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1 Supplementary Methods

1.1 The molecule generation process

The task of our generative model is to produce molecular graphs G = (V,E,A,B,X) , where

V is the set of nodes (atoms), E is the set of edges (bonds), A = {av}v∈V are the atom type

labels, B = {buv}(u,v)∈E are bond type labels, and X = {xv}v∈V are the 3D positions of each

atoms. Note that in theory, the bond order can be inferred directly from distances between

atoms, as done in several previous works,S1,S2 but existing bond type assignment algorithms

are generally sensitive to errors, even small ones that can be later corrected. To make our

model more robust, we explicitly output the bond types B.
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Figure S1: The molecule generation process, using cyclohexane as an example: a. The model
generates a molecule by generating its spanning tree in a depth-first manner. The root of
the tree is highlighted in light blue; b. The model builds the spanning tree iteratively, and
two sub-steps are performed at each iteration: tree expansion and node selection. At the
tree expansion step, the model connects the currently focused atom with another atom (the
“connect” operations), or add new atoms to the focused atom (the “append” operations). At
the node selection step, the model backtracks the spanning tree to find the next focus atom
(the “backtrack” and “selection” operations); d. An example showing a few steps during the
generation of cyclohexane. Blue atoms or bonds indicates newly added structures during the
tree expansion step. Pink arrows indicate the process of finding the next focused atom. The
focused atom at each step is highlighted using a light blue circle.
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Our proposed model generates the graph in a step-by-step manner. More specifically, the

model generates a molecular graph by iteratively building its spanning tree. A spanning tree

of G is a tree structure that contains all nodes in G (see Fig. S1a). Tree-based structures

are much simpler than general unconditional graphs, and the generation process is more

straightforward using a depth-first approach. At each iteration, the following two steps are

performed to build the spanning tree (Fig. S1b):

• Node selection: The model selects a “focus atom” from the set of suitable atoms that

have already been generated. An atom is suitable for becoming a focused atom if it is

not being “capped”. An atom is capped either because its valency constraint has been

reached, or it is actively labeled as capped by the model.

• Tree expansion: The model performs edits around the focused atom, by either adding

new atoms to it (the “append” operation) or by connecting it with another existing

atom (the “connect” operation).

During the “node selection” step, the model searches through the spanning tree to find

the next focused atom:

• If the currently focused atom has a child atom whose valence has not been filled, the

model will select that atom to be the next focus. If multiple such children exist, a

ranking is performed and the highest-ranking child is selected;

• If no such child exists for the current focus, a “backtracking” operation is performed

to find an ancestor who has such children. And that child is then selected as the next

focus.

This process terminates when there are no atoms suitable for becoming the “focused

atom”, that is, the valences of all atoms have been filled. To better illustrate this process,

the full generation path of the pyridine molecule is given in Fig. S2. During the generation

process, there are a variety of decisions that need to be made by the model:
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Figure S2: The full generation process of a pyridine molecule.
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• During the “connect” operation, the model needs to decide which atom to connect with,

using what type of bond;

• During the “append” operation, the model needs to decide how many atoms should be

added to the graph, their atom type, 3D location, and the type of bonds connecting

them to the focused atom.

• The model also needs to output the ranking of each atom, which will be used in the

node selection step.

Those decisions are all made using a neural network with a novel architecture we called

L-Net. L-Net is composed of two parts: The first part is a state encoder, which maps the

intermediate molecular structure Gi at step i into a continuous representation hi = fθ(Gi).

The second part is a policy network, which assign a probability value to each available action

based on the current state pθ(a|hi). The architecture of L-Net is explained in detail from

Section S1.2 though 1.5. To make the network capable of generating drug-like molecules, we

construct a drug-like subset of the ChEMBL datasetS3 and created an “expert trajectory” for

generating each molecule in the dataset. L-Net is then trained by imitating those trajectories.

Data collection and preprocessing workflows are given in Section S1.7, and the training details

are given in Section S1.8. Finally, to validate the model’s performance, we designed a set of

evaluation metrics which are discussed in Section S1.11.

1.2 The architecture of the state encoder

At iteration i, the state encoder of L-Net is responsible for mapping the current molecular

graph Gi to continuous representations hi = (hi,g, {hi,v}v∈Vi) = fθ(Gi), where hi,g is the

graph level representation, and {hi,v}v∈Vi are atom level representations. The architecture

of fθ is shown in Fig. S3. The network adopts a U-net structure.S4 The input is first fed

into an embedding layer to create the input representation for atoms and bonds. It is then

passed into the U-net, which is built from convolutional layers, pooling layers, and unpooling
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layers. The convolutional layers adopt the architecture of MPNN,S5 and are organized into

DenseNet blocksS6 to improve the performance. Pooling layers and unpooling layers use

a node clustering method that is specifically designed for this use-case. The results are

collected and fed to the policy network.

The following sections are devoted to giving detailed explanations of the individual com-

ponents of the state encoder. We first describe the embedding layer in Section S1.3, and

then graph convolution layer in Section S1.4. Pooling and unpooling layers, as well as the

node clustering algorithm, are discussed in Section S1.5.

1.3 The embedding layers

1.3.1 Embeddings of atom and bond types

The embeddings of atom and bond types are created by indexing through a trainable lookup

table. We also add “temporal encodings” to each atom to record the time that atom is added

to the graph, similar to what is done by Vaswani et al.S7

1.3.2 Local coordinate system and rotational covariance

Besides type information, the position of each atom should also be included in the input.

