Supplementary Information

The Solvation Structure, Transport Properties and Reduction Behavior of Carbonate-Based Electrolytes of Lithium-Ion Batteries

Tingzheng Hou,^{ab} Kara D. Fong,^{bc} Jingyang Wang^{ae} and Kristin A. Persson^{*ad}

a Department of Materials Science and Engineering, University of California Berkeley, 210

Hearst Mining Building, Berkeley, California 94720, United States

b Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California

94720, United States

c Department of Chemical and Biomolecular Engineering, University of California, Berkeley,

CA 94720, United States

d The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

e Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

Corresponding Author

*E-mail: kapersson@lbl.gov.

Table of Contents

Section 1. The MD simulation box
Section 2. Detailed solvation structure population4
Section 3. The linear diffusion behavior6
Section 4. Sample trajectories7
Section 5. Optimized solvation structures8
Section 6. Binding energy decomposition10
Section 7. Experimental measurements raw data12
Section 8. Ionic conductivity calculation using the conventional method13
Section 9. Validation of the force field15
Section 10. Force field data of EC, EMC, FEC, and LiPF ₆ 18
References

Section 1. The MD simulation box

Fig. S1 The MD simulation box of the Gen2 electrolyte.

Section 2. Detailed solvation structure population

Electrolyte	SSIP	CIP	AGG
EC-base	90.1%±1.0%	9.2%±0.9%	0.7%±0.4%
ECF	87.5%±0.9%	$11.2\% \pm 1.0\%$	1.3%±0.4%
Gen2	35.6%±0.9%	33.3%±1.3%	31.1%±0.8%
GenF	38.4%±2.1%	32.9%±0.8%	28.7%±1.9%

 Table S1 The detailed population of species in the four electrolytes.

Table S2 The detailed solvent-specific solvation numbers of the four electrolytes.

Electrolyte	Solvent/salt	SSIP	CIP	AGG
EChase	LiPF ₆	0 (by definition)	1 (by definition)	1.487 ± 0.068
EC-base	EC	$5.897 {\pm} 0.003$	4.715±0.013	4.216±0.099
ECF	LiPF ₆	0 (by definition)	1 (by definition)	1.461±0.063
	EC	5.653 ± 0.018	4.535 ± 0.038	4.002 ± 0.100
	FEC	0.234 ± 0.016	$0.177 {\pm} 0.025$	0.152 ± 0.061
	LiPF ₆	0 (by definition)	1 (by definition)	1.416±0.019
Gen2	EC	2.642 ± 0.027	1.492 ± 0.020	1.199 ± 0.017
	EMC	3.028 ± 0.030	2.970 ± 0.028	2.838 ± 0.022
	LiPF ₆	0 (by definition)	1 (by definition)	1.443 ± 0.020
Care	EC	2.381 ± 0.056	1.407 ± 0.018	1.115 ± 0.023
Genf	EMC	2.966 ± 0.034	2.884 ± 0.016	2.751±0.016
	FEC	0.331 ± 0.022	0.201 ± 0.032	0.140 ± 0.015

Fig. S2 AGG species in the Gen2 electrolyte.

Among the 31.4% of the AGG species, 9% are AGG1 (positive triple ions) with two Li⁺ and one PF_6^- . Meanwhile, the AGG2 structure with neutral charge and the AGG3 (negative triple ions) structure account for 8% and 7%, respectively. The remaining 7% consists of AGG4, AGG5, and other larger structures. Subsequently, while the EC electrolyte has a much higher SSIP ratio than the Gen2 electrolyte, more than half of the AGG species in the Gen2 electrolyte narrow the gap of the proportion of ionically conductive solvation species.

Section 3. The linear diffusion behavior

Fig. S3 The linear diffusion behavior of four duplicate runs of the EC-base electrolyte required to calculate (a) self-diffusion coefficients, and (b) ionic conductivity. A slope of one (corresponding to linear data on a log-log plot) is indicated on each plot. The effective "mean square displacement" on the y-axis of panel (b) is the quantity in angular brackets in Eq. (10).

Section 4. Sample trajectories

Fig. S4 Sample trajectory of Li-PF_6 coordination distance as a function of time in (a) EC-base electrolyte, and (b) Gen2 electrolyte. A cutoff distance of 5 Å is used to differentiate CIP and SSIP.

Fig. S4 presents the Li-PF₆ coordination distance as a function of time in the EC-base and Gen2 electrolyte. The two sets of trajectories are sampled from one Li⁺ over a long period (25 ns) of MD simulations. The Li⁺-PF₆⁻ pair in the Gen2 electrolyte coordinates with each other for a longer period of time.

Section 5. Optimized solvation structures

Fig. S5 The optimized structures for calculating the anion–solvent exchange free energy. The red, grey, white, cyan, orange, and purple balls denote oxygen, carbon, hydrogen, fluorine, phosphorus, and lithium, respectively

Fig. S6 The optimized geometries before and after reduction of (a) (b) Li^+ –EMC, (c) (d) Li^+ –EC, (e) (f) Li^+ –(EC)₃(EMC)₃, (g) (h) Li^+ –FEC, and (i) (j) Li^+ –(EC)₂(EMC)₃(FEC). The red, cream, white, green, and purple colors denote oxygen, carbon, hydrogen, fluorine, and lithium, respectively.

