Supporting Information

Multicomponent Formation to A New Class of Oxygen-Based 1,3-Dipolar Cycloaddition Reagent

and the Modular Synthesis of Furans

Huseyin Erguven, Cuihan Zhou and Bruce A. Arndtsen*

Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada

Table of Contents

I. General Procedures	1
II. Supplementary Tables	2
III. Conditions for Reaction Development	
IV. Furan and Oxazole Synthetic Procedures	4
V. Generation of Reaction Intermediates 1, 4, and 5	5
VI. Characterization Data for 3 , 6 and 8	
VII. References	
VIII. NMR Spectra for 3 , 6 , and 8	

I. General Procedures

All manipulations were conducted in a glovebox under a nitrogen atmosphere. Unless otherwise noted, all reagents were purchased from commercial sources and used without purification. Solvents were dried by filtration over activated alumina under nitrogen using an MBraun solvent purifier system. Solvents were stored over activated 3Å molecular sieves inside the glovebox. Deuterated acetonitrile was stirred over calcium hydride, vacuum transferred, degassed, and stored over 4Å molecular sieves. 2-Phenylbenzo[1,3,2]dioxaphosphole ((catechyl)PPh),¹ the alkyne-tethered aldehyde,² and aldehyde **7**,³ were prepared using literature procedures. Acyl bromides and iodides were prepared by halide exchange from the acid chloride, as previously reported.⁴ Nuclear magnetic resonance (NMR) characterization was performed on 500 MHz spectrometers for proton, 126 MHz for carbon, 377 MHz for fluorine and 162 MHz for phosphorus. ¹H, and ¹³C NMR chemical shifts were referenced to residual solvent. Mass spectra were recorded on a high-resolution electrospray ionization quadrupole mass spectrometer.

II. Supplementary Tables

Table S1. Supplementary Optimization Data with Activating Salts and PR₃ Variation^a

			1) MX' 🔍 🦯		
	O II	O II	CH₂CN 12h. rt		
	x +	H + PR₃			
			?) NEt'Pr ₂ , 1h Me		
		Me Me	eO ₂ C- <u></u> CO ₂ Me	3a	
				<u>u</u>	
Х	MX'	Solvent	PR_3	Base	% 3a ^b
Cl	-	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	AlCl ₃	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Br or I	-	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	TMSBr	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	TMSI	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	NaI	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	NaI ^e	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	NaI ^c	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	32
Cl	TMSI ^c	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	25
Br ^c	-	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	45
Ic	-	CD ₃ CN	PPh(catechyl)	NEt ⁱ Pr ₂	70
Cl	AgOTf	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	80
Cl	AgOTf ^e	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	64
Cl	AgOTf ^d	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	87
Cl	$Mg(OTf)_2$	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	<10
Cl	Cu(OTf) ₂	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	54
Cl	KOTf	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	NaOTf	DCE	PPh(catechyl)	NEt ⁱ Pr ₂	-
Cl	AgOTf	CDCl ₃	PPh(catechyl)	NEt ⁱ Pr ₂	41
Cl	AgOTf	CH_2Cl_2	PPh(catechyl)	NEt ⁱ Pr ₂	47
Cl	AgOTf	Chlorobenzene	PPh(catechyl)	NEt ⁱ Pr ₂	27
Cl	AgOTf	DCE	PPh(catechyl)	DBU	89
Cl	AgOTf	DCE	PPh(catechyl)	2,4,6-collidine	45
Cl	AgOTf	DCE	PPh ₃	NEt ⁱ Pr ₂	-
Cl	AgOTf	DCE	PCy ₃	NEt ⁱ Pr ₂	-
Cl	AgOTf	DCE	$P(OCH_2CF_3)_3$	NEt ⁱ Pr ₂	-
Cl	AgOTf	DCE	(PhO)P(catechyl)	NEt ⁱ Pr ₂	8
Cl	AgOTf	DCE	$P(OPh)_3$	NEt ¹ Pr ₂	48 ^t
Cl	AgOTf	DCE	$P(OPh)_3$	NEt ¹ Pr ₂	55
Cl	AgOTf	DCE	0-P,	NEt ⁱ Pr ₂	25
Cl	AgOTf	DCF	NC (R-RINOI)P(OPh)	NFt ⁱ Pr ₂	_
	AgOTT	DCE		NEt ⁱ Pr ₂	-
CI	ngom	DCL	MeO、	1112(112	-
			MeO		

^a0.12 mmol acyl chloride, 0.1 mmol aldehyde, 0.12 mmol PR₃, 1 ml Solvent, then 0.15 mmol MX' for 12 h, followed by the addition of alkyne (0.15 mmol) and then base (0.15 mmol). DCE = 1,2-dichloromethane.

^bNMR yields vs an internal standard. ^cbenzoyl chlorides, TMSI, and benzaldehyde first mixed in 1 ml CD₃CN for 12 h, followed by addition of PPh(catechyl). ^duse 0.10 mmol AgOTf instead. ^eonly 1h for first step. ^fcycloaddition performed for 2h.

			OTf			
R ¹ +	$ \begin{array}{c} 0 \\ 1 \\ CI \\ R^2 \\ 1 \\ 1.0 equi $	PPh(cate DCE H	chyl), AgOT 5, r.t., 12h ,	f O PPh(ca R ¹ + O 4	techyl)	Base ────────────────── temp
Entry	R ¹	\mathbb{R}^2	% 4	Temp. (°C)	Base	% 1
1	-	4-methyl	90	-32	NEt ⁱ Pr ₂	-
2	4-methoxy	$4-CF_3$	-	-32	-	-
3	4-methoxy	4-Me	-	-32	-	-
4	2-methyl	4-fluoro	92	-32	NEt ⁱ Pr ₂	-
5	2-methyl	$4-CF_3$	-	-32	-	-
6	2,4,6-trimethyl	$4-CF_3$	-	-32	-	-
7	2,4,6-trimethyl	4-fluoro	93	-32	NEt ⁱ Pr ₂	-
8	2,4,6-trimethyl	4-fluoro	93	-32	DBU	73
9	2,4,6-trimethyl	4-fluoro	93	r.t.	LiHMDS	93

Table S2. Substrates Variation for in situ Observation of 1^a

Preliminary analysis: The use of a methoxy substituent on the acid chloride led to side reactions in step 1 believed to arise from intramolecular Friedel-Crafts cyclization of the oxonium salt on the electron rich arene (entries 2, 3). The use of an electron poor para-trifluoromethyl substituted aldehyde did not appear to allow efficient O-acylation (entry 2, 5, 6). Interesting, the addition of NEtⁱPr₂ to **4** with the optimized substrate (entry 7) did not lead to complete deprotonation, despite the use of this base in furan synthesis, suggesting **1** is generated in equilibrium under the reaction conditions. The strong inorganic base LiHMDS would fully deprotonate **4** to form **1** in high yield (entry 9).

