Supporting Information

Enantioselective Palladaelectro-Catalyzed C–H Olefinations and Allylations for N–C Axial Chirality

Uttam Dhawa,^{‡a} Tomasz Wdowik,^{‡a} Xiaoyan Hou,^{‡a} Binbin Yuan,^a João C. A. Oliveira^a and Lutz Ackermann^{*ab}

> ^[a] Institut für Organische und Biomolekulare Chemie Georg-August-Universität Göttingen Tammannstraße 2, 37077 Göttingen (Germany) Fax: +49/ 551-39-6777
> ^[b] Wöhler Research Institute for Sustainable Chemistry (WISCh) Georg-August-Universität Göttingen Tammannstraße 2, 37077 Göttingen (Germany)

Table of Contents

General Remarks	S 3
General Procedure for Atroposelective electrocatalyzed C-H activation	S4
General Procedure for the Synthesis of Racemic Products	S4
Optimization Studies	S5
Characterization Data of Products	S 7
Determination of Absolute Stereochemistry	S72
On/off electricity experiment	S88
Cyclic voltammetric studies	S 90
Computational Studies	S92
References	S124
NMR-Spectra	S125

General Remarks

Catalytic reactions were carried out in an undivided electrochemical cell (10 mL) using pre-dried glassware, if not noted otherwise. Hetero-biaryl aldehydes 1 were synthesized according to a known method,¹ acrylates and malimides were used as obtained by commercial sources, acrylates 2e-2f were synthesized according to a known method.² Other chemicals were obtained from commercial sources and were used without further purification. Lithium acetate was stored in glovebox. Platinum electrodes (10 mm \times 15 mm \times 0.25 mm, 99.9%; obtained from ChemPur[®] Karlsruhe, Germany) and GF electrodes (10 mm \times 15 mm \times 6 mm, SIGRACELL[®]GFA 6 EA, obtained from SGL Carbon, Wiesbaden, Germany) were connected using stainless steel adapters. Electrocatalysis was conducted using an AXIOMET AX-3003P potentiostat in constant current mode. Yields refer to isolated compounds, estimated to be >95% pure as determined by ¹H-NMR. Chromatography: Merck silica gel 60 (40-63 µm). NMR: Spectra were recorded on a Varian Unity 300, Mercury 300, Inova 500 or Bruker Avance III 300, Bruker Avance III HD 400 and Bruker Avance III HD 500 in the solvent indicated; chemical shifts (δ) are given in ppm relative to the residual solvent peak. All IR spectra were recorded on a Bruker FT-IR Alpha device. MS: EI-MSand ESI-MS-spectra were recorded with Finnigan MAT 95, 70 eV and Finnigan LCQ; High resolution mass spectrometry (HRMS) with APEX IV 7T FTICR. M. p.: Stuart melting point apparatus SMP3, Barloworld Scientific, values are uncorrected. HPLC chromatograms were recorded on an Agilent 1290 Infinity using CHIRALPAK® IA-3, IB-3, IC-3, ID-3 and IE-3 columns (3.0 µm particle size; Ø: 4.6 mm and 250 mm length). Optical rotations were measured with Anton Paar MCP 150 at the stated temperature under a Na/Hg lamp, $\lambda = 589$ nm (c in g/100 ml). The structure of the major stereoisomer is shown.

General Procedure A: Atroposelective electrocatalyzed C–H olefinations and allylations

The electrocatalysis was carried out in an undivided cell, with a GF anode (10 mm \times 15 mm \times 6 mm) and a platinum cathode (10 mm \times 15 mm \times 0.25 mm). Hetero aryls aldehydes **1** (0.20 mmol, 1.0 equiv), alkenes (0.60 mmol, 3.0 equiv), Pd(OAc)₂ (4.49 mg, 10 mol %), L-*tert*-leucine (7.9 mg, 30 mol %) and LiOAc (26.4 mg, 2.0 equiv) were placed in a 10 mL cell and dissolved in AcOH (4.5 mL). Electrocatalysis was performed at 60 °C with a constant current of 1.0 mA maintained for 16 h. At ambient temperature, the reaction mixture was diluted with EtOAc. The GF anode was washed with EtOAc (3 \times 10 mL) in an ultrasonic bath. The washings were added to the reaction mixture and the solvents were removed *in vacuo*. The crude mixture was purified by flash column chromatography on silica gel to yield the products.

General Procedure for the Synthesis of Racemic Products

The racemic compounds were prepared using D/L-valine as transient directing group instead of L*tert*-leucine.

Optimization Studies

Table S1 Optimization of the altoposelective electrocatalyzed C-ff olemation	Table S1
--	----------

rac	H $CHO + CO_2 nBu$ H $-1a$ $2a$	GF Pt (OAc) ₂ (10 mol %) t-leucine (30 mol %) LiOAc, AcOH 60 °C, 16 h, air undivided cell cce @ 1.0 mA		1O + _{≳∕} CO₂ <i>n</i> Bu	· 1a
Entry	Deviation from standard of	conditions	Conv. (%) ^[b]	ee (3)	<i>S</i> ^[c]
1	None		42	97	138
2	L-tert-leucine diethylamic	le as TDG	23	99	264
3	L-proline as TDO	3	30 ^[d]		
4	TFE as solvent, no L	iOAc			
5	TFE/AcOH as solvent, n	o LiOAc	38	94	56
6	L-tert-leucine (20 mo	ol %)	37	97	118
7	No electricity		29	97	97
8	No palladium				
9	No L-tert-leucine	e	12 ^[d]		
10	Under O ₂ , No electr	icity	40	98	192
11	Under N ₂		26	99	280
12	1,4-Benzoquinon	e	36 ^[e]	99	347
	$H_2N \xrightarrow{fBu}_{OH}O$	H_2N H_2N NEt_2 <i>t</i> -leucine diethylam	ide L-prolin	, ОН е	

[a] Reaction conditions: Undivided cell, *rac*-1a (0.20 mmol), 2a (0.60 mmol), [Pd] (10 mol %),
L-*tert*-leucine (30 mol %), LiOAc (2.0 equiv), AcOH (4.5 mL), 60 °C, constant current at 1.0 mA,
16 h, graphite felt (GF) anode, Pt-plate cathode. [b] Calculated conversion, C = ee_{1a}/(ee_{1a} + ee_{3a}),

 $ee_{1a} = ee of 1a and ee_3 = ee of 3. [c] Selectivity (s) = ln[(1 - C)(1 - ee_{1a})]/ln[(1 - C)(1 + ee_{1a})]. [d] C-3 alkenylated product was isolated. [e] 1,4-Benzoquinone (10 mol %) as additive.$

Characterization Data of Products

(E)-Butyl-3-(1-(2-formyl-1H-indol-1-yl)naphthalen-2-yl)acrylate (3)

The general procedure A was followed using 1-(naphthalen-1-yl)-1H-indole-2-carbaldehyde (1a) (54.2 mg, 0.20 mmol) and *n*-butyl acrylate (2a) (76.9 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **3** (32.8 mg, 40%) as a yellow oil and **1a** (29.0 mg, 55%) as yellow solid. ¹H-NMR (300 MHz, CDCl₃): $\delta = 9.78$ (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 8.00–7.86 (m, 3H), 7.64 (s, 1H), 7.55 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.40–7.33 (m, 1H), 7.32– 7.25 (m, 2H), 7.16 (d, J = 16.0 Hz, 1H), 6.94 (d, J = 8.5 Hz, 1H), 6.82–6.72 (m, 1H), 6.52 (d, J = 16.0 Hz, 1H), 4.08 (t, J = 6.5 Hz, 2H), 1.57 (dq, J = 8.5, 6.5 Hz, 2H), 1.31 (h, J = 7.3 Hz, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 181.2$ (CH), 166.5 (C_a), 141.8 (C_a), 138.7 (CH), 137.7 (C_a), 135.0 (C_a), 134.1(C_a), 131.8 (C_a), 131.0 (C_a), 129.8 (CH), 128.4 (CH), 128.1 (CH), 127.9 (CH), 127.8 (CH), 126.7 (C_a), 123.7 (CH), 123.5 (CH), 123.0 (CH), 122.2 (CH), 121.6 (CH), 116.6 (CH), 111.8 (CH), 64.5 (CH₂), 30.7 (CH₂), 19.2 (CH₂), 13.8 (CH₃). IR (ATR): 2980, 1705, 1622, 1432, 1295, 1145, 752 cm⁻¹. MS (ESI) m/z (relative intensity): 420 (100) [M + Na]⁺, 398 (95) $[M + H]^+$. HR-MS (ESI): m/z calcd. for $[C_{26}H_{23}NO_3 + H]^+$ 398.1751 found 398.1753. $[\alpha]_D^{20}$: +60.3 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 31.1 min, t_r (minor) = 30.1 min, 97% ee. The analytical data correspond with those reported in the literature.³

Peak RetTime Type Width Height Area Area [mAU] % # [mAU*s] [min] [min] 29.073 BB 0.5452 1909.04663 53.90248 49.7620 1 2 30.538 BB 0.5186 1927.30591 57.27115 50.2380

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	30.141	MM	0.3878	46.42828	1.42303	1.4206
2	31.140	MM	0.6121	3221.87817	87.72165	98.5794

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

M.p.: 90–92 °C (racemic sample). ¹H-NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 8.04 (d, *J* = 8.2 Hz, 1H), 7.99 (d, *J* = 8.3 Hz, 1H), 7.87 (d, *J* = 8.2 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.59–7.48 (m, 3H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.33–7.18 (m, 2H), 7.09 (d, *J* = 8.5 Hz, 1H), 6.94–6.88 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃) (one carbon is missing due to overlap): δ = 181.6 (CH), 141.6 (C_q), 137.4 (C_q), 134.3 (C_q), 133.8 (C_q), 131.3 (C_q), 129.4 (CH), 128.4 (CH), 127.4 (CH), 127.1 (CH), 126.7 (CH), 126.4 (CH), 125.4 (CH), 123.3 (CH), 122.5 (CH), 121.8 (CH), 114.5 (CH), 111.8 (CH). IR (ATR): 2817, 1673, 798, 772, 752, 734, 484 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 294 (100) [M+Na]⁺, 272 (70) [M+H]⁺. HR-MS (ESI) *m*/*z* calc. for [C₁₉H₁₃NO + H]⁺ 272.1070, found

272.1071. $[\alpha]_D^{20}$: +78.7 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 70% ee.

(E)-tert-Butyl-3-(1-(2-formyl-1H-indol-1-yl)naphthalen-2-yl)acrylate (4)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and *t*-butyl acrylate (**2b**) (76.9 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **4** (29.1 mg, 36%) as a yellow oil and **1a** (27.0 mg, 50%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.78 (s, 1H), 8.04 (d, *J* = 8.8 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.93–7.88 (m, 2H), 7.63 (s, 1H), 7.57–7.50 (m, 1H), 7.35 (ddd, *J* = 8.1, 6.9, 1.1 Hz, 1H), 7.31–7.26 (m, 2H), 7.08 (d, *J* = 15.9 Hz, 1H), 6.92 (d, *J* = 8.5 Hz, 1H), 6.80–6.72 (m, 1H), 6.47 (d, *J* = 15.9 Hz, 1H), 1.42 (s, 9H). ¹³C-NMR (100 MHz, CDCl₃): δ = 181.2 (CH), 165.6 (Cq), 141.7 (Cq), 137.6 (Cq), 137.6 (CH), 134.8 (Cq), 133.8 (Cq), 131.7 (Cq), 131.0 (Cq), 129.6 (CH), 122.0 (CH), 127.7 (CH), 127.7 (CH), 127.6 (CH), 126.5 (Cq), 123.6 (CH), 123.3 (CH), 122.9 (CH), 125.1 H45, 752 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 420 (100) [M + Na]⁺, 398 (95) [M + H]⁺. HR-MS (ESI): *m*/*z* calcd. for [C₂₆H₂₃NO₃ + H]⁺ 398.1751 found 398.1750. [α]²⁰: +43.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 11.7 min, *t_r* (minor) = 8.3 min, 92% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.256	MM	0.2000	7415.68652	618.05219	49.6557
2	11.689	MM	0.2632	7518.53271	476.15784	50.3443

Peak RetTime Type Width Area Height Area [min] [mAU*s] [min] [mAU] % # 8.266 BB 0.1828 3077.24927 256.87393 95.7646 1 11.653 BB 2 0.3298 136.09743 5.51728 4.2354

С С СНО

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +53.2 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 57% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.776	MM	0.3152	573.27521	30.30926	21.7155
2	8.013	MM	0.3775	2066.65649	91.25343	78.2845

(E)-Diethyl-2-(1-(2-formyl-1H-indol-1-yl)naphthalen-2-yl)vinyl)phosphonate (5)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and diethyl vinylphosphonate (**2c**) (98.4 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 1:1) yielded **5** (36.0 mg, 41%) as a yellow oil and **1a** (27.0 mg, 50%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.72 (s, 1H), 8.01 (d, *J* = 8.7 Hz, 1H), 7.93 (d, *J* = 1.1 Hz, 1H), 7.87–7.83 (m, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.58 (d, *J* = 1.1 Hz, 1H), 7.50 (ddd, *J* = 8.2, 6.9, 1.1 Hz, 1H), 7.32 (ddd, *J* = 8.2, 6.9, 1.2 Hz, 1H), 7.26–7.20 (m, 2H), 6.92 (dd, *J* = 8.6, 1.2 Hz, 1H), 6.83 (dd, *J* = 22.6, 17.6 Hz, 1H), 6.74–6.67 (m, 1H), 6.26 (t, *J* = 17.6 Hz, 1H), 3.95–3.78 (m, 3H), 3.77–3.64 (m, 1H), 1.16 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.0 Hz, 3H). ¹³C-NMR (100 MHz, CDCl₃): δ = 181.0 (CH), 142.0 (*J* = 7.2 Hz, CH), 141.5 (Cq), 137.4 (Cq), 134.7 (Cq), 133.3 (Cq), 131.1 (*J* = 22.1 Hz, Cq), 129.7 (CH), 128.2 (CH), 128.0 (CH), 127.7 (CH), 126.5 (Cq), 123.5 (CH), 123.2 (CH), 122.8 (CH), 122.1 (CH), 119.0 (CH), 117.1 (CH), 116.2 (CH), 111.6 (CH), 62.0 (d, *J* = 5.4 Hz, CH₂), 61.8 (d, *J* = 5.4 Hz, CH₂), 16.2 (d, *J* = 6.6 Hz, CH₃). ³¹P-NMR (162 MHz, CDCl₃): δ = 17.8. IR (ATR): 2984, 1672, 1614, 1409, 1245, 1021, 965, 734 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 456 (50) [M + Na]⁺, 434

(100) $[M + H]^+$. HR-MS (ESI): m/z calcd. for $[C_{25}H_{24}NO_4^{31}P + H]^+$ 434.1516 found 434.1518. $[\alpha]_D^{20}$: +66.7 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 80:20, 1.0 mL/min, detection at 273 nm): t_r (major) = 13.7 min, t_r (minor) = 9.3 min, 93% ee.