Ideally, this should be done in a rotationally and translationally covariant way. More specif-

ically, our model parametrize a probability distribution (called the “policy”) in 3D space

p(x|G) to indicate where the new atom should be placed (Fig. S4a). If we rotate the ex-

isting structure G by a certain amount, the probability distribution p(x|G) should also be

rotated by the same amount (Fig. S4b). Mathematically, this is expressed by the equation

p(x|T (G)) = p(T−1(x)|G), where T is an spatial operation from the special Euclidean group

SE(3).

Enforcing rotational covariance into the network is a non-trivial task. Previous works have

developed specialized network architectures, such as tensor field networkS8 or Cormorant,S9

to ensure rotational covariance. Those works are theoretically elegant but are difficult to
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Figure S3: An overview of the architecture for the state encoder. a. The overall architecture
of the state encoder; b. The architecture of each graph convolutional layer; c. The archi-
tecture of each pooling layer; c. The architecture of each unpooling layer.
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Figure S4: Enforcing rotational covariance using a local coordinate system. An ideal 3D
molecule generative model should be rotationally equivariant. If the existing structure is
rotated by a certain amount (a), the atom placement policy p(x|G) should also be rotated
equivalently (b). We solve this problem by introducing a local coordinate system in the fo-
cused atom (c). Since this coordinate system is rotationally covariant, so will the probability
distribution defined in the coordinate system.

implement, and their expressiveness may be restricted in some highly symmetrical cases.

Here, we adopt a much simpler yet effective approach, by creating a local coordinate

system at the current focus using its neighbor atoms (Fig. S4c). We then express the

distribution in the local coordinate system q(x|G) = p(T (x)|T (G)), where T indicates the

transformation from global to local coordinate. It is easy to verify that q is rotationally

covariant, even if p is not, since the local coordinate system is covariant against rotation.

Similar methods have been previously used to construct the 3D representation of proteins,S10

but to our knowledge, we are the first to use this technique in the generative model of small

molecules.

Under this framework, the 3D information feed into the neural network are all under the

local coordinate system:

x̃v = M(xv − xv′)

x̃uv = x̃u − x̃v

Where x̃v is the position feature of atom v, x̃uv is the position feature of bond uv, and

M is the matrix for transforming into the local coordinate system.
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1.4 Graph convolutional layers

The major components of the state encoder are graph convolutional (GC) layers. The GC

architecture used in this work is similar to that used before,S11 with broadcast, gathering and

update operations parametrized using linear layers with elu activation function (as shown

in Fig. S3b). The only difference lies in the gathering operation. Besides summation

and maximization, we add attention as an additional reduction method to improve the

expressiveness of the model. Also similar to the previous work, we add “virtual” bonds to

the graph to increase the size of receptive fields for each GC layer.

The GC layers are organized into multiple DenseNet blocks (as shown in Fig. S3).

DenseNet is a type of network architecture that aims to increase the performance scalability

for deeper networks by introducing short connections between any two layers.S6 There are

three major hyper-parameter for DenseNet: the growth rate, the bottleneck size, and the

network depth. We experiment with three configurations of DenseNet architectures:

The standard configuration, with a bottleneck size of 94, a growth rate of 24, and

the depths of DenseNet blocks (in the order of dataflow in U-Net) [2, 4, 6, 8, 6, 4, 2];

The shallow DenseNet, with the same bottleneck size and growth rate as the basic

configuration, and change the depth of DenseNet blocks to [2, 2, 4, 6, 4, 2, 2];

The narrow DenseNet, with the depth of each DenseNet block the same as the basic

configuration, and the bottleneck size and growth rate reduced to half.

It is shown that reducing the depth or width of the DenseNet blocks will both hurt the

model’s performance. Since adding more layers or depth will increase the computational

burden, we suggest the use of the “standard” configuration for future adoption of the model.

1.5 Pooling and unpooling operations in graph U-net

U-netsS4 have enjoyed great success in image-related pixel-wise prediction tasks. It can

achieve a high receptive field size with fewer layers, while significantly reduced memory
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consumption during training. The major problem for applying U-net in graph generation

is that, unlike images and 3D voxels, there are no canonical ways to perform pooling and

unpooling on graphs.S12 In order to perform pooling and unpooling on molecular graphs, we

designed a custom clustering scheme:

• In the first level of clustering, atoms with one valence, such as hydrogens, halogen,

and oxygens in carbonyl groups, are collapsed to their neighbor atoms. For most

molecules, almost half of their atoms are hydrogen, consuming a significant amount

of GPU memory. This level of clustering enables us to include hydrogens into the

generation process in an efficient way, by compressing the information of hydrogens

into its neighboring heavy atoms.

• In the second level of clustering, molecules are fragmented into ring assemblies and

chains. This method is previously used to define molecule scaffoldS13 and to organize

scaffold datasets.S14 After fragmentation, atoms in the same ring assembly or chain are

clustered together.

• In the final level of clustering, all nodes are collapsed into a single graph-level master

node.

A visual demonstration of this scheme is given in Fig. S5. After the clustering method

is defined, the pooling and unpooling operations can subsequently be defined, as shown in

Fig. S3c,d.

1.6 The policy network

After creating a continuous representation of the current state Gi using the state encoder

hi = (hi,g, {hi,v}v∈Vi) = fθ(Gi), the policy network is used to decide what action should be

carried out. Recall that there are three types of decision the policy network need to make:

• The type and position of new atoms during the “append” operation;
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Figure S5: A custom three-level node clustering scheme for pooling and unpooling operations
in molecular graphs.

• The atom to be connected and the type of connecting bond during the “connect”

operation;

• The rank of the new atoms to be added.

We denote the policies for each decision as pappendθ , pconnectθ and prankθ .