III. Conditions for Reaction Development (Table 1, Table S1)

^aStep 1: 0.12 mmol acyl chloride, and AgOTf (26 mg, 0.10 mmol) in 0.7 ml of 1,2-dichloroethane, stir for 1 h, then add 0.1 mmol aldehyde and PhP(catechyl) (27 mg, 0.12 mmol) stir for 30 min then *in situ* NMR analysis. Step 2: addition of base (0.15 mmol) at temperature noted, the *in situ* NMR analysis.

Entries 1-5: In a glovebox, p-tolualdehyde (12 mg, 0.10 mmol), benzoyl halide (0.12 mmol), PPh(catechyl) (26 mg, 0.12 mmol) and $(CH_3)_2SO_2$ internal standard (5 mg, 0.05 mmol) were dissolved in 1 ml of acetonitrile, followed by additive MX' (0.12 mmol). This mixture was allowed to stir for 12 hours at room temperature, and dimethylacetylene dicarboxylate (21 mg, 0.15 mmol) and diisopropylethylamine (19 mg, 0.15 mmol) were added. This mixture was stirred for 1 h at room temperature. The yield of furan **3a** was determined by ¹H NMR analysis relative to the (CH₃)₂SO₂ internal standard.

Entries 6-8: In a glovebox, p-tolualdehyde (12 mg, 0.10 mmol), benzoyl halide (0.12 mmol) and (CH₃)₂SO₂ internal standard (5 mg, 0.05 mmol) were dissolved in 1 ml of CD₃CN, followed by additive MX' (0.12 mmol). This mixture was allowed to stir for 12 hours at room temperature. PPh(catechyl) (26 mg, 0.12 mmol) was added and the mixture was stirred for another 6 hours. Finally, dimethylacetylene dicarboxylate (21 mg, 0.15 mmol) and diisopropylethylamine (19 mg, 0.15 mmol) were added. This mixture was stirred for 1 h at room temperature.

Entries 9-15: In a glovebox, p-tolualdehyde (12 mg, 0.10 mmol), benzoyl chloride (17 mg, 0.12 mmol), PR_3 (0.12 mmol) and $(CH_3)_2SO_2$ internal standard (5 mg, 0.05 mmol) were dissolved in 1 ml of 1,2-dichloroethane (DCE), followed by the addition of AgOTf (39 mg, 0.15 mmol). This mixture was stirred for 12 hours at room temperature, then dimethylacetylene dicarboxylate (21 mg, 0.15 mmol) and diisopropylethylamine (19 mg, 0.15 mmol) were added. This mixture was stirred for 1 h at room temperature.

IV. Furan and Oxazole Synthetic Procedures

Synthesis of Furans (Table 2)

In a glovebox, aldehyde (0.20 mmol), acyl chloride (34 mg, 0.24 mmol) and (catechyl)PPh (54 mg, 0.24 mmol) were dissolved in 1 ml of 1,2-dichloroethane in a 20 ml vial, followed by addition of silver triflate (54 mg, 0.20 mmol). This mixture was allowed to stir for 12 hours at room temperature, and alkyne (0.30 mmol) and diisopropylethylamine (39 mg, 0.30 mmol) were added in order. This mixture was stirred for 30 min at room temperature. The solvent was removed in vacuo, and the furan product **3** was isolated by column chromatography using gradient 0-20% ethyl acetate in hexanes.

In the case of **3g**, **m**, **o-s**, **v**, **y**, **aa**, **bb** acid chloride and AgOTf were first mixed in 1 ml 1,2-dichloroethane for 2 h, before addition of the other reagents as noted above. For **3f** and **3g**, the mixture was heated for 12 h at 80 °C or 100 °C, respectively, after adding the alkene and base.

Synthesis of Oligomeric Furan 6

In a glovebox, 1,4-benzenedicarbonyl chloride (49 mg, 0.24 mmol), p-methoxybenzaldehyde (54 mg, 0.40 mmol) and (catechyl)PPh (104 mg, 0.48 mmol) were dissolved in 1 ml of dichloroethane, followed by addition of silver triflate (124 mg, 0.24 mmol). The mixture was allowed to stir for 12 hours at room temperature, and the DMAD (82, 0.6 mmol) and diisopropylethylamine (78 mg, 0.60 mmol) was added, and stirred for 30 minutes at room temperature. The solvent and removed in vacuo, and the product **6** was isolated by column chromatography using ethyl acetate-hexanes as a white solid. (39%, 51 mg, 0.078 mmol).

Synthesis of Oxazole 8

In a glovebox, 2-(2-formylphenoxy)acetonitrile (32 mg, 0.20 mmol), benzoyl chloride (34 mg, 0.24 mmol) and (catechyl)PPh (52 mg, 0.24 mmol) were dissolved in 1 ml of dichloroethane, followed by addition of silver triflate (62 mg, 0.24 mmol). This mixture was allowed to stir for 12 hours at room temperature, and diisopropylethylamine (39 mg, 0.30 mmol) was added. This mixture was stirred for 30 min at room temperature. The solvent was removed in vacuo, and the product **8** was isolated by column chromatography using ethyl acetate-hexanes as a white solid. (82%, 41 mg, 0.164 mmol).

