Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Table of Contents

- 1. General information
- 2. Synthesis of starting materials
- 3. Reaction optimization
- 4. B(OMe)₃/B₂pin₂-mediated fragmentation borylation of 2-alkyl(aryl) indoles
- 5. Control experiments and mechanistic studies
- 6. The investigations of 2,3-diborylated indoles
- 7. Analytical data of starting materials and products
- 8. Reference
- 9. NMR spectra

1. General information

Unless otherwise noted, all reactants or reagents were obtained from commercial suppliers and used as received. $B(OMe)_3$ was obtained from Aladdin (Shanghai, China). B_2pin_2 and ethylmorpholine were obtained from Energy Chemical (Shanghai, China). Et₃N was obtained from Sinopharm Chemical Reagent (Shanghai, China). *n*-Octane was obtained from Sinopharm Chemical Reagent and purified by distillation with sodium. Otherwise noted, all reactions were performed with dry solvents under an atmosphere of nitrogen gas (99.999%) in dried glassware using standard Schlenk techniques. All reactions were performed in a 25-mL Schlenk tube (with a Teflon high-pressure valve and side arm) and heated in a heating module (heater + magnetic stirrer). All work-up and purification procedures were carried out with reagent-grade solvents in air.

Analytical thin-layer chromatography (TLC) was performed using Huang Hai HSGF254 (0.2 mm) precoated plates. The developed chromatogram was analyzed by UV lamp (254 nm). Flash column chromatography was performed with silica gel (200–300 mesh). Gas chromatography (GC) analysis was conducted on a Aglient 7024A instrument equipped with a HP-5 column (30 m × 0.25 mm, Hewlett-Packard) with naphthalene as an internal standard. GCMS analysis was conducted on a Shimadzu GCMS-QP2010 instrument equipped with a Restec-5HT column (30 m × 0.25 mm, Hewlett-Packard). Nuclear magnetic resonance (NMR) spectra were recorded on Bruker Advance III (400 MHz) spectrometers with tetramethylsilane as an internal standard. Chemical shifts for ¹H NMR are expressed in parts per million (ppm) relative to tetramethylsilane (δ 0.00 ppm) or residual peak of CDCl₃ (δ 77.16 ppm). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, m = multiplet), coupling constant (Hz), and integration. High resolution mass spectra (HRMS) were obtained from Agilent 6545 Q-TOF LCMS with electrospray ionization (ESI).

2. Synthesis of starting materials

Indole, 2-methylindole, 3-methylindole, 4-methylindole, 5-methylindole, 6-methylindole, 5-fluoroindole, 7-methylindole, 2-ethylindole, 5-chloroindole, 5-(trifluoromethyl)indole, 5-chloro-2-methylindole, 5-methoxyindole, 2,5-dimethylindole, 5-fluoro-2-methylindole, 5-methoxy-2-methylindole, phenylboronic acid, p-tolylboronic acid, m-tolylboronic acid, o-tolylboronic acid, (4-(tert-butyl)phenyl)boronic acid, (4-fluorophenyl)boronic acid, (4-(trifluoromethyl)phenyl)boronic acid, (4-(trimethylsilyl)phenyl)boronic acid, [1,1'-biphenyl]-4-ylboronic acid, naphthalen-2-ylboronic acid and (3,4,5-trimethoxyphenyl)boronic acid were purchased from commercial sources and used as received. Unless otherwise noted, all other indole derivatives were prepared according to the procedures reported in the literature. The methylation of indole derivatives was conducted according to the procedures reported in the literature.^[1]

 $1ra^{[2]}, 1sa^{[2]}, 1ga^{[3][1]}, 1fa^{[3][1]}, 1ea^{[3][1]}, 1ba^{[4][1]}, 1da^{[4][1]}, 1ia^{[5]}, 1ja^{[6][1]}, 1ma^{[7][1]}, 1na^{[8]}, 1oa^{[9]}, 1pa^{[10][11]}, 1qa^{[12]}, 1hb^{[11][14]}, 1ar^{[11][14]}, 1hc^{[11][15]}, 1hd^{[11][13]}, 1he^{[11][16]}, 1hg^{[11][16]}, 1hg^{[11][16]}, 1hh^{[11][16]}, 1ap^{[11][16]}, 1fp^{[11][16]}, 1bp^{[11][16]}, 1cp^{[11][16]}, 1dp^{[11][16]}, 1ep^{[11][16]}, 1ap^{[11][16]}, 1af^{[11][16]}, 1aq^{[17]}, 1as^{[11][18]}, 1at^{[19][11]}, 1tu^{[19][20]}, 1tw^{[13][20]}, 1ta^{[20]}, 3r^{[21]}, 3r^{[21]}, 3s^{[21]}, 3e^{[22]}$ were prepared according to the procedures reported in the literature.

3. Reaction optimization

B(OMe)₃/B₂pin₂-mediated fragmentation borylation of 1aa

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (0.20 mmol, 29.4 mg) and B_2pin_2 (0.50 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg), and *n*-octane (1.0 mL) were added to the tube under nitrogen. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. The reaction mixture was cooled to room temperature, 6.0 M HCl aqueous solution (1.0 mL) was added, and the mixture was stirred for 0.5 h, then the solvent was diluted with ethyl acetate. The yield of **2a** was determined by GC and calibrated using naphthalene as internal standard.

B(OMe)₃/B₂pin₂-mediated fragmentation borylation of 1hf

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1hf** (0.20 mmol, 47.4 mg) and B_2pin_2 (0.80 mmol, 203.2 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.20 mmol, 20.8 mg), ethylmorpholine (0.10 mmol, 11.5 mg), and *n*-octane (1.0 mL) were added to the tube under nitrogen. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. The reaction mixture was cooled to room temperature, 6.0 M HCl aqueous solution (1.0 mL) was added, and the mixture was stirred for 0.5 h, then the solvent was diluted with ethyl acetate. The yield of **2h** and **3f** were determined by GC and calibrated using naphthalene as internal standard.

Table S1. Effects of varying reaction parameters in B(OMe)₃/B₂pin₂-mediated fragmentation borylation of 1hf

MeC	$Ph + B_2pin_2 - Me$	B(OMe) ₃ (1.0 equiv) ethylmorpholine (50 mol%) n-octane, 160 °C, 48 h then, HCl (aq), 0.5 h	MeO N Me	Bpin + Ph—Bpin
T			2h	31
Entry	Deviation from standard	reaction conditions	Yield of $2h (\%)^{a}$	Yield of $3f(\%)^{a}$
1	None		$63(57)^{b}$	$68(62)^{b}$
2	No B(OMe) ₃		0	0
3	$B(O^{i}Pr)_{3}$, instead of $B(OMe)_{3}$		46	48
4	B(OPh) ₃ , instead of B(OMe) ₃		38	43
5	$B(OCH_2CF_3)_3$, instead of $B(OMe)_3$		48	50
6 ^{<i>c</i>}	BF ₃ Et ₂ O, instead of B(OMe) ₃		$0(34^{d})$	$0(57^{d})$
7	10 mol% B(C ₆ F ₅) ₃ , instead of B(OMe) ₃		41	38
8	no ethylmorpholine		48	66
9	Et ₃ N, instead of ethylmorpholine		62	64

10	<i>n</i> -hexane, instead of <i>n</i> -octane	63	65
11	1,4-dioxane, instead of <i>n</i> -octane	5	6
12	mesitylene, instead of <i>n</i> -octane	23	23
13	140 °C, instead of 160 °C	39	39
14	16 h, instead of 48 h	51	48

Standard reaction conditions: **1hf** (0.2 mmol), B₂pin₂ (0.8 mmol), B(OMe)₃ (1.0 equiv), ethylmorpholine (0.1 mmol), *n*-octane (1.0 mL), 160 °C, 48 h; HCl (1.0 mL, 6.0 M), 0.5 h. ^aYields were determined by GC with naphthalene as the internal standard. ^bIsolated yield in parentheses. ^cTHF (0.1 mL) was added. ^dNo ethylmorpholine.

4. B(OMe)₃/B₂pin₂-mediated fragmentation borylation of 2-alkyl(aryl) indoles

General Procedure: An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1** (0.20 mmol) and B_2pin_2 (0.50 mmol, 127.0 mg, for 2-alkylindoles; 0.80 mmol, 203.2 mg, for 2-arylindoles), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg, for 2-alkylindoles; 0.20 mmol, 20.8 mg, for 2-arylindoles), Et₃N (0.06 mmol, 6.1 mg, for 2-alkylindoles)/ethylmorpholine (0.10 mmol, 11.5 mg, for 2-arylindoles), and *n*-octane (1.0 mL) were added to the tube under nitrogen. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. The reaction mixture was cooled to room temperature, 6.0 M HCl aqueous solution (1.0 mL) was added, and the mixture was stirred for 0.5 h. After addition of saturated brine, the mixture was extracted with ethyl acetate, and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was directly purified by flash column chromatography over silica gel with petroleum ether/ethyl acetate to afford the product.

Note: The reaction of **1fa** was conducted with B_2pin_2 (0.8 mmol, 203.2 mg) and $B(OMe)_3$ (0.2 mmol, 20.8 mg) at 180 °C. The reactions of **1hb**, **1hc**, **1hd** and **1he** were conducted with B_2pin_2 (0.8 mmol, 203.2 mg), Et₃N (0.06 mmol, 6.1 mg) and $B(OMe)_3$ (0.2 mmol, 20.8 mg) at 160 °C. The post-reaction treatment of **1fa**, **1ia** and **1fp** weren't conducted with HCl aqueous solution. Products **2i** and **2p** were purified by preparative thin-layer chromatography (PTLC; petroleum ether/ethyl acetate as the eluent). If **1** was a liquid, it was added with under nitrogen atmosphere.

Hazard statement: These reactions were performed at a temperature that is well above the boiling point of n-octane (approximately 125-127 °C), leading to substantial pressure buildup in the sealed reaction vessel. As such, proper precautions should be taken when performing these experiments.

5. Control experiments and mechanistic studies

A Gram-scale experiments

Standard operation. An oven-dried 50-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (8.0 mmol, 1.16 g) and B_2pin_2 (20.0 mmol, 5.08 g), and then flushed with nitrogen gas. $B(OMe)_3$ (2.4 mmol, 249.4 mg), Et₃N (2.4 mmol, 242.9 mg) and ^{*n*} octane (10.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (10.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was directly purified by flash column chromatography over silica gel eluting with petroleum ether/ethyl acetate to afford the product.