Fig. S7 Two groups of clusters (a) $[Li^+EC] \cdots [PF_6^-]$ (E_{b1}), and (b) $[Li^+EMC] \cdots [PF_6^-]$ (E_{b2}), for the binding energy decomposition using ALMO-EDA(solv). The red, cream, white, green, orange, and purple colors denote oxygen, carbon, hydrogen, fluorine, phosphorus, and lithium, respectively.

Fig. S8 The binding energy decomposition of $[Li^+EC]\cdots[PF_6^-]$ (E_{b1}), $[Li^+EMC]\cdots[PF_6^-]$ (E_{b2}) and their difference into contributions from permanent electrostatics (ELEC), Pauli repulsion (PAULI), dispersion (DISP), polarization (POL), and charge transfer (CT).

The ALMO-EDA(solv) was performed on the binding energy of $[Li^+EC] \cdots [PF_6^-]$ (E_{b1}) and $[Li^+EMC] \cdots [PF_6^-]$ (E_{b2}), respectively (ellipsis denotes the binding of two clusters), as shown in Fig. S7, S8. The electrostatic energy dominates the attractive terms in both E_{b1} and E_{b2}, which is consistent with the fact that ion coordination is governed by the electrostatic interaction. The difference between E_{b1} and E_{b2} ($\Delta E_b = E_{b2} - E_{b1}$) is computed to be -10.7 kJ mol⁻¹, which agrees well with the difference in the anion–solvent exchange free energy as shown in the main text, Table 1. We note that the electrostatic energy contributes 63% of the attractive terms in ΔE_b , providing a direct measurement of the energy difference of the electrostatic characterizations of EC and EMC.

Section 7. Experimental measurements raw data

Electrolyte	LiPF ₆ mass	EC mass	EMC volume	FEC volume
EC-base	2 g	13.80 g	-	-
ECF	2 g	12.42 g	-	1.14 ml
Gen2	2 g	3.52 g	8.17 ml	-
GenF	2 g	3.17 g	7.40 ml	0.87 ml

Table S3 The amount of the salt and solvents used for preparing the four electrolytes for ionic

conductivity measurement.

Table S4 Measured ionic conductivities at room temperature and corresponding correctedvalues at 25 °C.

Electrolyte	Measurement 1 (mS cm ⁻¹)	Measurement 2 $(mS \ cm^{-1})$	Corrected value at 25 °C (mS cm ⁻¹)
EC-base	9.964 (34.7 °C)	9.539 (30.8 °C)	8.91
ECF	8.847 (31.7 °C)	8.703 (29.8 °C)	8.33
Gen2	10.62 (33.3 °C)	10.38 (30.9 °C)	9.79
GenF	10.75 (32.3 °C)	10.55 (29.9 °C)	10.14

Section 8. Ionic conductivity calculation using the conventional method

Fig. S9 The calculated ionic conductivities of the EC-base, ECF, Gen2, and GenF electrolytes using Green–Kubo relations (GK) and Nernst–Einstein equation (NE), and the corresponding ratios of solvent separated ion pair (SSIP).

The conventional approach is to assume that the anions and cations are mostly dissociated in the electrolyte, and therefore, the conductivity can be calculated using the Nernst–Einstein equation (NE) from the diffusivity of Li⁺:

$$\sigma_{NE} = \frac{F^2}{RT} (c_+ z_+^2 D_+ + c_- z_-^2 D_-),$$

where σ_{NE} is the ionic conductivity, F is the Faraday constant, R is the gas constant, T is temperature, c_+ and c_- are the bulk molar concentrations of the cation and anion, z_+ and z_- are the charges of the cation and anion, and D_+ and D_- are the self-diffusivities of the cation and anion. Here, we compare the conductivity calculated using Green–Kubo relations (σ_{GK} , used in this work) and Nernst–Einstein equation (σ_{NE} , conventional) of the four electrolyte systems. The electrolytes are in the descending order of the corresponding percentage of solvent separated ion pair (SSIP), which reflects the degree of salt dissociation in the electrolytes. As the SSIP percentage decreases, the deviation between σ_{NE} and σ_{GK} becomes larger. For the ECbase electrolyte, where most cations are dissociated with anions to form SSIP, σ_{NE} is only 9% higher than σ_{GK} . In contrast, in the Gen2 electrolyte, where only 35.6% of Li⁺ ions are fully dissociated, σ_{NE} overestimates the conductivity by more than 40%. This observation indicates that for highly associated mixed carbonate electrolytes, a rigorous calculation using Green– Kubo relations is important for obtaining a correct trend of the ionic conductivity. To further validate the OPLS-AA force field for the specific systems that we investigated in our MD simulations. Here, using the EC solvent as an example, we benchmarked the force field parameters against two key properties, the enthalpy of vaporization and the zero-frequency permittivity, which are both experimentally available.