V. Generation of Reaction Intermediates

In situ formation of phosphonium salt of 4a

In a glovebox, benzoyl chloride (34 mg, 0.24 mmol) was dissolved in 1 ml of 1,2-dichloroethane in a 20 ml vial, followed by the addition of AgOTf (54 mg, 0.20 mmol). The mixture was stirred for 2 h. To this solution was added p-tolualdehyde (24 mg, 0.20 mmol) and then (catechyl)PPh (52 mg, 0.24 mmol) using 0.5 ml 1,2-dichloroethane. This mixture was stirred for 30 minutes at room temperature. The solvent was removed in vacuo, and the resulting oil washed with 2 ml of pentane, leaving **4a** as a brown-green precipitate together with trace impurites: ¹H NMR (400 MHz, CD₃CN) δ 8.42 (d, *J* = 7.3 Hz, 2H), 8.07 (t, *J* = 7.6 Hz, 1H), 7.86 – 7.74 (m, 3H), 7.61 (m, 3H), 7.43 (dd, *J* = 8.4, 2.5 Hz, 2H), 7.24 (d, *J* = 8.1 Hz, 2H), 7.21 – 7.14 (m, 2H), 7.11 – 7.03 (m, 3H), 6.82 (d, *J* = 4.5 Hz, 1H), 2.34 (d, *J* = 2.6 Hz, 3H). ³¹P NMR (162 MHz, CD₃CN) δ 24.3 ppm. HRMS (ESI⁺) for C₂₇H₂₂O₄P[NaOH]; calculated 481.1175, found 481.1184 (error m/z = -1.9 ppm).

in situ ¹H NMR Spectra of 4a (CD₃CN)

in situ ³¹P NMR Spectra of 4a (CD₃CN)

In situ Generation of 1b

In a glovebox, 2,4,6-trimethylbenzoyl chloride (45 mg, 0.24 mmol) was dissolved in 1 ml of 1,2dichloroethane in a 20 ml vial. AgOTf (54 mg, 0.20 mmol) was added and the mixture stirred for 2 h. To this was added 4-fluorobenzaldehyde (25 mg, 0.20 mmol) and (catechyl)PPh (52 mg, 0.24 mmol) in 0.5 ml of 1,2-dichloroethane. This mixture was stirred for 30 minutes at room temperature. LiHMDS (50 mg, 0.30 mmol) was then added to the mixture at room temperature, and it produced a bright red solution. After 10 min, the 1,2-dichloroethane solvent was removed in vacuo, and the product dissolved in either CD₂Cl₂ or C₆D₆ for in situ NMR experiments. ¹H NMR (500 MHz, CD₂Cl₂) δ 7.80 – 7.75 (m, 2H), 7.45 (dd, *J* = 3.5, 3.1 Hz, 3H), 7.40 (dd, *J* = 8.4, 5.4 Hz, 2H), 6.99 – 6.89 (br, 8H), 2.31 (s, 9H) ppm. ¹H NMR (500 MHz, C₆D₆) δ 7.85 (dd, *J* = 7.2, 6.8 Hz, 2H), 7.64 (dd, *J* = 8.6, 5.4 Hz, 2H), 7.37 – 7.33 (m, 1H), 7.04 – 6.96 (m, 4H), 6.85 (dd, *J* = 5.8, 3.4 Hz, 2H), 6.61 (dd, *J* = 5.8. 3.4 Hz, 2H), 6.46 (s, 2H), 2.16 (s, 6H), 1.90 (s, 3H) ppm. ¹³C NMR (126 MHz, CD₂Cl₂) δ 170.3 (d, J = 4.8 Hz), 159.2 (d, J = 238.9 Hz), 146.4, 142.8, 139.1, 133.8 (d, J = 2.6 Hz), 133.6 (d, J = 2.6 Hz), 131.2 (d, J = 3.6 Hz), 130.2, 129.4 (d, J = 11.5 Hz), 129.1, 129.0, 126.2, 126.1, 126.0, 114.9 (d, J = 21.1 Hz), 112.1 (d, J = 9.6 Hz), 93.1 (d, J = 252.7 Hz), 21.5, 21.4 ppm. ³¹P NMR (162 MHz, CD₂Cl₂) δ 9.8 (br) ppm. ³¹P NMR (162 MHz, 1,2-dichloroethane) δ 8.3 (br) ppm.

In situ ¹³C NMR Spectra of 1b (CD₂Cl₂)

In situ ³¹P NMR Spectra of 1b (CD₂Cl₂)

Synthesis of 5b

To the freshly made bright red solution of **1b** (0.20 mmol scale) in 1,2-dichloromethane in a glovebox was added 1,1-chlorocyanoethylene (22 mg, 0.25 mmol). The solution immediately turned yellow. In situ ¹H, ¹⁹F and ³¹P NMR show what appears to be two isomers in a 4.4:1 ratio (see spectra below). The mixture was then brought outside the glovebox and purified by flash column chromatography using 0-6% ethyl acetate in hexanes. The partially purified isomer **5b** was fully isolated by silica prepTLC using 5% ethyl acetate in pentane ($R_f = 0.5$). 20 mg (17 %) of white oily solid product **5b** was collected.

¹**H** NMR (500 MHz, CDCl₃) δ 7.42 (tt, *J* = 7.2, 1.3 Hz, 1H), 7.27 (dd, *J* = 8.5, 1.4 Hz, 2H), 7.24 (dd, *J* = 8.3, 7.4 Hz, 2H), 7.09 (s, 1H), 7.07 (dd, *J* = 8.9, 5.3 Hz, 2H), 6.99 – 6.96 (m, 2H), 6.96 (s, 1H), 6.95 – 6.94