Non-anhydrous operation. An undried 50-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (8.0 mmol, 1.16 g) and B_2pin_2 (20.0 mmol, 5.08 g), and then flushed with nitrogen gas. $B(OMe)_3$ (2.4 mmol, 249.4 mg), Et₃N (2.4 mmol, 242.9 mg) and ^{*n*} octane (10.0 mL, undried) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (10.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was directly purified by flash column chromatography over silica gel eluting with petroleum ether/ethyl acetate to afford the product.

B Fragmentation borylation with other boron sources

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (0.2 mmol, 29.0 mg), B_2neop_2 (0.5 mmol, 112.5 mg) or B_2hg_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. $B(OMe)_3$ (0.06 mmol, 6.2 mg), Et_3N (0.06 mmol, 6.1 mg), and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate and dried over Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was directly purified by flash column chromatography over silica gel eluting with petroleum ether/ethyl acetate to afford the product.

C Radical clock and trapping experiments

Radical clock experiment. An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with B_2pin_2 (0.5 mmol, 127.0 mg) and flushed with nitrogen gas. **1aq** (0.2 mmol, 37.0 mg), $B(OMe)_3(0.2 \text{ mmol}, 20.8 \text{ mg})$, and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 180 °C for 24 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate. Compound **3q** can be monitored by GCMS while the isomer of **3q**' was not found. The yield of **2a** was determined by GC and calibrated using naphthalene as internal standard.

Figure S1. The GCMS analysis of radical clock experiment

Radical trapping experiment. An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1hf** (0.2 mmol, 47.5 mg), 9,10-dihydroanthracene (0.2 mmol, 36.1 mg), B_2pin_2 (0.8 mmol, 203.2 mg) and flushed with nitrogen gas. $B(OMe)_3$ (0.2 mmol, 20.8 mg), ethylmorpholine (0.1 mmol, 11.5 mg) and ⁿoctane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h, then the mixture was added saturated brine, extracted with ethyl acetate. The yield of **2h** and **3f** was determined by GC and calibrated using naphthalene as internal standard.

D Carbocation probing experiments

Reaction with 1ar as substrate. An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1ar** (0.2 mmol, 34.7 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h, then the mixture was added saturated brine, extracted with ethyl acetate. The peak of **3r'** was detected by GCMS. The yield of **2a** and **3r** was determined by GC and calibrated using naphthalene as internal standard.

Figure S2. The GCMS analysis of reaction with 1ar as substrate

Reaction with 1as as substrate. An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1as** (0.2 mmol, 37.5 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h, then the mixture was added saturated brine, extracted with ethyl acetate. The peak of **3e** was detected by GCMS. The yield of **2a** and **3s** was determined by GC and calibrated using naphthalene as internal standard.

Figure S3. The GCMS analysis of reaction with 1as as substrate

E Competitive experiment probing electronic effect

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1tu** (0.2 mmol, 50.9 mg), **1at** (0.2 mmol, 57.9 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate. The solvent was evaporated under reduced pressure. The yield of **2a** and **2t** was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine (25.2 mg) as internal standard.

Figure S4. ¹H NMR spectrum of reaction with 1at and 1tu as substrates

f Competitive experiment probing steric effect

F Competitive experiment probing steric effect

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with B_2pin_2 (0.5 mmol, 127.0 mg) and flushed with nitrogen gas. **1av** (0.2 mmol, 31.8 mg), **1tw** (0.2 mmol, 35.3 mg), $B(OMe)_3$ (0.06 mmol, 6.2 mg), Et_3N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate. The solvent was evaporated under reduced pressure. The yield of **2a** and **2t** was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine (25.1 mg) as internal standard.

Figure S5. ¹H NMR spectrum of reaction with 1av and 1tw as substrates

g C(indolyl)-Ph vs. C(indolyl)-Me fragmentation borylation

G C(indolyl)-Ph vs C(indolyl)-Me fragmentation borylation

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1ta** (0.2 mmol, 29.6 mg), **1af** (0.2 mmol, 41.5 mg), B_2pin_2 (0.5 mmol, 127.0 mg) and flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the mixture was added 6.0 M HCl aqueous solution (1.0 mL) and stirred for 0.5 h. Then the mixture was added saturated brine, extracted with ethyl acetate. The solvent was evaporated under reduced pressure. The yield of **2a** and **2t** was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine (26.4 mg) as internal standard.

Figure S6. ¹H NMR spectrum of reaction with **1af** and **1ta** as substrates

6. The investigations of 2,3-diborylated indoles

(a) The structure of 2a'

Scheme S1. The detection of 2a' in the reaction of 1aa and B₂pin₂

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (0.2 mmol, 29.0 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the solvent was evaporated under reduced pressure. **1aa**, **2a**, **S2a'**, **2a'** were involved in the residue. **2a'** is not particularly stable and it was difficult to obtain a pure compound. The corresponding C2,C3-diborylated indoles were also detected by GCMS in the reaction of **1ba**, **1ca**, **1da**, **1ea** and other substrates. The residue was purified by flash column chromatography over silica gel eluting with petroleum ether/dichloromethane to give the mixture mainly containing **2a** and **2a'** (detected by GCMS). The characteristic peak of **2a'** can be confirmed by eliminating the ¹H NMR of known compounds. The HRMS information provides convenience for the structure of **2a'**. HRMS (ESI) m/z calcd for C₂₁H₃₁B₂NO₄ [M+H]⁺: 384.2512 found 384.2521.

Figure S7. ¹H NMR spectrum of reaction residue including 2a'

Figure S8. The GCMS analysis of reaction residue including 2a'

(b) The fragmentation borylation of 1aa and B₂pin₂ before acidification

Scheme S2. The reaction of 1aa and B₂pin₂ before acidification

1aa was converted to C2-borylated indole **2a** (6%), C3-borylated indole **S2a'** (8%) and C2,C3-diborylated indole **2a'** (84%) under standard conditions. **2a'** further occurred C3-protodeboronation by the treatment of aqueous HCl to afford **2a** in 83% GC yield and 75% yield upon isolation.

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (0.2 mmol, 29.0 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. $B(OMe)_3$ (0.06 mmol, 6.2 mg), Et_3N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the solvent was evaporated under reduced pressure. The yield of **2a**, **2a'** and **S2a'** was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine (26.7 mg) as internal standard.

Figure S9. ¹H NMR spectrum of reaction of 1aa and B₂pin₂ before acidification

(c) The generation of 2a'

Scheme S3. The reaction of 1aa and B₂pin₂ in different reaction times

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with **1aa** (0.2 mmol, 29.0 mg) and B_2pin_2 (0.5 mmol, 127.0 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*}octane (1.0 mL) were added to the tube under nitrogen

atmosphere. The sealed tube was heated at 160 $^{\circ}$ C for 16 h or 24 h or 36 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the solvent was evaporated under reduced pressure. The yield of **2a**, **S2a'**, **2a'** and **1aa** was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine as internal standard.

Scheme S4. The reaction of 2a and B₂pin₂

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with 2a (0.2 mmol, 51.4 mg) and B₂pin₂ (0.3 mmol, 76.2 mg), and then flushed with nitrogen gas. B(OMe)₃ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the solvent was evaporated under reduced pressure. The yield of 2a and 2a' was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine as internal standard.

Scheme S5. The reaction of 2a' and B₂pin₂

An oven-dried 25-mL Schlenk tube equipped with a magnetic stirring bar was charged with S2a' (0.2 mmol, 54.2 mg) and B_2pin_2 (0.3 mmol, 76.2 mg), and then flushed with nitrogen gas. $B(OMe)_3$ (0.06 mmol, 6.2 mg), Et₃N (0.06 mmol, 6.1 mg) and ^{*n*} octane (1.0 mL) were added to the tube under nitrogen atmosphere. The sealed tube was heated at 160 °C for 48 h in a heating module with stirring. After cooling the reaction mixture to room temperature, the solvent was evaporated under reduced pressure. The yield of S2a' and 2a' was determined by ¹H NMR, and calibrated using 3,4,5-trichloropyridine as internal standard.

These results showed that 2a' was probably generated via the C3–H borylation of 2a.

7. Analytical data of starting materials and products

1,2,4-trimethyl-1H-indole (1ba)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.13-7.06 (m, 2H), 6.89 (d, J = 6.4 Hz, 1H), 6.28 (s, 1H), 3.67 (s, 3H), 2.53 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 136.2, 129.2, 127.8, 120.7, 119.6, 106.5, 98.2, 29.6, 18.8, 12.9. HRMS (ESI) m/z calcd for C₁₁H₁₃N [M+H]⁺: 160.1121 found 160.1118.

1,2,6-trimethyl-1H-indole (1da)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.54 (d, *J* = 5.2 Hz, 1H), 7.17 (s, 1H), 7.06-7.04 (m, 1H), 6.32 (s, 1H), 3.69 (s, 3H), 2.64 (s, 3H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.8, 136.1, 130.1, 125.9, 120.9, 119.3, 108.9, 99.4, 29.3, 22.0, 12.8. HRMS (ESI) *m*/*z* calcd for C₁₁H₁₃N [M+H]⁺: 160.1121 found 160.1116.

1,2,7-trimethyl-1H-indole (1ea)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, *J* = 8.0 Hz, 1H), 6.94 (m, *J* = 7.2 Hz, 1H), 6.86-6.84 (m, 1H), 6.24 (s, 1H), 3.93 (s, 3H), 2.79 (s, 3H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 136.1,

128.7, 123.7, 120.5, 119.3, 117.9, 100.3, 32.4, 20.2, 13.2. HRMS (ESI) *m*/*z* calcd for C₁₁H₁₃N [M+H]⁺: 160.1121 found 160.1117.

5-(tert-butyl)-1,2-dimethyl-1H-indole (1ga)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.90 (s, 1H), 7.58 (d, *J* = 8.4 Hz, 1H), 7.47 (d, *J* = 8.4 Hz, 1H), 3.83 (s, 3H), 2.67 (s, 3H), 1.77 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 136.9, 135.7, 127.9, 118.6, 115.7, 108.3, 99.6, 34.6, 32.1, 29.5, 12.8. HRMS (ESI) *m*/*z* calcd for C₁₄H₁₉N [M+H]⁺: 202.1591 found 202.1585.