1-(Naphthalen-1-yl)-1H-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +76.6 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 72% ee.

(E)-1-2-[2-(Phenylsulfonyl)vinyl]naphthalen-1-yl-1H-indole-2-carbaldehyde (6)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and phenyl vinyl sulfone (**2d**) (100.8 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 3:1) yielded **6** (27.0 mg, 31%) as a yellow oil and **1a** (30.0 mg, 56%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.71 (s, 1H), 7.99 (d, *J* = 8.7 Hz, 1H), 7.90 (ddt, *J* = 12.0, 8.0, 1.0 Hz, 2H), 7.69 (d, *J* = 8.7 Hz, 1H), 7.62–7.56 (m, 3H), 7.56–7.49 (m, 2H), 7.45–7.38 (m, 2H), 7.33 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.29–7.21 (m, 2H), 7.05 (d, *J* = 15.5 Hz, 1H), 6.93 (dq, *J* = 8.6, 0.9 Hz, 1H), 6.72 (d, *J* = 15.5 Hz, 1H), 6.64 (dq, *J* = 7.8, 0.9 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ = 180.8 (CH), 141.7 (Cq), 140.0 (Cq), 137.3 (Cq), 137.2 (CH), 135.1 (Cq), 134.8 (Cq), 133.3 (CH), 131.5 (Cq), 130.8 (CH), 129.8 (CH), 129.2 (CH), 128.9 (Cq), 123.2 (CH), 128.2 (CH), 128.0 (CH), 127.7 (CH), 126.5 (Cq), 123.7 (CH), 123.4 (CH), 123.2 (CH), 117.3 (CH), 111.5 (CH). IR (ATR): 3033, 1738, 1673, 1611, 1306, 1146, 745 cm⁻¹. MS (ESI) *m/z* (relative intensity): 460 (100) [M + Na]⁺, 438 (60) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₇H₁₉NO₃S + H]⁺ 438.1158 found 438.1155. [α]²⁰_D: +7.2 (c = 0.4, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 80:20, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 17.5 min, *t_r* (minor) = 25.4 min, 97% ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +49.5 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 60% ee.

(*E*)-4-Methoxyphenyl-3-(1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)acrylate (7):

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and 4-methoxyphenyl acrylate (**2e**) (115.2 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **7** (36.0 mg, 40%) as a yellow oil and **1a** (22.1 mg, 41%) as yellow solid. ¹H-NMR (600 MHz, CDCl₃): δ = 9.79 (s, 1H), 8.09–8.04 (d, *J* = 8.2 Hz, 1H), 7.98–7.93 (m, 2H), 7.89 (ddd, *J* = 7.8, 1.4 Hz, 1H), 7.62 (d, *J* = 0.9 Hz, 1H), 7.54 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.36–7.31 (m, 2H), 7.30 (ddd, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.28–7.24 (m, 1H), 6.99–6.94 (m, 2H), 6.90 (dd, *J* = 8.6, 1.0 Hz, 1H), 6.85 (d, *J* = 9.1 Hz, 2H), 6.77 (dq, *J* = 8.2, 1.0 Hz, 1H), 6.67 (d, *J* = 15.9 Hz, 1H), 3.78 (s, 3H). ¹³C-NMR (150 MHz, CDCl₃): δ = 181.1 (CH), 165.1 (Cq), 157.1 (Cq), 144.1 (Cq), 141.8 (Cq), 140.4 (CH), 137.5 (Cq), 135.0 (Cq), 134.4 (Cq), 131.6 (Cq), 130.5 (Cq), 129.7 (CH), 128.3 (CH), 128.0 (CH), 127.9 (CH), 127.8 (CH), 126.5

(C_q), 123.6 (CH), 123.4 (CH), 122.9 (CH), 122.2 (CH), 122.1 (CH), 120.5 (CH), 116.9 (CH), 114.3 (CH), 111.6 (CH), 55.5 (CH₃). IR (ATR): 2930, 1722, 1671, 1612, 1504, 1408, 1193, 752 cm⁻¹. MS (ESI) m/z (relative intensity): 470 (100) [M + Na]⁺, 448 (50) [M + H]⁺. HR-MS (ESI): m/z calcd. for [C₂₉H₂₁NO₄ + H]⁺ 448.1543 found 448.1546. [α]²⁰_D: +105.5 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 26.5 min, t_r (minor) = 23.9 min, 92% ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +57.4 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 77% ee.

(E)-4-Bromophenyl 3-[1-(2-formyl-1H-indol-1-yl)naphthalen-2-yl]acrylate (8)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and 4-bromophenyl acrylate (**2f**) (136.2 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 10:1) yielded **8** (34.0 mg, 34%) as a yellow oil and **1a** (28.0 mg, 52%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.79 (s, 1H), 8.07 (d, *J* = 8.8 Hz, 1H), 7.99–7.92 (m, 2H), 7.91–7.87 (m, 1H), 7.62 (d, *J* = 1.2 Hz, 1H), 7.55 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.45 (d, *J* = 9.0 Hz, 2H), 7.37–7.31 (m, 2H), 7.30–7.23 (m, 2H), 6.93 (d, *J* = 9.0 Hz, 2H), 6.89 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.79–6.72 (m, 1H), 6.64 (d, *J* = 15.9 Hz, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ = 181.1 (CH), 164.4 (Cq), 149.6 (Cq), 141.8 (Cq), 141.1 (CH), 137.6 (Cq), 135.1 (Cq), 134.7 (Cq), 132.3 (CH), 131.6 (Cq), 130.4 (Cq), 129.8 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 127.9 (CH), 126.5 (Cq), 123.6 (CH). IR (ATR): 3061, 1732, 1672, 1613, 1482, 1198, 752 cm⁻¹. MS (ESI) *m/z* (relative intensity): 518 (80) [M + Na]⁺, 496 (100) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₈H₁₈NO₃⁷⁹Br + H]⁺ 496.0543 found 496.0542. [α]²⁰_D: +70.7 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 19.2 min, *t_r* (minor) = 20.7 min, 99% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.194	MF	0.5919	5895.94971	166.01936	99.6586
2	20.714	FM	0.3038	20.19699	1.10794	0.3414

С сно

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +51.1 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.0 min, t_r (minor) = 6.8 min, 57% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.769	MM	0.3178	2889.17456	151.52682	50.3597
2	8.007	MM	0.3590	2847.90430	132.21581	49.6403

(E)-4-Bromophenyl-3-(1-(2-formyl-5-methyl-1H-indol-1-yl)naphthalen-2-yl)acrylate (9):

The general procedure **A** (reaction time = 20 h) was followed using 5-methyl-1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1b**) (57.1 mg, 0.20 mmol) and 4-bromophenyl acrylate (**2f**) (136.2 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **9** (30.3 mg, 30%) as a yellow oil and **1b** (23.4 mg, 41%) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): δ = 9.75 (s, 1H), 8.05 (d, *J* = 8.7 Hz, 1H), 7.98–7.94 (m, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.65 (dq, *J* = 2.3, 1.2 Hz, 1H), 7.57–7.50 (m, 2H), 7.48–7.41 (m, 2H), 7.37–7.29 (m, 2H), 7.12 (ddd, *J* = 8.6, 1.7, 0.5 Hz, 1H), 6.96–6.88 (m, 3H), 6.67–6.60 (m, 2H), 2.47 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃): δ = 181.0 (CH), 164.4 (C_q), 149.6 (C_q), 141.2 (CH), 140.4 (C_q), 137.6 (C_q), 135.1 (C_q), 134.8 (C_q), 132.3 (CH), 131.6 (C_q), 130.3 (C_q), 129.9 (CH), 129.7 (CH), 128.3 (CH), 128.1 (CH), 128.0 (CH), 126.8 (C_q), 123.5 (CH), 123.3 (CH), 123.2 (C_q), 122.9 (CH), 122.8 (CH), 119.8 (CH), 118.8 (C_q), 116.5 (CH), 111.3 (CH), 21.4 (CH₃). IR (ATR): 2923, 1732, 1672, 1482, 1198, 1164, 1134 cm⁻¹. MS (ESI) *m/z* (relative intensity): 512 (40) [M+H]⁺, 310 (70), 288 (100). HR-MS (ESI): *m/z* calcd. for [C₂₉H₂₀NO₃⁷⁹Br + H]⁺ 510.0699 found 510.0701. [α]²⁰: +72.5 (c = 0.8, CHCl₃). HPLC separation (Chiralpak[®] ID-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 24.8 min, t_r (minor) = 32.2 min, 98% ee.

5-Methyl-1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1b)

¹H-NMR (400 MHz, CDCl₃): $\delta = 9.71$ (s, 1H), 8.03 (d, J = 8.3 Hz, 1H), 7.98 (d, J = 8.3 Hz, 1H), 7.66–7.57 (m, 2H), 7.56–7.49 (m, 2H), 7.48 (d, J = 0.9 Hz, 1H), 7.36 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.11 (dd, J = 8.6, 1.4 Hz, 2H), 6.81 (d, J = 8.6 Hz, 1H), 2.47 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 181.6$ (CH), 140.2 (Cq), 137.4 (Cq), 134.3 (Cq), 133.9 (Cq), 131.3 (Cq), 131.2 (Cq), 129.3 (CH), 129.2 (CH), 128.4 (CH), 127.3 (CH), 126.7 (CH), 126.6 (Cq), 126.3 (CH), 125.4 (CH), 122.5 (CH), 122.4 (CH), 113.9 (CH), 111.5 (CH), 21.4 (CH₃). IR (ATR): 3052, 2792, 1676, 1528, 1410, 774 cm⁻¹MS (ESI) m/z (relative intensity): 308 (70) [M+Na]⁺, 286 (100). HR-MS (ESI): m/z calcd. for [C₂₀H₁₅NO + H]⁺ 286.1226 found 286.1224. [α]_D²⁰: +43.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.5 min, t_r (minor) = 7.3 min, 47% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.266	BV	0.2591	1826.17310	95.51523	26.3727
2	8.522	VB	0.3195	5098.30518	215.14488	73.6273

(E)-Butyl 3-(1-(2-formyl-5-methyl-1H-indol-1-yl)naphthalen-2-yl)acrylate (10)

The general procedure A (reaction time = 20 h) was followed using 5-methyl-1-(naphthalen-1-yl)-1H-indole-2-carbaldehyde (1b) (57.1 mg, 0.20 mmol) and n-butyl acrylate (2a) (76.9 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **10** (19.1 mg, 23%) as a yellow oil and **1b** (25.0 mg, 44%) as a yellow oil. ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.72$ (s, 1H), 8.01 (d, J = 8.8 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.7 Hz, 1H), 7.68–7.62 (m, 1H), 7.57–7.48 (m, 2H), 7.33 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.18–7.08 (m, 2H), 6.92 (dd, J = 8.5, 1.0 Hz, 1H), 6.64 (d, J = 8.6 Hz, 1H), 6.48 (d, J = 15.9 Hz, 1H), 4.06 (td, J = 6.6, 0.9 Hz, 2H), 2.47 (s, 3H), 1.57–1.49 (m, 2H), 1.32–1.23 (m, 2H), 0.88 (t, J = 7.4 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃): $\delta = 181.0$ (CH), 166.4 (CH), 140.3 (Cq), 138.6 (Cq), 137.6 (Cq), 134.8 (Cq), 134.1 (Cq), 131.7 (C_q), 131.5 (C_q), 130.8 (C_q), 129.8 (CH), 129.5 (CH), 128.2 (CH), 127.9 (CH), 127.6 (CH), 126.8 (C_q), 123.4 (CH), 122.9 (CH), 122.7 (CH), 121.4 (CH), 115.9 (CH), 111.3 (CH), 64.4 (CH₂), 30.6 (CH₂), 21.4 (CH₃), 19.1 (CH₂), 13.7 (CH₃). IR (ATR): 2958, 1711, 1672, 1175 cm⁻¹. MS (ESI) *m/z* (relative intensity): 840 (50), 434 (60) [M+Na]⁺, 412 (100) [M+H]⁺. HR-MS (ESI): *m/z* calcd. for $[C_{27}H_{25}NO_3 + H]^+$ 412.1907 found 412.1908. $[\alpha]_D^{20}$: +85.7 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] ID-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): *t_r* (major) $= 21.5 \text{ min}, t_r (\text{minor}) = 23.3 \text{ min}, 98\% \text{ ee.}$

5-Methyl-1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1b)

 $[\alpha]_D^{20}$: +46.7 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.8 min, t_r (minor) = 7.5 min, 40% ee.

