmented ion images to update
the parameters of the CNN model.

Clustering accuracy evaluation

In this study, we used over-clustering to effectively capture the intra-class variance. The clustering accuracy
was calculated using the following equation:

1
Accuracy(C,T) = NZ max; |¢; N¢;]
7

Where C= c,,C,,...,C, is the set of predicted clusters, T= t,t,,...,t; is the set of ground truth

classes, N is the total number of ion images. In each cluster, the most frequent ground truth class was
identified and assigned as a predicted class for the whole cluster. The accuracy was calculated by counting
the correctly predicted ion images and dividing by N .

Comparison of the self-supervised clustering with vector-based methods

First, we evaluated the pairwise similarity measurements with different input data. In the current method,
we used CNN feature vectors for the downstream classification task. For a comparative study, image vectors
were generated by flattening the original images after 0.999 quantile hot spot removal as a pre-processing
step. Three metrics, including Euclidean distance, cosine similarity, and Pearson correlation were calculated
for comparison.

Next, we evaluated the clustering accuracy of two established machine learning methods that rely on image
vectors: a density based clustering analysis with nonlinear dimensionality reduction® and Ward hierarchical
clustering®. The Uniform Manifold Approximation and Projection (UMAP) was performed using the umap-
learn package with the following parameters: n_components = 3, n_neighbors=5, min_dist=0.5, metric =
‘cosine’. We note that these parameters were optimal for visualizing and grouping of image vectors, but
were not best suited for the CNN feature vectors (Fig. 2d as reference). Nevertheless, we used the same
UMAP parameters in Fig. 4c and 4d for the visualization of both results for an objective comparison
between them. Hierarchical Density-based Spatial Clustering for Applications with Noise (HDBSCAN)
was performed to cluster UMAP representations using default parameters except for “min_cluster size”.
We tuned “min_cluster size” in order to obtain either 13 or 20 clusters. In all the HDBSCAN clustering
results, the number of noise data points was less than ten. In the Ward hierarchical clustering, each vector
was normalized to the range of [0, 1]. The method was implemented using scipy package

19

(scipy.cluster.hierarchy.linkage) with the following parameters: method='ward', metric="euclidean'.
Isotopic recall evaluation

Isotopic recall is a metric reported in a previous study'’ to evaluate the performance of ion image clustering.
Isotopic ion images were identified based on the m/z shift and Pearson correlation of the ion image with
that of the candidate monoisotopic peak. Specifically, mass spectral features separated from each other by
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m/z 1.003 with a tolerance of m/z 0.01 were assigned as candidate isotopic peaks. Second, ion images of
isotopic peaks should have a Pearson correlation greater than 0.5. For the self-supervised clustering results,
we counted the number of isotopic images that were correctly clustered together and divided it by the total
number of identified isotopes. This fraction gives the isotopic recall, which is in the range of 0 to 1.

Data augmentation

Data augmentation is crucial for contrastive learning and self-labeling. We systematically studied the
impact of data augmentation operators as listed in Table S3. For each single augmentation operation, we
randomly sampled a parameter interval for an image transformation function. Moreover, we classified the
compositions of data augmentation operators into three classes. Medium augmentation was used in
SimCLR, while weak and strong augmentations were used in self-labeling.

Model training protocal

For SIimCLR training step, we used Adam optimizer with the initial learning rate of 0.001. A cosine
annealing with a period of training epochs was used to decay the learning rate. According to the previous
report, SIMCLR benefits from larger batch sizes.® In our implementation, we used the largest batch size
allowed by the GPU memory and trained for 100 iterations. For the self-labeling step, an Adam optimizer
with the initial learning rate of 0.0001 and the same cosine annealing schedular were used. We trained the
CNN for 300 iterations. We implemented the model training on Google Colaboratory, a cloud computing
platform. Using the NVIDIA Tesla P100-16GB GPU, the total training time for mouse uterine MSI
benchmark and mouse brain MSI dataset was about 15 and 45 minutes, respectively.
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Table S1. Information of benchmark mouse uterine dataset and unannotated mouse brain dataset.