The enthalpy of vaporization can be calculated by

$$\Delta H_{vap} = \Delta H_{gas} - \Delta H_{liquid} = E_{total}^{gas} - E_{total}^{liquid} + RT$$

where, E_{total}^{liquid} is the total potential energy or internal energy of the liquid. It was obtained from NPT simulation of the bulk liquid. An average pressure of 1 bar was applied. E_{total}^{gas} is the internal energy of the gas phase. E_{total}^{gas} was obtained by doing NVT simulation of single molecule in vacuum. PV-work term was calculated using the RT term by assuming noninteracting ideal state for the gas phase. A value of 62.39 kJ mol⁻¹ (313 K) for enthalpy of vaporization was obtained using simulations, which is close to the experimental value of 60.3 kJ mol⁻¹ (383 K).¹

The zero-frequency permittivity can be calculated via the fluctuation dissipation theorem (FDT) according to the following relationship^{2, 3}

$$\varepsilon_r = 1 + \frac{\langle M^2 \rangle - \langle M \rangle^2}{3VT\varepsilon_0 k_{\rm B}}$$

where M is the dipole moment of the system and $\epsilon 0$ is the permittivity of free space. A value of ϵ 88.1 (313 K) was obtained for EC, which agrees well with the experimental value of 89.8 (298 K).⁴

Therefore, we have shown that the OPLS-AA force field utilized in this work can effectively reproduce the key experimental properties of the bulk solvents.

Fig. S10 The electrostatic potential contour maps of (a) EC, (b) EMC calculated from the fitted RESP charges in the chosen molecular dynamics force field. The electrostatic potential is truncated with a cutoff distance of 1.5 Å to avoid infinite potential values at point charge centers. The slice is across the carbonyl plane. Red, blue, and white colors represent the least positive (or most negative), most positive and intermediate electrostatic potential, respectively. The color bar shows the values of the electrostatic potential in volts. The connections between atoms represent chemical bonding or Li⁺ coordination.

The validity of the force field is further assessed by comparing the electrostatic potential contour maps of EC and EMC obtained from quantum chemistry and the fitted RESP charges. Using the fitted RESP charges, the electrostatic potential at point *i* can be calculated by:

$$V_i = \sum_j \frac{kq_j}{\varepsilon r_{ij}}$$

where V_i is the electrostatic potential at point *i*, q_j is the partial charge of each atom in the molecule, *k* is the Coulomb constant, r_{ij} is the distance between point *i* and atom *j*, ε is the dielectric constant of the electrolyte where a value of 20.493 is used to match the quantum chemical calculation.

Comparing Fig. S10 with main text Fig. 3a, b, the electrostatic potential calculated from the quantum chemistry and partial charges of the MD force field are almost identical. This

observation illustrates that our fitted RESP partial charges can effectively reproduce the actual electrostatic potential as obtained from quantum chemistry. In addition, the result further validates the OPLS-AA force field utilized in our MD simulation.

Section 10. Force field data of EC, EMC, FEC, and LiPF₆

EC:

LAMMPS data file 5 atom types 5 bond types 7 angle types 11 dihedral types 1 improper types 10 atoms 10 bonds 17 angles 28 dihedrals 1 impropers -1.000000 54.000000 xlo xhi -1.000000 54.000000 ylo yhi -1.000000 54.000000 zlo zhi Masses 1 12.010 # EC С 16.000 # EC 2 0 16.000 # EC os 3 4 12.010 # ЕC c3 5 1.008 # EC h1 Pair Coeffs #lj/coul 1 0.1050000 3.750 # EC c #OPLS-AA Charifson 1990 EC o 0.2100000 2.960 # #OPLS-AA Charifson 1990 2 EC os EC c3 3 0.1700000 3.000 # #OPLS-AA Charifson 1990 0.0660000 3.500 # #OPLS-AA Charifson 1990 4 5 0.0150000 2.420 # EC hl #OPLS-AA Charifson 1990 Bond Coeffs #harmonic 570.0000 1.229 #C=O URA,GUA,CYT,AA KOLLMAN 1986 & EC from silva 2007 1 2 214.0000 1.327 #C-OS J.Comp.Chem.1990,11,1181 SKF8 320.0000 1.410 #C3-OS propylene carbonate D JORG ### 3 268.0000 1.529 #C3-C3 propylene carbonate D JORG JCAS 1996 4 340.0000 1.090 #C3-H propylene carbonate D JORG JCAS 1996 5 Angle Coeffs #harmonic 83.00000 116.90 #c-os-c3 silva 2007 Charifson 1990 1 2 83.00000 123.40 #o-c-os silva 2007 Charifson 1990 3 92.60000 111.55 #os-c-os DAMM 1997 #o-c3-c3 DAMM 1997 4 50.00000 109.50 35.00000 109.50 #os-c3-H DAMM 1997 5 37.50000 110.70 #c3-c3-H JACS 1996 6 33.00000 107.80 #H-c3-H 1996 7 Dihedral Coeffs #harmonic 3.200000 -1 2 #O-C-OS-C3 1.400000 -1 1 #O-C-OS-C3 JPCB 2004, 2016 1 2 JPCB 2004, 2016 2.700000 -1 2 #0S-C-OS-C3 0.3830000 1 3 #C3-C3-OS-C 1-3 3 JPCB 2004, 2016 JPCB 2004, 2016 4 0.8000000 -1 1 #C3-C3-OS-C 1-3 JPCB 2004, 2016 0.3830000 1 3 #H-C3-OS-C JPCB 2004, 2016 0.1750000 1 2 #OS-C3-C3-OS 1-3 JPCB 2004, 2016 5 6 7 8 0.469000 1 5 #OS-C3-C3-OS 1-3 JPCB 2004, 2016 0 1 3 9 # 0.2500000 1 1 #OS-C3-C3-H 0.1560000 1 3 #H-C3-C3-H 10 JPCB 2004, 2016 JPCB 2004, 2016 11 Improper Coeffs #cvff