1,2-dimethyl-5-(piperidin-1-yl)-1H-indole (1ia)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.22 (m, 2H), 7.06-7.04 (m, 1H), 6.26 (s, 1H), 3.64 (s, 3H), 3.20-3.18 (m, 4H), 2.46 (s, 3H), 1.88 (s, 4H), 1.69-1.67 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 146.9, 136.8, 133.1, 128.3, 114.7, 108.9, 107.7, 99.3, 53.7, 29.3, 26.5, 24.4, 12.7. HRMS (ESI) *m*/*z* calcd for C₁₅H₂₀N₂ [M+H]⁺: 229.1699 found 229.1703.

5-bromo-1,2-dimethyl-1H-indole (1ma)

B Me Me 1ma

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.68-7.67 (m, 1H), 7.26-7.23 (m, 1H), 7.09-7.06 (m, 1H), 6.21 (s, 1H), 3.58 (s, 3H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 138.1, 135.8, 129.5, 122.7, 121.7, 112.2, 110.0, 99.0, 29.1, 12.5. HRMS (ESI) *m/z* calcd for C₁₀H₁₀BrN [M+H]⁺: 224.0069 found 224.0061.

5-iodo-1,2-dimethyl-1H-indole (1na)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.90 (m, 1H), 7.43-7.41 (m, 1H), 6.98 (d, J = 8.4 Hz, 1H), 6.20 (s, 1H), 3.56 (s, 3H), 2.43 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 136.5, 130.6, 128.6, 128.3, 110.8, 99.0, 82.7, 29.5, 12.8. HRMS (ESI) m/z calcd for C₁₀H₁₀IN [M+H]⁺: 271.9931 found 271.9923.

1,2-dimethyl-5-(trimethylsilyl)-1H-indole (10a)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.36 (dd, $J_1 = 24.0$ Hz, $J_2 = 8.4$ Hz, 2H), 6.32 (s, 1H), 3.70 (s, 3H), 2.49 (s, 3H), 0.40 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 136.9, 129.2, 128.1, 125.3, 125.2, 108.5, 99.7, 29.4, 12.8, -0.5. HRMS (ESI) m/z calcd for C₁₃H₁₉NSi [M+H]⁺: 218.1360 found 218.1359.

1,2-dimethyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (1pa)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 6.35 (s, 1H), 3.60 (s, 3H), 2.44 (s, 3H), 1.48 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 136.8, 127.7, 127.4, 126.7, 108.1, 100.1, 83.2, 29.2, 24.9, 12.6. HRMS (ESI) *m*/*z* calcd for C₁₆H₂₂BNO₂ [M+H]⁺: 272.1819 found 272.1817.

1,2-dimethyl-5-phenyl-1H-indole (1qa)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1H), 7.92-7.86 (m, 2H), 7.68-7.63 (m, 3H), 7.54-7.44 (m, 2H), 6.51 (s, 1H), 3.73 (s, 3H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 137.5, 137.0, 132.7, 128.7, 128.5, 127.3, 126.1, 120.2, 118.2, 109.0, 100.0, 29.3, 12.7. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₅N [M+H]⁺: 222.1277 found 222.1275.

1-butyl-2-methyl-1H-indole (1ra)

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.63 (m, 1H), 7.41-7.39 (m, 1H), 7.30-7.19 (m, 2H), 6.38 (s, 1H), 4.17-4.14 (m, 2H), 2.54 (s, 3H), 1.89-1.83 (m, 2H), 1.54-1.44 (m, 2H), 1.11-1.07 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 136.7, 136.4, 128.2, 120.4, 119.7, 119.2, 109.1, 99.9, 43.0, 32.4, 20.4, 14.0, 12.9. HRMS (ESI) *m*/*z* calcd for C₁₃H₁₇N [M+H]⁺: 188.1434 found 188.1434.

2-hexyl-5-methoxy-1-methyl-1H-indole(1hb)

MeO Me 1hb

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.8 Hz, 1H), 7.04 (s, 1H), 6.84-6.82 (m, 1H), 6.19 (s, 1H), 3.86 (s, 3H), 3.64 (s, 3H), 2.74-2.70 (m, 2H), 1.76-7.69 (m, 2H), 1.47-1.29 (m, 6H), 0.95-0.92 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 142.2, 132.7, 128.2, 110.3, 109.4, 102.0, 98.3, 56.0, 31.7, 29.5, 29.2, 28.7, 27.0, 22.7, 14.2. HRMS (ESI) *m*/*z* calcd for C₁₆H₂₃NO [M+H]⁺: 246.1852 found 246.1844.

2-benzyl-5-methoxy-1-methyl-1H-indole (1hc)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.25-7.14 (m, 4H), 7.05 (d, *J* = 3.6 Hz, 1H), 6.86-6.83 (m, 1H), 6.21 (s, 1H), 4.13 (s, 2H), 3.85 (s, 3H), 3.53 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 139.7, 138.4, 133.0, 128.6, 128.5, 128.0, 126.4, 110.8, 109.5, 102.1, 100.8, 55.9, 33.5, 29.8. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₇NO [M+H]⁺: 252.1383 found 252.1373.

2-cyclohexyl-5-methoxy-1-methyl-1H-indole (1hd)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, *J* = 8.8 Hz, 1H), 7.04-7.03 (m, 1H), 6.82-6.80 (m, 1H), 6.17 (s, 1H), 3.84 (s, 3H), 3.66 (s, 3H), 2.68-2.62 (m, 1H), 2.03-2.01 (m, 2H), 1.88-1.86 (m, 2H), 1.80-1.77 (m, 1H), 1.51-1.41 (m, 4H), 1.34-1.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.0, 147.4, 132.6, 128.2, 110.4, 109.4, 102.1, 96.2, 56.1, 36.1, 33.2, 29.6, 26.7, 26.2. HRMS (ESI) *m/z* calcd for C₁₆H₂₁NO [M+H]⁺: 244.1696 found 244.1689.

2-(tert-butyl)-5-methoxy-1-methyl-1H-indole (1he)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.16 (d, J = 8.8 Hz, 1H), 7.04-7.03 (m, 1H), 6.85-6.82 (m, 1H), 6.24 (s, 1H), 3.85-3.85 (m, 6H), 1.47 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 149.8, 134.0, 127.4, 110.8, 109.3, 102.2, 97.7, 56.1, 32.4, 32.4, 30.2. HRMS (ESI) *m*/*z* calcd for C₁₄H₁₉NO [M+H]⁺: 218.1539 found 218.1532.

5-methoxy-1-methyl-2-(p-tolyl)-1H-indole (1hg)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 2H), 7.10-7.01 (m, 4H), 6.85-6.83 (m, 1H), 6.37 (s, 1H), 3.71 (s, 3H), 3.45 (s, 3H), 2.28 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 142.0, 137.4, 133.8, 129.9, 129.1, 129.0, 128.3, 111.6, 110.2, 102.0, 101.0, 55.6, 30.9, 21.1. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₇NO [M+H]⁺: 252.1383 found 252.1383.

5-methoxy-1-methyl-2-(m-tolyl)-1H-indole (1hh)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.23 (m, 5H), 7.14 (d, J = 2.4 Hz, 1H), 6.95-6.93 (m, 1H), 6.51 (s, 1H), 3.90 (s, 3H), 3.74 (s, 3H), 2.46 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 142.3, 138.2, 133.8, 132.8, 130.0, 128.6, 128.4, 128.3, 126.4, 111.8, 110.3, 102.1, 101.2, 55.9, 31.3, 21.6. HRMS (ESI) m/z calcd for C₁₇H₁₇NO [M+H]⁺: 252.1383 found 252.1375.

5-methoxy-1-methyl-2-(o-tolyl)-1H-indole (1hi)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.25 (m, 5H), 7.14-7.13 (m, 1H), 6.94-6.91 (m, 1H), 6.38 (s, 1H), 3.89 (s, 3H), 3.50 (s, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 141.1, 138.0, 132.7, 132.6, 131.1, 130.1, 128.6, 128.3, 125.6, 111.5, 110.2, 102.2, 101.2, 56.0, 30.5, 20.1. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₇NO [M+H]⁺: 252.1383 found 252.1377.

2-(4-(tert-butyl)phenyl)-5-methoxy-1-methyl-1H-indole (1hj)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.43 (m, 4H), 7.27-7.24 (m, 1H), 7.11 (s, 1H), 6.91 (dd, $J_1 = 8.8$ Hz, $J_2 = 1.6$ Hz, 1H), 6.48 (s, 1H), 3.87 (s, 3H), 3.73 (s, 3H), 1.39-1.38 (m, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 154.3, 150.9, 142.2, 133.7, 130.0, 129.0, 128.3, 125.5, 111.7, 110.3, 102.1, 101.0, 56.0, 34.7, 31.4, 31.4. HRMS (ESI) *m*/*z* calcd for C₂₀H₂₃NO [M+H]⁺: 294.1852 found 294.1846.

5-methoxy-1-methyl-2-(4-(trimethylsilyl)phenyl)-1H-indole (1hk)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 2H), 7.50 (d, *J* = 8.0 Hz, 2H), 7.28-7.25 (m, 1H), 7.12-7.11 (m, 1H), 6.94-6.91 (m, 1H), 6.51 (s, 1H), 3.88 (s, 3H), 3.75 (s, 3H), 0.33 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 143.3, 141.2, 135.0, 134.6, 134.3, 129.6, 129.4, 113.1, 111.5, 103.2, 102.5, 57.0, 32.5, 0.00. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₃NOSi [M+H]⁺: 310.1622 found 310.1613.

2-(4-fluorophenyl)-5-methoxy-1-methyl-1H-indole (1hl)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.53 (s, 2H), 7.34 (d, *J* = 8.8 Hz, 1H), 7.26-7.24 (m, 3H), 7.07-7.05 (m, 1H), 6.57 (s, 1H), 3.98 (s, 3H), 3.74 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 162.5 (d, *J* = 246.0 Hz), 154.5, 141.0, 133.8, 130.9 (d, *J* = 8.0 Hz), 129.0 (d, *J* = 3.0 Hz), 128.2, 115.5 (d, *J* = 22.0 Hz), 112.0, 110.4, 102.2, 101.4, 55.8, 31.1. HRMS (ESI) *m*/*z* calcd for C₁₆H₁₄FNO [M+H]⁺: 256.1132 found 256.1130.