(*E*)-Diethyl {2-[1-(2-formyl-5-methyl-1*H*-indol-1-yl)naphthalen-2-yl]vinyl}phosphonate (11) The general procedure **A** (reaction time = 20 h) was followed using 5-methyl-1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1b) (57.1 mg, 0.20 mmol) and diethyl vinylphosphonate (2c) (98.4 mg,

0.60 mmol). Isolation by column chromatography (n-hexane/EtOAc = 9:1 to EtOAc) yielded 11 (34.7 mg, 39%) as a colorless oil and **1b** (25.0 mg, 45%) as a vellow oil. ¹H-NMR (600 MHz, CDCl₃): $\delta = 9.71$ (s, 1H), 8.02 (d, J = 8.6 Hz, 1H), 7.94 (d, J = 8.3 Hz, 1H), 7.83 (d, J = 8.7 Hz, 1H), 7.63 (dt, J = 1.7, 0.9 Hz, 1H), 7.55 – 7.47 (m, 2H), 7.34 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.09 (ddd, J = 8.6, 1.7, 0.6 Hz, 1H), 6.95 (dd, J = 8.5, 1.0 Hz, 1H), 6.85 (dd, J = 22.6, 17.6 Hz, 1H),6.63 (d, J = 8.5 Hz, 1H), 6.27 (t, J = 17.7 Hz, 1H), 3.94–3.81 (m, 3H), 3.79–3.69 (m, 1H), 2.45 (s, 3H), 1.19 (td, J = 7.1, 0.5 Hz, 3H), 1.08 (td, J = 7.1, 0.6 Hz, 3H). ¹³C-NMR (150 MHz, CDCl₃): δ = 180.9 (CH), 142.2 (d, J = 7.2 Hz, CH), 140.1 (C_q), 137.5 (C_q), 134.7 (C_q), 133.5 (C_q), 131.63 (d, J = 1.6 Hz, C_a), 131.57 (C_a), 131.1 (d, J = 22.9 Hz, C_a), 129.7 (d, J = 21.1 Hz, CH), 128.2 (CH), 128.0 (CH), 127.7 (CH), 126.8 (C_q), 123.3 (CH), 122.8 (CH), 122.6 (CH), 118.6 (CH), 117.3 (CH), 115.7 (CH), 111.3 (CH), 62.0 (d, J = 5.5 Hz, CH₂), 61.9 (d, J = 5.7 Hz, CH₂), 21.3 (CH₃), 16.2 (d, J = 6.7 Hz, CH₃), 16.0 (d, J = 6.7 Hz, CH₃). ³¹P-NMR (243 MHz, CDCl₃): $\delta = 17.8$. IR (ATR): 2982, 1672, 1247, 1049, 1023, 964 cm⁻¹. MS (ESI) *m/z* (relative intensity): 448 (80) [M+H]⁺, 165 (100). HR-MS (ESI): m/z calcd. for $[C_{26}H_{26}NO_4^{31}P + H]^+ 448.1672$ found 448.1672. $[\alpha]_D^{20}$: +86.4 (c = 0.9. CHCl₃). HPLC separation (Chiralpak[®] ID-3, *n*-hexane/*i*-PrOH 70:30, 1.0 mL/min, detection at 280 nm): t_r (major) = 18.7 min, t_r (minor) = 23.5 min, 96% ee.

5-Methyl-1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1b)

 $[\alpha]_D^{20}$: +43.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 8.9 min, t_r (minor) = 7.5 min, 45% ee.

1-[2-(1-Methyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)naphthalen-1-yl]-1*H*-indole-2carbaldehyde (13)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and *N*-methylmaleimide (**12a**) (66.6 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **13** (33.0 mg, 34%) as a yellow oil and **1a** (22.0 mg, 40%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.76 (s, 1H), 8.15–8.06 (m, 2H), 8.00–7.92 (m, 1H), 7.88–7.82 (m, 1H), 7.58 (s, 1H), 7.54 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.33 (ddd, *J* = 8.3, 6.8, 1.2 Hz, 1H), 7.28–7.20 (m, 2H), 6.83 (dd, *J* = 8.5, 1.2 Hz, 1H), 6.76–6.67 (m, 1H), 5.48 (s, 1H), 2.94 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) (one carbon is missing due to overlap): δ = 181.0 (CH), 170.3 (C_q), 170.1 (C_q), 141.0 (C_q), 140.7 (C_q), 136.6 (C_q), 134.9 (C_q), 134.0 (C_q), 131.5 (C_q), 129.2 (CH), 128.3 (CH), 128.1 (CH), 128.1 (CH), 128.0 (CH), 127.5 (CH), 126.5 (CH), 125.7 (C_q), 123.7 (CH), 123.1 (CH), 122.4 (CH), 117.3 (CH), 111.4 (CH), 24.0 (CH₃). IR (ATR): 2925, 1704, 1674, 1438, 1384, 751 cm⁻¹. MS (ESI) *m/z* (relative intensity): 403 (100) [M + Na]⁺, 381 (25) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₄H₁₆N₂O₃ + H]⁺ 381.1234 found 381.1234.

 $[\alpha]_D^{20}$: -9.0 (c = 0.5, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 19.6 min, t_r (minor) = 21.5 min, 97% ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +51.9 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 7.9 min, 55% ee.

1-[2-(1-Methyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)naphthalen-1-yl]-1*H*-indole-2carbaldehyde (13)

A modified procedure **A** was followed using L-*tert*-leucine diethylamide (11.2 mg, 30 mol %) as TDG. Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **13** (15.0 mg, 20%) as a yellow oil and **1a** (33.0 mg, 60%) as yellow solid. $[\alpha]_D^{20}$: -9.8 (c = 0.50, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 19.0 min, t_r (minor) = 21.0 min, 99% ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +20.7 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.6 min, t_r (minor) = 8.0 min, 32% ee.

1-[2-(1-Cyclohexyl-2,5-dioxo-2,5-dihydro-1*H*-pyrrol-3-yl)naphthalen-1-yl]-1*H*-indole-2carbaldehyde (14)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and N-cyclohexylmaleimide (12b) (107.5 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded 14 (18.8 mg, 21%) as a yellow solid. M.p.: 215-217 °C. 1a was isolated as a mixture (91.7 mg) with Ncyclohexylmaleimide (calculated yield based on NMR integration: 35%). ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.77$ (s, 1H), 8.10 (s, 2H), 7.98 (d, J = 8.2 Hz, 1H), 7.90–7.80 (m, 1H), 7.62–7.51 (m, 2H), 7.35 (ddd, J = 8.2, 6.9, 1.3 Hz, 1H), 7.31–7.19 (m, 2H), 6.90 (d, J = 8.5 Hz, 1H), 6.76–6.68 (m, 1H), 5.50 (s, 1H), 3.82 (tt, J = 12.3, 3.9 Hz, 1H), 2.07–1.87 (m, 2H), 1.84–1.74 (m, 2H), 1.67– 1.48 (m, 3H), 1.34–1.09 (m, 3H). ¹³C-NMR (101 MHz, CDCl₃): $\delta = 181.0$ (CH), 170.1 (C_q), 140.6 (C_a), 140.6 (C_a), 136.8 (C_a), 134.8 (C_a), 133.8 (C_a), 131.6 (C_a), 129.1 (CH), 128.2 (CH), 128.0 (CH), 127.98 (CH), 127.96 (CH), 127.6 (CH), 126.5 (CH), 126.5 (C_a), 125.9 (C_a), 123.7 (CH), 123.1 (CH), 122.3 (CH), 117.0 (CH), 111.4 (CH), 51.0 (CH), 29.8 (CH₂), 29.7 (CH₂), 25.9 (CH₂), 25.0 (CH₂). IR (ATR): 2933, 1701, 1676, 1398, 1376, 737 cm⁻¹.MS (ESI) *m/z* (relative intensity): 471 (100) $[M + Na]^+$, 449 (90) $[M + H]^+$, 352 (100), 288 (100). HR-MS (ESI): m/z calcd. for $[C_{29}H_{24}N_2O_3 + H]^+$ 449.1860 found 449.1849. $[\alpha]_D^{20}$: +10.0 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): t_r (major) = 12.5 min, t_r (minor) = 11.3 min, 98% ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +39.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.2 min, t_r (minor) = 7.7 min, 50% ee.

1-[2-(2,5-dioxo-1-phenyl-2,5-dihydro-1*H*-pyrrol-3-yl)naphthalen-1-yl]-1*H*-indole-2carbaldehyde (15)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and *N*-phenylmaleimide (**12c**) (103.8 mg, 0.60 mmol). Isolation by column

chromatography (*n*-hexane/EtOAc = 5:1) yielded **15** (27.0 mg, 30%) as a yellow solid and **1a** (32.0 mg, 59%) as yellow solid. M.P. of **15**: 84-87 °C. ¹H-NMR (400 MHz, CDCl₃): δ = 9.85 (s, 1H), 8.19 (d, *J* = 8.7 Hz, 2H), 8.02 (d, *J* = 8.3 Hz, 1H), 7.95–7.87 (m, 1H), 7.66 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.50–7.42 (m, 2H), 7.42–7.35 (m, 2H), 7.33–7.22 (m, 4H), 6.93 (d, *J* = 8.0 Hz, 1H), 6.81 (d, *J* = 8.0 Hz, 1H), 5.73 (s, 1H). ¹³C-NMR (100 MHz, CDCl₃): δ = 181.1 (CH), 169.0 (C_q), 168.9 (C_q), 141.1 (C_q), 140.8 (C_q), 136.8 (C_q), 135.0 (C_q), 134.3 (C_q), 131.6 (C_q), 131.3 (C_q), 129.3 (CH), 129.1 (CH), 128.3 (CH), 128.2 (CH), 128.1 (CH), 127.7 (CH), 126.6 (C_q), 126.5 (C_q), 126.1 (CH), 125. 6 (CH), 123.8 (CH), 123.2 (CH), 122.5 (CH), 117.5 (CH), 111.4 (CH). IR (ATR): 3061, 1713, 1673, 1502, 1390, 1134, 751 cm⁻¹. MS (ESI) *m/z* (relative intensity): 465 (100) [M + Na]⁺, 443 (40) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₉H₁₈N₂O₃ + H]⁺ 443.1390 found 443.1398. [α]²⁰_D: +6.6 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 80:20, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 15.3 min, *t_r* (minor) = 18.1 min, 95% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.328	MM	0.7706	1.43140e4	309.57407	97.4630
2	18.104	MM	0.6613	372.60208	9.39006	2.5370
	∬ _{сно}					

 $[\alpha]_D^{20}$: +43.5 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.5 min, t_r (minor) = 7.9 min, 47% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.886	MM	0.2877	775.14954	44.90294	26.4554
2	9.462	MM	0.3666	2154.87378	97.96462	73.5446

(*E*)-1-(2-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodec-1-en-1-yl)naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (17)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10heptadecafluorodec-1-ene (16a) (267.7 mg, 0.60 mmol). Isolation by column chromatography (nhexane/DCM = 1:1) yielded 17 (40.6 mg, 28%) as an off-white solid (M.p.: 64-65 $^{\circ}$ C) and 1a (34.8 mg, 64%) as a yellow solid. ¹H-NMR (600 MHz, CDCl₃): $\delta = 9.77$ (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.93–7.87 (m, 1H), 7.80 (d, J = 8.7 Hz, 1H), 7.61 (d, J = 1.0 Hz, 1H), 7.54 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.36 (ddd, J = 8.2, 6.8, 1.2 Hz, 1H), 7.32–7.24 (m, 2H), 6.95 (dd, J = 8.5, 1.0 Hz, 1H), 6.78–6.72 (m, 1H), 6.63 (dt, J = 16.2, 2.3 Hz, 1H), 6.17 (dt, J = 16.2, 11.9 Hz, 1H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 180.8$ (CH), 141.4 (C_a), 137.3 (C_a), 134.76 (C_q) , 134.6 (t, ${}^{3}J_{C-F} = 9.7$ Hz, CH), 133.7 (C_q), 131.5 (C_q), 129.9 (C_q), 129.8 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 127.8 (CH), 126.5 (C_q), 123.5 (CH), 123.3 (CH), 123.0 (CH), 122.2 (CH), 118.0 (m, C_a), 117.74 (t, ${}^{2}J_{C-F}$ = 23.1 Hz, CH), 116.8 (CH), 116.2 (m, C_a), 114.6 (m, C_a), 111.5 (CH), 112.7 (m, C_q), 110.7 (m, C_q). ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -80.8$ (t, J = 9.9 Hz), -111.5 (m), -121.4 (m), -121.9 (m), -122.7 (m), -123.3 (m), -126.1 (m). IR (ATR): 2923, 1675, 1198, 1133, 1109, 738 cm⁻¹. MS (ESI) m/z (relative intensity): 738 (100) $[M + Na]^+$, 696 (40). HR-MS (ESI): m/z calcd. for $[C_{29}H_{14}^{19}F_{17}NO + H]^+$ 716.0877 found 716.0862. $[\alpha]_D^{20}$: +8.9 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): *t_r* $(major) = 6.7 \min, t_r(minor) = 8.4 \min, 94\%$ ee.