1.6.1 Decision making during the “append” operation

During the “append” operation, one or more atoms are created and added to the focused

atom v′. We represent a newly created atom as the tuple v∗ = (a, b,x), where a is the atom

type, b is the bond type used to connect the new atom with the focused atom, x = (r, θ, φ)

is the spherical coordinate of this new atom in the local coordinate system (described in

Section S1.3). The policy network for the append action can be written as:

pθ(v
∗
1, ..., v

∗
m|Gi) = pθ(a1, b1, r1, θ1, φ1, ..., am, bm, rm, θm, φm|Gi)
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Where m is the number of new atoms to add. Compared to most previous autoregressive

models for 3D molecules,S1,S15 our proposed method generates all atoms connected to v∗ in

a single iteration (Fig. S6).

Figure S6: Different from most autoregressive models in 3D molecule generation (a), our
proposed method generates all atoms connected to the focused atom as a group (b).

We incorporate several prior knowledge about drug-like molecules. First, most atoms in

organic drug-like molecules have a valence less or equal to 4. That is, at most three atoms

can be added to a focused atom at one time. When less than three new atoms are added,

we add “null” atoms to fill the blanks. This makes the problem simpler since we are now

dealing with a fixed number of random variables. Another prior knowledge we incorporate

is that there are only three types of allowed local geometry for most drug-like molecules: sp

(linear), sp2 (planar), and sp3 (tetrahedral). We ask the model to first generate the type of

the local geometry (h), and then the position of new atoms. Empirically, we find that this

can help the model to better learn the local geometry. Now, we still need to find a way to

factorize pθ(v∗1, v∗2, v∗3|h,Gi), which contains (2 + 3) * 3 = 15 random variables. A natural

choice is to factorize it into an autoregressive model:

p(v∗1, v
∗
2, v
∗
3) = p(v∗3|v∗1, v∗2)p(v∗2|v∗1)p(v∗1)

p(v∗i |·) = p(φi|ai, bi, ri, θi, ·)p(θi|ai, bi, ri, ·)p(ri|ai, bi, ·)p(ai, bi, ·)
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The conditions Gi and h are omitted for simplicity. pθ(ai, bi|·) is a categorical distribution

of atom and bond types. We apply prior knowledge about the allowed valence for the focused

atom to create a mask for pθ(ai, bi|·) at each step so that it will not violate the valence

constraint. pθ(ri|·), pθ(θi|·), pθ(φi|·) are mixtures of truncated Gaussian distributions. The

number of mixture is set to be 15, 10 and 5 for v∗1, v∗2, v∗3 respectively. The range of ri and

θi are set to [0.5, 2.5] and [0, π]. The parameters of those distribution are calculated using

MADE (masked autoencoder for distribution estimationS16), which is an efficient architecture

for autoregressive models based on masked linear layers. The architecture for MADE is

demonstrated in Fig. S7.

Figure S7: The architecture of MADE blocks. Output sizes of linear layers in the MADE1
block are 128, output sizes of linear layers in the MADE2 block (except that used in the
Gaussian mixture layer) are 64. The embedding table used here is the same as that used
in the state encoder. The activation function used for outputting standard deviation of r, θ
and φ is softplus.

In practice, the target distribution of atom position usually resides in a low dimensional

submanifold of R3 (Fig. S8) and using MADE to directly fit those distributions will not work

well. We adopt the method from a previous workS17 and adds a small error to the target

distribution so that it can be fitted more robustly by MADE. We call this modified model

SoftMADE. Different from the original paper, which samples the noise level from a uniform

distribution: c ∼ u[a, b], we sample the noise level in two steps:
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Figure S8: The problem of low dimensionality. This figure shows the new atoms sampled
from the model mostly reside inside a 1D ring above the focused atom.

c0 ∼ u[0, 1]

c = cmaxc
α
0

Where cmax is the maximum level of noise, and α > 1 is the parameter controlling the

shape distribution. Three conditons are tested: (1) ordinary MADE; (2) SoftMADE with

cmax = 0.2, α = 3; (3) SoftMADE with cmax = 0.4, α = 4. It is find that biger cmax combined

with higher α (the third conditon) yields better result.

Finally, since the new atoms v∗1, v∗2, v∗3 can be generated in any order, we use the following

corrected likelihood during training:

p({v∗1, v∗2, v∗3}) = 1/3!
∑
σ

p(v∗σ1 , v
∗
σ2
, v∗σ3)

1.6.2 Decision making during the “connect” operation

For each possible action in the “connect” operation, we first compute their unnormalized

scores as follows:
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p̂connect
v = MLPconnect

policy (hi,v)

p̂skipv = MLPskip
policy(hi,g)

Where MLPconnect
policy and MLPskip

policy are fully connected layers. Those scores are then nor-

malized using softmax:

[pconnect
v ; pskipv ] = softmax([p̂connect

v ; p̂skipv ])

The the values pconnect
v [b] in vector pconnect

v represents the probability of connecting the

focused atom v′ with v using a new bond of type b. The value pskipv represents the prabability

of skipping the “connect” operation and proceeds directly to the “append” operation.

1.6.3 Ranking the generated atoms

When ranking the generated atoms, we first calculate an unnormalized score for each per-

mutation of the new atoms:

ŝσ = MLPrank
policy([v∗σ1 ; v

∗
σ2

; v∗σ3 ])

And then the normalized probability:

p(σ) =
exp ŝσ∑
σ′ exp ŝσ′

The ranking is then sampled from p(σ).

1.7 Data collection and preprocessing

We construct a drug-like subset of ChEMBLS3 for the training and evaluation of the model.