(m, 1H), 6.91 – 6.89 (m, 2H), 6.88 – 6.84 (m, 1H), 3.57 (dd, $J^{\text{H-P}} = 67.3 \text{ Hz}$, J = 14.3 Hz, 1H), 3.45 (dd, $J^{\text{H-P}} = 54.3 \text{ Hz}$, J = 14.3 Hz, 1H), 3.04 (s, 3H), 2.57 (s, 3H), 2.36 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 162.4 (dd, $J^{\text{C-F}} = 247.4 \text{ Hz}$, $J^{C-P} = 3.7 \text{ Hz}$), 144.9 (d, J = 1.7 Hz), 143.2 (d, J = 4.7 Hz), 139.4 (d, $J^{C-P} = 25.1 \text{ Hz}$), 138.5 (d, $J^{C-P} = 1.3 \text{ Hz}$), 132.9 (d, $J^{C-P} = 10.6 \text{ Hz}$), 132.8 (d, $J^{C-P} = 3.7 \text{ Hz}$), 132.3, 132.2, 131.9, 128.5 (dd, $J^{C-F} = 8.4 \text{ Hz}$, $J^{C-P} = 4.4 \text{ Hz}$), 128.4 (d, $J^{C-P} = 14.7 \text{ Hz}$), 127.3, 124.7, 124.6, 121.9, 121.7, 118.0, 114.7 (dd, $J^{C-F} = 21.6 \text{ Hz}$, $J^{C-P} = 2.7 \text{ Hz}$), 111.4 (d, $J^{C-P} = 16.0 \text{ Hz}$), 110.3 (d, $J^{C-P} = 8.2 \text{ Hz}$), 83.8 (d, $J^{C-P} = 134.1 \text{ Hz}$), 63.8 (d, $J^{C-P} = 4.7 \text{ Hz}$), 49.1, 24.8, 24.6, 20.8 ppm. ³¹P NMR (167 MHz, CDCl₃) δ -11.35 (d, $J^{F-P} = 5.9 \text{ Hz}$, 1P) ppm. ¹⁹F NMR (377 MHz, CDCl₃) δ -113.72 (d, $J^{F-P} = 5.9 \text{ Hz}$, 1F) ppm. HRMS (ESI⁺) for C₃₂H₂₆ClFNNaO₄P; calculated 596.1164, found 596.1172 (error m/z = 1.3 ppm).

In situ ¹⁹F NMR Spectra of synthesis reaction (CDCl₃)

In situ ³¹P NMR Spectra of synthesis reaction (CDCl₃)

¹H NMR Spectra of 5b (CDCl₃)

Phosphorus Decoupled ¹H NMR Spectra of 5b (CDCl₃)

¹⁹F NMR Spectra of 5b (CDCl₃)

HSQC NMR Spectra of 5b (CDCl₃)

NOESY NMR Spectra of 5b (CDCl₃)

VI. Characterization Data for 3, 6, and 8

<u>Dimethyl 2-phenyl-5-(p-tolyl)furan-3,4-dicarboxylate (3a)</u> Colorless liquid, 56 mg, 80%. ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, *J* = 7.0 Hz, 2H), 7.78 (d, *J* = 8.2 Hz, 2H), 7.46 (m, 3H), 7.29 (d, *J* = 8.0 Hz, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 2.43 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.4, 164.2, 154.0, 153.1, 139.9, 129.5, 129.2, 128.9, 128.5, 127.4, 127.3, 126.0, 115.2, 114.6, 52.4, 52.3, 21.5 ppm. HRMS (ESI⁺) for C₂₁H₁₈NaO₅; calculated 373.1046, found 373.1049 (error m/z = 0.7 ppm).

<u>(2-phenyl-5-(p-tolyl)furan-3,4-diyl)bis(phenylmethanone)</u> (**3b**): light yellow solid, 60 mg, 66%. ¹H NMR (500 MHz, CDCl₃) δ 7.83 – 7.67 (m, 6H), 7.62 (d, J = 8.2 Hz, 2H), 7.45 (m, 2H), 7.34 (m, 3H), 7.27 (m, 4H), 7.16 (d, J = 8.0 Hz, 2H), 2.36 (s, 3H) ppm.¹³C NMR (126 MHz, CDCl₃) δ 191.5, 153.3, 152.6, 139.6, 137.6, 137.5, 133.2, 133.2, 129.4, 129.3, 129.2, 128.9, 128.6, 128.4, 127.2, 127.2, 126.1, 123.2, 122.7, 21.4 ppm. HRMS (ESI⁺) for C₃₁H₂₂NaO₅; calculated 497.1359, found 497.1355 (error m/z = 0.9 ppm).

<u>Methyl 2-phenyl-5-(p-tolyl)furan-3-carboxylate</u> (**3c**) Pale yellow liquid, 45 mg, 78%. ¹**H NMR** (500 MHz, CDCl₃) δ 8.09 – 8.07 (m, 2H), 7.64 (d, *J* = 8.2 Hz, 2H), 7.48 (t, *J* = 7.4 Hz, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.24 (d, *J* = 8.0 Hz, 2H), 7.04 (s, 1H), 3.88 (s, 3H), 2.40 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 156.3, 152.7, 138.1, 129.8, 129.5, 129.3, 128.3, 128.2, 127.1, 124.0, 115.3, 107.1, 51.7, 21.4 ppm. **HRMS** (ESI⁺) for C₁₉H₁₇O₃; calculated 293.1172, found 293.1173 (error m/z = 0.2 ppm).

<u>Phenyl 2-phenyl-5-(p-tolyl)furan-3-carboxylate (3e)</u> white solid, 40 mg, 55%. ¹H NMR (500 MHz, CDCl₃) δ 8.20 – 8.17 (m, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.52 – 7.43 (m, 5H), 7.35 – 7.29 (m, 3H), 7.27 – 7.24 (m, 3H), 2.45 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.2, 157.7, 153.0, 150.7, 138.4, 129.7, 129.7, 129.6, 129.6, 128.5, 128.3, 127.0, 126.0, 124.2, 121.9, 114.8, 107.2, 21.5 ppm. HRMS (ESI⁺) for C₂₄H₁₈NaO₃; calculated 377.1148, found 377.1136 (error m/z = 3.3 ppm).

<u>2-Phenyl-5-(p-tolyl)furan-3-carbonitrile (**3f**)</u> Pale yellow liquid, 35 mg, 67%. ¹**H NMR** (500 MHz, CDCl₃) δ 8.07 – 8.05 (m, 2H), 7.63 (d, *J* = 8.2 Hz, 2H), 7.53 (t, *J* = 8.0 Hz, 2H), 7.47 (t, *J* = 7.4 Hz, 1H), 7.28 (d, *J* = 7.6 Hz, 2H), 6.83 (s, 1H), 2.42 (s, 3H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ 158.4, 153.9, 139.1, 130.0, 129.7, 129.1, 128.2, 126.1, 125.3, 124.2, 115.1, 107.0, 93.4, 21.4 ppm. **HRMS** (ESI⁺) for C₁₈H₁₄ON; calculated 260.1070, found 260.1080 (error m/z = 4.1 ppm).