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +39.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 10.1 min, t_r (minor) = 8.3 min, 50% ee.

(*E*)-1-(2-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,12,12,12-Nonadecafluorododec-1-en-1yl)naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (18)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and 3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12, 12,12-henicosafluorododec-1-ene (16b) (327.7 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/DCM = 1:1) yielded **18** (47.1 mg, 29%) as an off-white solid (M.p.: 91-92 °C) and **1a** (36.7 mg, 68%) as a yellow solid. ¹H-NMR (600 MHz, CDCl₃): $\delta = 9.77$ (s, 1H), 8.05 (d, J = 8.7 Hz, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.92-7.87 (m, 1H), 7.80 (d, J = 8.7 Hz, 1H),7.61 (d, *J* = 0.9 Hz, 1H), 7.54 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.36 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.32–7.23 (m, 2H), 6.95 (dd, J = 8.5, 1.0 Hz, 1H), 6.78–6.71 (m, 1H), 6.63 (dt, J = 16.2, 2.2 Hz, 1H), 6.17 (dt, J = 16.1, 11.8 Hz, 1H). ¹³C-NMR (125 MHz, CDCl₃): $\delta = 180.9$ (CH), 141.4 (C_a), 137.3 (C_q), 134.8 (C_q), 134.6 (t, ${}^{3}J_{C-F} = 9.8$ Hz, CH), 133.7 (C_q), 131.5 (C_q), 129.9 (C_q), 129.8 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 127.8 (CH), 126.4 (C_q), 123.5 (CH), 123.3 (CH), 122.9 (CH), 122.2 (CH), 118.2 (m, C_q), 117.7 (t, ${}^{2}J_{C-F} = 23.2$ Hz, CH), 116.8 (CH), 116.6 (m, C_q), 115.9 (m, C_a), 114.6 (m, C_a), 112.9 (m, C_a), 110.7 (m, C_a), 111.5 (CH), 108.5 (m, C_a). ¹⁹F-NMR (565 MHz, CDCl₃) $\delta = -80.7$ (t, J = 9.9 Hz), -111.5 (m), -121.4 (m), -121.8 (m), -122.7, -123.3 (m), -126.1 (m). IR (ATR): 1675, 1207, 1150, 735 cm⁻¹.MS (ESI) *m/z* (relative intensity): 838 (100) $[M + Na]^+$, 796 (30). HR-MS (ESI): m/z calcd. for $[C_{31}H_{14}^{19}F_{21}NO + H]^+$ 816.0813 found 816.0812. $[\alpha]_D^{20}$: +8.9 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 7.4 min, t_r (minor) = 6.3 min, 99% ee.

S43

 $[\alpha]_D^{20}$: +29.9 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 10.0 min, t_r (minor) = 8.2 min, 41% ee.

(E)-1-(2-(3,3,4,4,5,5,6,6,6-Nonafluorohex-1-en-1-yl)naphthalen-1-yl)-1H-indole-2-

carbaldehyde (19)

The general procedure **A** (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1*H*indole-2-carbaldehyde (**1a**) (54.3 mg, 0.20 mmol) and 3,3,4,4,5,5,6,6,6-nonafluorohex-1-ene (**16c**) (147.6 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/DCM = 1:1) yielded **19** (23.0 mg, 22%) as a yellow oil and **1a** (34.4 mg, 63%) as a yellow solid. ¹H-NMR (600 MHz, CDCl₃) δ = 9.77 (s, 1H), 8.05 (d, *J* = 8.7 Hz, 1H), 7.96 (d, *J* = 8.3 Hz, 1H), 7.91–7.89 (m, 1H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.61 (d, *J* = 0.9 Hz, 1H), 7.54 (ddd, *J* = 8.1, 6.8, 1.1 Hz, 1H), 7.36 (ddd, *J* = 8.2, 6.8, 1.2 Hz, 1H), 7.32–7.26 (m, 2H), 6.94 (dd, *J* = 8.4, 1.0 Hz, 1H), 6.77–6.72 (m, 1H), 6.63 (dt, *J* = 16.1, 2.4 Hz, 1H), 6.17 (dt, *J* = 16.2, 11.9 Hz, 1H). ¹³C-NMR (150 MHz, CDCl₃) δ = 180.9 (CH), 141.4 (C_q), 137.3 (C_q), 134.8 (C_q), 134.7 (t, ${}^{3}J_{C-F} = 9.8$ Hz, CH), 133.7 (C_q), 131.5 (C_q), 129.9 (C_q), 129.8 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 127.8 (CH), 126.5 (C_q), 123.5 (CH), 123.3 (CH), 122.9 (CH), 122.2 (CH), 118.2 (m, C_q), 117.6 (t, ${}^{2}J_{C-F} = 23.1$ Hz, CH), 116.8 (CH), 116.3 (m, C_q), 114.5 (m, C_q), 111.5 (CH). 19 F-NMR (565 MHz, CDCl₃) $\delta = -81.1$ (t, J = 9.5 Hz), -111.9 (m), -124.2 (m), -125.7 (m). IR (ATR): 3065, 2804, 1673, 1229, 1130, 1107, 886, 813, 749, 739 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 538 (100) [M + Na]⁺, 516 (20) [M + H]. HR-MS (ESI): *m*/*z* calcd. for [C₂₅H₁₄¹⁹F₉NO₃ + H]⁺ 516.1004 found 516.1004 . [α]²⁰_D: +2.4 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 7.5 min, *t_r* (minor) = 9.5 min, 96% ee.

 $[\alpha]_D^{20}$: +30.4 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 10.1 min, t_r (minor) = 8.2 min, 31% ee.

(*E*)-1-[2-(4-Bromo-3,3,4,4-tetrafluorobut-1-en-1-yl)naphthalen-1-yl]-1*H*-indole-2carbaldehyde (20)

The general procedure A was followed using 1-(naphthalen-1-yl)-1H-indole-2-carbaldehyde (xx)(54.2 mg, 0.20 mmol) and 4-bromo-3,3,4,4-tetrafluorobut-1-ene (**16d**) (124.2 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 20:1) yielded **20** (25.5 mg, 27%) as a yellow oil and **1a** (33.0 mg, 62%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.79$ (s, 1H), 8.08 (d, J = 8.7 Hz, 1H), 7.98 (d, J = 8.2 Hz, 1H), 7.95–7.89 (m, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.64 (s, 1H), 7.59–7.52 (m, 1H), 7.42–7.35 (m, 1H), 7.33–7.26 (m, 2H), 6.98 (d, J = 8.5 Hz, 1H), 6.82-6.74 (m, 1H), 6.66 (dd, J = 16.1, 2.5 Hz, 1H), 6.21 (ddd, J = 16.1, 11.5, 2.5 Hz, 1H). 13 C-NMR (100 MHz, CDCl₃): $\delta = 180.9$ (CH), 141.5 (C_a), 137.4 (C_a), 134.8 (t, ${}^{3}J_{C-F} = 9.2$ Hz, CH), 134.7 (C_a), 133.5 (C_a), 131.5 (C_a), 130.1 (C_a), 129.8 (CH), 128.3 (CH), 128.1 (CH), 127.8 (CH), 127.7 (CH), 126.5 (C_a), 123.6 (CH), 123.3 (CH), 123.0 (CH), 122.2 (CH), 117.9 (t, ${}^{2}J_{C-F} = 25.2$ Hz, CH), 117.4 (t, ${}^{2}J_{C-F} = 45.5$ Hz, C_a), 116.7 (CH), 114.0 (t, ${}^{2}J_{C-F} = 28.0$ Hz, C_a), 111.7 (CH). ¹⁹F-NMR (377 MHz, CDCl₃): $\delta = -66.0$ (m), -109.7 (m). IR (ATR): 3062, 1672, 1614, 1523, 1408, 1126, 752 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 498 (70) [M + Na]⁺, 476 (100) [M + H]⁺. HR-MS (ESI): m/z calcd. for $[C_{23}H_{14}^{79}Br^{19}F_4N_2O_3 + H]^+ 476.0268$ found 476.0262. $[\alpha]_D^{20}$: +17.4 (c = 0.90, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.3 min, t_r (minor) = 11.2 min, 98% ee.

Peak RetTime Type Width Height Area Area % [min] [min] [mAU*s] [mAU] # 9.387 MM 0.3239 1451.05396 74.65611 49.8275 1 55.96720 2 11.249 MM 0.4351 1461.09875 50.1725

Peak RetTime Type Height Width Area Area [mAU*s] % [mAU] # [min] [min] 1 9.287 BB 0.3509 1.14362e4 464.99942 99.2005 2 11.243 BB 0.2812 92.16966 4.11760 0.7995

1-(Naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +42.8 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 7.9 min, 41% ee.

Peak RetTime Type Width Height Area Area % [min] [min] [mAU*s] [mAU] # 0.3301 2445.17529 123.43890 8.019 MM 49.9965 1 2 9.670 MM 0.3899 2445.51367 104.54658 50.0035

Peak RetTime Type Width Height Area Area [min] [mAU*s] [mAU] % # [min] 1 7.879 MM 0.3234 1367.24084 70.46983 29.2588 2 9.438 MM 0.4168 3305.68262 132.16966 70.7412

(*E*)-1,1,1,3,3,3-Hexafluoropropan-2-yl-3-(1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)acrylate (21)

The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (**1a**) (54.2 mg, 0.20 mmol) and 4-bromo-3,3,4,4-tetrafluorobut-1-ene (**16e**) (124.2 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 20:1) yielded **21** (26.5 mg, 27%) as a off-white solid and **1a** (30.0 mg, 55%) as yellow solid. M.p. of **21**: 123-126 °C. ¹H-NMR (400 MHz, CDCl₃) δ = 9.79 (s, 1H), 8.06 (d, *J* = 8.7 Hz, 1H), 7.96 (d, *J* = 8.4 Hz, 1H), 7.93–7.87 (m, 2H), 7.63 (d, *J* = 0.9 Hz, 1H), 7.56 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.36 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H), 7.34–7.26 (m, 3H), 6.95 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.78–6.70 (m, 1H), 6.57 (d, *J* = 16.0 Hz, 1H), 5.77–5.64 (m, 1H). ¹³C-NMR (101 MHz, CDCl₃): δ = 181.0 (CH), 162.9 (C_q), 143.4 (CH),

141.9 (C_q), 137.7 (C_q), 135.44 (C_q), 135.40 (C_q), 131.5 (C_q), 129.8 (CH), 129.7 (C_q), 128.4 (CH), 128.3 (CH), 128.2 (CH), 128.0 (CH), 126.5 (C_q), 123.6 (CH), 123.6 (CH), 122.5 (CH), 122.3 (CH), 121.8 (m, C_q), 119.0 (m, C_q) 117.3 (CH), 116.94 (CH), 111.51 (CH), 66.5 (p, ${}^{2}J_{C-F} = 34.7$ Hz, CH). ¹⁹F-NMR (377 MHz, CDCl₃): $\delta = -73.2$ (m). IR (ATR): 2924, 1675, 1228, 1198, 1124, 1105, 1085, 815, 750, 736, 688 cm⁻¹.MS (ESI) *m/z* (relative intensity): 514 (60) [M + Na]⁺, 492 (100) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₅H₁₅¹⁹F₆NO₃ + H]⁺ 492.1029 found 492.1029. [α]_D²⁰: +88.1 (c = 0.7, CHCl₃). HPLC separation (Chiralpak[®] IE-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 9.2 min, *t_r* (minor) = 10.5 min, 97% ee.

 $[\alpha]_D^{20}$: +40.1 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 7.8 min, 42% ee.

(*E*)-2,2,3,3,4,4,5,5-Octafluoropentyl-3-[1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl]acrylate (22):

The general procedure A was followed using 1-(naphthalen-1-yl)-1H-indole-2-carbaldehyde (1a) (54.2 mg, 0.20 mmol) and 2,2,3,3,4,4,5,5-octafluoropentyl acrylate (**16f**) (171.6 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 10:1) yielded 22 (33.0 mg, 30%) as a yellow oil and **1a** (27.0 mg, 49%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): $\delta = 9.78$ (s, 1H), 8.04 (d, J = 8.7 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.92–7.86 (m, 2H), 7.62 (s, 1H), 7.54 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.35 (ddd, J = 8.3, 6.8, 1.2 Hz, 1H), 7.30–7.25 (m, 2H), 7.23 (d, J = 15.9 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 6.78–6.70 (m, 1H), 6.51 (d, J = 15.9 Hz, 1H), 6.17–5.82 (m, 1H), 4.63–4.47 (m, 2H). ¹³C-NMR (100 MHz, CDCl₃): δ = 181.0 (CH), 164.5 (C_q), 141.8 (C_q), 141.2 (CH), 137.6 (C_q), 135.2 (C_q), 134.8 (C_q), 131.6 (C_q), 130.2 (C_q), 129.8 (CH), 128.3 (CH), 128.1 (CH), 128.1 (CH), 127.9 (CH), 126.5 (C_a), 123.6 (CH), 123.5 (CH), 122.7 (CH), 122.2 (CH), 118.8 (CH), 117.0 (CH), 114.5 (t, ${}^{2}J_{C-F}$ = 32.4 Hz, C_q), 111.6 (CH), 110.3 (m, C_q), 107.9 (m, C_q), 107.6 (m, CH), 59.6 (t, ${}^{2}J_{C-F}$ = 27.1 Hz, CH₂). ¹⁹F-NMR (377 MHz, CDCl₃): δ = -119.5 (m), -125.3 (m), -130.0 (m), -137.1 (m). IR (ATR): 2922, 1733, 1673, 1632, 1410, 1230, 1169, 753 cm⁻¹. MS (ESI) m/z (relative intensity): 578 (100) [M + Na]⁺, 556 (60) [M + H]⁺. HR-MS (ESI): m/z calcd. for $[C_{27}H_{17}F_8NO_3 + H]^+$ 556.1153 found 556.1157. $[\alpha]_D^{20}$: +53.1 (c = 0.80, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.3 min, t_r (minor) = 11.2 min, 98% ee.

