Supplementary Information

A Rare Earth Metallocene Containing a 2,2'-Azopyridyl Radical Anion

Francis Delano IV, Ernesto Castellanos, John McCracken, and Selvan Demir*

Department of Chemistry, Michigan State University, 578 South Shaw Lane, East Lansing, Michigan 48824, USA

*Correspondence to: sdemir@chemistry.msu.edu (S.D.)

Chem. Sci.

Table of Contents

Table S1. Crystallographic data.	S 3
Table S2. Metrical parameters.	S4
Figure S1. Atom labels of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S4
Figure S2. Thermal ellipsoids of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S5
Figure S3. ¹ H-NMR spectrum of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S6
Figure S4. UV-Vis-NIR spectrum of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S7
Figure S5. IR spectrum of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S8
Figure S6. IR spectrum of (Cp ^{Me4H}) ₂ Y(abpy [•]) in comparison to abpy.	S9
Figure S7. Solution state effective magnetic moment for (Cp ^{Me4H}) ₂ Y(abpy [•]).	S10
Figure S8. IR spectrum of (Cp ^{Me4H}) ₂ Y(abpy [•]) in comparison to computed spectra.	S11
Table S3. Comparison of functionals with def2-SV(P).	S12
Table S4. Final computed bond metrics at B3LYP/def2-TZVP.	S13
Figure S9. Calculated frontier orbitals of (Cp ^{Me4H}) ₂ Y(abpy [•]).	S14
Figure S10. Relative orientations of hyperfine and nuclear quadrupole axes.	S15
Figure S11. Cyclic voltammogram of (Cp ^{Me4H}) ₂ Y(abpy*).	S16

Compound	(Cp ^{Me4H}) ₂ Y(abpy [•])	
Formula	C ₂₈ H ₃₄ N ₄ Y	
$D_{calc.}$ / g cm ⁻³	1.349	
μ/mm ⁻¹	3.394	
Formula Weight / g mol ⁻¹	515.50	
Color	dark violet	
Shape	plate	
Size/mm ³	0.16×0.15×0.09	
T/K	100.01(10)	
Crystal System	triclinic	
Space Group	<i>P</i> -1	
Unit Cell Dimensions	a = 9.27977(15) Å	$\alpha = 88.3450(12)^{\circ}$
	b = 15.8832(2) Å	$\beta = 82.9269(13)^{\circ}$
	<i>c</i> = 17.3902(3) Å	$\gamma = 86.1875(12)^{\circ}$
V/Å ³	2537.50(7)	
Ζ	4	
Ζ'	2	
Wavelength/Å	1.54184	
Radiation type	Cu Kα	
$\Theta_{min}/^{\circ}$	2.561	
Θ_{max}	77.278	
Measured Refl's.	33611	
Indep't Refl's	10316	
Refl's I≥2 <i>o</i> (I)	9356	
Rint	0.0386	
Parameters	989	
Restraints	1264	
Largest Peak	1.291	
Deepest Hole	-1.347	
GooF	1.082	
wR ₂ (all data)	0.1137	
wR ₂	0.1110	
<i>R</i> ₁ (all data)	0.0474	
R_1	0.0440	

Table S1. Crystal data and structure refinement of $(Cp^{Me4H})_2Y(abpy^{\cdot})$, **1**.

Table S2. Metrical data from the crystal structure of $(Cp^{Me4H})_2Y(abpy^*)$, **1**. Bond distances are given in Angstroms (Å) for disordered parts A, B, C, and D respectively. Atom labels correspond to those shown in Fig. S1.

(Cp ^{Me4H}) ₂ Y(abpy [•])		А	В	С	D
Y-C (Cp ^{Me4H} 1)	C11	2.6110(3)		2.615(4)	
	C ₁₂	2.642(3)		2.650(3)	
	C ₁₃	2.695(3)		2.701(3)	
	C14	2.703(3)		2.705(3)	
	C15	2.661(3)		2.660(4)	
Y-C (Cp ^{Me4H} ₂)	C ₂₀	2.622(5)	2.55(3)	2.67(1)	2.676(8)
	C ₂₁	2.66(3)	2.67(3)	2.62(2)	2.667(8)
	C22	2.665(7)	2.70(3)	2.54(1)	2.709(6)
	C ₂₃	2.680(7)	2.72(3)	2.62(1)	2.722(7)
	C ₂₄	2.653(6)	2.71(3)	2.70(1)	2.669(1)
Y-N _{azo}	N ₁	2.348(8)	2.300(2)	2.312(4)	2.300(8)
	N ₂	3.65(8)	3.35(3)	3.61(4)	3.350(8)
Y-N _{ppy}	Nз	2.743(1)	2.634(5)	2.514(9)	2.62(1)
	N 4	2.438(1)	2.453(5)	2.534(7)	2.59(1)
N-N		1.333(1)	1.329(4)	1.322(5)	1.32(1)

Figure S1. Structure of (Cp^{Me4H})₂Y(abpy[•]), 1, with corresponding atom labels.