The topological data of all molecules are downloaded from ChEMBL (version 27) and is then
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filtered using a series of criteria:

• Molecules with atom type outside the set {C, H, O, N, P, S, F, Cl, Br, I} as well as

those that do not contain carbon atoms are removed;

• Molecules with the number of heavy atoms outside the range [10, 35] are removed;

• Molecules with a QEDS18 value less than 0.5 are removed;

• Molecules with ring sizes larger than 7 are removed. Rings in the molecule are extracted

using RDKit;

• Molecules containing a ring assemble with the number of SSSR(smallest set of smallest

rings) greater than 4 are removed.

After filtering the topological structure, 3D structures are generated for each molecule

using RDKit. The initial 3D embeddings of molecules are first created using distance geom-

etry and then optimized using the MMFF94s forcefield. After those processings, we obtain a

dataset with 1 million small molecules, with one conformer for each. The dataset is randomly

split into the training set (4/6), validation set (1/6), and test set (1/6). The validation set

is used during the manual hyperparameter tunning

Note that L-Net only supports generating molecules with atom types inside the set {C,

H, O, N, P, S, F, Cl, Br, I}, since molecules containing elements outside this set are removed

from the training set. This set is larger than the set supported by the previous 3D generative

model G-SchNet, which only contains {C, H, O, N, F}. Also, this set covers most drug

molecules, which makes it sufficient for most tasks in de novo drug discovery. L-Net cannot

generalize to new atom types outside the training set, since it uses a finite lookup table for

the embedding of atom types, and only supports types pre-defined inside the table. However,

in cases where other atom types need to be supported, the users can always fine-tune L-Net

using a new dataset.
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Also note that in theory, more conformers can be generated for each molecule during data

processing, but we believe that one conformer for each molecule will be sufficient for training

using the drug-like subset of ChEMBL. Using fewer conformers for each molecule will not

induce bias during training and testing, since statistical variables used in this work, such as

the gradient estimator used for training and the MMD estimator for testing, is statistically

unbiased no matter how many conformers are used. An advantage of using more conformers

is that it can be used for data augmentation, which is useful for cases when the size of training

data is limited and the risk of over-training is high. However, our task does not fell into this

category, with 1 million unique molecules for training, validation, and testing. Additionally,

metrics such as %unique, internal diversity does not show signs of over-training (as discussed

in the Result section). Overall, we believe that a single conformer is sufficient for fitting the

model using the ChEMBL dataset, but for future works that need to fine-tune the model on

a smaller dataset, data augmentation using multiple conformers might be necessary.

As mentioned in previous sections, the model generates molecules in a step-by-step man-

ner. To train the model, we need to create an “expert trajectory” for generating each molecule

G in the dataset (Fig. S9a):

(G0, G1, ..., Gn),where G1 = ∅, Gn = G

The model is then trained to imitate this path by maximizing the log-likelihood:

log pθ(G) ≈
n∑
i=1

log pθ(Gi|G0, .., Gi)

We use a method similar to that used previouslyS11,S19 to generate those “expert trajectories”.

Briefly, the atoms in the molecule are first ranked using a canonical ranking algorithm in

RDKit, and depth-first traversal is performed to produce a path (G0, G1, ..., Gn). Although

this method works well for 2D generative models, it does not produce good results on our 3D

generative model. To improve the performance, we modify the depth-first traversal algorithm
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Figure S9: Data preprocessing and tricks used to improve model performance. a. For each
data in the training set, we create an “expert trajectory” for generating this molecule, and
train the model to imitate this trajectory. b. We find that the model may suffer from the
problem of distribution mismatch, so random errors are manually added to the training data
so that the model can learn to correct them. c. The image shows the order each atom is
traversed for ordinary (left) and ring first (right) traversal scheme (blue atoms are traversed
first, red atoms are traversed last). We use ring-first trajectory to train the model to close
the ring first before generating other structures, which have a similar effect as treating rings
as basic generation units.
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to prioritize the closure of rings (see Fig. S9c). We find that this method could significantly

improve the quality of generated samples.

It is also reported that randomized trajectories help the model to achieve better perfor-

mance.S19,S20 In this work, we randomize the trajectory by randomizing the starting position

of the depth-first traversal. We also include data of the model trained using non-randomized

trajectories for comparison.

One of the major issues related to imitation learning is data distribution mismatch.

Specifically, the model only sees correct “expert trajectories” during training, and if a mistake

happens during generate, the model may not know how to recover from that error, and

eventually produce invalid results (see Fig. S9b for a simple example). Our solution is to

“simulate” those errors by adding Gaussian noise to the input by a certain probability. We

use a noise with the standard deviation of 0.1 Å and experimented with the probability of

0.1 and 0.5. It shows that a 0.5 probability significantly improves the model performance

compared with the 0.1 level.

1.8 Model training

The model is implemented using PyTorch.S21 AdamS22 is used to optimize the model param-

eter. Parameters (β1, β2) are set to be the default value provided by PyTorch. The learning

rate is initialized to be 10−3, and is decreased by 0.01 for a certain amount of step. Several

decay frequencies are experimented with: every 50 steps, every 100 steps, or every 200 steps.

The batch size for training is set to be 128, and are trained for a total of 10 epochs. This

takes around 3 days to finish. Training is performed on a single NVIDIA TITAN Xp graphics

card.

1.9 Hyperparameters

As can be seen from previous sections, the model proposed here contains a large number

of hyperparameters, including those for model architecture, data generation, and model
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training. Considering the long training time, comprehensive optimization of hyperparameter

is difficult. The hyperparameter selection is further complicated by the fact that there are

a variety of metrics that can be used to evaluate the model (see Section S1.11). The best-

performing model on one metric does not necessarily perform the best on the other. In this

work, we target 3D MMD as the objective and perform manual hyperparameter tunning to

get to the performance level that is acceptable for general usage. The result hyperparameter

setting is referred to as the “standard” configuration and is what we suggest to use in future

research using this model. We do note that the optimization process is not comprehensive and

we expect that better performance can be obtained using more dedicated hyperparameter

optimization techniques.