<u>5-(4-fluorophenyl)-2-mesitylfuran-3-carbonitrile (3g)</u> yellow solid, 38 mg, 62 %. ¹H NMR (500 MHz, CDCl₃) δ 7.66 – 7.63 (m, 2H), 7.14 – 7.10 (m, 2H), 6.98 (s, 2H), 6.83 (s, 1H), 2.35 (s, 3H), 2.24 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 163.9, 161.d (d, *J* = 162.5 Hz), 153.5, 140.7, 138.6, 128.7, 126.0 (d, *J* = 8.3 Hz), 125.4 (d, *J* = 3.4 Hz), 124.3, 116.1 (d, *J* = 22.1 Hz), 113.9, 105.6, 105.6, 98.5, 21.3, 20.0 ppm. HRMS (ESI⁺) for C₂₀H₁₇FNO; calculated 306.1289, found 306.1292 (error m/z = -1.2 ppm)

<u>2-phenyl-4*H*-furo[3,2-*c*]chromene (**3h**)</u>: light yellow solid, 11 mg, 29%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.2 Hz, 2H), 7.49 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.14 (td, *J* = 8.0, 1.6 Hz, 1H), 6.99 (td, *J* = 7.5, 1.0 Hz, 1H), 6.90 (dd, *J* = 8.1, 0.8 Hz, 1H), 6.57 (s, 1H), 5.44 (s, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 154.4, 153.0, 145.4, 130.4, 128.8, 128.4, 127.6, 123.7, 121.5, 119.4, 116.8, 116.2, 115.7, 103.3, 65.9 ppm. **HRMS** (ESI⁺) for C₁₈H₁₄NaO₂; calculated 285.0886, found 287.0668 (error m/z = 3.9 ppm).

<u>Dimethyl 2-(4-methoxyphenyl)-5-phenylfuran-3,4-dicarboxylate (3i)</u> White solid, 63 mg, 86%. ¹H NMR (500 MHz, CDCl₃) δ 7.91 – 7.82 (m, 4H), 7.52 – 7.38 (m, 3H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.91 (s, 3H), 3.89 (s, 3H), 3.89 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 164.2, 160.7, 154.4, 152.4, 129.4, 129.3, 128.9, 128.6, 127.1, 121.5, 115.3, 113.9, 113.8, 55.4, 52.4, 52.3 ppm. HRMS (ESI⁺) for C₂₁H₁₉O₆; calculated 367.1176, found 367.1188 (error m/z = 3.1 ppm).

<u>Dimethyl 2-phenyl-5-(o-tolyl)furan-3,4-dicarboxylate</u> (**3j**) White solid, 36 mg, 59%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 – 7.76 (m, 2H), 7.49 – 7.36 (m, 5H), 7.32 – 7.26 (m, 2H), 3.93 (s, 3H), 3.74 (s, 3H), 2.37 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 165.3, 163.5, 156.5, 152.9, 138.3, 131.2, 130.8, 130.4, 129.7, 129.2, 129.1, 129.0, 127.0, 125.8, 116.7, 114.9, 53.0, 52.4, 20.6 ppm. **HRMS** (ESI⁺) for C₂₁H₁₈NaO₅; calculated 373.1046, found 373.1042 (error m/z = 1.1 ppm)

MeO₂C CO₂Me

<u>Dimethyl 2-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-5-phenylfuran-3,4-dicarboxylate (3k)</u> White solid, 55 mg, 70%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 – 7.80 (m, 2H), 7.46 – 7.37 (m, 5H), 6.93 (d, *J* = 8.5 Hz, 2H), 3.93 (s, 3H), 4.29 (s, 4H), 3.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 164.5, 164.2, 153.6, 152.7, 145.1, 143.5, 129.5, 128.9, 128.6, 127.3, 122.3, 121.2, 117.5, 116.7, 115.3, 114.2, 64.6, 64.4, 52.5, 52.4 ppm. HRMS (ESI⁺) for C₂₂H₁₈NaO₇; calculated 417.0945, found 417.0926 (error m/z = 4.5 ppm).

<u>Dimethyl 2-(4-(methylthio)phenyl)-5-phenylfuran-3,4-dicarboxylate</u> (**3**) White solid, 54 mg, 71%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H), 7.52 – 7.41 (m, 3H), 7.32 (d, J = 8.6 Hz, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 2.54 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.4, 164.1, 153.6, 153.0, 141.1, 129.6, 128.8, 128.6, 127.8, 127.2, 125.8, 125.2, 115.4, 114.7, 52.4, 52.4, 15.2. **HRMS** (ESI⁺) for C₂₁H₁₈NaO₅S; calculated 405.0767, found 405.0767 (error m/z = 0.0 ppm).

<u>Dimethyl 2-(4-(2-chloroethoxy)phenyl)-5-phenylfuran-3,4-dicarboxylate (3m)</u> 55 mg, 65%. ¹H NMR (500 MHz, CDCl₃) δ 7.85 (d, *J* = 9.0 Hz, 2H), 7.83 – 7.81 (m, 2H), 7.46 – 7.39 (m, 3H), 6.99 (d, *J* = 9.0 Hz, 2H), 4.28 (t, *J* = 5.9 Hz, 2H), 3.89 (s, 3H), 3.87 (s, 3H), 3.84 (t, *J* = 5.9 Hz, 2H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.6, 164.2, 159.3, 154.1, 152.6, 129.5, 129.4, 128.9, 128.6, 127.2, 122.2, 115.4, 114.7, 114.1, 68.1, 52.5, 52.4, 41.8 ppm. HRMS (ESI⁺) for C₂₂H₁₉ClO₆; calculated 414.0870, found 415.0942 (error m/z = 0.2 ppm).