1 10.50000 -1 2 #KOLLMAN 1986

Atoms

Bonds 1 1 1 2 2 2 1 3 3 2 1 4 4 3 3 5 5 3 4 6 6 4 5 6 7 5 5 7 8 5 5 8 9 5 6 9 10 5 10 6 Angles 1 1 1 3 5 2 1 1 4 6 3 2 2 1 3 4 2 2 1 4 5 3 3 1 4 6 4 3 5 6 7 5 3 5 7 8 5 3 5 8 9 4 4 6 5 10 5 4 6 9 11 5 10 6 4 12 6 5 6 9 13 6 10 6 5 14 6 6 5 7 15 6 6 5 8 16 7 7 5 8 17 7 10 6 9 Dihedrals
1 1 1 2 2 2 1 3 3 2 1 4 4 3 3 5 5 3 4 6 6 4 5 6 7 5 5 7 8 5 5 8 9 5 6 9 10 5 10 6 Angles 1 1 3 5 2 1 1 4 6 3 2 2 1 3 4 2 2 1 4 5 3 3 1 4 6 4 3 5 6 7 5 3 5 7 8 5 3 5 8 9 4 4 6 5 10 5 4 6 9 11 5 10 6 4 12 6 5 6 9 13 6 10 6 5 14 6 6 5 7 15 6 6 5 8 16 7 7 5 8 17 7 10 6 9 Dihedrals
Angles 1 1 1 3 5 2 1 1 4 6 3 2 2 1 3 4 2 2 1 4 5 3 3 1 4 6 4 3 5 6 7 5 3 5 7 8 5 3 5 8 9 4 4 6 5 10 5 4 6 9 11 5 10 6 4 12 6 5 6 9 13 6 10 6 5 14 6 6 5 7 15 6 6 5 8 16 7 7 5 8 17 7 10 6 9 Dihedrals
1 1 1 3 5 2 1 1 4 6 3 2 2 1 3 4 2 2 1 4 5 3 3 1 4 6 4 3 5 6 7 5 3 5 7 8 5 3 5 8 9 4 4 6 5 10 5 4 6 9 11 5 10 6 4 12 6 5 6 9 13 6 10 6 5 14 6 6 5 7 15 6 6 5 8 16 7 7 5 8 17 7 10 6 9 Dihedrals
Dihedrals
$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Impropers

C # OS # C3 # C3 # H # H # H # H

1 1 2 3 1 4

EMC:

3

5

```
LAMMPS data file
# 100 EMC molecules
6 atom types
6 bond types
9 angle types
9 dihedral types
1 improper types
15 atoms
14 bonds
23 angles
25 dihedrals
1 impropers
-0.5000000 57.000000 xlo xhi
-0.5000000 57.000000 ylo yhi
-0.5000000 57.000000 zlo zhi
Masses
    12.010 # c EMC
1
2
   16.000
            # os EMC
   16.000
            # o EMC
   12.010
            # c3 EMC
4
            # h1 EMC
    1.008
    1.008 # hc EMC
6
Pair Coeffs #lj/coil
1 0.1050000 3.750 #
                            EC
                                  С
                                        #OPLS-AA Charifson 1990
2 0.1700000 3.000 #
                                        #OPLS-AA Charifson 1990
                            EC
                                  os
3 0.2100000 2.960
                   #
                            EC
                                        #OPLS-AA Charifson 1990
                                  0
4 0.0660000 3.500
                            EC
                                        #OPLS-AA Charifson 1990
                                 C3
                   #
5 0.0150000 2.420 #
                            EC
                                 h1
                                        #OPLS-AA Charifson 1990
6 0.0150000 2.420
                   #
                            EC
                                 hc
                                        #OPLS-AA Charifson 1990
Bond Coeffs #harmonic
1 214.0000 1.327 # harmonic EMC c os
2 570.0000 1.229
                   # harmonic EMC c o
3 320.0000 1.410 # harmonic EMC c3 os
4 268.0000 1.529 # harmonic EMC c3 c3
5 340.0000 1.090 # harmonic EMC c3 h1
6 340.0000 1.090 # harmonic EMC c3 hc
Angle Coeffs #harmonic
1 83.00000 116.90
                   # harmonic EMC c os c3
2 92.60000 111.55 # harmonic EMC os c os
3 83.00000 123.40
                   # harmonic EMC o c os
4 50.00000 109.50
                   # harmonic EMC c3 c3 os
5 35.00000 109.50
                   # harmonic EMC h1 c3 os
6 37.50000 110.70
                   # harmonic EMC c3 c3 hc
7 37.50000 110.70
                   # harmonic EMC c3 c3 h1
8 33.00000 107.80
                   # harmonic EMC h1 c3 h1
9 33.00000 107.80 # harmonic EMC hc c3 hc
Dihedral Coeffs #harmonic
1 2.700000 -1 2 \ \mbox{\#} harm EMC os c os c3
2 3.200000 -1 2 # harm EMC o c os c3
3 1.400000 -1 1 # harm EMC o c os c3
4 0.3830000 1 3 # harm EMC c3 c3 os c
5 0.8000000 -1 1 # harm EMC c3 c3 os c
6 0.3830000 1 3 # harm EMC h1 c3 os c
7 0.0 1 3 # harm EMC hc c3 c3 os
8 0.2500000 1 1 # harm EMC hc c3 c3 os
9 0.1560000 1 3 # harm EMC h1 c3 c3 hc
                                                 20
```