Parameters Benchmark dataset Unannotated dataset
Tissue type Mouse uterine Mouse brain
lonization methods nano-DESI MALDI
Spatial resolution (um) 10 20
Raw pixel number 58>920 240>220
Resized pixel number 96>96 224224
Polarity mode Positive and negative Positive
Mass range (m/z) 135-1000 600-1000
Image number 367 1101

Table S2. Accuracy of spectral clustering results with 20 clusters at conditions of varying neighborhood
sizes. lon image representations were generated by encoder shown in Fig. 2d.

Number of neighbors 3 5 8 10 15 20 30
Accuracy (%) 67.8+2.4 92.3+1.0 92.8 +0.1 92.2 +0.3 90.8 +0.7 88.8 2.1 85.8 +0.8

Table S3. A summary of image augmentation operator parameters. The kernel size in Gaussian blur is set
to be 10% of the image height/width. Off-tissue mask was not applied to unannotated dataset.

Augmentation class  Transformation Parameter Interval
Gaussian blur sigma [0.001, 0.4]
Gaussian noise sigma [0.001, 0.1]
Weak Color Jitter brightness, contrast, g 55 .25, 0.25, 0.2
saturation, hue
Off-tissue mask N/A N/A
Gaussian blur sigma [0.01, 0.75]
Medium Gaussian noise sigma [0.001, 0.2]
. brightness, contrast,
Color Jitter saturation, hue 0.5,0.5,05,0.2
Gaussian blur sigma [0.1, 2]
Gaussian noise sigma [0.001, 0.4]
Strong Color Jitter brightness, contrast, 0.5, 0.5, 0.5, 0.2
saturation, hue
Off-tissue mask N/A N/A

Table S4. Comparison of the classification accuracy of different image vector-based clustering methods
on benchmark data.

Clustering method Number of clusters Accuracy (%)
Ward Hierarchical Clustering 13 70.2
UMAP + HDBSCAN 13 58.3 +2.1
Self-Supervised Clustering 13 84.0 £3.1
Ward Hierarchical Clustering 20 80.9
UMAP + HDBSCAN 20 68.4 +2.0
Self-Supervised Clustering 20 92,7 £2.1
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Table S5. A variety of pairwise similarity measurements for image vector and CNN feature vectors.

. . Image vector CNN feature vector
Group Reference ion Other ion - - —— —— - - ——— ——
Euclidean distance Cosine similarity Pearson similarity Euclidean distance Cosine similarity Pearson similarity
pos, 739.4681 35.5 0.720 0.609 23.2 0.420 0.406
1 pos, 8755700 o gg5243 387 0.685 0.564 18.6 0.695 0.687
neg, 684.6076 23.5 0.745 0.724 25.6 0.626 0.560
2 neg 4rL2ele o sozs030 357 0.595 0.553 184 0.785 0.759
pos, 594.3172 32.8 0.596 0.552 22.0 0.530 0.496
8 pos, 8206181 0 so7s007 337 0.563 0.521 10.3 0.873 0.865
neg, 309.5065 443 0.573 0.466 32.8 0.232 0.186
4 neg 2935339 o 8385600  47.6 0.513 0.398 275 0.420 0.399
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Figure S2. Contrastive learning with strong geometry-changing augmentations. (a) Illustration of
strong geometry-changing augmentations used in current study. (b) Linear evaluation of re-trained CNN

encoder with individual augmentation shown in panel a. Results of transfer learning and SimCLR without
data augmentation are also listed for comparison.
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Figure S4. The impact of training time on learned image representations during contrastive learning.
(a) t-SNE visualizations of learned representations with different training epochs. (b) Contrastive losses

during trainings with different epoch settings. (c) Linear evaluation of re-trained CNN encoder with
different epoch settings.
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Figure S6. Manual classification of 367 ion images in the mouse uterine benchmark.
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Figure S7. Self-supervised clustering results of 367 ion images in the mouse uterine benchmark.
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shows that three ion images (shown in Fig. 4a) are clustered together. Although Ward hierarchical clustering
is able to capture major patterns in input data, it cannot differentiate between the ion image of m/z 739.4681
and two other ion images used in this example.
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Figure S10. 1101 ion images in the MALDI mouse brain dataset.
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Figure S12. t-SNE visualizations of ion image representations obtained from (a) EfficientNet-B0 and (b)
re-trained CNN encoder.
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