5-methoxy-1-methyl-2-(4-(trifluoromethyl)phenyl)-1H-indole (1hm)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.60 (m, 2H), 7.48-7.46 (m, 2H), 7.16 (d, J = 8.4 Hz, 1H), 7.06 (m, 1H), 6.93-6.91 (m, 1H), 6.48 (s, 1H), 3.79 (s, 3H), 3.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 140.3, 136.4, 134.3, 129.5 (q, J = 32.0 Hz), 129.3, 128.3, 125.5 (q, J = 4.0 Hz), 124.3 (q, J = 270.0 Hz), 112.8, 110.6, 102.6, 102.3, 55.7, 31.3. HRMS (ESI) m/z calcd for C₁₇H₁₄F₃NO [M+H]⁺: 306.1100 found 306.1097.

2-([1,1'-biphenyl]-4-yl)-5-methoxy-1-methyl-1H-indole (1hn)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.65 (m, 4H), 7.59 (d, J = 8.4 Hz, 2H), 7.50-7.46 (m, 2H), 7.41-7.37 (m, 1H), 7.29-7.25 (m, 1H), 7.13-7.12 (m, 1H), 6.94-6.92 (m, 1H), 6.55 (s, 1H), 3.88 (s, 3H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 141.8, 140.6, 140.6, 134.0, 131.8, 129.6, 128.9, 128.3, 127.6, 127.2, 127.1, 112.0, 110.4, 102.2, 101.4, 56.0, 31.5. HRMS (ESI) *m*/*z* calcd for C₂₂H₁₉NO [M+H]⁺: 314.1539 found 314.1533.

5-methoxy-1-methyl-2-(naphthalen-2-yl)-1H-indole (1ho)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.98-7.92 (m, 4H), 7.67-7.55 (m, 3H), 7.31 (d, J = 8.4 Hz, 1H), 7.17 (s, 1H), 6.99-6.97 (m, 1H), 6.63 (s, 1H), 3.92 (s, 3H), 3.80 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 142.2, 134.1, 133.4, 132.8, 130.4, 128.5, 128.3, 128.3, 128.2, 127.9, 127.3, 126.7, 126.5, 112.2, 110.5, 102.4, 101.9, 56.1, 31.6. HRMS (ESI) *m/z* calcd for C₂₀H₁₇NO [M+H]⁺: 288.1383 found 288.1380.

1-methyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1ap)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 7.6 Hz, 1H), 7.38-7.36 (m, 1H), 7.28-7.24 (m, 1H), 7.17-7.13 (m, 1H), 6.71 (s, 2H), 6.55 (s, 1H), 3.93 (s, 3H), 3.91 (s, 6H), 3.77 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 141.6, 138.3, 138.0, 128.4, 127.9, 121.8, 120.5, 120.0, 109.7, 106.7, 101.5, 61.0, 56.3, 31.3. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₉NO₃ [M+H]⁺: 298.1438 found 298.1431.

1,4-dimethyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1bp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.15 (m, 2H), 6.96 (d, J = 6.8 Hz, 1H), 6.72 (s, 2H), 6.56 (s, 1H), 3.93 (s, 3H), 3.92 (s, 6H), 3.76 (s, 3H), 2.58 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 141.0, 138.0, 138.0, 130.0, 128.5, 127.7, 122.0, 120.2, 107.3, 106.7, 100.1, 61.0, 56.3, 31.4, 18.7. HRMS (ESI) m/z calcd for C₁₉H₂₁NO₃ [M+H]⁺: 312.1594 found 312.1586.

1,5-dimethyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1cp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.42 (s, 1H), 7.26-7.24 (m, 1H), 7.09-7.07 (m, 1H), 6.71 (s, 2H), 6.47 (s, 1H), 3.93 (s, 3H), 3.91 (s, 6H), 3.74 (s, 3H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 141.6, 137.9, 136.8, 129.2, 128.6, 128.1, 123.4, 120.1, 109.3, 106.7, 101.0, 61.0, 56.3, 31.3, 21.5. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁NO₃ [M+H]⁺: 312.1594 found 312.1586.

1,6-dimethyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1dp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 6.70 (s, 2H), 6.49 (s, 1H), 3.92 (s, 3H), 3.90 (s, 6H), 3.72 (s, 3H), 2.52 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 141.0, 138.8, 137.9, 131.6, 128.6, 125.7, 121.7, 120.1, 109.7, 106.7, 101.3, 61.0, 56.3, 31.2, 22.0. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁NO₃ [M+H]⁺: 312.1594 found 312.1586.

1,7-dimethyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1ep)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 1H), 7.02-6.93 (m, 2H), 6.68 (s, 2H), 6.50 (s, 1H), 3.95 (s, 3H), 3.92 (s, 3H), 3.91 (s, 6H), 2.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.2, 142.7, 137.9, 137.6, 128.8, 128.6, 124.8, 121.5, 120.2, 118.6, 106.9, 102.2, 61.0, 56.3, 34.6, 20.2. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁NO₃ [M+H]⁺: 312.1594 found 312.1585.

1,3-dimethyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1fp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.6 Hz, 1H), 7.34-7.32 (m, 1H), 7.28-7.24 (m, 1H), 7.18-7.14 (m, 1H), 6.61 (s, 2H), 3.95 (s, 3H), 3.89 (s, 6H), 3.64 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.1, 137.7, 137.7, 137.1, 128.3, 127.6, 121.9, 119.2, 118.8, 109.3, 108.4, 107.8, 61.0, 56.2, 31.0, 9.5. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁NO₃ [M+H]⁺: 312.1594 found 312.1586.

5-methoxy-1-methyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1hp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.26-7.24 (m, 1H), 7.10-7.09 (m, 1H), 6.92-6.90 (m, 1H), 6.69 (s, 2H), 6.47 (s, 1H), 3.92 (s, 3H), 3.92 (s, 6H), 3.87(s, 3H), 3.73 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.4, 153.2, 142.1, 138.0, 133.7, 128.4, 128.2, 112.0, 110.4, 106.7, 102.2, 101.1, 61.0, 56.3, 55.9, 31.4. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₁NO₄ [M+H]⁺: 328.1543 found 328.1536.

1-methyl-5-(trifluoromethyl)-2-(3,4,5-trimethoxyphenyl)-1H-indole (1jp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.48-7.40 (m, 2H), 6.69 (s, 2H), 6.61 (s, 1H), 3.92 (s, 3H), 3.91 (s, 6H), 3.78 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 143.3, 139.4, 138.3, 127.5, 127.1, 125.4 (q, *J* = 270.0 Hz), 122.2 (q, *J* = 32.0 Hz), 118.3 (q, *J* = 3.0 Hz), 118.0 (q, *J* = 4.0 Hz), 109.8,

106.7, 102.2, 61.0, 56.2, 31.4. HRMS (ESI) m/z calcd for $C_{19}H_{18}F_3NO_3$ [M+H]⁺: 366.1312 found 366.1309.

5-fluoro-1-methyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1kp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.27-7.24 (m, 2H), 7.01-6.96 (m, 1H), 6.69 (s, 2H), 6.49 (s, 1H), 3.92 (s, 3H), 3.90 (s, 6H), 3.74 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 157.0, 153.3, 143.2, 138.2, 134.9, 128.0, 110.2 (d, *J* = 3.0 Hz), 110.1 (d, *J* = 39.0 Hz). 106.7, 105.2 (d, *J* = 23.0 Hz), 101.4 (d, *J* = 5.0 Hz), 61.0, 56.3, 31.4. HRMS (ESI) *m*/*z* calcd for C₁₈H₁₈FNO₃ [M+H]⁺: 316.1343 found 316.1340.

5-chloro-1-methyl-2-(3,4,5-trimethoxyphenyl)-1H-indole(1lp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 1.6 Hz, 1H), 7.26-7.24 (m, 1H), 7.19-7.16 (m, 1H), 6.69 (s, 2H), 6.47 (s, 1H), 3.92 (s, 3H), 3.90 (s, 6H), 3.73 (s, 3H) ; ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 142.9, 138.2, 136.7, 128.8, 127.9, 125.6, 121.9, 119.7, 110.6, 106.7, 101.0, 61.0, 56.3, 31.4. HRMS (ESI) m/z calcd for C₁₈H₁₈ClNO₃ [M+H]⁺: 332.1048 found 332.1045.

1-methyl-2-(3,4,5-trimethoxyphenyl)-5-(trimethylsilyl)-1H-indole (1op)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.42-7.36 (m, 2H), 6.70 (s, 2H), 6.55 (s, 1H), 3.93 (s, 3H), 3.91 (s, 6H), 3.75 (s, 3H), 0.32 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 153.8, 142.2, 139.4, 138.6, 130.8, 129.0, 128.4, 127.1, 126.5, 109.9, 107.3, 102.0, 61.6, 56.9, 31.8, 0.0. HRMS (ESI) *m/z* calcd for C₂₁H₂₇NO₃Si [M+H]⁺: 370.1833 found 370.1824.

1-methyl-5-phenyl-2-(3,4,5-trimethoxyphenyl)-1H-indole (1qp)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.84 (m, 1H), 7.68-7.66 (m, 2H), 7.53-7.50 (m, 1H), 7.47-7.40 (m, 3H), 7.33-7.30 (m, 1H), 6.72 (s, 2H), 6.59 (s, 1H), 3.93 (s, 3H), 3.91 (s, 6H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 142.6, 142.3, 138.1, 137.9, 133.5, 128.7, 128.3, 128.3, 127.4, 126.4, 121.6, 118.9, 109.9, 106.7, 101.8, 61.0, 56.3, 31.4. HRMS (ESI) *m/z* calcd for C₂₄H₂₃NO₃ [M+H]⁺: 374.1751 found 374.1743.

1-Metyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2a)^[2]

White solid (38.6 mg, 75%, from **1aa**; 27.8 mg, 54%, from **1ap**); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.13 (s, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 3.96 (s, 3H) , 1.36 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 140.1, 127.9, 123.2, 121.6, 119.3, 114.3, 109.7, 83.7, 32.2, 24.8.

1,4-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2b)^[2]

White solid (34.7 mg, 64%, from **1ba**; 24.9 mg, 46%, from 1**bp**); ¹H NMR (400 MHz, CDCl₃) δ 7.24-7.20 (m, 3H), 6.94-6.92 (m, 1H), 4.01 (s, 3H), 2.61 (s, 3H), 1.42 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 131.2, 127.9, 123.5, 119.4, 112.9, 107.3, 83.7, 32.4, 24.9, 18,7.