Improper Coeffs #cvff

1 10.50000 -1 2 # cvff EMC o os c os

Atoms

1	1	1	1.0244 -11.3015	10.713 -2.2545 #	С	C1	EMC	1
2	1	2	-0.5687 -10.6025	9.564 -2.4405 #	os	01	EMC	1
3	1	2	-0.3841 -11.8245	11.305 -3.3575 #	os	02	EMC	1
4	1	3	-0.6241 -11.4665	11.185 -1.1625 #	0	03	EMC	1
5	1	4	0.5401 -9.6155 9.467	-3.5035 # с3	C2	EMC	1	
6	1	4	-0.053 -12.2335	10.519 -4.4935 #	с3	C3	EMC	1
7	1	4	-0.296 -8.3535 8.862	-2.9195# c3	C4	EMC	1	
8	1	5	-0.065 -9.4245 10.467	-3.9145 # h1	Hl	EMC	1	
9	1	5	-0.065 -10.0245	8.83 -4.2985 #	h1	H2	EMC	1
10	1	5	0.0851 -13.1515	10.986 -4.8635 #	h1	HЗ	EMC	1
11	1	5	0.0851 -12.4365	9.481 -4.2045 #	h1	H4	EMC	1
12	1	5	0.0851 -11.4675	10.549 -5.2785 #	h1	Н5	EMC	1
13	1	6	0.0787 -7.9365 9.507	-2.1355 # hc	НG	EMC	1	
14	1	6	0.0787 -7.60258.741	-3.7125 # hc	Н7	EMC	1	
15	1	6	0.0787 -8.56257.875	-2.4855 # hc	Н8	EMC	1	

Bonds

1	1	1	2	+	E	EMC	1	C1	0	L
2	1	1	3	ŧ	E	EMC	1	C1	02	2
3	2	1	4	+	E	EMC	1	C1	0	3
4	3	5	2	+	E	EMC	1	C2	2 01	L
5	3	6	3	ŧ	E	EMC	1	C3	3 02	2
6	4	5	7	+	E	EMC	1	C2	2 C4	1
7	5	5	8	+	E	EMC	1	C2	2 H1	L
8	5	5	9	+	E	EMC	1	C2	2 H2	2
9	5	6	1()	#	ΕM	С 1	. (C3 I	13
10) 5	5 (5 1	L1	ŧ	ŧΕ	MC	1	CЗ	H4
11	- (5 (5 1	L2	ŧ	ŧΕ	MC	1	CЗ	H5
12	2 6	5 7	7 1	LЗ	ŧ	ŧΕ	MC	1	С4	НG
13	3 6	5 ⁻	7 1	L4	#	ŧΕ	MC	1	C4	H7
14	1 6	5 7	7 1	L 5	ŧ	ŧΕ	MC	1	C4	H8

Angles

1 1	. 1	2	5	#	EMO	C 1	С1	01	C2	
2 1	. 1	3	6	#	EMO	C 1	C1	02	C3	
3 2	2	1	3	#	EM	C 1	01	С1	02	
4 3	2	1	4	#	EM	2 1	01	C1	03	
5 /	. 2	5	2	#	EM	~ 1	C 1	C2	01	
54		5	2	#	EM	- 1	04	CZ	01	
6 5	8	5	2	#	EMO	C 1	Η1	C2	01	
7 5	5 9	5	2	#	EMO	C 1	H2	C2	01	
8 3	3	1	4	#	EM	C 1	02	С1	03	
9 5	5 1	0 6	5 3	3	# E1	4C 1	L H	3 C3	3 02	2
10	5	11	6	З	 # T	TMC	1 1	44 0	73 0	2
11	5	10	ĉ	2	ш т		1 1		$\frac{1}{2}$	22
11	5	12	0	3	1 #	SMC	1 1	15 (.3 ()2
12	6	5 7	1	.3	# E	EMC	1 (C2 (C4 E	16
13	6	57	1	. 4	# I	EMC	1 (C2 (C4 E	17
14	6	5 7	1	. 5	# I	EMC	1 (C2 (C4 E	-18
15	7	7 5	5 8	3	# E1	4C 1	L C4	4 C2	2 Н1	L
16	7	7 5	; c)	# EN	AC 1	L C4	4 C2	> н2	>
17	Ŕ	g c	; 0	A	# EN	лс 1	і н.		2 н.	2
10	0	10	6	, 11	# #	E MC	- 11. 7 1	112	~ ~ ~ ~	
10	0	10	0	1 I	#	EMC		пэ	03	п4
19	8	10	6	12	#	EMC	; T	НЗ	C3	Н5
20	8	11	6	12	#	EMC	21	H4	C3	Н5
21	9	13	7	14	#	EMC	21	НG	C4	H7
22	9	13	7	15	#	EMO	21	НG	C4	Н8
23	9	14	7	15	#	EMO	 - 1	Н7	C4	н8
20	2		'	- 0			~ _	11/	~ -	110