 $[\alpha]_D^{20}$: +45.5 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.5 min, t_r (minor) = 8.0 min, 46% ee.

Peak RetTime Type Width Area Height Area % [min] [mAU*s] [mAU] # [min] 8.019 MM 0.3301 2445.17529 123.43890 49.9965 1 2 9.670 MM 0.3899 2445.51367 104.54658 50.0035

Peak RetTime Type Width Area Height Area % # [min] [min] [mAU*s] [mAU] 0.3479 1225.97900 58.73999 1 7.978 MM 27.0056 2 9.541 MM 0.4289 3313.74927 128.77022 72.9944

Ethyl 2-((1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)methyl)acrylate (24)

The general procedure **A** (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1*H*indole-2-carbaldehyde (**1a**) (54.3 mg, 0.20 mmol) and ethyl methacrylate (**23a**) (68.5 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **24** (27.0 mg, 35%) as a yellow oil and **1a** (22.6 mg, 42%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) δ = 9.66 (s, 1H), 7.98 (d, *J* = 9.0 Hz, 1H), 7.92 (d, *J* = 8.1 Hz, 1H), 7.89 – 7.83 (m, 1H), 7.57 – 7.53 (m, 2H), 7.46 (ddd, *J* = 8.1, 6.9, 1.2 Hz, 1H), 7.33 – 7.20 (m, 3H), 6.82 (dq, *J* = 8.5, 0.9 Hz, 1H), 6.80 – 6.76 (m, 1H), 6.08 (d, *J* = 1.1 Hz, 1H), 5.17 (q, *J* = 1.4 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 3.44 (ABq, J = 16.0 Hz, $\Delta v = 29.1$ Hz, 2H), 1.17 (t, J = 7.1 Hz, 3H). ¹³C-NMR (101 MHz, CDCl₃) $\delta = 181.4$ (CH), 166.4 (C_q), 140.8 (C_q), 138.1 (C_q), 137.0 (C_q), 135.7 (C_q), 133.1 (C_q), 131.9 (C_q), 131.6 (C_q), 129.3 (CH), 128.1 (CH), 127.7 (CH), 127.4 (CH), 127.19 (CH), 127.15 (CH₂), 126.4 (C_q), 126.2 (CH), 123.3 (CH), 122.3 (CH), 121.8 (CH), 114.6 (CH), 111.8 (CH), 60.7 (CH₂), 33.9 (CH₂), 14.1 (CH₃). IR (ATR): 2924, 1712, 1674, 1130, 815, 752, 738 cm⁻¹ MS (ESI) *m/z* (relative intensity): 789 (60), 406 (100) [M + Na]⁺, 384 (50) [M + H]⁺. HR-MS (ESI): *m/z* calcd. for [C₂₅H₂₁NO₃ + H]⁺ 384.1594 found 384.1590. [α]²⁰_D: -55.3 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] ID-3, *n*-hexane/*i*-PrOH 90:10, 1.0 mL/min, detection at 273 nm): *t_r* (major) = 12.4 min, *t_r* (minor) = 11.1 min, 92% ee.

 $[\alpha]_D^{20}$: +75.9 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.6 min, t_r (minor) = 8.0 min, 74% ee.

2,2,2-trifluoroethyl 2-((1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)methyl)acrylate (25)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and 2,2,2-trifluoroethyl methacrylate (23b) (100.9 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded 25 (33.4 mg, 38%) as a yellow oil and **1a** (28.6 mg, 53%) as a yellow solid. ¹H-NMR (400 MHz, 100 MHz)CDCl₃): $\delta = 9.68$ (s, 1H), 7.99 (d, J = 9.4 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.90–7.83 (m, 1H), 7.55 (d, J = 0.9 Hz, 1H), 7.53 (d, J = 8.6 Hz, 1H), 7.47 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.35–7.20 (m, 3H), 6.81 (dd, J = 8.5, 1.0 Hz, 1H), 6.80–6.73 (m, 1H), 6.14 (d, J = 0.8 Hz, 1H), 5.28 (q, J =1.3 Hz, 1H), 4.47–4.29 (m, 2H), 3.47 (ABq, J = 16.0 Hz, $\Delta v = 30.5$ Hz, 2H). ¹³C-NMR (101 MHz, CDCl₃): $\delta = 181.4$ (CH), 164.6 (C_q), 140.8 (C_q), 137.0 (C_q), 136.4 (C_q), 134.8 (C_q), 133.3 (C_q), 132.0 (C_a), 131.9 (C_a), 129.4 (CH), 129.4 (CH₂) 128.1 (CH), 127.7 (CH), 127.5 (CH), 127.4 (CH), 126.4 (C_a), 126.3 (CH), 123.4 (CH), 122.3 (CH), 121.9 (CH), 121.5 (C_a), 115.3 (CH), 111.8 (CH), 60.5 (q, ${}^{2}J_{C-F}$ = 36.7 Hz, CH₂), 34.0 (CH₂). ¹⁹F-NMR (377 MHz, CDCl₃) δ = -73.69 (t, J = 8.4 Hz). IR (ATR): 3060, 1735, 1677, 1279, 1169, 1129 cm⁻¹ MS (ESI) *m/z* (relative intensity): 460 (100) $[M + Na]^+$, 438 (80) $[M + H]^+$. HR-MS (ESI): m/z calcd. for $[C_{25}H_{18}NO_3^{19}F_3 + H]^+$ 438.1312 found 438.1304. $[\alpha]_D^{20}$: -49.6 (c = 1.1, CHCl₃). HPLC separation (Chiralpak[®] ID-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 14.8 min, t_r (minor) = 13.0 min, 86% ee.

S58

 $[\alpha]_D^{20}$: +61.8 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.2 min, t_r (minor) = 7.7 min, 65% ee.

#	[min]	[min]	[mAU*s]	[mAU]	%
1	7.830 MM	0.3738	5565.76367	248.18161	50.0780
2	9.479 MM	0.4375	5548.42383	211.35017	49.9220

1,1,1,3,3,3-hexafluoropropan-2-yl 2-((1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)methyl)acrylate (26):

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (**1a**) (54.3 mg, 0.20 mmol) and 1,1,1,3,3,3-hexafluoroisopropyl methacrylate (23c) (68.5 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **26** (43.1 mg, 43%) as a yellow oil and **1a** (27.0 mg, 50%) as a yellow solid. ¹H-NMR (600 MHz, CDCl₃): δ = 9.70 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.93 (d, J = 8.3 Hz, 1H), 7.87 (ddd, J = 7.8, 1.4, 0.8 Hz, 1H), 7.56 (d, J = 1.0 Hz, 1H), 7.51 (d, J = 8.6 Hz, 1H), 7.48 (ddd, J = 1.0 Hz, 1H), 7.51 (d, J = 1.0 Hz, 1H), 7.48 (ddd, J = 1.0 Hz, 1H), 7.51 (d, J = 1.0 Hz, 1H), 7.518.1, 6.8, 1.2 Hz, 1H), 7.34–7.22 (m, 3H), 6.81 (dq, J = 8.5, 0.9 Hz, 1H), 6.75 (dq, J = 8.3, 1.0 Hz, 1H), 6.23 (d, J = 0.6 Hz, 1H), 5.70 (p, J = 6.1 Hz, 1H), 5.41 (td, J = 1.5, 0.5 Hz, 1H), 3.49 (ABq, J = 16.2 Hz, $\Delta v = 34.3$ Hz, 2H). ¹³C-NMR (151 MHz, CDCl₃): $\delta = 181.3$ (CH), 162.8 (C_a), 140.8 (C_q), 136.9 (C_q), 135.2 (C_q), 134.3 (C_q), 134.2 (C_q), 133.4 (C_q), 132.2 (C_q), 131.8 (C_q), 131.4 (CH₂), 129.5 (CH), 128.1 (CH), 127.6 (CH), 127.5 (CH), 127.4 (CH), 126.4 (CH), 123.4 (CH), 122.3 (CH), 121.9 (CH), 121.3 (m, C_q), 119.4 (m, C_q), 115.6 (CH), 111.7 (CH), 66.7 (p, ${}^2J_{C-F} = 34.8$ Hz, CH), 33.91 (CH₂). ¹⁹F-NMR (565 MHz, CDCl₃): $\delta = -73.2$ (m). IR (ATR): 2963, 1675, 1284, 1225, 1197, 1106, 752, 738, 690 cm⁻¹ MS (ESI) m/z (relative intensity): 1033 (80), 528 (100) $[M + Na]^+$, 506 (80) $[M + H]^+$. HR-MS (ESI): m/z calcd. for $[C_{26}H_{17}NO_3^{19}F_6 + H]^+$ 506.1185 found 506.1182. $[\alpha]_{D}^{20}$: -48.1 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IC-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): t_r (major) = 7.7 min, t_r (minor) = 10.8 min, 90% ee.

 $[\alpha]_D^{20}$: +78.1 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 8.0 min, 79% ee.

Thiophen-2-ylmethyl-2-[(1-(2-formyl-1*H*-indol-1-yl) naphthalen-2-yl] methyl acrylate (27) The general procedure **A** was followed using 1-(naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (1**a**) (54.2 mg, 0.20 mmol) and thiophen-2-ylmethyl methacrylate (23**d**) (109.4 mg, 0.60 mmol).

Isolation by column chromatography (*n*-hexane/EtOAc = 5:1) yielded **27** (27.1 mg, 30%) as a yellow oil and **1a** (22.5 mg, 41%) as yellow solid. ¹H-NMR (400 MHz, CDCl₃): δ = 9.65 (s, 1H), 7.95 (d, *J* = 8.6 Hz, 1H), 7.93–7.90 (m, 1H), 7.87–7.83 (m, 1H), 7.54 (d, *J* = 0.9 Hz, 1H), 7.51 (d, *J* = 8.5 Hz, 1H), 7.46 (ddd, *J* = 8.1, 6.8, 1.2 Hz, 1H), 7.32–7.27 (m, 2H), 7.26–7.22 (m, 2H), 6.99 (dd, *J* = 3.5, 1.2 Hz, 1H), 6.94 (dd, *J* = 5.1, 3.5 Hz, 1H), 6.81 (dd, *J* = 8.5, 1.0 Hz, 1H), 6.76–6.72 (m, 1H), 6.09 (d, *J* = 1.0 Hz, 1H), 5.20–5.18 (m, 3H), 3.44 (ABq, *J* = 16.1 Hz, Δv = 28.9 Hz, 2H). ¹³C-NMR (75 MHz, CDCl₃): δ = 181.4 (C_q), 166.0 (CH), 140.8 (CH), 137.7 (CH), 137.6 (CH), 137.0 (CH), 135.5 (CH), 133.1 (CH), 131.8 (CH), 131.7 (CH), 129.3 (C_q), 128.1 (C_q), 128.1 (C_q), 122.3 (C_q), 121.8 (C_q), 111.8 (C_q), 60.8 (CH), 33.9 (CH). IR (ATR): 2957, 1714, 1673, 1405, 1314, 1106, 752 cm⁻¹. MS (ESI) *m*/*z* (relative intensity): 474 (100) [M + Na]⁺, 452 (75) [M + H]⁺. HR-MS (ESI): *m*/*z* calcd. for [C₂₈H₂₁NO₃S + H]⁺ 452.1315 found 452.1314. [α]²⁰_D: – 37.0 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IA-3, *n*-hexane/*i*-PrOH 98:2, 1.0 mL/min, detection at 273 nm): *t*_{*t*} (major) = 32.3 min, *t*_{*t*} (minor) = 27.2 min, 95% ee.

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	27.231	MM	0.7978	75.24831	1.57200	2.3532
2	32.253	MM	0.9225	3122.40063	56.41489	97.6468

0

1-(Naphthalen-1-yl)-1H-indole-2-carbaldehyde (1a)

 $[\alpha]_D^{20}$: +60.7 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 7.8 min, 54% ee.