To understand how model performance is affected by a set of hyperparameter of interest,

we perturb those parameters from the standard configuration to investigate its effect. The

set of hyperparameters that are analyzed are (also summarized in Table S1):

• The depth and width of DenseNet (see Section S1.4);

• The parameters for SoftMADE (see Section S1.6.1);

• The noise added to coordinates of the input structure (see Section S1.7);

• Whether the “expert trajectories” used for training are randomized (see Section S1.7).

• The speed of learning rate decay (see Section S1.8).

Table S1: A summary of different hyperparameter configurations whose performance is re-
ported in this work.

Methods
Randomized
trajectory c alpha

Input
noise

DenseNet
architecture

Learning
rate decay

Non-random initialization No 0.4 4 0.5 Basic 100 step

SoftMADE (low noise) Yes 0.2 3 0.5 Basic 100 step

No SoftMADE Yes 0 0 0.5 Basic 100 step
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Methods
Randomized
trajectory c alpha

Input
noise

DenseNet
architecture

Learning
rate decay

Low input noise Yes 0.4 4 0.1 Basic 100 step

Shallow DenseNet Yes 0.4 4 0.5 Shallow 100 step

Narrow DenseNet Yes 0.4 4 0.5 Narrow 100 step

Slow lr decay Yes 0.4 4 0.5 Basic 200 step

Fast lr decay Yes 0.4 4 0.5 Basic 50 step

Standard configuration Yes 0.4 4 0.5 Basic 100 step

1.10 Optimizing the speed of molecule generation

We used several techniques to accelerate the process of molecule generation. First, many

CPU side operations in this model cannot be implemented efficiently using native python,

and we use Numba,S23 a just-in-time compiler for python, to speed up those codes. The

performance benefit is significant, and in our case, the speedup can be more than 10 times.

Secondly, we use multiprocessing to hide CPU processing latency from GPU. During

molecule generation, we need to move back and forth between GPU and CPU for action

sampling and graph processing. When a large number of molecules are being generated at

the same time, the graph processing time in the CPU can be significant. Since GPU operation

is blocked by CPU tasks, there will be noticeable performance degradation. Our solution

is to place GPU and CPU in different processes and split the molecules being generated

into two batches. During CPU processing, GPU can work on the other batch of molecules,

thereby increasing the GPU utilization (Fig. S10a).

Thirdly, we develop a method to adaptively balancing the number of molecules generated

at each time. During molecule generation, as more nodes are added to the molecule, the

computational cost for the neural network to process the intermediate structure will be

gradually growing. This will cause significant performance degradation. At the beginning

of generation, the computation burden is low, and GPU is largely underutilized. When
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Figure S10: Tricks used to accelerate molecule generation: a. CPU and GPU workloads are
separated into two different processes and can be executed asynchronously by each working
on a different batch of data (batch1 and batch2) at the same time. b. Batch size is adjusted
dynamically to ensure that GPU is fully utilized and does not exceed the resource constrain.
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approaching the end of the generation, the computation cost is significantly higher, and

can cause out of memory (OOM) error (Fig. S10b). We created a scheduling method to

dynamically adjust the batch size of the generation task based on the maximum capacity of

the GPU. Empirically this has resulted in significant speed improvement for our model.

After performing those operations, we can achieve a generation speed of 0.008 seconds per

molecule in an NVIDIA TITAN Xp card. Note that this speed is slower than SMILES-based

samplers, largely because of the complexity of the generative workflow and the network

architecture. But we also note that there are still spaces where the performance can be

further improved, like performing quantization or pruning, which will be explored in the

future.

1.11 Evaluation

Several benchmarks have been developed for evaluating 2D generative models, such as

MOSESS24 and GaucaMol,S25 but this type of work is still missing for 3D models. Here, we

assemble a set of evaluation metrics for assessing the performance of 3D generative models.

Emphasis is placed on measuring the quality of molecule conformations, by investigating var-

ious 3D molecular features. All the following metrics are calculated using 50,000 generated

molecules.

Output validity and uniqueness

The two metrics measure the percentage of output molecules that are chemically valid

and structurally unique. The validity is measured by calculating the percentage of generated

molecules that pass the RDKit sanitization check (%valid). Although this metric measures

the quality of topological structure, we find that in practice it is also a good proxy for the

quality of 3D structures. This is because that many serious 3D errors occurring during the

generation will eventually lead to invalid topological structures. The uniqueness is measured

by calculating the percentage of unique structures among outputs (%uniq). This can be used

to detect whether the model has been overtrained or has collapsed to a single mode.
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Distribution of molecular properties

Investigating the distribution of molecular properties is a good way to intuitively assess

the quality of generated samples. The mean and standard deviation of each property is

reported, as well as the visualization using kernel density estimation. The properties investi-

gated include regular topological features (molecular weight, LogP, the number of hydrogen

donors and acceptors, the number of rotatable bonds, QED) as well the following 3D features:

• Normalized PMI ratios (NPRs):S26 This is a shape descriptor composed of two compo-

nents (NPR1, NPR2) = (I1/I3, I2/I3), where I1, I2, I3 are principal moments of inertia

sorted by ascending magnitude. The point (1, 1), (0.5, 0.5), (0, 1) corresponds to the

archetypes of sphere, disk and rod, giving this descriptor high interpretability. NPRs

are calculated using the implementation in RDKit.