Dihedrals

1	1	3	1	2	5	#	EMC	1	02	С1	01	C2	
2	2	4	1	2	5	#	EMC	1	03	C1	01	C2	
3	3	4	1	2	5	#	EMC	1	03	C1	01	C2	
4	1	2	1	3	6	#	EMC	1	01	C1	02	C3	
5	2	4	1	3	6	#	EMC	1	03	C1	02	C3	
6	3	4	1	3	6	#	EMC	1	03	C1	02	C3	
7	4	7	5	2	1	#	EMC	1	C4	C2	01	C1	
8	5	7	5	2	1	#	EMC	1	C4	C2	01	C1	
9	6	8	5	2	1	#	EMC	1	Η1	C2	01	C1	
10 6 9 5 2 1 # EMC 1 H2 C2 O1 C1													
11	11 6 10 6 3 1 # EMC 1 H3 C3 O2 C1												

12	6	11	. (53	31	#	EMC	1	H4	C3	02	C1
13	6	12	2 6	53	31	#	EMC	1	H5	C3	02	C1
14	7	2	5	7	13	#	EMC	1	01	C2	C4	НG
15	8	2	5	7	13	#	EMC	1	01	C2	C4	НG
16	9	8	5	7	13	#	EMC	1	Η1	C2	C4	НG
17	9	9	5	7	13	#	EMC	1	H2	C2	C4	НG
18	7	2	5	7	14	#	EMC	1	01	C2	C4	H7
19	8	2	5	7	14	#	EMC	1	01	C2	C4	H7
20	9	8	5	7	14	#	EMC	1	Η1	C2	C4	H7
21	9	9	5	7	14	#	EMC	1	H2	C2	C4	H7
22	7	2	5	7	15	#	EMC	1	01	C2	C4	Н8
23	8	2	5	7	15	#	EMC	1	01	C2	C4	Н8
24	9	8	5	7	15	#	EMC	1	Η1	C2	C4	Н8
25	9	9	5	7	15	#	EMC	1	H2	C2	C4	H8

Impropers

1 1 4 3 1 2 # EMC 1 03 02 C1 01

FEC:

LAMMPS data file 7 atom types 10 bond types 17 angle types 28 dihedral types 1 improper types 10 atoms 10 bonds 17 angles 28 dihedrals 1 impropers 54.000000 xlo xhi -1.000000 -1.000000 54.000000 ylo yhi -1.000000 54.000000 zlo zhi Masses 1 12.010 #C3/Cf 1.008 #Hf 16.000 #03/Of 2 3 12.010 #C 4 5 16.000 #0 6 1.008 #Hc 7 19.000 #F Pair Coeffs #lj/coul 0.0660000 3.500 # C3/Cf Cornell 1995 1 2 0.0150000 2.420 # Hf Cornell 1995 3 0.1700000 3.000 # o3/Of Cornell 1995 0.1050000 3.750 # 4 c Cornell 1995 0.2100000 2.960 # 5 o Cornell 1995 0.0150000 2.420 # Hc Cornell 1995 6 0.0610000 3.118 # F Cornell 1995 7 Bond Coeffs #harmonic 1.09610000e+00 #Cf-Hf 1 3.31700000e+02 2 3.08600000e+02 1.43160000e+00 #Cf-Of 3 3.00900000e+02 1.53750000e+00 #Cf-C3 1.34970000e+00 #Cf-F 3.56900000e+02 4 5 3.90800000e+02 1.35840000e+00 #C-Of 6 6.37700000e+02 1.21830000e+00 #C=0 3.90800000e+02 1.35840000e+00 #C-03 7 1.43160000e+00 #03-C3 1.09690000e+00 #C3-Hc 8 3.08600000e+02 9 3.30600000e+02 10 3.30600000e+02 1.09690000e+00 #C3-Hc Angle Coeffs #harmonic 1 6.32800000e+01 1.15980050e+02 #Cf-Of-C 6.8000000e+01 1.07970050e+02 #Cf-C3-03 2 3 4.63900000e+01 1.09560050e+02 #Cf-C3-Hc 1.09560050e+02 #Cf-C3-Hc 4.63900000e+01 4 1.09580050e+02 #Hf-Cf-Of 5 5.08500000e+01 4.62500000e+01 1.10220050e+02 #Hf-Cf-C3 6 7 5.11500000e+01 1.08790050e+02 #Hf-Cf-F 1.07970050e+02 6.80000000e+01 8 #of-cf-c3 1.10580050e+02 #Of-Cf-F 9 7.07600000e+01 1.23250050e+02 #Of-C-0 10 7.53200000e+01 7.56200000e+01 1.11290050e+02 #0f-C-03 11 6.32800000e+01 1.15980050e+02 #C-03-C3 12 1.23250050e+02 #0-C-03 13 7.53200000e+01 1.09780050e+02 #03-C3-Hc 14 5.0800000e+01 15 5.08000000e+01 1.09780050e+02 #03-C3-Hc 6.61100000e+01 1.09240050e+02 #C3-Cf-F 16 1.08460050e+02 #Hc-C3-Hc 17 3.92400000e+01 Dihedral Coeffs #hybrid harmonic charmm multi/harmonic 2.70000000e+00 2 180 0 1 charmm 1.4000000e+00 180 2 charmm 1 0