1,5-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2c)^[2]

White solid (38.5 mg, 71%, from **1ca**; 28.7 mg, 53%, **1cp**); ¹H NMR (400 MHz, CDCl₃) δ 7.41 (s, 1H), 7.22 (d, J = 8.4 Hz, 1H), 7.08 (d, J = 8.4 Hz, 1H), 7.03 (s, 1H), 3.93 (s, 3H), 2.43 (s, 3H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 128.4, 128.1, 125.0, 121.0, 113.6, 109.3, 83.6, 32.2, 24.8, 21.3.

1,6-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2d)^[2]

White solid (33.1 mg, 61%, from **1da**; 29.8 mg, 55%, from **1dp**); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, J = 8.0 Hz, 1H), 7.15 (s, 1H), 7.11 (s, 1H), 6.95 (d, J = 8.0 Hz, 1H), 3.96 (s, 3H), 2.52 (s, 3H), 1.39 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 133.1, 125.8, 121.3, 121.2, 114.2, 109.5, 83.6, 32.1, 24.8, 22.1.

1,7-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2e)^[2]

White solid (32.5 mg, 60%, from **1ea**; 34.7 mg, 64%, from **1ep**); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (t, *J* = 4.4 Hz, 1H), 7.11 (s, 1H), 6.94-6.91 (m, 2H), 4.27 (s, 3H), 2.80 (s, 3H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 128.9, 126.0, 121.6, 119.8, 119.5, 115.0, 83.6, 35.7, 24.8, 20.4.

1,3-Dimethyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2f)^[2]

White solid (13.6 mg, 25%, from **1fa**); ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, *J* = 8.0 Hz, 1H), 7.38-7.32 (m, 2H), 7.18-7.15 (m, 1H), 4.01 (s, 3H), 2.67 (s, 3H), 1.45 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 128.5, 124.8, 123.3, 119.8, 118.5, 109.5, 83.2, 32.2, 24.9, 10.3.

5-(tert-butyl)-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (2g)

White solid (42.6 mg, 68%); ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 1.2 Hz, 1H), 7.40-7.38 (m, 1H), 7.30 (d, *J* = 8.8 Hz, 1H), 7.11 (d, *J* = 0.4 Hz, 1H), 3.97 (s, 3H), 1.41 (s, 9H), 1.39 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 142.1, 138.5, 127.7, 121.7, 117.1, 114.3, 109.1, 83.6, 34.5, 32.2, 31.9, 24.8. HRMS (ESI) *m*/*z* calcd for C₁₉H₂₈BNO₂ [M+H]⁺: 314.2286 found 314.2289.

5-Methoxy-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2h)^[2]

White solid (37.9 mg, 66%, from **1ha**; 32.7 mg, 57%, from **1hf**); ¹H NMR (400 MHz, CDCl₃) δ 7.23 (d, *J* = 9.2 Hz, 1H), 7.04 (d, *J* = 7.6 Hz, 2H), 6.95-6.92 (m, 1H), 3.94 (s, 3H), 3.84 (s, 3H), 1.36 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 153.9, 135.8, 128.0, 114.3, 113.5, 110.4, 102.2, 83.6, 55.8, 32.3, 24.8.

1-methyl-5-(piperidin-1-yl)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (2i)

Light yellow solid (36.7 mg, 54%); ¹H NMR (400 MHz, CDCl₃) δ 7.22 (d, *J* = 8.8 Hz, 1H), 7.13 (s, 1H), 7.07 (d, *J* = 9.2 Hz, 1H), 7.02 (s, 1H), 3.91 (s, 3H), 3.07 (t, *J* = 4.8 Hz, 4H), 1.76 (s, 4H), 1.56 (d, *J* = 1.2 Hz, 2H), 1.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 146.8, 136.2, 128.2, 118.5, 113.7, 110.0, 108.3, 83.5, 53.5, 32.3, 26.4, 24.8, 24.3. HRMS (ESI) *m*/*z* calcd for C₂₀H₂₉BN₂O₂ [M+H]⁺: 341.2395 found 341.2399.

1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trifluoromethyl)-1H-indole (2j)

White solid (41.0 mg, 63%, from **1ja**; 24.7 mg, 38%, from **1jp**); ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 1H), 7.44 (dd, $J_1 = 34.0$ Hz, $J_2 = 8.8$ Hz, 2H), 7.22 (s, 1H), 4.00 (s, 3H), 1.39 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 141.3, 127.2, 125.6 (q, J = 272.0 Hz), 121.8 (q, J = 31.0 Hz), 119.8 (q, J = 4.0 Hz), 119.5 (q, J = 5.0 Hz), 115.2, 110.1, 84.2, 32.6, 25.0. HRMS (ESI) m/z calcd for C₁₆H₁₉BF₃NO₂ [M+H]⁺: 326.1534 found 326.1537.

5-Fluoro-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2k)^[2]

White solid (34.1 mg, 62%, from **1ka**; 27.0 mg, 49%, from **1kp**); ¹H NMR (400 MHz, CDCl₃) δ 7.29-7.22 (m, 2H), 7.08 (s, 1H), 7.02 (td, $J_1 = 9.2$ Hz, $J_2 = 2.4$ Hz, 1H), 3.96 (s, 3H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 157.7 (d, J = 233.0 Hz), 136.9, 127.8 (d, J = 10.0 Hz), 113.8 (d, J = 5.0 Hz), 111.9 (d, J = 27.0 Hz), 110.3 (d, J = 9.0 Hz), 105.7 (d, J = 23.0 Hz), 83.8, 32.4, 24.8.

5-Chloro-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (21)^[2]

White solid (35.0 mg, 60%, from **1la**; 23.3 mg, 40%, from **1lp**); ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 1.2 Hz, 1H), 7.23 (d, *J* = 8.8 Hz, 1H), 7.19-7.16 (m, 1H), 7.04 (s, 1H), 3.93 (s, 3H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 128.7, 125.0, 123.4, 120.7, 113.5, 110.7, 83.9, 32.4, 24.8.

5-Bromo-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2m)^[2]

White solid (48.2 mg, 72%); ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.32 (d, *J* = 8.8 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 1H), 7.05 (s, 1H), 3.95 (s, 3H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 129.4, 125.9, 123.8, 113.4, 112.6, 111.1, 83.9, 32.4, 24.8.

5-iodo-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (2n)

Light yellow solid (40.6 mg, 53%); ¹H NMR (400 MHz, CDCl₃) δ 7.97 (s, 1H), 7.48 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 8.8 Hz, 1H), 7.02 (s, 1H), 3.94 (s, 3H), 1.37 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 131.3, 130.4, 130.3, 113.2, 111.6, 83.9, 82.8, 32.3, 24.8. HRMS (ESI) m/z calcd for C₁₅H₁₉BINO₂ [M+H]⁺: 384.0625 found 384.0629.

1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-(trimethylsilyl)-1H-indole (20)

White solid (35.6 mg, 54%, from **10a**; 30.3 mg, 46%, from **10p**); ¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.36 (dd, $J_1 = 24.0$ Hz, $J_2 = 8.4$ Hz, 1H), 7.10 (s, 1H), 3.94 (s, 3H), 1.36 (s, 12H), 0.29 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 140.6, 129.3, 127.7, 127.2, 123.1, 114.3, 109.2, 83.6, 32.1, 24.8, -0.7. HRMS (ESI) m/z calcd for C₁₈H₂₈BNO₂Si [M+H]⁺: 330.2055 found 330.2059.

1-methyl-2,5-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (2p)

White solid (43.7 mg, 57%); ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.17 (s, 1H), 3.40 (s, 3H), 1.38 (s, 24H); ¹³C NMR (100 MHz, CDCl₃) δ 142.0, 129.7, 129.1, 127.6, 115.1, 109.0, 83.7, 83.4, 32.2, 24.9, 24.8. HRMS (ESI) m/z calcd for C₂₁H₃₁B₂NO₄ [M+H]⁺: 384.2512 found 384.2519.

5-Phenyl-1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H***-indole (2q)**^[2]

White solid (44.65 mg, 67%, from **1qa**; 33.4 mg, 51%, from **1qp**); ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 0.8 Hz, 1H), 7.68-7.66 (m, 2H), 7.56-7.53 (m, 1H), 7.46-7.40 (m, 3H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.19 (s, 1H), 4.01 (s, 3H), 1.39 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 139.7, 132.7, 128.6, 128.3, 127.3, 126.2, 123.1, 119.9, 114.6, 109.9, 83.7, 32.3, 24.8.

1-Butyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2r)^[2]

White solid (41.9 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 1H), 7.43 (d, *J* = 8.4 Hz, 1H), 7.33-7.29 (m, 1H), 7.22 (s, 1H), 7.16-7.12 (m, 1H), 4.49 (t, *J* = 8.8 Hz, 1H), 1.87-1.79 (m, 1H), 1.43 (s, 12H), 1.43-1.35 (m, 2H), 1.00 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 128.1, 123. 0, 121.7, 119.2, 114.5, 110.0, 83.6, 45.9, 33.2, 24.8, 20.3, 13.9.

1-Benzyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (2s)^[2]

White solid (44.7 mg, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, *J* = 8.0 Hz, 1H), 7.29 (d, *J* = 8.4 Hz, 1H), 7.22-7.13 (m, 5H), 7.08-7.03 (m, 3H), 5.65 (s, 2H), 1.26 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 139.9, 139.3, 128.3, 128.2, 126.9, 126.5, 123.4, 121.7, 119.6, 115.1, 110.3, 83.8, 49.0, 24.7.

2-hexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3b)^[23]

3b

Colourless oil (23.3 mg, 55%); ¹H NMR (400 MHz, CDCl₃) δ 1.42-1.37 (m, 2H), 1.32-1.26 (m, 6H), 1.24 (s, 12H), 0.89-0.85 (m, 3H), 0.79-0.75 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 82.8, 32.1, 31.6, 24.8, 23.9, 22.6, 14.1.

2-benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane(3c)^[24]

Ph

3c

Colourless oil (27.0 mg, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.23-7.08 (m, 5H), 2.28 (s, 2H), 1.21 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 129.0, 128.3, 124.8, 83.4, 24,8.