• Solvent accessible surface areas (SASA): SASA is an important molecular descriptor

measuring the contact area between the molecule and the solvent. We report the

distribution of polar and total SASA calculated using the package FreeSASA.S27

Maximum mean discrepancy

We use maximum mean discrepancy (MMD) to give a quantitative measurement of the

difference between the distribution of generated and real samples. Given a kernel function

κ(·, ·), the MMD between two distributions can be estimated as :

MMD =
1

N(N − 1)

N∑
i=1

N∑
j=1,j 6=i

κ(xi, xj)+
1

M(M − 1)

M∑
i=1

M∑
j=1,j 6=i

κ(yi, yj)−
2

MN

N∑
i=1

M∑
j=1

κ(xi, yj)

Where {xi}Ni=1 are sampled from the real distribution and {yi}Mi=1 sampled from the

generative model. This method has been previously used to assess the performance of 2D

molecular generative models,S11 and can be easily applied to 3D models by changing κ to

measure 3D molecular similarity.
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In this work, we use two types of kernel functions to calculate MMD: (1) the Tani-

moto similarity of 2D Morgan fingerprint (1024 bit, radius of 2) and (2) the Manhattan

distance of USRCAT fingerprint.S28 The two MMD measures the topological and 3D dis-

crepancy between generated and real samples. Note that for the 3D kernel function, a

more accurate choice might be using the shape-based alignment method.S29 But since the

computational complexity of MMD calculation is O(max(M,N)2), and shape alignment in-

volves optimization for each molecule pair, this will not be feasible for our task. USRCAT

is an alignment-free method with precalculated fingerprint and is more suitable for MMD

calculation.

The calculation of MMD is parallelized in GPU using Cupy.S30 For topological fingerprint,

we store the 1024 bit fingerprint into 32 uint32 integers and utilize bitwise operations to speed

up the calculation of the Tanimoto coefficient.

Precision and recall

Although MMD can reliably quantify the discrepancy between distributions, its value is

difficult to interpret. Ideally, we want the information about:

• What percentage of generated samples are realistic;

• What percentage of real data distribution can be covered by the generative model;

We call the two metrics precision and recall for the generative model. Precision can be

used to measure the sample quality, and recall can be used to assess mode coverage. Since

they are both percentage values, they are more interpretable than MMD.

The definition of the two metrics follows the previous work.S31 First of all, we define the

space covered by a probability distribution from its samples X = {xi}Ni=1 as:

Φ(X) = {x|∃ xi ∈ X s.t. d(x− xi) ≤ d(Nk(xi, X)− xi)}

Where Nk(xi, X) denotes the k-th nearest neighbor of xi in the datasetX, and d(·, ·) mea-

sures the distance between two data point. Given the real data X = {xi}Ni=1 and generated
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data Y = {yi}Mi=1, precision and recall are defined as:

P =
|Y ∩ Φ(X)|
|Y |

R =
|X ∩ Φ(Y )|
|X|

Similar to MMD, a 2D and 3D version of precision and recall can be calculated using

Morgan fingerprint and USRCAT. The value of k is set to be 3.

Validity of local geometries

We check the correctness of local 3D structures in generated molecules by examining the

distributions of bond lengths and bond angles. More specifically, we group the bond lengths

and angles by its environment key, calculate the mean and standard deviation within each

group, and compare them between generated and test set molecules. The environment key for

the bond length contains the bond type and the type of its two adjacent atoms: (au, av, buv),

while that for a bond angle contains the type and hybridization state of the central atom:

(hu, au). Groups containing less than 1000 data points are removed from the evaluation.

We also check the distribution of torsion angles in generated and test set molecules.

Quads of atoms a-b-c-d are matched using the SMARTS pattern provided in the previous

workS32 and torsion angles are calculated from the matched coordinates. Patterns that give

less than 1000 matches are discarded. MMD values of the torsion distribution in each pattern

are computed.

The above evaluation aims at giving a qualitative look at the quality of local geometry,

and the comparison is only performed on the model trained with standard configuration. We

use RMSD (Root Mean Standard Deviation) for a more quantitative evaluation, as described

below.

RMSD

For each generated molecule, we optimize the conformation using MMFF94s force field

and calculate the RMSD of heavy atoms between the original and optimized structure.
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To give a context on how the model performs in this metric, we perform the same cal-

culation on the ETKDG method,S32 which is a conformation generation method for small

molecules that aims to provide a faster alternative for forcefield-based minimization. For

each molecule in the test set, we generate an initial conformation using ETKDG, optimize it

using MMFF94s, and calculate the RMSD for conformation before and after optimization.

The average RMSD is then compared with that of the generative model.

Note however that since ETKDG and deep generative model are developed to solve two

completely different problems, the comparison of RMSD can not tell which method is better

or worse. Nonetheless, this comparison should give us an idea about the overall level of

quality of the generated conformations.

Training on QM9 to enable comparison with G-SchNet

We train L-Net on a subset of QM9 to enable comparison with G-SchNet. Recall that

L-Net contains certain assumptions about the structure it can generate. Specifically, it

only generates molecules with a maximum valence of 4 and recognizes three hybridization

types: sp, sp2, and sp3. To train on QM9, molecules in QM9 that do not satisfy those

criteria are not considered. Many of those molecules can not be processed by RDKit under

default conditions. The majority of molecules pass those filters, and a random subset of

50,000 molecules (at the same scale as G-SchNet) are constructed for training L-Net. The

hyperparameter for training is similar to that used for the ChEMBL dataset (the standard

configuration mentioned in Section 1.9), except that the learning rate decay is reduced to

half and the number of training epoch is increased to 40.