#Cf-Of-C-O

#Cf-Of-C-0

3 charmm	2.7000	0000e+00	2	180	0	#Cf-Of	-C-03	
4 charmm	8.0000	0000e-01	1	180	0	#Cf-C3	-03-C	
5 multi/ham	rmonic	3.8299952	22e-01		-1.148998	57e+00	0.00000000e+00	1.53199809e+00
0.00000000	e+00	#Cf-C3-O3-C						
6 multi/ha	rmonic	3.8333413	30e-01		-1.150002	39e+00	0.00000000e+00	1.53333652e+00
0.00000000	e+00	#Hf-Cf-Of-C						
7 multi/hai	rmonic	1.5555449	93e-01		-4.666634	80e-01	0.00000000e+00	6.22217973e-01
0.00000000	e+00	#Hf-Cf-C3-03	3					
8 multi/hai	rmonic	1.5555449	93e-01		-4.666634	80e-01	0.00000000e+00	6.22217973e-01
0.00000000	e+00	#Hf-Cf-C3-Ho	c					
9 multi/hau	rmonic	1,5555449	93e-01		-4.666634	80e-01	0.00000000e+00	6.22217973e-01
0.00000000	e+00	#Hf-Cf-C3-Ho	3					
10 multi/ha	armonic	0.00000)00e+00		0.000000	00e+00	2.35000000e+00	0.00000000e+00
0.00000000	e+00	#0f-Cf-C3-03	3					
11 multi/ha	armonic	1.440009	56e-01		-4.32002	368e-01	0.00000000e+00	5.76003824e-01
0.00000000	e+00	#0f-Cf-C3-03	3					
12 multi/ha	armonic	2.50000)00e-01		2.500000	00e-01	0.00000000e+00	0.0000000e+00
0.00000000	e+00	#Of-Cf-C3-Ho	2					
13 multi/ha	armonic	0.00000	000e+00		0.00000	00e+00	0.00000000e+00	0.0000000e+00
0.00000000	e+00	#Of-Cf-C3-Ho	0					
14 multi/ha	armonic	0.00000	000e+00		0.00000	00e+00	0.0000000e+00	0.0000000e+00
0.00000000	e+00	#Of-Cf-C3-Ho	2					
15 multi/ha	armonic	2.500000	000e-01		2.500000	00e-01	0.00000000e+00	0.0000000e+00
0.00000000	e+00	#Of-Cf-C3-Ho	2					
16 charmm	2.700	000000e+00	2	180	0	#Of-C	-03-C3	
17 multi/ha	armonic	3.833341	30e-01		-1.150002	239e+00	0.00000000e+00	1.53333652e+00
0.00000000	e+00	#C-03-C3-Hc						
18 multi/ha	armonic	3.833341	30e-01		-1.150002	239e+00	0.00000000e+00	1.53333652e+00
0.00000000	e+00	#C-03-C3-Hc						
19 charmm	1.400	000000e+00	1	180	0	#0-C-	O3-C3	
20 charmm	2.700	000000e+00	2	180	0	#0-C-	O3-C3	
21 charmm	8.000	000000e-01	1	180	0	#C3-C	f-Of-C	
22 multi/ha	armonic	3.829995	22e-01		-1.14899	357e+00	0.00000000e+00	1.53199809e+00
0.00000000	e+00	#C3-Cf-Of-C						
23 multi/ha	armonic	3.833341	30e-01		-1.150002	239e+00	0.00000000e+00	1.53333652e+00
0.00000000	e+00	#F-Cf-Of-C						
24 multi/ha	armonic	1.555544	93e-01		-4.66663	480e-01	0.00000000e+00	6.22217973e-01
0.00000000	e+00	#F-Cf-C3-03						
25 multi/ha	armonic	0.00000	000e+00		0.000000	00e+00	0.0000000e+00	0.00000000e+00
0.00000000	e+00	#F-Cf-C3-Hc						
26 multi/ha	armonic	1.900000	000e-01		1.900000	00e-01	0.0000000e+00	0.0000000e+00
0.00000000	e+00	#F-Cf-C3-Hc						
27 multi/ha	armonic	0.00000	000e+00		0.000000	00e+00	0.00000000e+00	0.00000000e+00
0.0000000€	e+00	#F-Cf-C3-Hc						
28 multi/ha	armonic	1.900000	JUUe-01		T.900000	00e-01	0.00000000e+00	0.00000000e+00
0.0000000€	e+00	#F-Cf-C3-Hc						