2-cyclohexyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3d)^[24]

Colourless oil (8.8 mg, 21%); ¹H NMR (400 MHz, CDCl₃) δ 1.67-1.58 (m, 4H), 1.35-1.29 (m, 6H), 1.23 (s, 12H), 0.99-0.95 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 82.7, 28.0, 27.1, 26.8, 24.7.

4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaborolane (3f)^[25]

White solid (25.3 mg, 62%); ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.57-7.46 (m, 3H), 1.43 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 131.2, 127.6, 83.5, 24.8.

4,4,5,5-tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (3g)^[25]

White solid (29.2 mg, 67%); ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 6.4 Hz, 2H), 7.14 (d, *J* = 7.2 Hz, 2H), 2.31 (s, 3H), 1.29 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 134.9, 128.5, 83.4, 24.8, 21.7.

4,4,5,5-tetramethyl-2-(m-tolyl)-1,3,2-dioxaborolane (3h)^[25]

White solid (25.3 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.59 (m, 2H), 7.28-7.25 (m, 2H), 2.35 (s, 3H), 1.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 135.4, 132.1, 131.8, 127.7, 83.7, 24.9, 21.3.

4,4,5,5-tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane (3i) [25]

White solid (17.0 mg, 39%); ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.76 (m, 1H), 7.31-7.27 (m, 1H), 7.16-7.13 (m, 2H), 2.54 (s, 3H), 1.31 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 136.1, 130.9, 129.9, 124.8, 83.5, 25.0, 22.4.

2-(4-(tert-butyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3j)^[26]

White solid (36.4 mg, 70%); ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.76 (d, *J* = 8.4 Hz, 2H), 7.41-7.39 (d, *J* = 8.4 Hz, 2H), 1.33-1.32 (m, 21H); ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 134.8, 124.7, 83.6, 34.9, 31.3, 24.9.

trimethyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)silane (3k)^[27]

White solid (34.8 mg, 63%); ¹H NMR (400 MHz, CDCl₃) δ 7.80-7.78 (d, *J* = 7.6 Hz, 2H), 7.54-7.52 (d, *J* = 7.6 Hz, 2H), 1.34 (s, 12H), 0.26 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 145.5, 135.1, 133.9, 85.0, 26.1, 0.00.

2-(4-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31)^[25]

White solid (28.4 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 7.85-7.82 (m, 2H), 7.08-7.04 (m, 2H), 1.33 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 165.2 (d, *J* = 248.0 Hz), 137.1 (d, *J* = 8.0 Hz), 114.8 (d, *J* = 20.0 Hz), 83.8, 24.8.

4,4,5,5-tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane (3m)^[25]

White solid (35.9 mg, 66%); ¹H NMR (400 MHz, CDCl₃) δ 7.96 (m, 2H), 7.63 (m, 2H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 135.3, 133.0 (q, *J* = 32.0 Hz), 124.4 (q, *J* = 274.0 Hz), 124.4 (q, *J* = 4.0 Hz), 84.3, 24.8.

2-([1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3n)^[28]

White solid (36.4 mg, 65%); ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.89 (m, 2H), 7.61-7.59 (m, 4H), 7.43-7.39 (m, 2H), 7.34-7.30 (m, 1H), 1.34 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 141.1, 135.4, 128.9, 127.7, 127.3, 126.6, 83.9, 25.0.

4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (30)^[25]

White solid (32.5 mg, 64%); ¹H NMR (400 MHz, CDCl₃) δ 8.43 (s, 1H), 7.93-7.85 (m, 4H), 7.55-7.48 (m, 2H), 1.42 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 135.2, 133.0, 130.5, 127.8, 127.1, 127.1, 125.9, 84.0, 25.1.

4,4,5,5-tetramethyl-2-(3,4,5-trimethoxyphenyl)-1,3,2-dioxaborolane (3p)^[29]

White solid (32.9 mg, 56%); ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 2H), 3.91 (s, 6H), 3.87 (s, 3H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 140.8, 111.3, 83.9, 60.8, 56.2, 24.9.

2-(cyclopropylmethyl)-1-methyl-1H-indole (1aq)

Yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.27-7.22 (m, 1H), 7.17-7.13 (m, 1H), 7.08-7.05 (m, 1H), 6.39 (s, 1H), 3.65 (s, 3H), 2.67 (d, *J* = 6.8 Hz, 2H), 1.13-1.09 (m, 1H), 0.62-0.58 (m,

2H), 0.25-0.21 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 137.4, 127.9, 120.5, 119.8, 119.2, 108.7, 99.1, 31.6, 29.5, 9.6, 4.8. HRMS (ESI) *m*/*z* calcd for C₁₁H₁₅N [M+H]⁺: 186.1269 found 186.1267.

4,4,5,5-tetramethyl-2-propyl-1,3,2-dioxaborolane (3r)^[30]

Bpin

3r

Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.39-1.30 (m, 2H), 1.14 (s, 12H), 0.82 (t, *J* = 7.2 Hz, 3H), 0.66 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 82.6, 24.7, 17.3, 16.7.

2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3r')^[31]

Bpin 3r'

Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.21 (s, 12H), 1.06-1.00 (m, 1H), 0.95 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 82.7, 24.6, 17.9.

2-isobutyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3s)^[32]

3s

Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.83-1.73 (m, 1H), 1.17 (s, 12H), 0.85 (d, *J* = 6.8 Hz, 6H), 0.65 (d, *J* = 6.8 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 82.6, 25.1, 24.7, 14.0.

2-(tert-butyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (3e)^[33]

Bpin

3e

Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 1.15 (s, 12H), 0.86 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 82.7, 26.8, 24.5.

2-(4-methoxybenzyl)-1-(methyl-d3)-1H-indole (1tu)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.0 Hz, 1H), 7.26-7.23 (m, 1H), 7.16-7.07 (m, 4H), 6.84-6.82 (m, 2H), 6.25 (s, 1H), 4.07 (s, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.2, 139.6, 137.6, 130.4, 129.5, 127.7, 120.8, 120.0, 119.3, 113.9, 108.8, 100.9, 55.3, 32.6. HRMS (ESI) *m*/*z* calcd for C₁₇H₁₄D₃NO [M+H]⁺: 255.1560 found 255.1559.

1-methyl-2-(4-(trifluoromethyl)benzyl)-1H-indole (1at)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.61-7.57 (m, 3H), 7.33-7.29 (m, 3H), 7.24-7.21 (m, 1H), 7.15-7.12 (m, 1H), 6.31 (s, 1H), 4.21 (m, 2H), 3.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 138.0, 137.8, 129.0, 129.0 (q, *J* = 32.0 Hz), 127.8, 125.6 (q, *J* = 4.0 Hz), 124.4 (q, *J* = 270.0 Hz), 121.3, 120.3, 119.7, 109.1, 101.6, 33.3, 29.8. HRMS (ESI) *m/z* calcd for C₁₇H₁₄F₃N [M+H]⁺: 290.1151 found 290.1151.

2-isopropyl-1-(methyl-d3)-1H-indole (1tw)

Colourless oil; ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.52 (m, 1H), 7.27-7.22 (m, 1H), 7.19-7.14 (m, 1H), 7.11-7.05 (m, 1H), 6.29-6.25 (m, 1H), 3.09-3.00 (m, 1H), 1.36-1.31 (m, 6H); ¹³C NMR (100 MHz,

CDCl₃) δ 147.7, 137.6, 128.0, 120.8, 120.1, 119.4, 108.9, 96.3, 26.1, 22.8. HRMS (ESI) *m*/*z* calcd for C₁₂H₁₂D₃N [M+H]⁺: 177.1454 found 177.1453.

2-methyl-1-(methyl-d3)-1H-indole(1ta)

White solid; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.6 Hz, 1H), 7.25-7.21 (m, 1H), 7.16-7.12 (m, 1H), 7.07-7.04 (m, 1H), 6.23 (s, 1H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.8, 128.0, 120.44, 119.6, 119.2, 108.7, 99.6, 12.8. HRMS (ESI) m/z calcd for C₁₀H₈D₃N [M+H]⁺: 149.1153 found 149.1150.

2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)-1-methyl-1H-indole (4)^[34]

White solid (28.1 mg, 58%); ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.0 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.25-7.22 (m, 1H), 7.08-7.05 (m, 2H), 3.96 (s, 3H), 3.79 (s, 4H), 1.05 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2, 127.8, 122.7, 121.4, 119.0, 113.0, 109.5, 72.2, 32.1, 31.9, 21.9.

1-methyl-2-(4,4,6-trimethyl-1,3,2-dioxaborinan-2-yl)-1H-indole (5)

White solid (33.9 mg, 66%); ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 1H), 7.31 (d , *J* = 8.0 Hz, 1H), 7.23-7.19 (m, 1H), 7.04 (d, *J* = 9.6 Hz, 2H), 4.37 (s, 1H), 3.95 (s, 3H), 1.87 (d, *J* = 13.6 Hz, 1H), 1.63 (t, *J* = 12.4 Hz, 1H), 1.39 (s, 6H), 1.36 (d, *J* = 6.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 140.2,

127.8, 122.4, 121.2, 118.9, 112.6, 109.5, 71.4, 65.2, 46.0, 32.0, 31.3, 28.2, 23.2. HRMS (ESI) *m*/*z* calcd for C₁₅H₂₀BNO₂ [M+H]⁺: 258.1660 found 258.1663.

1,2-dimethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-indole (S2a')

White solid; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 6.8 Hz, 1H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.16-7.12 (m, 2H), 3.63 (s, 3H), 2.62 (s, 3H), 1.35 (s, 12H); ¹³C NMR (100 MHz, CDCl₃) δ 147.6, 138.0, 132.5, 121.8, 120.8, 120.1, 108.5, 82.3, 77.4, 77.1, 76.8, 29.5, 25.1, 12.7.