The percentage of valid outputs and median RMSD values after optimization is compared

between L-Net and G-SchNet. Note that G-SchNet uses OpenBabel for validity check, which

might be slightly different from RDKit, but the overall result should be similar. For RMSD,

Gebauer et al. have reported RMSD values calculated at the PBE/def2-SVP level of theory

using molecules generated from G-SchNet under various sampling temperatures (T=2, 1,

0.1, 0.01, 0.001). Since L-Net does not use temperature sampling, the value corresponding
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to T=1 is used for comparison. 1,000 molecules are sampled from L-Net and optimization is

performed at the PBE/def2-SVP level of theory using ORCAS33 to calculate RMSD, similar

to what was done by Gebauer et al.

We note that it is more desirable to make the comparison using the drug-like ChEMBL

dataset. However, a variety of technical issues need to be resolved in order to migrate G-

SchNet to drug-like molecules, which is not the major focus of this work. We do acknowledge

that more work is needed to create a better benchmark for 3D generative models for drug-like

molecules. We believe that the evaluation module developed in this work should provide a

good starting point for future advancements toward this end.

1.12 Combining L-Net with MCTS for structure-based molecule

design

The model proposed in this work can be conveniently combined with other techniques such

as reinforcement learning to achieve molecular design based on a given objective. As a proof

of concept, we combine L-Net with Monte Carlo tree search (MCTS) and test its ability in

the problem of structure-based molecule design. Previous works have combined MCTS with

2D generative models in the object-directed design of molecules,S34 but to our knowledge,

the combination of MCTS with 3D generative models has not yet been reported.

MCTS finds optimal solutions given a reward function by iteratively construct a search

tree. At each iteration, it performs four operations to build the tree structure: selection,

expansion, simulation, and backpropagation.

• During the selection step, a promising leaf node is chosen by traversing the tree from

the root. E2W (Empirical Exponential WeightS35) is used in this work as the policy for

tree traversal. We periodically perform an “exploit” step by pruning the search tree.

Specifically, we sample a node at depth i using the Q-values of each node and delete

all other nodes whose ancestors or descendants do not contain the sampled node. The
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depth i starts from 0 and increments at each exploit step. The MTCS ends if the

exploit operation reaches the termination node.

• At the expansion step, child nodes are added to the selected leaf by enumerating actions

given the state, and one of the children is selected for the subsequent simulation step.

Note that for 3D generative models, the action space is continuous during the atom

placement step, but commonly used MCTS algorithms only support discrete action

space. Therefore, a clustering operation is performed to discretize the actions space to

enable the combination of the model with MCTS.

• Several rollouts are performed during the simulation step using L-Net, and the docking

scores are calculated using Smina.S36 Note that our model directly grows the ligand

inside the binding pocket, so it only requires local optimization to obtain the docking

score, making the reward evaluation process extremely fast. This serves as a major

advantage compared with previous 2D-based MCTS methods, which requires a lengthy

global conformation search to embed 2D molecular structures into the 3D pocket. Also

note that we do not explicitly include drug-likeness and synthetical accessibility in the

reward function, as those properties are implicitly captured by the L-Net trained from

the drug-like ChEMBL subset. However, we do include a term in the reward function to

penalize complexed ring systems (any ring assemble with the number of SSSA (smallest

set of smallest rings) larger than two).

• After the rewards are collected, the model backtracks to root and updates the Q values

along the path. Softmax backupS35 is used as the update method. The initial Q value

of each node is set to be the log-probability value given by L-Net.

To better utilize the computational power of GPU, root-level, leaf-level, and tree-level

parallelization are introduced to MCTS, similar to that done by Chaslot et al.S37 For root

level parallelization, we are able to perform three MCTS runs simultaneously on a single
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TITAN Xp GPU. An overall of 36 independent runs is performed in order to diversify the

result.

2 Supplementary Tables

Table S2: The performance of LNet, measured in terms of %valid and %uniq, with different
hyperparameters. The star indicates the best performing hyperparameter selection.. The
standard configuration is the hyperparamter selection with best 3D MMD performance.

Method %Valid %Uniq

Randomized trajectory 93.4% 98.7%

SoftMADE (low noise) 92.5% 99.0%

No SoftMADE 89.8% 89.7%

Low input noise 88.2% 97.4%

Shallow DenseNet 90.5% 98.9%

Narrow DenseNet 90.7% 98.6%

Slow decay 94.3% (*) 98.2%

Fast decay 87.2% 99.0%

Standard configuration 93.5% 99.1% (*)

Table S3: Distribution of 2D molecular properties among generated molecules using different
hyperparameters. The “standard configuration” is the hyperparamter selection with best 3D
MMD performance.

MW LogP HBA HBD ROTB QED

Methods mean std. mean std. mean std. mean std. mean std. mean std.

Deterministic trajectory 328.5 86.8 2.89 1.45 4.00 1.67 1.25 0.95 4.26 2.25 0.683 0.148

SoftMADE (low noise) 332.0 87.6 2.87 1.47 4.06 1.71 1.29 0.99 4.18 2.18 0.675 0.152

No SoftMADE 329.0 94.3 2.86 1.55 4.07 1.80 1.20 0.98 4.20 2.28 0.664 0.156

Low input noise 356.4 119.1 2.66 1.68 4.72 2.11 1.47 1.10 4.76 2.79 0.588 0.182

Shallow DenseNet 338.9 95.3 2.84 1.55 4.21 1.78 1.31 1.01 4.29 2.30 0.662 0.158

Narrow DenseNet 329.0 93.3 2.74 1.52 4.17 1.79 1.20 0.98 4.22 2.26 0.669 0.154

Slow decay 332.8 90.4 2.78 1.48 4.21 1.75 1.35 1.02 4.51 2.35 0.664 0.152

Fast decay 339.5 94.3 2.88 1.57 4.17 1.78 1.26 1.01 4.54 2.40 0.655 0.162

Standard configuration 338.0 91.7 2.91 1.55 4.12 1.75 1.26 0.99 4.40 2.28 0.665 0.156

Validation 345.0 69.7 3.05 1.30 4.13 1.55 1.19 0.91 4.30 2.04 0.700 0.117
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MW LogP HBA HBD ROTB QED

Test 344.8 69.7 3.05 1.29 4.13 1.56 1.20 0.90 4.30 2.04 0.701 0.116

Table S4: Distribution of 3D molecular properties among generated molecules using different
hyperparameters. The “standard configuration” is the hyperparamter selection with best 3D
MMD performance.