10

12

14

min

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	7.844	MM	0.3650	3008.97314	137.39168	23.2089	
2	9.356	MM	0.4261	9955.76563	389.42172	76.7911	

1-(2-(2-Methylene-3-oxobutyl)naphthalen-1-yl)-1*H*-indole-2-carbaldehyde (28)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and ethyl methacrylate (23e) (68.5 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **28** (26.4 mg, 37%) as a yellow oil and **1a** (23.4 mg, 43%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃): $\delta =$ 9.67 (s, 1H), 7.97 (d, J = 8.5 Hz, 1H), 7.92 (d, J = 8.3 Hz, 1H), 7.85 (ddd, J = 7.7, 1.5, 0.8 Hz, 1H), 7.55 (d, J = 0.9 Hz, 1H), 7.51 (d, J = 8.5 Hz, 1H), 7.45 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 7.34–7.18 (m, 3H), 6.81 (dq, J = 8.5, 0.9 Hz, 1H), 6.77 (dq, J = 8.5, 1.0 Hz, 1H), 5.86 (d, J = 0.9 Hz, 1H), 5.37 (t, J = 1.4 Hz, 1H), 3.40 (ABq, J = 15.9 Hz, $\Delta v = 63.7$ Hz, 2H), 2.14 (s, 3H). ¹³C-NMR (101 MHz, CDCl₃) $\delta = 198.7$ (C_q), 181.5 (CH), 146.6 (C_q), 140.8 (C_q), 137.0 (C_q), 136.1 (C_q), 133.1 (C_q), 131.9 (C_q), 131.7 (C_q), 129.3 (CH), 128.2 (CH), 128.1 (CH), 127.4 (CH), 127.28 (CH₂), 127.25 (CH), 126.4 (C_a), 126.2 (CH), 123.4 (CH), 122.2 (CH), 121.8 (CH), 114.8 (CH), 111.9 (CH), 32.8 (CH₂), 25.5 (CH₃). IR (ATR): 3058, 1676, 1522, 1406 cm⁻¹ MS (ESI) *m/z* (relative intensity): 376 (100) $[M + Na]^+$, 354 (60) $[M + H]^+$. HR-MS (ESI): m/z calcd. for $[C_{24}H_{19}NO_2 +$ H]⁺ 354.1489 found 354.1482. $[\alpha]_D^{20}$: -59.2 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IC-3, *n*-hexane/*i*-PrOH 70:30, 1.0 mL/min, detection at 250 nm): t_r (major) = 12.3 min, t_r (minor) = 16.6 min, 91% ee.

 $[\alpha]_D^{20}$: +93.1 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.4 min, t_r (minor) = 7.9 min, 83% ee.

2-((1-(2-formyl-1*H*-indol-1-yl)naphthalen-2-yl)methyl)allyl acetate (29)

The general procedure A (reaction time = 20 h) was followed using 1-(naphthalen-1-yl)-1Hindole-2-carbaldehyde (1a) (54.3 mg, 0.20 mmol) and ethyl methacrylate (23f) (68.5 mg, 0.60 mmol). Isolation by column chromatography (*n*-hexane/EtOAc = 9:1) yielded **29** (26.8 mg, 35%) as a yellow oil and **1a** (20.4 mg, 38%) as a yellow solid. ¹H-NMR (400 MHz, CDCl₃) (one carbon is missing due to overlap): $\delta = 9.67$ (s, 1H), 7.99 (d, J = 8.5 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.90–7.83 (m, 1H), 7.56 (d, J = 0.9 Hz, 1H), 7.54 (d, J = 8.5 Hz, 1H), 7.47 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.34–7.20 (m, 3H), 6.88–6.81 (m, 1H), 6.79–6.72 (m, 1H), 5.07–4.99 (m, 1H), 4.75 (dq, J = 1.4, 0.7 Hz, 1H), 4.32-4.21 (m, 2H), 3.17 (s, 2H), 1.85 (s, 3H). ¹³C-NMR (100 MHz, CDCl₃): $\delta = 181.3$ (CH), 170.4 (C_a), 141.3 (C_a), 140.8 (C_a), 137.1 (C_a), 135.1 (C_a), 133.2 (C_a), 131.8 (C_q), 129.3 (CH), 128.1 (CH), 127.5 (CH), 127.4 (CH), 127.3 (CH), 126.4 (C_q), 126.3 (CH), 123.3 (CH), 122.4 (CH), 121.8 (CH), 115.8 (CH₂), 114.7 (CH), 111.7 (CH), 66.2 (CH₂), 35.3 (CH₂), 20.7 (CH₃). IR (ATR): 3052, 2927, 1738, 1677, 1228 cm⁻¹. MS (ESI) m/z (relative intensity): 789 (50), 406 (100) $[M + Na]^+$. HR-MS (ESI): m/z calcd. for $[C_{25}H_{21}NO_3 + H]^+$ 384.1594 found 384.1580. $[\alpha]_{D}^{20}$: -65.3 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IC-3, *n*hexane/*i*-PrOH 70:30, 1.0 mL/min, detection at 280 nm): t_r (major) = 11.3 min, t_r (minor) = 14.7 min, 98% ee.

 $[\alpha]_D^{20}$: +52.3 (c = 1.0, CHCl₃). HPLC separation (Chiralpak[®] IB-3, *n*-hexane/*i*-PrOH 95:5, 1.0 mL/min, detection at 273 nm): t_r (major) = 9.6 min, t_r (minor) = 8.0 min, 53% ee.

Determination of Absolute Stereochemistry

Determination of Absolute Stereochemistry of 15

Crystals suitable for X-Ray crystallography were grown by slow evaporation of a $CDCl_3$ solution of **15** at ambient temperature.

CCDC number	2090275			
Empirical formula	C ₂₉ H ₁₈ N ₂ O ₃			
Formula weight	442.45			
Temperature [K]	100.0			
Crystal system	monoclinic			
Space group (number)	P2 ₁ (4)			
<i>a</i> [Å]	9.6726(8)			
<i>b</i> [Å]	9.3885(6)			
<i>c</i> [Å]	24.0690(15)			
α [°]	90			
β[°]	91.499(6)			
γ [°]	90			
Volume [Å ³]	2185.0(3)			
Ζ	4			
$\rho_{\rm calc} [\rm g cm^{-3}]$	1.345			
$\mu [\mathrm{mm}^{-1}]$	0.710			
F(000)	920			
Crystal size [mm ³]	0.213×0.121×0.101			
---	--			
Crystal colour	yellow			
Crystal shape	block			
Radiation	$CuK_{\alpha} (\lambda = 1.54178 \text{ Å})$			
20 range [°]	3.67 to 158.68 (0.78 Å)			
Index ranges	$-12 \le h \le 12$			
	$-11 \le k \le 11$			
	$-30 \le 1 \le 30$			
Reflections collected	75722			
Independent reflections	9220			
	$R_{\rm int} = 0.0381$			
	$R_{ m sigma}=0.0181$			
Completeness to	100.0 %			
$\Theta = 67.679^{\circ}$				
Data / Restraints / Parameters	9220/1/613			
Goodness-of-fit on F^2	1.137			
Final <i>R</i> indexes	$R_1 = 0.0423$			
[<i>I</i> ≥2σ(<i>I</i>)]	$wR_2 = 0.1103$			
Final <i>R</i> indexes	$R_1 = 0.0431$			
[all data]	$wR_2 = 0.1108$			
Largest peak/hole $\left[\alpha ^{A}^{-3}\right]$	0.00/0.10			
Largest peak/note [eA]	0.23/-0.19			

Table S2Atomic coordinates and U_{eq} [Ų]

Atom	x	у	Z.	$m{U}_{ m eq}$
01	0.7565(3)	0.8390(3)	0.55530(12)	0.0418(7)
O2	0.7496(2)	0.3885(3)	0.40153(9)	0.0255(5)
O3	1.0860(3)	0.6795(3)	0.47590(10)	0.0342(6)
N1	0.6911(3)	0.5523(3)	0.60014(11)	0.0223(5)
N2	0.9274(3)	0.5473(3)	0.42364(11)	0.0243(6)

C1	0.6396(4)	0.7911(4)	0.55437(16)	0.0332(8)
H1	0.567504	0.850601	0.540208	0.040
C2	0.6019(4)	0.6489(4)	0.57342(14)	0.0271(7)
C3	0.4740(4)	0.5877(4)	0.56524(16)	0.0334(8)
H3	0.395190	0.631179	0.548010	0.040
C4	0.4812(3)	0.4469(4)	0.58738(14)	0.0290(7)
C5	0.6179(3)	0.4279(4)	0.60828(13)	0.0233(6)
C6	0.6644(4)	0.2996(4)	0.63164(15)	0.0297(7)
H6	0.756801	0.288496	0.645247	0.036
C7	0.5705(4)	0.1910(4)	0.63397(16)	0.0337(8)
H7	0.598980	0.102127	0.649276	0.040
C8	0.4335(4)	0.2068(4)	0.61447(16)	0.0350(8)
H8	0.371077	0.129279	0.617656	0.042
C9	0.3875(4)	0.3325(5)	0.59074(15)	0.0344(8)
H9	0.294912	0.341708	0.577011	0.041
C10	0.8335(3)	0.5705(3)	0.61675(13)	0.0215(6)
C11	0.8630(3)	0.5891(3)	0.67489(13)	0.0210(6)
C12	1.0041(3)	0.6041(3)	0.69250(13)	0.0227(6)
C13	1.1081(3)	0.6031(4)	0.65272(14)	0.0255(7)
H13	1.202037	0.613886	0.664518	0.031
C14	1.0764(3)	0.5869(4)	0.59720(14)	0.0254(7)
H14	1.147958	0.588648	0.570933	0.030
C15	0.9359(3)	0.5673(3)	0.57869(13)	0.0225(6)
C16	0.9042(3)	0.5391(3)	0.51961(13)	0.0225(6)
C17	0.8065(3)	0.4563(3)	0.49645(13)	0.0234(6)
H17	0.738673	0.405547	0.516325	0.028
C18	0.8191(3)	0.4549(3)	0.43542(13)	0.0221(6)
C19	0.9870(3)	0.6006(4)	0.47294(13)	0.0249(7)
C20	1.0345(3)	0.6222(3)	0.75059(14)	0.0255(7)
H20	1.127716	0.633078	0.763255	0.031
C21	0.9313(4)	0.6241(4)	0.78784(14)	0.0267(7)

H21	0.953183	0.635936	0.826267	0.032
C22	0.7919(4)	0.6086(4)	0.77004(14)	0.0267(7)
H22	0.720848	0.609443	0.796532	0.032
C23	0.7586(3)	0.5922(3)	0.71464(13)	0.0237(6)
H23	0.664443	0.582899	0.702990	0.028
C24	0.9770(3)	0.5715(3)	0.36881(13)	0.0231(6)
C25	0.9519(4)	0.6998(4)	0.34201(15)	0.0299(7)
H25	0.905280	0.774448	0.360451	0.036
C26	0.9954(4)	0.7184(4)	0.28806(15)	0.0320(8)
H26	0.979353	0.806435	0.269518	0.038
C27	1.0623(4)	0.6086(4)	0.26116(14)	0.0296(7)
H27	1.091062	0.620784	0.224020	0.035
C28	1.0871(4)	0.4813(4)	0.28853(15)	0.0285(7)
H28	1.132376	0.405977	0.269951	0.034
C29	1.0463(3)	0.4626(4)	0.34287(14)	0.0260(7)
H29	1.065794	0.376026	0.361965	0.031
O4	0.7314(3)	0.1619(3)	0.05817(13)	0.0414(7)
O5	0.4110(3)	0.3211(3)	-0.03200(10)	0.0306(5)
O6	0.7489(2)	0.6096(2)	-0.09915(9)	0.0257(5)
N3	0.8047(3)	0.4503(3)	0.10148(11)	0.0211(5)
N4	0.5696(3)	0.4524(3)	-0.08088(11)	0.0234(5)
C30	0.8476(4)	0.2098(4)	0.05712(16)	0.0326(8)
H30	0.917645	0.149919	0.042994	0.039
C31	0.8893(3)	0.3523(4)	0.07579(14)	0.0257(7)
C32	1.0184(3)	0.4104(4)	0.06922(15)	0.0309(7)
H32	1.095475	0.364592	0.053298	0.037
C33	1.0154(3)	0.5525(4)	0.09073(14)	0.0272(7)
C34	0.8806(3)	0.5736(3)	0.11000(13)	0.0224(6)
C35	0.8379(4)	0.7027(4)	0.13250(15)	0.0285(7)
H35	0.746506	0.715347	0.145155	0.034
C36	0.9335(4)	0.8109(4)	0.13562(16)	0.0321(8)

H36	0.907092	0.900537	0.150246	0.039
C37	1.0701(4)	0.7919(4)	0.11758(16)	0.0342(8)
H37	1.134637	0.867756	0.121374	0.041
C38	1.1106(4)	0.6653(4)	0.09466(15)	0.0337(8)
H38	1.201861	0.654120	0.081620	0.040
C39	0.6622(3)	0.4352(3)	0.11484(13)	0.0208(6)
C40	0.6324(3)	0.4194(3)	0.17220(13)	0.0202(6)
C41	0.4908(3)	0.4055(3)	0.18650(13)	0.0223(6)
C42	0.4602(3)	0.3900(4)	0.24381(14)	0.0255(7)
H42	0.366796	0.380097	0.254384	0.031
C43	0.5633(4)	0.3891(3)	0.28376(13)	0.0259(7)
H43	0.540426	0.378867	0.321697	0.031
C44	0.7032(4)	0.4032(4)	0.26938(14)	0.0259(7)
H44	0.773887	0.402838	0.297538	0.031
C45	0.7366(3)	0.4173(3)	0.21482(13)	0.0234(6)
H45	0.830981	0.425841	0.205290	0.028
C46	0.3866(3)	0.4049(4)	0.14392(14)	0.0247(6)
H46	0.292483	0.394024	0.153468	0.030
C47	0.4196(3)	0.4197(4)	0.08935(14)	0.0250(7)
H47	0.348516	0.417675	0.061378	0.030
C48	0.5596(3)	0.4381(3)	0.07406(13)	0.0223(6)
C49	0.5914(3)	0.4639(3)	0.01557(13)	0.0227(6)
C50	0.6901(3)	0.5461(3)	-0.00520(13)	0.0228(6)
H50	0.757483	0.597268	0.016143	0.027
C51	0.6782(3)	0.5450(3)	-0.06666(13)	0.0214(6)
C52	0.5086(3)	0.4009(3)	-0.03284(13)	0.0237(6)
C53	0.5183(3)	0.4299(3)	-0.13662(13)	0.0217(6)
C54	0.5371(4)	0.2995(4)	-0.16257(15)	0.0291(7)
H54	0.580632	0.222963	-0.143127	0.035
C55	0.4915(4)	0.2825(4)	-0.21719(15)	0.0322(8)
H55	0.503217	0.193385	-0.235144	0.039

C56	0.4292(4)	0.3937(4)	-0.24587(14)	0.0289(7)
H56	0.398786	0.381349	-0.283412	0.035
C57	0.4111(4)	0.5236(4)	-0.21954(15)	0.0288(7)
H57	0.369706	0.600851	-0.239264	0.035
C58	0.4534(3)	0.5407(4)	-0.16463(14)	0.0262(7)
H58	0.437867	0.628480	-0.146191	0.031

 $U_{\rm eq}$ is defined as 1/3 of the trace of the orthogonalized U_{ij} tensor.