Figure S2. Structure of $(Cp^{Me4H})_2Y(abpy)$, **1**, with thermal ellipsoids drawn at 50% probability level. Hydrogen atoms have been removed for clarity.

UV-Vis-NIR Spectroscopy

Figure S4. UV-Vis-NIR spectrum of $(Cp^{Me4H})_2Y(abpy)$, **1**, in THF at a concentration of 17.2 μ M. Molar absorptivities calculated for one concentration. Significant absorptions occur at λ = 260, 385, and 551 nm.

Figure S5. FTIR spectrum of (Cp^{Me4H})₂Y(abpy[•]), 1.

Figure S6. FTIR spectrum of (Cp^{Me4H})₂Y(abpy[•]), **1**, (purple) in comparison to the free 2,2'-azobispyridine ligand, abpy, (orange).

Evans Method

Figure S7. Temperature dependence of solution state effective magnetic moment (μ_{eff}) for $(Cp^{Me4H})_2Y(abpy)$, **1**.

Comparison of Experimental and Computed IR Spectra

Figure S8. Comparison of experimental FTIR spectrum (black) and calculated stretching frequencies (red) of (Cp^{Me4H})₂Y(abpy[•]), **1**.

Table S3: Computed and average experimental bond metrics of the four parts (A–D) in $(Cp^{Me4H})_2Y(abpy^*)$, 1, with six different unrestricted functionals using the def2-TZVP basis set for Y, including a 28 electron ECP, and the def2-SV(P) basis set for N, C, and H atoms.

Experimental (Å)		Calculated					
		B3LYP	CAM	M06	PBE0	TPSSh	TPSS
		Distances (Å)					
Y-C [*] avg	2.6646	2.6758	2.6596	2.6572	2.6550	2.6692	2.6634
$Y-C^{\ddagger}_{avg}$	2.6637	2.6766	2.6604	2.6546	2.6546	2.6682	2.6640
Y-N N1	2.3071	2.3350	2.3260	2.3310	2.3270	2.3330	2.3290
$Y-N_{N2}$	3.4523	3.3490	3.3370	3.3410	3.3350	3.3520	3.3570
Y-N _{N3}	2.63	2.6180	2.6210	2.6200	2.6110	2.5900	2.5820
$Y-N_{N4}$	2.52	2.5250	2.5250	2.5190	2.5110	2.5050	2.5060
N-N	1.327	1.3130	1.3070	1.3060	1.3040	1.3150	1.3220
	MD	-0.010	-0.018	-0.019	-0.024	-0.019	-0.020
	MSE	0.0017	0.0020	0.0019	0.0022	0.0018	0.0017
	RMSE	0.042	0.045	0.044	0.047	0.043	0.042
	MAPE	0.313%	0.640%	0.687%	0.864%	0.637%	0.657%

 C^*_{avg} = Average Y-C (Cp^{Me4H}₁) distances. C[‡]_{avg} = Average Y-C (Cp^{Me4H}₂) distances.

Table S4: Computed and average experimental bond metrics of the four parts (A–D) in $(Cp^{Me4H})_2Y(abpy^*)$, 1, with the unrestricted hybrid B3LYP functional and def2-TZVP basis set on all atoms with a fully relativistic ECP for Y. ī

Ex	B3LYP		
Distances (Å)			
Y-C [*] avg	2.6646	2.6844	
Y-C [‡] avg	2.6637	2.6836	
Y-N _{N1}	2.3071	2.3430	
Y-N _{N2}	3.4523	3.3590	
Y-N _{N3}	2.63	2.6390	
$Y-N_{N4}$	2.52	2.5300	
N-N	1.327	1.3150	
	MD	-0.002	
MSE		0.0016	
RMSE		0.040	
MAPE		0.025%	

 C^*_{avg} = Average Y-C (Cp^{Me4H}₁) distances. C^*_{avg} = Average Y-C (Cp^{Me4H}₂) distances.

Figure S9. Calculated frontier orbitals of $(Cp^{Me4H})_2Y(abpy^{\cdot})$, 1.

EPR Spectroscopy

Figure S10. Fragment of the $(Cp^{Me4H})_2Y(abpy)$ molecule showing the relative orientations of hyperfine, $A_{zz}^{(\#)}$, and nuclear quadrupole, $Q_{zz}^{(\#)}$, principal axes for the pyridine nitrogen atoms considered in the HYSCORE simulation shown as red contours in Figure 6. The hyperfine couplings for both nitrogens were constrained to have axial symmetry with their principal axes being aligned with their respective p^{π} orbitals, and with each other. The principal axes of the nuclear quadrupole tensors were oriented along their respective N-Y bonds and separated in the N-Y-N plane by an angle of 60°.

Electrochemistry

Figure S11. Cyclic voltammogram of (Cp^{Me4H})₂Y(abpy[•]), **1**, vs. Fc. 250 mM [NⁿBu₄][PF₆] in THF and 3 mM analyte over three scans. The appearance of a new redox feature during subsequent scans suggests an irreversible chemical change.