8. Reference

- [1] Wen, Z. Y.; Xu, J. W.; Wang, Z. W.; Qi, H.; Xu, Q. L.; Bai, Z. S.; Zhang, Q.; Bao, K.; Wu, Y. L.; Zhang, W. G.
 Eur. J. Med. Chem. 2015, 90, 184.
- [2] Zhong, Q.; Qin, S. X.; Yin, Y. Z.; Hu, J. J.; Zhang, H. Angew. Chem. Int. Ed. 2018, 57, 14891.
- [3] Matsumoto, K.; Tanaka, A.; Yuklo, I.; Hayashi, N.; Toda, M.; Bulman, R. A. Heterocycl Commun. 2003, 9, 9.
- [4] Zhang, S. L.; Yu, Z. L. Org. Biomol. Chem. 2016, 14, 10511.
- [5] Sergeev, A. G.; Artamkina, G. A.; Velezheva, V. S.; Fedorova, I. N.; Beletskaya, I. P. Russ. J. Org. Chem. 2005, 41, 860.
- [6] Liu, Y.; Yao, B.; Deng, C. L.; Tang, R. Y.; Zhang, X. G.; Li, J. -H. Org. Lett. 2011, 13, 1126.
- [7] McCall; John, M. PCT Int. Appl. 2012119046.
- [8] Feng, X. G.; Li, L. Y.; Yu, X. Q.; Yamamot, Y.; Bao, M. Catal. Today. 2016, 274, 129.
- [9] Xu, P.; Wgrthwein, E. U.; Daniliuc, C. G.; Studer, A. Angew. Chem. Int. Ed. 2017, 56, 13872.
- [10] Xie, F. C.; Zhao, H. B.; Li, D. W.; Chen, H.; Quan, H. T.; Shi, X. J.;Lou, L. G.; Hu, Y. H. J. Med. Chem., 2011, 54, 3200.
- [11] Lovinger, G. J.; Morken, J. P. J. Am. Chem. Soc. 2017, 139, 17293.
- [12] Pandya, V.; Jain, M.; Chakrabarti, G.; Soni, H.; Parmar, B.; Chaugule, B.; Patel, J.; Joshi, J.; Joshi, N.; Rath,
- A.; Raviya, M.; Shaikh, M.; Sairam, K. V. V. M.; Patel, H.; Patel, P. Bioorg. Med. Chem. Lett. 2011, 21, 5701.
- [13] Billiet, S.; Bruycker, K. D.; Driessen, F.; Goossens, H.; Speybroeck, V. V.; Winne, J.; Du Prez F. E. Nature. Chem. 2014, 6, 815.
- [14] Cano, R.; Yus, M.; Ramon, D. J. Tetrahedron. 2012, 68, 1393.
- [15] Cho, C. S.; Kim, J. H.; Choi, H-J.; Kim, T-J. Shim, S. C.; Tetrahedron Letters 2003, 44, 2975.
- [16] Yang, S. -D.; Sun, C. -L.; Fang, Z.; Li, B. -J.; Li, Y. -Z.; Shi, Z. -J. Angew. Chem. Int. Ed. 2008, 47, 1473.
- [17] Paul, A.; Seidel, D. J. Am. Chem. Soc. 2019, 141, 8778.
- [18] Ramewa, V.; He, Z. H.; Daniliuc, C. G.; Studer, A. Org. Lett. 2015, 17, 664.
- [19] Xiao, T. B.; Dong, X. C.; Zhou, L. Org. Biomol. Chem. 2013, 11, 1490.
- [20] Chen, X. H.; Zheng, G. F.; Li, Y. Y.; Song, G. Y.; Li, X. W. Org. Lett. 2017, 19, 6184.
- [21] Stymiest, J. L.; Dutheuil, G.; Mahmood, A.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2007, 46, 7491.
- [22] Clary, J. W.; Rettenmaier, T. J.; Snelling, R.; Bryks, W.; Banwell, J.; W. Wipke, W. T.; Singaram, B. J. Org. Chem. 2011, 76, 9602.

- [23] Glasspoole, B. W.; Ghozati, K.; Moir, J. W.; Crudden, C. M. Chem. Commun. 2012, 48,1230.
- [24] Bose, S. K.; Brand, S.; Omoregie, H. O.; Haehnel, M.; Maier, J.; Bringmann, G.; Marder, T. D. ACS Catal.2016, 6, 8332.
- [25] Verma, P. K.; Mandal, S.; Geetharani, K. ACS Catal. 2018, 8, 4049.
- [26] Tan, P. W.; Haughey, M.; Dixon, D. J.; Chem. Commun. 2015, 51, 4406.
- [27] Xie, J.; Sekine, K.; Witzel, S.; Kr ämer, P.; Rudolph. M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed.2018, 57, 16648.
- [28] Uetake, Y.; Niwa, T.; Hosoya, T. Org. Lett. 2016, 18, 2758.
- [29] Wang, G. H.; Xu, L.; Li, P. F.; J. Am. Chem. Soc. 2015, 137, 8058.
- [30] Wang, D.; Xue, X. S.; Houk, K. N.; Shi, Z, Z. Angew. Chem. Int. Ed. 2018, 130, 17103.
- [31] Hesse, M. J.; Butts, C. P.; Willis, C. L.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2012, 51, 12444.
- [32] Zhou, X. F.; Wu, Y. D.; Dai, J. J.; Li, Y. J.; Huang, Y.; Xu, H, J. RSC Adv. 2015, 5, 46672.
- [33] Clary, J. W.; Rettenmaier, T. J.; Snelling, R.; Bryks, W.; Banwell, J.; Wipke, W. T.; Singaram, B. *J. Org. Chem.***2011**, *76*, 9602.
- [34] Ukai, K.; Aoki, M.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2006, 128, 8706.

9. NMR spectra of starting materials and products

Figure S10. ¹H NMR spectrum of 1ba in CDCl₃ (400 MHz)

Figure S11. ¹³C NMR spectrum of 1ba in CDCl₃ (100 MHz)

Figure S13. ¹³C NMR spectrum of 1da in CDCl₃ (100 MHz)

Figure S15. ¹³C NMR spectrum of 1ea in CDCl₃ (100 MHz)

Figure S16. ¹H NMR spectrum of 1ga in CDCl₃ (400 MHz)

Figure S17. ¹³C NMR spectrum of 1ga in CDCl₃ (100 MHz)

Figure S18. ¹H NMR spectrum of 1ia in CDCl₃ (400 MHz)

Figure S19. ¹³C NMR spectrum of 1ia in CDCl₃ (100 MHz)

Figure S21. ¹³C NMR spectrum of 1ma in CDCl₃ (100 MHz)

Figure S22. ¹H NMR spectrum of 1na in CDCl₃ (400 MHz)

Figure S23. ¹³C NMR spectrum of 1na in CDCl₃ (100 MHz)

Figure S25. ¹³C NMR spectrum of 10a in CDCl₃ (100 MHz)

Figure S26. ¹H NMR spectrum of 1pa in CDCl₃ (400 MHz)

Figure S27. ¹³C NMR spectrum of 1pa in CDCl₃ (100 MHz)

Figure S28. ¹H NMR spectrum of 1qa in CDCl₃ (400 MHz)

Figure S29. ¹³C NMR spectrum of 1qa in CDCl₃ (100 MHz)

Figure S31. ¹³C NMR spectrum of 1ra in CDCl₃ (100 MHz)

Figure S32. ¹H NMR spectrum of 1hb in CDCl₃ (400 MHz)

Figure S33. ¹³C NMR spectrum of 1hb in CDCl₃ (100 MHz)

Figure S34. ¹H NMR spectrum of 1hc in CDCl₃ (400 MHz)

Figure S35. ¹³C NMR spectrum of 1hc in CDCl₃ (100 MHz)

Figure S37. ¹³C NMR spectrum of 1hd in CDCl₃ (100 MHz)

Figure S39. ¹³C NMR spectrum of 1he in CDCl₃ (100 MHz)

Figure S41. ¹³C NMR spectrum of 1hg in CDCl₃ (100 MHz)

Figure S42. ¹H NMR spectrum of 1hh in CDCl₃ (400 MHz)

Figure S43. ¹³C NMR spectrum of 1hh in CDCl₃ (100 MHz)

Figure S44. ¹H NMR spectrum of 1hi in CDCl₃ (400 MHz)

Figure S45. ¹³C NMR spectrum of 1hi in CDCl₃ (100 MHz)

Figure S47. ¹³C NMR spectrum of 1hj in CDCl₃ (100 MHz)

Figure S49. ¹³C NMR spectrum of 1hk in CDCl₃ (100 MHz)

Figure S51. ¹³C NMR spectrum of 1hl in CDCl₃ (100 MHz)

163.75 161.29 154.47 133.77 130.89 133.77 130.89 130.89 128.98 128.98 128.98 115.62 115.62 115.62 112.40 112.03 110.41 11	55.81	31.09	
171 - VINV	Ĩ	Ĩ	

Figure S53. ¹³C NMR spectrum of 1hm in CDCl₃ (100 MHz)

Figure S54. ¹H NMR spectrum of 1hn in CDCl₃ (400 MHz)

Figure S57. ¹³C NMR spectrum of 1ho in CDCl₃ (100 MHz)

Figure S59. ¹³C NMR spectrum of 1ap in CDCl₃ (100 MHz)

153.22	141.58 138.27 137.99 128.40 127.86 121.79 120.46 120.00	109.65 106.72 101.45	61.04	31.26
1	SY N SK	121	ĪĪ	ï

Figure S61. ¹³C NMR spectrum of 1bp in CDCl₃ (100 MHz)

Figure S63. ¹³C NMR spectrum of 1cp in CDCl₃ (100 MHz)

Figure S65. ¹³C NMR spectrum of 1dp in CDCl₃ (100 MHz)

Figure S66. ¹H NMR spectrum of 1ep in CDCl₃ (400 MHz)

Figure S67. ¹³C NMR spectrum of 1ep in CDCl₃ (100 MHz)

Figure S68. ¹H NMR spectrum of 1fp in CDCl₃ (400 MHz)

Figure S69. ¹³C NMR spectrum of 1fp in CDCl₃ (100 MHz)

Figure S71. ¹³C NMR spectrum of 1hp in CDCl₃ (100 MHz)

Figure S73. ¹³C NMR spectrum of 1jp in CDCl₃ (100 MHz)

Figure S74. ¹H NMR spectrum of 1kp in CDCl₃ (400 MHz)

Figure S75. ¹³C NMR spectrum of 1kp in CDCl₃ (100 MHz)

Figure S77. ¹³C NMR spectrum of 1lp in CDCl₃ (100 MHz)

Figure S78. ¹H NMR spectrum of 1op in CDCl₃ (400 MHz)

Figure S79. ¹³C NMR spectrum of 1op in CDCl₃ (100 MHz)

Figure S80. ¹H NMR spectrum of 1qp in CDCl₃ (400 MHz)