Table S3	Bond lengths and angles

Atom-Atom	Length [Å]
01–C1	1.216(5)
O2–C18	1.216(4)
O3–C19	1.211(4)
N1-C2	1.397(4)
N1-C5	1.382(4)
N1-C10	1.434(4)
N2-C18	1.395(4)
N2-C19	1.398(4)
N2-C24	1.434(4)
C1–H1	0.9500
C1–C2	1.461(5)
C2–C3	1.374(5)
С3–Н3	0.9500
C3–C4	1.427(5)
C4–C5	1.413(5)
C4–C9	1.409(5)
C5–C6	1.398(5)
С6-Н6	0.9500
C6–C7	1.368(5)
C7–H7	0.9500

C7–C8	1.402(5)
C8–H8	0.9500
C8–C9	1.380(6)
С9–Н9	0.9500
C10-C11	1.432(4)
C10–C15	1.367(4)
C11–C12	1.426(4)
C11–C23	1.409(4)
C12–C13	1.407(4)
C12–C20	1.431(5)
С13-Н13	0.9500
C13–C14	1.372(5)
C14–H14	0.9500
C14–C15	1.431(4)
C15–C16	1.471(4)
C16–C17	1.334(5)
C16–C19	1.511(4)
C17–H17	0.9500
C17–C18	1.477(4)
С20-Н20	0.9500
C20–C21	1.359(5)
C21–H21	0.9500
C21–C22	1.411(5)
C22–H22	0.9500
C22–C23	1.372(5)
С23–Н23	0.9500
C24–C25	1.384(5)
C24–C29	1.381(5)
С25-Н25	0.9500
C25–C26	1.386(5)
C26–H26	0.9500

C26–C27	1.387(5)
C27–H27	0.9500
C27–C28	1.382(5)
C28–H28	0.9500
C28–C29	1.387(5)
C29–H29	0.9500
O4–C30	1.212(5)
05–C52	1.206(4)
O6–C51	1.214(4)
N3-C31	1.388(4)
N3-C34	1.382(4)
N3-C39	1.431(4)
N4-C51	1.399(4)
N4-C52	1.398(4)
N4–C53	1.434(4)
С30-Н30	0.9500
C30–C31	1.464(5)
C31–C32	1.376(5)
C32–H32	0.9500
C32–C33	1.432(5)
C33–C34	1.410(4)
C33–C38	1.406(5)
C34–C35	1.394(5)
C35–H35	0.9500
C35–C36	1.374(5)
С36–Н36	0.9500
C36–C37	1.413(5)
С37–Н37	0.9500
C37–C38	1.372(6)
С38–Н38	0.9500
C39–C40	1.425(4)

C39–C48	1.378(4)
C40–C41	1.427(4)
C40–C45	1.420(4)
C41–C42	1.426(5)
C41–C46	1.419(4)
C42–H42	0.9500
C42–C43	1.366(5)
C43–H43	0.9500
C43–C44	1.412(5)
C44–H44	0.9500
C44–C45	1.367(5)
C45–H45	0.9500
C46–H46	0.9500
C46–C47	1.367(5)
C47–H47	0.9500
C47–C48	1.423(4)
C48–C49	1.469(4)
C49–C50	1.334(5)
C49–C52	1.517(4)
С50-Н50	0.9500
C50–C51	1.481(4)
C53–C54	1.388(5)
C53–C58	1.382(5)
C54–H54	0.9500
C54–C55	1.385(5)
С55-Н55	0.9500
C55–C56	1.381(5)
С56-Н56	0.9500
C56–C57	1.387(5)
С57-Н57	0.9500
C57–C58	1.383(5)

C58-H58

0.9500

Atom-Atom-Atom	Angle [°]
C2-N1-C10	128.9(3)
C5-N1-C2	107.5(3)
C5-N1-C10	123.6(3)
C18–N2–C19	110.2(3)
C18–N2–C24	123.8(3)
C19–N2–C24	125.7(3)
01C1H1	117.6
01	124.9(3)
С2-С1-Н1	117.6
N1C2C1	125.6(3)
C3-C2-N1	109.7(3)
C3–C2–C1	124.6(3)
С2С3Н3	126.3
C2–C3–C4	107.3(3)
С4С3Н3	126.3
C5–C4–C3	106.7(3)
C9–C4–C3	134.6(3)
C9–C4–C5	118.7(3)
N1C5C4	108.7(3)
N1C5C6	128.6(3)
C6–C5–C4	122.7(3)
С5-С6-Н6	121.6
C7–C6–C5	116.9(3)
С7-С6-Н6	121.6
С6С7Н7	119.0
C6–C7–C8	122.0(4)
С8-С7-Н7	119.0
С7–С8–Н8	119.3

C9–C8–C7	121.4(3)
С9–С8–Н8	119.3
С4–С9–Н9	120.8
C8–C9–C4	118.3(3)
С8–С9–Н9	120.8
C11-C10-N1	116.9(3)
C15-C10-N1	121.2(3)
C15-C10-C11	121.9(3)
C12–C11–C10	117.9(3)
C23–C11–C10	122.5(3)
C23–C11–C12	119.6(3)
C11–C12–C20	118.2(3)
C13–C12–C11	119.5(3)
C13–C12–C20	122.3(3)
С12С13Н13	119.4
C14–C13–C12	121.2(3)
С14С13Н13	119.4
C13C14H14	119.9
C13C14C15	120.3(3)
C15-C14-H14	119.9
C10-C15-C14	119.2(3)
C10C15C16	121.0(3)
C14C15C16	119.7(3)
C15-C16-C19	123.3(3)
C17–C16–C15	129.5(3)
C17–C16–C19	107.2(3)
С16С17Н17	124.9
C16C17C18	110.1(3)
С18С17Н17	124.9
O2-C18-N2	126.0(3)
O2–C18–C17	127.8(3)

N2-C18-C17	106.2(3)
O3-C19-N2	125.2(3)
O3–C19–C16	128.6(3)
N2-C19-C16	106.2(3)
С12-С20-Н20	119.6
C21–C20–C12	120.7(3)
С21-С20-Н20	119.6
C20-C21-H21	119.7
C20–C21–C22	120.7(3)
C22–C21–H21	119.7
C21–C22–H22	119.8
C23–C22–C21	120.3(3)
С23-С22-Н22	119.8
С11-С23-Н23	119.7
C22–C23–C11	120.5(3)
С22-С23-Н23	119.7
C25-C24-N2	120.5(3)
C29-C24-N2	118.5(3)
C29–C24–C25	121.0(3)
C24–C25–H25	120.2
C24–C25–C26	119.5(3)
C26-C25-H25	120.2
C25-C26-H26	120.0
C25-C26-C27	120.0(3)
C27–C26–H26	120.0
С26-С27-Н27	120.1
C28–C27–C26	119.8(3)
С28-С27-Н27	120.1
C27-C28-H28	119.7
C27–C28–C29	120.6(3)
C29–C28–H28	119.7

C24–C29–C28	119.1(3)
С24-С29-Н29	120.5
С28-С29-Н29	120.5
C31–N3–C39	128.1(3)
C34–N3–C31	107.8(3)
C34–N3–C39	124.1(3)
C51–N4–C53	124.0(3)
C52–N4–C51	110.1(3)
C52–N4–C53	125.4(3)
O4–C30–H30	117.2
04C30C31	125.5(3)
С31–С30–Н30	117.2
N3-C31-C30	125.6(3)
C32–C31–N3	109.6(3)
C32–C31–C30	124.8(3)
С31–С32–Н32	126.2
C31–C32–C33	107.5(3)
С33-С32-Н32	126.2
C34–C33–C32	106.1(3)
C38–C33–C32	135.0(3)
C38–C33–C34	118.8(3)
N3-C34-C33	109.0(3)
N3-C34-C35	128.6(3)
C35–C34–C33	122.4(3)
С34-С35-Н35	121.4
C36-C35-C34	117.3(3)
С36-С35-Н35	121.4
С35-С36-Н36	119.2
C35–C36–C37	121.6(4)
С37-С36-Н36	119.2
С36-С37-Н37	119.6

C38–C37–C36	120.8(3)
С38–С37–Н37	119.6
С33–С38–Н38	120.5
C37–C38–C33	119.1(3)
С37-С38-Н38	120.5
C40-C39-N3	116.6(3)
C48-C39-N3	121.2(3)
C48–C39–C40	122.2(3)
C39–C40–C41	117.6(3)
C45-C40-C39	122.9(3)
C45-C40-C41	119.5(3)
C42–C41–C40	117.9(3)
C46-C41-C40	119.6(3)
C46-C41-C42	122.5(3)
C41-C42-H42	119.5
C43-C42-C41	121.0(3)
C43–C42–H42	119.5
C42-C43-H43	119.6
C42–C43–C44	120.9(3)
C44–C43–H43	119.6
C43–C44–H44	120.1
C45-C44-C43	119.8(3)
C45-C44-H44	120.1
C40-C45-H45	119.5
C44–C45–C40	120.9(3)
C44-C45-H45	119.5
C41–C46–H46	119.5
C47–C46–C41	120.9(3)
C47-C46-H46	119.5
C46-C47-H47	119.7
C46–C47–C48	120.6(3)

C48–C47–H47	119.7
C39–C48–C47	119.1(3)
C39–C48–C49	121.4(3)
C47–C48–C49	119.5(3)
C48-C49-C52	123.5(3)
C50-C49-C48	128.6(3)
C50-C49-C52	107.8(3)
С49-С50-Н50	125.3
C49–C50–C51	109.4(3)
С51-С50-Н50	125.3
O6-C51-N4	125.8(3)
O6–C51–C50	127.6(3)
N4-C51-C50	106.6(3)
O5-C52-N4	125.2(3)
O5–C52–C49	128.9(3)
N4C52C49	105.9(3)
C54–C53–N4	120.3(3)
C58–C53–N4	119.1(3)
C58–C53–C54	120.5(3)
C53–C54–H54	120.4
C55–C54–C53	119.1(3)
C55–C54–H54	120.4
С54С55Н55	119.6
C56–C55–C54	120.8(3)
С56С55Н55	119.6
С55-С56-Н56	120.2
C55–C56–C57	119.6(3)
С57-С56-Н56	120.2
С56-С57-Н57	120.0
C58–C57–C56	120.1(3)
С58С57Н57	120.0

C53–C58–C57	119.9(3)
С53-С58-Н58	120.1
С57-С58-Н58	120.1

On/off electricity experiment

On/off electricity reaction was carried out in an undivided cell, with a GF anode (10 mm × 15 mm × 6 mm) and a platinum cathode (10 mm × 15 mm × 0.25 mm). *rac*-1a (81.4 mg, 0.30 mmol, 1.0 equiv), 2a (115.5 mg, 0.90 mmol, 3.0 equiv), Pd(OAc)₂ (6.7 mg, 10 mol %), L-*tert*-leucine (11.7 mg, 30 mol %) and LiOAc (40.5 mg, 2.0 equiv) were placed in a 10 mL cell and dissolved in AcOH (6.0 mL) under nitrogen atmosphere. Electrocatalysis was performed at 60 °C with a constant current of 1.0 mA. Aliquots of 0.20 mL were removed from the cell every 1.0 h, and separately mixed with an aliquot (0.2 mL) of a solution of 1,3,5-trimethoxybenzene (0.30 mmol in 6.0 mL of AcOH). The mixture was extracted with EtOAc (3.0 mL). After evaporation of solvent, the crude mixture was analyzed by ¹H-NMR spectroscopy.

Table S4Obtained data.

Time (h)	0	1.0	2.0	3.0	4.0	5.0	6.0
Yield 3 (%)	0	7	7	13	14	18	18

Fig. S1 On/off electricity experiment.

Cyclic voltammetric studies

CV measurements were conducted with a Metrohm Autolab PGSTAT204 potentiostat and Nova 2.1 software. A glassy carbon working electrode (disk, diameter: 3 mm), a coiled platinum wire counter electrode and a saturated calomel (SCE) reference electrode were employed. The voltammograms were recorded at room temperature in AcOH at a substrate concentration of 5.0 mmol/L and with $0.1 \text{ M} n\text{Bu}_4\text{NPF}_6$ as supporting electrolyte. The scan rate is 100 mV/s. Deviations from the general experimental conditions are indicated in the respective figures and descriptions.

Fig. S2 Cyclic voltammogram of different scan cycles of $Pd(OAc)_2$ in AcOH with nBu_4NPF_6 (0.1 M) at 100 mV/s.

Fig. S3 Cyclic voltammogram of several reactants in AcOH with nBu_4NPF_6 (0.1 M) at 100 mV/s.

Fig. S4 Cyclic voltammogram of several reaction mixtures in AcOH with nBu_4NPF_6 (0.1 M) at 100 mV/s.