Total SASA Polar SASA NPR1 NPR2

Methods mean std. mean std. mean std. mean std.
Deterministic
trajectory 514.9 100.1 126.2 57.6 0.252 0.130 0.859 0.092
SoftMADE
(low noise) 518.6 100.8 129.4 58.3 0.252 0.130 0.859 0.093
No
SoftMADE 514.6 107.5 128.1 60.3 0.261 0.131 0.854 0.094
Low input
noise 540.3 135.9 148.8 66.9 0.278 0.134 0.848 0.095
Shallow
DenseNet 524.7 107.6 133.3 59.5 0.263 0.134 0.856 0.093
Narrow
DenseNet 514.3 106.5 128.8 59.7 0.265 0.132 0.854 0.094
Slow
decay 522.2 104.5 132.1 58.7 0.256 0.132 0.858 0.093
Fast
decay 525.3 106.9 129.2 59.6 0.271 0.136 0.856 0.093
Standard
configuration 565.9 107.9 129.0 60.2 0.263 0.133 0.857 0.093

Validation 579.5 88.5 129.5 55.9 0.232 0.125 0.869 0.093

Test 537.8 84.0 128.6 53.5 0.232 0.124 0.869 0.093

Table S5: The result of topological and 3D MMD, sample diversity, precision and recall for
each combination of hyperparameters. The “standard configuration” is the hyperparamter
selection with best 3D MMD performance.

3D Topological

Methods MMD Diversity Precision Recall MMD Diversity Precision Recall

Deterministic trajectory 0.00182 0.154 83.6% (*) 87.8% 0.00195 0.160 (*) 51.4% (*) 71.8%

SoftMADE (low noise) 0.00143 0.155 (*) 83.1% 88.2% 0.00148 0.158 46.6% 74.8%

No SoftMADE 0.00221 0.131 81.8% 88.3% 0.00699 0.158 39.2% 76.8%

Low input noise 0.00370 0.143 76.0% 88.6% 0.00391 0.148 28.8% 84.1% (*)

Shallow DenseNet 0.00156 0.151 81.5% 88.2% 0.00101 (*) 0.156 41.8% 76.8%

Narrow DenseNet 0.00253 0.148 81.7% 88.4% 0.00132 0.157 41.6% 76.6%
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3D Topological

Slow decay 0.00147 0.151 81.9% 88.3% 0.00159 0.155 44.9% 76.5%

Fast decay 0.00196 0.150 80.9% 88.6% (*) 0.00149 0.156 38.7% 79.0%

Standard configuration 0.00134 (*) 0.152 81.9% 88.3% 0.00115 0.157 43.1% 78.0%

Validation - 0.157 - - - 0.157 - -

Test - 0.157 - - - 0.157 - -

Table S6: The RMSD values of generated conformers before and after optimization.

RMSD

Methods mean std.

Deterministic trajectory 0.613 0.502

SoftMADE (low noise) 0.632 0.508

No SoftMADE 0.715 0.549

Low input noise 0.779 0.597

Shallow DenseNet 0.687 0.533

Narrow DenseNet 0.689 0.522

Slow decay 0.623 0.503

Fast decay 0.735 0.540

Standard configuration 0.663 0.521

Validation 0.838 0.539

Test 0.807 0.524
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3 Supplementary Fig.s

Figure S11: The topological structures, generated conformation, optimized conformation,
and RMSD value (Å) for several generated molecules using L-Net.
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Figure S12: The distribution of 2D molecular properties of generated molecules and test
set molecules. a. Molecular weight (MW). b. LogP. c. The number of hydrogen bond
acceptors (HBA). d. The number of hydrogen bond donors (HBD). e. The number of
rotatable bonds (ROTB). f. Druglikeness (QED). Generated molecules are shown in blue,
and test set molecules are shown in grey.

Figure S13: Comparison of Total SASA (a,b) and Polar SASA (c,d) between generated and
test set molecules (a,c: Kernel density estimation; b,d: Box plot; Blue: generated molecules;
Grey: test set molecules).
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Figure S14: a-b. A t-SNE visualization of the distribution of Morgan (a) and USRCAT (b)
fingerprint in two dimension space (Blue: generated samples; Red: samples in the test set).
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Figure S15: Comparing the distribution of bond lengths and bond angles between generated
and test set molecules. a-b. Average bond lengths (a) and bond angles (b) for each environ-
ment key in generated (y-axis) and test set (x-axis) molecules. c-d. Standard deviation of
bond lengths (c) and bond angles (d) each environment key in generated (y-axis) and test
set (x-axis) molecules. e-f. The distribution of bond angle in two atomic environments: e.
sp3 hybridized carbon atom; f. sp2 hybridized sulfur atom.
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Figure S16: Comparing the distribution of torsion angles between generated and test set
molecules. a. The MMD values of the torsion distribution for each pattern, ranked from
lowest to highest. b. Torsion distributions with the highest, medium and lowest MMD
values. Blue line indicates the generated samples, and red lines indicates samples in the test
set.
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Figure S17: Top 25 scaffolds generated using DeepLigBuilder.
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Figure S18: Top 26th to 50th scaffolds generated using DeepLigBuilder.
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