Improper Coeffs #cvff

1 10.50000 -1 2 #KOLLMAN 1986

Atoms

1 1 1 0.3295 36.9107 9.7016 35.3263 # Cf 2 1 2 0.0807 35.9476 9.4597 34.8637 # Hf 3 1 3 -0.3541 36.7006 10.1823 36.6245 # Of 4 1 4 0.816 37.5785 11.215 36.8947 # C 5 1 5 -0.5091 37.7111 11.7216 37.9638 # O 6 1 3 -0.3316 38.237 11.5641 35.761 # O3 7 1 1 -0.0061 37.7358 10.7989 34.653 # C3 8 1 6 0.1038 38.5793 10.387 34.0898 # Hc 9 1 6 0.1038 37.122 11.4493 34.0166 # Hc 10 1 7 -0.2329 37.6408 8.5204 35.3921 # F

Bonds

Angles

```
9 9 3 1 10
10 10 3 4 5
11 11 3 4 6
12 12 4 6 7
13 13 5 4 6
14 14 6 7 8
15 15 6 7 9
   16 16 7 1 10
17 17 8 7 9
    Dihedrals
    1 1 1 3 4 5

      1
      1
      3
      4
      5

      2
      2
      1
      3
      4
      5

      3
      3
      1
      3
      4
      6

      4
      1
      7
      6
      4

      5
      5
      1
      7
      6
      4

      6
      6
      2
      1
      3
      4

      16
      16
      3
      4
      6
      7

      17
      17
      4
      6
      7
      8

      18
      18
      4
      6
      7
      9

      19
      19
      5
      4
      6
      7

      20
      20
      5
      4
      6
      7

      21
      21
      7
      1
      3
      4

      22
      27
      1
      3
      4

      23
      10
      1
      3
      4

      24
      24
      10
      1
      7
      8

      23
      24
      10
      1
      7
      8

      25
      25
      10
      1
      7
      8

      26
      26
      10
      1
      7
      8

      27
      27
      10
      1
      7
      9

      28
      28
      10
      1
      7
      9

    Impropers
```

1 1 5 4 3 6

25

LiPF₆:

LAMMPS data file # 1 LiPF6 3 atom types 1 bond types 2 angle types 0 dihedral types 0 improper types 8 atoms 6 bonds 15 angles 0 dihedrals 0 impropers -1.000000 54.000000 xlo xhi -1.000000 54.000000 ylo yhi -1.000000 54.000000 zlo zhi Masses 30.970 # 1 P 2 19.000 # F 6.940 # 3 Li Pair Coeffs 0.2000000 3.740 # P 0.0610000 3.118 # F 0.0005000 2.870 # Li # JPCB 2004, 2038 # JPCB 2004, 2038 1 2 Li 0.0005000 2.870 # # JCTC 2006 3 Bond Coeffs 1 370.4589 1.606 # JPCB 2004, 16893 Angle Coeffs 139.2209 90.00 # JPCB 2004, 16893 # JPCB 2004, 16893 1 2 34.77535 180.00 Atoms 1 1 1 1.34 17.1391 34.1549 40.1795 # P 2 1 2 -0.39 17.8305 33.6172 38.8406 # F 3 1 2 -0.39 15.8117 33.3359 39.823 # F 4 1 2 -0.39 16.5735 35.4198 39.3794 # F 5 1 2 -0.39 16.4477 34.6927 41.5185 # F 6 1 2 -0.39 18.4666 34.974 40.536 # F 7 1 2 -0.39 17.7047 32.89 40.9796 # F 8 1 3 1 16.0126 34.0688 37.8399 # Li Bonds 1 1 1 2 2 1 1 3 3 1 1 4 4 1 1 5 5116 6 1 1 7 Angles 1 2 2 1 5 2 2 3 1 6 3 2 4 1 7 4 1 2 1 3 51214 6 1 2 1 6 7 1 2 1 7 8 1 5 1 3 91514 10 1 5 1 6 11 1 5 1 7 12 1 3 1 4 13 1 4 1 6

References

- C. S. Hong, R. Wakslak, H. Finston and V. Fried, *Journal of Chemical and Engineering Data*, 1982, 27, 146-148.
- 2 I. N. Daniels, Z. Wang and B. B. Laird, *The Journal of Physical Chemistry C*, 2017, **121**, 1025-1031.
- 3 M. Neumann, *Molecular Physics*, 2006, **50**, 841-858.
- 4 K. Xu, *Chemical Reviews*, 2004, **104**, 4303-4418.