<u>Dimethyl 2-phenyl-5-(thiophen-2-yl)furan-3,4-dicarboxylate (3n)</u> Pale yellow liquid, 51 mg, 74%. ¹H NMR (500 MHz, CDCl₃) δ 7.95 (dd, J = 3.8, 1.2 Hz, 1H), 7.82 (d, J = 7.0 Hz, 2H), 7.52 – 7.40 (m, 4H), 7.16 (dd, J = 5.0, 3.8 Hz, 1H), 3.93 (s, 3H), 3.93 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 163.2, 151.4, 150.6, 130.4, 129.5, 129.0, 129.0, 128.7, 128.5, 127.6, 126.7, 115.6, 113.1, 52.6, 52.2 ppm. **HRMS** (ESI⁺) for $C_{18}H_{14}NaO_5S$; calculated 365.0454, found 365.0462 (error m/z = 2.3 ppm).

<u>Dimethyl 2-phenyl-5-(thiophen-3-yl)furan-3,4-dicarboxylate</u> (**30**) Pale yellow solid, 41 mg, 60%. ¹H NMR (500 MHz, CDCl₃) δ 8.20 (dd, J = 3.0, 1.1 Hz, 1H), 7.82 – 7.80 (m, 2H), 7.67 (dd, J = 5.1, 1.1 Hz, 1H), 7.46 – 7.41 (m, 3H), 7.38 (dd, J = 5.1, 3.0 Hz, 1H), 3.89 (s, 3H), 3.89 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.9, 163.8, 151.8, 151.4, 129.8, 129.6, 128.9, 128.8, 127.0, 126.9, 126.5, 125.9, 115.5, 113.8, 52.6, 52.4 ppm. HRMS (ESI⁺) for C₁₈H₁₄NaO₅S; calculated 365.0454, found 365.0462 (error m/z = 2.2 ppm).

<u>Dimethyl 2-(4-chlorophenyl)-5-phenylfuran-3,4-dicarboxylate (3p)</u> white solid, 35 mg, 45%. ¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.83 (m, 4H), 7.49 – 7.43 (m, 5H), 3.89 (s, 3H), 3.88 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.2, 164.0, 153.6, 152.6, 135.8, 129.8 (2 signals overlapped), 128.9, 128.8, 128.7, 127.4, 127.3, 115.6, 115.5, 52.6 (2 signals overlapped) ppm. **HRMS** (ESI⁺) for C₂₀H₁₅ClNaO₅; calculated 393.0500, found 393.0490 (error m/z = 2.6 ppm).

<u>Dimethyl 2-(2-chlorophenyl)-5-phenylfuran-3,4-dicarboxylate (3q)</u> white solid 60 mg, 78%. ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.78 (m, 2H), 7.57 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.51 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.45 – 7.39 (m, 4H), 7.37 (td, *J* = 7.5, 1.4 Hz, 1H), 3.93 (s, 3H), 3.76 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 162.9, 153.3, 152.9, 134.2, 132.2, 131.2, 130.1, 129.6, 128.7 (2 signals overlapped), 128.5, 126.9, 126.6, 117.6, 114.7, 52.7, 52.2. HRMS (ESI⁺) for C₂₀H₁₅ClNaO₅; calculated 393.0500, found 393.0493 (error m/z = 1.9 ppm).

<u>Dimethyl 2-(2-bromophenyl)-5-phenylfuran-3,4-dicarboxylate (3r)</u> white solid, 71mg, 83%. ¹H NMR (500 MHz, CDCl₃) δ 7.81 – 7.78 (m, 2H), 7.70 (dd, *J* = 8.1, 1.2 Hz, 1H), 7.54, (dd, *J* = 7.7, 1.8 Hz, 1H), 7.45 – 7.38 (m, 4H), 7.34 (td, *J* = 7.8, 1.8 Hz, 1H), 3.93 (s, 1H), 3.74 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 162.7, 154.3, 153.1, 133.2, 132.5, 131.4, 130.6, 129.6, 128.7 (2 signals overlapped), 127.1, 126.8, 123.8, 117.3, 114.6, 52.7, 52.2 ppm. HRMS (ESI⁺) for C₂₀H₁₅BrNaO₅; calculated 436.9995, found 436.9985 (error m/z = 2.4 ppm).

<u>Dimethyl 2-(2-iodophenyl)-5-phenylfuran-3,4-dicarboxylate (3s)</u> Colorless oil, 78 mg, 81%. ¹H NMR (500 MHz, CDCl₃) δ 7.97 (dd, J = 8.1, 1.1 Hz, 1H), 7.83 – 7.81 (m, 2H), 7.49 (dd, J = 7.7, 1.8 Hz, 1H), 7.45 – 7.38 (m, 4H), 7.16 (ddd, J = 8.0, 7.3, 1.8 Hz, 1H), 3.94 (s, 3H), 3.73 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 162.6, 156.6, 152.8, 139.5, 134.8, 132.1, 131.3, 129.5, 128.7, 128.7, 127.7, 126.8, 116.8, 114.6, 98.1, 52.7, 52.1 ppm. HRMS (ESI⁺) for C₂₀H₁₅INaO₅; calculated 484.9856, found 484.9873 (error m/z = 3.5 ppm).

<u>Dimethyl 2-(4-methoxyphenyl)-5-(p-tolyl)furan-3,4-dicarboxylate (3t)</u> Pale yellow liquid, 62 mg, 82%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.86 (d, *J* = 9.0 Hz, 2H), 7.75 (d, *J* = 8.2 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H), 2.42 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.6, 164.3, 160.7, 153.9, 153.0, 139.7, 129.3, 129.2, 127.1, 126.1, 121.6, 114.7, 113.9, 113.8, 55.4, 52.4, 52.3, 21.5 ppm. **HRMS** (ESI⁺) for C₂₂H₂₁O₆; calculated 381.1333, found 381.1342 (error m/z = 2.5 ppm).