Figure S81. ¹³C NMR spectrum of 1qp in CDCl₃ (100 MHz)

Figure S83. ¹³C NMR spectrum of 2a in CDCl₃ (100 MHz)

Figure S84. ¹H NMR spectrum of 2b in CDCl₃ (400 MHz)

Figure S85. ¹³C NMR spectrum of 2b in CDCl₃ (100 MHz)

Figure S86. ¹H NMR spectrum of 2c in CDCl₃ (400 MHz)

Figure S87. ¹³C NMR spectrum of 2c in CDCl₃ (100 MHz)

Figure S88. ¹H NMR spectrum of 2d in CDCl₃ (400 MHz)

Figure S89. ¹³C NMR spectrum of 2d in CDCl₃ (100 MHz)

Figure S90. ¹H NMR spectrum of 2e in CDCl₃ (400 MHz)

Figure S91. ¹³C NMR spectrum of 2e in CDCl₃ (100 MHz)

Figure S93. ¹³C NMR spectrum of 2f in CDCl₃ (100 MHz)

Figure S95. ¹³C NMR spectrum of 2g in CDCl₃ (100 MHz)

	- 142.06 - 138.53	~ 127.68 ~ 121.73 ~ 117.11 ~ 114.28 ~ 109.13	- 83.55	ス34.48 イ32.19 く31.86 く24.81	
^{/Bu} N 2g ^{/Bu} Bpin					

140 130 120 110 100 90 f1 (ppm) -10

Figure S96. ¹H NMR spectrum of 2h in CDCl₃ (400 MHz)

Figure S97. ¹³C NMR spectrum of 2h in CDCl₃ (100 MHz)

160 150 140 130 120 110 100 f1 (ppm) -10 220 210 200

Figure S98. ¹H NMR spectrum of 2i in CDCl₃ (400 MHz)

Figure S99. ¹³C NMR spectrum of 2i in CDCl₃ (100 MHz)

146.83	136.19	128.15	118.47 113.71 109.97 108.29	83.53	53.45	32.26 26.41 24.81 24.34
			5552		1	$\$

Figure S100. ¹H NMR spectrum of 2j in CDCl₃ (400 MHz)

Figure S101. ¹³C NMR spectrum of 2j in CDCl₃ (100 MHz)

- 141.29	/ 127.18 / 126.93 / 119.85 / 119.85 / 119.85 / 119.55 / 119.55 / 119.55 / 119.55 / 119.55 / 119.55 / 119.46 / 119.55 / 119.46 / 119.55 / 119.46 / 119.55 / 1	22 23	- 32.33	

Figure S103. ¹³C NMR spectrum of 2k in CDCl₃ (100 MHz)

^{160 150 140 130 120 110 100} f1 (ppm) -10 220 210

Figure S104. ¹H NMR spectrum of 2l in CDCl₃ (400 MHz)

Figure S105. ¹³C NMR spectrum of 2l in CDCl₃ (100 MHz)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S107. ¹³C NMR spectrum of 2m in CDCl₃ (100 MHz)

- 138.71	 ✓ 129.41 ✓ 125.91 ✓ 123.81 	∠ 113.42 √ 112.61 √ 111.10	- 83.87	32.36 24.81	
----------	--	----------------------------------	---------	----------------	--

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S108. ¹H NMR spectrum of 2n in CDCl₃ (400 MHz)

Figure S109. ¹³C NMR spectrum of 2n in CDCl₃ (100 MHz)

139.10 131.26 130.37 130.25	113.18 111.63	83.86 82.81	32.29 24.81
$\langle \vee \rangle$	52	52	

Figure S110. ¹H NMR spectrum of 20 in CDCl₃ (400 MHz)

Figure S111. ¹³C NMR spectrum of 20 in CDCl₃ (100 MHz)

160 150 140 130 120 110 100 f1 (ppm) -10 230 220 210 200

Figure S113. ¹³C NMR spectrum of 2p in CDCl₃ (100 MHz)

- 141.98	∠ 129.73 √ 129.14 \ 127.64	 <a>83.70<a>83.38	- 32.24 ∠ 24.90 ∠ 24.82

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S115. ¹³C NMR spectrum of 2q in CDCl₃ (100 MHz)

160 150 140 130 120 110 f1 (ppm) 220 210 200 -10

Figure S116. ¹H NMR spectrum of 2r in CDCl₃ (400 MHz)

Figure S117. ¹³C NMR spectrum of 2r in CDCl₃ (100 MHz)

Figure S119. ¹³C NMR spectrum of 2s in CDCl₃ (100 MHz)

Figure S120. ¹H NMR spectrum of 3b in CDCl₃ (400 MHz)

Figure S121. ¹³C NMR spectrum of 3b in CDCl₃ (100 MHz)

Figure S122. ¹H NMR spectrum of 3c in CDCl₃ (400 MHz)

Figure S123. ¹³C NMR spectrum of 3c in CDCl₃ (100 MHz)

Figure S124. ¹H NMR spectrum of 3d in CDCl₃ (400 MHz)

Figure S125. ¹³C NMR spectrum of 3d in CDCl₃ (100 MHz)

Figure S126. ¹H NMR spectrum of 3f in CDCl₃ (400 MHz)

Figure S127. ¹³C NMR spectrum of 3f in CDCl₃ (100 MHz)

230 220 210 200 190 180 170 160 150 140 130 120 110 1100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure S128. ¹H NMR spectrum of 3g in CDCl₃ (400 MHz)

Figure S129. ¹³C NMR spectrum of 3g in CDCl₃ (100 MHz)

Figure S130. ¹H NMR spectrum of 3h in CDCl₃ (400 MHz)

Figure S131. ¹³C NMR spectrum of 3h in CDCl₃ (100 MHz)

Figure S133. ¹³C NMR spectrum of 3i in CDCl₃ (100 MHz)

Figure S134. ¹H NMR spectrum of 3j in CDCl₃ (400 MHz)

Figure S135. ¹³C NMR spectrum of 3j in CDCl₃ (100 MHz)

Figure S136. ¹H NMR spectrum of 3k in CDCl₃ (400 MHz)

Figure S137. ¹³C NMR spectrum of 3k in CDCl₃ (100 MHz)

Figure S138. ¹H NMR spectrum of 3l in CDCl₃ (400 MHz)

Figure S139. ¹³C NMR spectrum of 3l in CDCl₃ (100 MHz)

^{230 220 210 200 190 180 170 160 150 140 130 120 110 1100 90 80 70 60 50 40 30 20 10 0 -10} f1 (ppm)

Figure S140. ¹H NMR spectrum of 3m in CDCl₃ (400 MHz)

Figure S141. ¹³C NMR spectrum of 3m in CDCl₃ (100 MHz)

160 150 140 130 120 110 100 f1 (ppm) -10 230 220 210 200

Figure S142. ¹H NMR spectrum of 3n in CDCl₃ (400 MHz)

Figure S143. ¹³C NMR spectrum of 3n in CDCl₃ (100 MHz)

150 140 130 120 110 100 90 f1 (ppm) -10 . 190 . 180

Figure S144. ¹H NMR spectrum of 30 in CDCl₃ (400 MHz)

Figure S145. ¹³C NMR spectrum of 30 in CDCl₃ (100 MHz)

Figure S146. ¹H NMR spectrum of 3p in CDCl₃ (400 MHz)

Figure S147. ¹³C NMR spectrum of 3p in CDCl₃ (100 MHz)

Figure S148. ¹H NMR spectrum of 1aq in CDCl₃ (400 MHz)

Figure S149. ¹³C NMR spectrum of 1aq in CDCl₃ (100 MHz)

Figure S150. ¹H NMR spectrum of 3r in CDCl₃ (400 MHz)

Figure S151. ¹³C NMR spectrum of 3r in CDCl₃ (100 MHz)

`

Figure S152. ¹H NMR spectrum of 3r' in CDCl₃ (400 MHz)

Figure S153. ¹³C NMR spectrum of 3r' in CDCl₃ (100 MHz)

Figure S154. ¹H NMR spectrum of 3s in CDCl₃ (400 MHz)

Figure S155. ¹³C NMR spectrum of 3s in CDCl₃ (100 MHz)

- 82.58

 ${<}^{25.07}_{24.67}$ - 13.97

230 220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) . 30 0 -10 90 80 70 60 50 40 20 10

Figure S156. ¹H NMR spectrum of 3e in CDCl₃ (400 MHz)

Figure S157. ¹³C NMR spectrum of 3e in CDCl₃ (100 MHz)

Figure S158. ¹H NMR spectrum of 1tu in CDCl₃ (400 MHz)

Figure S159. ¹³C NMR spectrum of 1tu in CDCl₃ (100 MHz)

Figure S161. ¹³C NMR spectrum of 1at in CDCl₃ (100 MHz)

Figure S162. ¹H NMR spectrum of 1tw in CDCl₃ (400 MHz)

Figure S163. ¹³C NMR spectrum of 1tw in CDCl₃ (100 MHz)

Figure S164. ¹H NMR spectrum of 1ta in CDCl₃ (400 MHz)

Figure S165. ¹³C NMR spectrum of 1ta in CDCl₃ (100 MHz)

Figure S166. ¹H NMR spectrum of 4 in CDCl₃ (400 MHz)

Figure S167. ¹³C NMR spectrum of 4 in CDCl₃ (100 MHz)

Figure S169. ¹³C NMR spectrum of 5 in CDCl₃ (100 MHz)

230	220	210 20	0 190	180	170	160	150 140	130	120) 110 fl (~~	100	90	80	70	60	50	40	30	20	10	0	-10
hanan da kina kanga	anti i segli pinging	trobag karjatojit populati	ny paking tu dai ging t		ding papala ta		and the second	aliyasi dashaliy			in her and the first of the	din di manu				ungender bei fi	n je stil na kr			ili min defense defe	utok parjek	ajd an ke
													1									
																			1			
			Me 5															1.1				
			N N	-Bhg																		
		\wedge	~																			
							- 140.18	/ 127.82	122.39 121.24 121.24	~ 118.90 ~ 112.62 ~ 109.45				71.38 65.20			24.00	× 31.30 × 28.17	[∼] 23.19			

Figure S170. ¹H NMR spectrum of S2a' in CDCl₃ (400 MHz)

Figure S171. ¹³C NMR spectrum of S2a' in CDCl₃ (100 MHz)