<u>Dimethyl 2-(o-tolyl)-5-(p-tolyl)furan-3,4-dicarboxylate</u> (**3u**) White solid, 56 mg, 77%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.49 (dd, *J* = 7.6, 1.2 Hz, 1H), 7.39 (td, *J* = 7.5, 1.4 Hz, 1H), 7.34 – 7.23 (m, 4H), 3.94 (s, 3H), 3.76 (s, 3H), 2.41 (s, 3H), 2.39 (s, 3H) ppm. ¹³**C NMR** (126 MHz, CDCl₃) δ 165.0, 163.3, 155.8, 153.1, 139.6, 137.9, 130.8, 130.5, 130.0, 129.4, 128.7, 126.7, 126.1, 125.4, 116.3, 113.9, 52.6, 52.0, 21.4, 20.3 ppm. **HRMS** (ESI⁺) for C₂₂H₂₀NaO₅; calculated 387.1203, found 387.1218 (error m/z = 3.9 ppm).

Dimethyl 2,5-bis(4-cyanophenyl)furan-3,4-dicarboxylate (**3v**) Yellow solids, 45 mg, 56%. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, *J* = 8.6 Hz, 4H), 7.78 (d, *J* = 8.7 Hz, 4H), 3.94 (d, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 152.0, 132.5, 132.3, 127.8, 118.3, 117.9, 113.4, 53.0 ppm. HRMS (ESI+) for C₂₂H₁₅N₂O₅; calculated 398.0975, found 387.0970 (error m/z = 1.3 ppm).

<u>Dimethyl 2-(4-fluorophenyl)-5-(4-methoxyphenyl)furan-3,4-dicarboxylate (3w)</u> Brown liquid, 58 mg, 76%. ¹H NMR (500 MHz, CDCl₃) δ 7.88 (dd, J = 9.0, 5.3 Hz, 2H), 7.84 (d, J = 9.0 Hz, 2H), 7.16 (t, J = 8.7 Hz, 2H), 7.00 (d, J = 9.0 Hz, 2H), 3.90 (s, 3H), 3.89 (s, 3H), 3.88 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 164.2, 163.4 (d, J = 249.5 Hz), 160.9, 154.0, 152.1, 129.5 (d, J = 8.4 Hz), 129.1, 125.2 (d, J = 3.5 Hz), 121.3, 115.6 (d, J = 22.0 Hz), 115.0, 114.0, 113.9, 55.4, 52.4, 52.3 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -110.6 ppm. HRMS (ESI⁺) for C₂₁H₁₈O₆F; calculated 385.1082, found 385.1089 (error m/z = 1.8 ppm).

<u>Dimethyl 2-(4-methoxyphenyl)-5-(4-nitrophenyl)furan-3,4-dicarboxylate (3x)</u> Yellow solid, 45 mg, 55%. ¹H NMR (500 MHz, CDCl₃) δ 8.31 (d, *J* = 9.0 Hz, 2H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.87 (d, *J* = 8.9 Hz, 2H), 7.02 (d, *J* = 8.9 Hz, 2H), 3.95 (s, 3H), 3.90 (s, 6H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 163.6, 161.2, 155.9, 149.3, 147.6, 134.6, 129.5, 127.4, 124.0, 120.8, 118.3, 114.3, 114.1, 55.4, 52.8, 52.4 ppm. HRMS (ESI⁺) for C₂₁H₁₇NaO₈N; calculated 434.0846, found 434.0858 (error m/z = 2.6 ppm).

Dimethyl 2-(p-tolyl)-5-(4-(trifluoromethyl)phenyl)furan-3,4-dicarboxylate (**3**y) pale yellow solid, 55 mg, 63%. ¹H NMR (500 MHz, CDCl₃) δ 7.98 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 7.9 HZ, 2H), 3.90 (s, 3H), 3.88 (s, 3H), 2.41 (s, 3H) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 164.1, 164.0, 154.9, 151.2, 140.4, 132.23, 131.15 (q, J = 32.7 Hz), 129.4, 127.6, 127.5, 125.81, 125.6 (q, J = 3.8 Hz), 124.0 (q, J = 272.3 Hz), 116.9, 114.9, 52.7, 52.5, 21.6 ppm. ¹⁹F NMR (471 MHz, CDCl₃) δ -62.8 ppm. HRMS (ESI⁺) for C₂₂H₁₇F₃NaO₅; calculated 441.0920, found 441.0919 (error m/z = 0.3 ppm).

<u>Dimethyl 2-(naphthalen-2-yl)-5-phenylfuran-3,4-dicarboxylate (3z)</u> White solid, 57 mg, 74%. ¹H NMR (500 MHz, CDCl₃) δ 8.42 (s, 1H), 7.98 – 7.91 (m, 5H), 7.90 – 7.87 (m, 1H), 7.59 – 7.54 (m, 2H), 7.53 – 7.45 (m, 3H), 3.95 (s, 3H), 3.94 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 164.3, 164.2, 153.7, 153.6, 133.6, 133.0, 129.7, 128.9, 128.8, 128.6, 128.2, 127.8, 127.5, 127.3, 127.2, 126.7, 126.1, 124.3, 115.6, 115.4, 52.5, 52.5 ppm. HRMS (ESI⁺) for C₂₁H₁₈NaO₅; calculated 409.1046, found 409.1056 (error m/z = 2.2 ppm).

Dimethyl 2-(thiophen-2-yl)-5-(p-tolyl)furan-3,4-dicarboxylate (**3aa**) Yellow oil, 40 mg, 55%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.90 (dd, *J* = 3.8, 1.2 Hz, 1H), 7.69 (d, *J* = 8.2 Hz, 2H), 7.46 (dd, *J* = 5.0, 1.2 Hz, 1H), 7.25 – 7.23 (m, 2H), 7.13 (dd, *J* = 5.0, 3.8 Hz, 1H),3.90 (s, 3H), 3.89 (s, 3H), 2.30 (s, 3H). ¹³**C NMR**(126 MHz, CDCl₃) δ 164.8, 163.4, 152.1, 150.3, 139.9, 136.1, 135.4, 130.6, 129.5, 128.9, 128.4, 127.7, 126.9, 125.9, 115.0, 113.2, 52.6, 52.2, 21.6 ppm. **HRMS** (ESI⁺) for C₁₉H₁₇O₅S; calculated 357.0791, found 357.0789 (error m/z = 1.4 ppm).

 MeO_2C CO_2Me

Dimethyl 2,5-di(thiophen-2-yl)furan-3,4-dicarboxylate (**3bb**) White oil, 25 mg, 37%. ¹H NMR (500 MHz, CDCl₃) δ 7.79 (d, *J* = 3.8, 1.2 Hz, 2H), 7.45 (d, *J* = 5.0, 1.2 Hz, 2H), 7.12 (d, *J* = 5.0, 3.8 Hz, 2H), 3.91 (s, 6H) ppm. ¹³C NMR(126 MHz, CDCl₃) δ 163.6, 149.2, 130.2, 128.5, 128.4, 127.8, 113.6, 52.4 ppm. **HRMS** (ESI⁺) for C₁₆H₁₂O₅S₂Na; calculated 371.0018, found 371.0031 (error m/z = 3.5 ppm).

<u>Dimethyl 2-((3r,5r,7r)-adamantan-1-yl)-5-(4-methoxyphenyl)furan-3,4-dicarboxylate (3cc)</u> White solid, 48 mg, 57%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.79 (d, *J* = 8.9 Hz, 2H), 6.97 (d, *J* = 8.9 Hz, 2H), 3.90 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 2.08 (s, 9H), 1.79 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 163.8, 160.5, 160.3, 153.9, 129.6, 122.0, 113.9, 113.7, 112.0, 55.4, 52.4, 51.9, 40.0, 36.5, 36.3, 28.2 ppm. **HRMS** (ESI⁺) for C₂₅H₂₈NaO₆; calculated 447.1778, found 447.1781 (error m/z = 0.7 ppm).

<u>Tetramethyl 5,5'-(1,4-phenylene)bis(2-(4-methoxyphenyl)furan-3,4-dicarboxylate) (6)</u> White solid, 51 mg, 39%. ¹**H NMR** (500 MHz, CDCl₃) δ 7.94 (s, 4H), 7.88 (d, *J* = 8.9 Hz, 4H), 7.01 (d, *J* = 8.9 Hz, 4H), 3.94 (s, 6H), 3.90 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.5, 164.0, 160.9, 154.7, 151.4, 129.4, 129.3, 129.1, 127.0, 121.3, 116.1, 114.0, 55.4, 52.6, 52.3 ppm. **HRMS** (ESI⁺) for C₃₆H₃₀NaO₁₂; calculated 677.1654, found 677.1645 (error m/z = -1.3 ppm).

<u>2-phenyl-4H-chromeno[3,4-d]oxazole (8)</u> White solid, 41 mg, 82%. ¹H NMR (500 MHz, CDCl₃) δ 8.11 (d, *J* = 9.7 Hz, 2H), 7.60 – 7.48 (m, 3H), 7.43 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.23 – 7.14 (m, 1H), 7.01 (td, *J* = 7.5, 1.0 Hz, 1H), 6.94 (dd, *J* = 8.2, 0.8 Hz, 1H), 5.55 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 161.8, 153.0, 142.5, 130.9, 130.6, 129.3, 128.9, 127.2, 126.3, 121.7, 119.9, 116.5, 115.1, 66.4. HRMS (ESI⁺) for C₁₆H₁₂NO₂; calculated 250.0863, found 250.0865 (error m/z = 1.1 ppm).

VII. References

- (1) St. Cyr, D. J.; Arndtsen, B. A., J. Am. Chem. Soc. 2007, 129, 12366-12367.
- Naouri, A.; Djemoui, A.; Ouahrani, M. R.; Lahrech, M. B.; Lemouari, N.; Rocha, D. H. A.;
 Albuquerque, H.; Mendes, R. F.; Almeida Paz, F. A.; Helguero, L. A.; Bachari, K.; Talhi, O.; Silva,
 A. M. S. J. Mol. Struct. 2020, 1217, 128325.
- (3) Vedachalam, S.; Zeng, J.; Gorityala, B. K.; Antonio, M.; Liu, X.-W., *Org. Lett.* **2010**, *12*, 352-355.
- (4) Hoffmann, H. M. R.; Haase, K. Synthesis **1981**, *9*, 715-719.

VIII. NMR spectra for 3, 6 and 8.

¹H and ¹³C NMR Spectra of 3a (CDCl₃)

¹H and ¹³C NMR Spectra of 3b (CDCl₃)

¹H and ¹³C NMR Spectra of 3c (CDCl₃)

2D-NOE Spectra of 3c (CDCl₃)

¹H and ¹³C NMR Spectra of 3e (CDCl₃)

2D-NOE Spectra of 3f (CDCl₃)

¹H and ¹³C NMR Spectra of 3g (CDCl₃)

¹H and ¹³C NMR Spectra of 3i (CDCl₃)

¹H and ¹³C NMR Spectra of 3j (CDCl₃)

¹H and ¹³C NMR Spectra of 3k (CDCl₃)

¹H and ¹³C NMR Spectra of 3l (CDCl₃)

¹H and ¹³C NMR Spectra of 3m (CDCl₃)

¹H and ¹³C NMR Spectra of 3n (CDCl₃)

44

¹H and ¹³C NMR Spectra of 30 (CDCl₃)

¹H and ¹³C NMR Spectra of 3q (CDCl₃)

¹H and ¹³C NMR Spectra of 3r (CDCl₃)

¹H and ¹³C NMR Spectra of 3s (CDCl₃)

¹H and ¹³C NMR Spectra of 3t (CDCl₃)

¹H and ¹³C NMR Spectra of 3u (CDCl₃)

¹H and ¹³C NMR Spectra of 3v (CDCl₃)

¹H, ¹³C and ¹⁹F NMR Spectra of 3w (CDCl₃)

¹H and ¹³C NMR Spectra of 3x (CDCl₃)

¹H, ¹³C and ¹⁹F NMR Spectra of 3y (CDCl₃)

¹H and ¹³C NMR Spectra of 3z (CDCl₃)

¹H and ¹³C NMR Spectra of 3aa (CDCl₃)

¹H and ¹³C NMR Spectra of 3bb (CDCl₃)

¹H and ¹³C NMR Spectra of 3cc (CDCl₃)

¹H and ¹³C NMR Spectra of 6 (CDCl₃)

¹H and ¹³C NMR Spectra of 8 (CDCl₃)