Computational Studies

All DFT calculations were performed with Gaussian 16, Revision A.03 package.^[4] All structures were optimized at the PBE0^[5] level of theory in combination with D3 dispersion corrections with a Becke-Johnson damping scheme (D3BJ).^[6] Analytical frequency calculations were carried out at the same level of theory in order to identify each stationary point as either an intermediate (no imaginary frequencies) or as a transition state (only one imaginary frequency) and to provide thermal and non-thermal corrections to the Gibbs free energy at 333.15 K and 1 atm. All atoms were described with a def2-SVP basis set.^[7] while palladium was described also with a SSD pseudopotential.^[8] The electronic energy was then improved through PW6B95^[9] single-point calculations on the optimized geometries in combination with a standalone version of Grimme's D4 dispersion corrections,^[10] with a def2-TZVP basis set combined with SSD pseudopotential for palladium.^[11] Solvent effects were taken into consideration in the single-point calculations through the use of the SMD model^[12] with a dielectric constant of $\varepsilon = 6.2528$, which corresponds to acetic acid, the solvent used in the experimental work. All reported energies are based on gas-phase Gibbs free energies with def2-SVP basis set for which the electronic energies were corrected to PW6B95-D4 with def2-TZVP basis set and solvent effects.

Fig. S5 Computed relative Gibbs free energies ($\Delta G_{333.15}$) in kcal mol⁻¹ for C–H activation of indole's C-3 position at the PW6B95-D4/def2-TZVP+SMD(AcOH)//PBE0-D3BJ/def2-SVP level of theory. Superscript P relates to structures with L-proline as a ligand.

Fig. S6 Computed transition state structure for the C–H activation elementary step for the sevenmembered ring pathway with *O*-coordination of the TDG, $TS(1-2)^7$. Nonrelevant hydrogens were omitted for clarity.

Fig. S7 Computed transition state structure for the migratory insertion elementary step for the seven-membered ring pathway with *O*-coordination of the TDG, TS(4-5). Nonrelevant hydrogens were omitted for clarity.

Fig. S8 Computed transition state structure for the C–H activation elementary step for the fivemembered ring pathway with *O*-coordination of the TDG, $TS(1-2)^5$. Nonrelevant hydrogens were omitted for clarity.

Fig. S9 Computed transition state structure for the C–H activation elementary step for the sevenmembered ring pathway with *N*-coordination of the TDG, $TS(1-2)^{7}$. Nonrelevant hydrogens were omitted for clarity.

Fig. S10 Computed transition state structure for the C–H activation elementary step at indole's C-3 position with L-proline as a ligand, $TS(1-2)^P$. Nonrelevant hydrogens were omitted for clarity.

Table S5 Calculated electronic energies at the PW6B95-D4/def2-TZVP+SMD(AcOH) level oftheory and Gibbs free energies with dispersion corrections for all structures in the present work(all in Hartree).^a

Structure	Electronic Energy	Total Gibbs Free Energy
I-1 ⁵	-1723.533894	-1722.998609
TS (1-2) ⁵	-1723.518017	-1722.985498
I-2 ⁵	-1723.544208	-1723.008372
I-1' ⁷	-1723.525121	-1722.988313
TS(1-2) ⁷	-1723.506879	-1722.971028
I-2' ⁷	-1723.531231	-1722.992187
I-1 ⁷	-1723.546341	-1723.009262
$TS(1-2)^{7}$	-1723.523966	-1722.989254
I-2 ⁷	-1723.548139	-1723.010954
I-3	-1494.050230	-1493.568479
I-4	-1893.497314	-1892.927722
TS(4-5)	-1893.475774	-1892.905948
I-5	-1893.509691	-1892.935256
Acetic acid	-229.455848	-229.424445
Maleimide	-399.402411	-399.341727

^a Superscripts 5 and 7 correspond to structures, which lead to the formation of a 7-membered and 5-membered cyclometallated complex with *O*-coordination of the TDG. Superscripts '7 represents structures with *N*-coordination of the TDG.

Table S6 Calculated electronic energies at the PW6B95-D4/def2-TZVP+SMD(AcOH) level of theory and Gibbs free energies with dispersion corrections for C–H activation at the indole's C-3 position (all in Hartree).^a

Structure	Electronic Energy	Total Gibbs Free Energy
I-1 ^P	-1621.451279	-1621.069778
TS(1-2) ^P	-1621.419499	-1621.040839
I-2 ^P	-1621.438318	-1621.055699

^a Superscripts P relates to structures with L-proline as a ligand.

Cartesian coordinates of the optimized structure

I-1⁵

Lowest frequency = 15.8310 cm^{-1} Charge = 1, Multiplicity = 1

С	3.195846	-0.734598	-1.066459
С	3.292154	-1.375677	0.200683
С	4.665213	-3.090825	-0.900140
Н	5.238067	-4.018793	-0.832616
С	0.259241	-0.781995	-1.392096
Ν	-0.819434	-0.687128	-0.698797
С	-1.782305	-1.736600	-0.417871
Н	-1.954414	-2.318449	-1.335577
0	-2.849725	0.013635	0.796467
Н	0.575494	-1.684944	-1.926146
Pd	-1.023129	1.009882	0.295840
С	0.000358	-3.434725	0.186437
Н	0.272480	-4.234563	0.890475
Н	-0.149906	-3.903227	-0.799682
Н	0.868571	-2.762046	0.139121
С	-2.341819	-3.789936	0.941583
Н	-2.546328	-4.393959	0.044286
Н	-1.993313	-4.480176	1.723320
Н	-3.285398	-3.349540	1.295635
0	-1.255367	2.630716	1.372817
С	-1.426969	3.767639	0.758499
0	-1.414325	3.899472	-0.456700
С	-1.602318	4.930677	1.700752
Н	-0.616663	5.204835	2.108291
Н	-2.017776	5.788981	1.159921
Н	-2.242062	4.656317	2.549577
С	1.057075	0.429481	-1.316459
С	0.509794	1.728181	-1.062868
С	2.801615	1.732480	-0.805540
С	1.656614	2.559598	-0.758389
Н	-0.370944	2.144973	-1.576673
С	1.807516	3.927093	-0.495557
С	4.207904	3.549131	-0.250194
С	3.085623	4.401582	-0.236849
Н	0.931539	4.577897	-0.496253
Н	5.195061	3.964274	-0.036542
Н	3.230417	5.461546	-0.017863
Ν	2.392872	0.444086	-1.156823
С	3.817457	-1.231345	-2.187949
Н	3.723602	-0.699891	-3.137249

С	4.567821	-2.424490	-2.099159
Н	5.064027	-2.814145	-2.989850
С	-1.262508	-2.733507	0.691703
С	-3.029652	-0.981778	0.056080
Ν	-4.262857	-1.350835	-0.273303
С	-5.369401	-0.535367	0.251527
Н	-6.277972	-1.147445	0.160067
Н	-5.183143	-0.376350	1.323347
С	-4.612043	-2.466328	-1.146596
Н	-5.339524	-3.093989	-0.606485
Н	-3.729072	-3.096518	-1.293609
С	-5.536152	0.801587	-0.449233
Н	-6.384220	1.341881	-0.004488
Н	-4.640744	1.425879	-0.325803
Н	-5.738797	0.680728	-1.522595
С	-5.175771	-2.030200	-2.486509
Н	-6.113959	-1.468646	-2.375509
Н	-4.460716	-1.397372	-3.033495
Н	-5.392831	-2.915728	-3.101075
С	4.089325	2.197252	-0.542087
Н	4.954095	1.532385	-0.572235
С	-0.947020	-2.010662	2.002204
Н	-0.191631	-1.223228	1.864060
Н	-1.836701	-1.552777	2.454498
Н	-0.533519	-2.735466	2.719052
С	4.034748	-2.594522	0.270575
С	2.678030	-0.864163	1.372486
С	4.117511	-3.270640	1.514944
С	2.785076	-1.545401	2.563332
Н	2.130734	0.081055	1.332784
С	3.503810	-2.760326	2.635086
Н	4.684223	-4.203170	1.569537
Н	2.315866	-1.140690	3.462795
Н	3.580025	-3.287322	3.588510

 $TS(1-2)^5$ Lowest frequency = -389.1099 cm⁻¹ Charge = 1, Multiplicity = 1

С	-3.313437	-0.407232	1.170870
С	-3.619441	-1.230623	0.049275
С	-4.460587	-2.364761	0.266760
С	-4.975908	-2.606505	1.567064
Н	-5.625478	-3.471641	1.720309
С	-0.359997	-0.681631	1.025344
Ν	0.764239	-0.675582	0.391199
С	1.625060	-1.815381	0.144965

Н	1.614368	-2.475301	1.025441
0	3.054231	-0.120724	-0.740855
Н	-0.769687	-1.575535	1.509519
Pd	1.337036	1.050528	-0.376374
С	-0.197087	-3.333874	-0.714672
Н	-0.509073	-4.003268	-1.529809
Н	-0.098205	-3.946719	0.195677
Н	-1.018972	-2.617208	-0.576689
С	2.149267	-3.739511	-1.429197
Н	2.284430	-4.454837	-0.604193
Н	1.792253	-4.313931	-2.296230
Н	3.129918	-3.320895	-1.699393
0	2.068408	2.823834	-0.931672
С	1.971168	3.751072	-0.052542
0	1.338635	3.635986	1.013816
C	2.675867	5.034856	-0.384212
Н	2.296000	5.423321	-1.340104
н	2.527742	5,771084	0.412872
Н	3.747680	4.834037	-0.523023
C	-1.064929	0.570299	0.951157
C	-0.461189	1.752134	0.449313
Ċ	-2.764727	1,924662	0.453264
c	-1.570516	2.609342	0.103377
н	0.466554	2.441348	0.900073
C	-1.663685	3.914000	-0.409897
c	-4.093848	3.749747	-0.260711
c	-2.921082	4,461350	-0.596374
н	-0.764186	4.476187	-0.662156
н	-5.066111	4.220224	-0.421355
н	-3.013929	5.467515	-1.010125
N	-2.420192	0.686059	0.967427
c	-3.824688	-0.661890	2,421763
н	-3.567538	-0.001150	3,252126
c	-4.673039	-1.773935	2.618674
н	-5.081152	-1,968563	3,612202
c	1,121691	-2.656376	-1.093064
c	3,006544	-1,203675	-0.106016
N	4,132907	-1.774925	0.303891
c	5.392679	-1.086796	-0.017993
н	6 192650	-1 832108	0.017555
н	5 352946	-0 803252	-1 079523
c	4 228980	-3 011908	1 072055
н	4 898611	-3 693190	0 522012
н	3 250380	-3 501942	1 084905
Ċ	5 661684	0 130500	0 836003
с ц	6 625044	0.133330	0.00000
н	1 QQ2600	0.302000	0.244130
Ц	5 712/07	-0.107717	1 QAEEQ/
п С	J./1342/ 1 777107	-0.10//12	1.900004 2 100050
с ц	4.121402 5 715110	-2.002403 _7 200011	2.430000
п	J./4J410	-2.300011	2.2725023

Н	4.067457	-2.121773	3.048554
Н	4.752698	-3.767060	3.017119
С	-4.037168	2.474371	0.275841
Н	-4.936561	1.921337	0.551791
С	0.905125	-1.765417	-2.317731
Н	0.151943	-0.985851	-2.128289
Н	1.831832	-1.273257	-2.644224
Н	0.537844	-2.382279	-3.151272
С	-3.118059	-0.974676	-1.253025
С	-4.754745	-3.214891	-0.830312
С	-3.429015	-1.819098	-2.294265
Н	-2.496397	-0.093904	-1.430561
С	-4.248556	-2.950811	-2.081607
Н	-5.397209	-4.082981	-0.664496
Н	-3.045840	-1.609469	-3.295455
Н	-4.487662	-3.610241	-2.918599

I-2⁵

Lowest frequency = 14.6716 cm^{-1} Charge = 1, Multiplicity = 1

С	-3.455617	-0.278480	1.071855
С	-3.877456	-1.278650	0.147818
С	-4.819995	-2.254012	0.598703
С	-5.326325	-2.170540	1.921432
Н	-6.054223	-2.915274	2.252233
С	-0.440420	-0.857641	0.501247
Ν	0.783814	-0.778887	0.068307
С	1.708050	-1.875708	-0.118951
Н	1.521017	-2.641139	0.650338
0	3.258604	-0.084707	-0.422622
Н	-0.878380	-1.801359	0.847056
Pd	1.413348	1.027891	-0.430026
С	0.131078	-3.194232	-1.571176
Н	0.014240	-3.755664	-2.509936
Н	-0.024845	-3.903832	-0.742562
Н	-0.675642	-2.447702	-1.546115
С	2.569009	-3.661620	-1.709222
Н	2.463312	-4.462560	-0.961720
Н	2.436000	-4.125545	-2.697450
Н	3.597830	-3.273928	-1.668972
0	2.153060	2.919728	-0.792406
С	2.031351	3.856090	0.002020
0	1.288333	3.787264	1.072211
С	2.714725	5.158330	-0.207484
Н	3.418443	5.088479	-1.042788

Н	1.954199	5.925514	-0.419831
Н	3.228369	5.461602	0.715455
С	-1.143216	0.375651	0.426842
С	-0.470964	1.489326	-0.095010
С	-2.688910	1.959390	0.260079
С	-1.456800	2.509364	-0.226876
н	0.791244	2.937316	1.067589
С	-1.457644	3.828414	-0.731872
С	-3.832002	3,988302	-0.222382
C	-2.633662	4,549656	-0.723200
H	-0.546252	4.259005	-1.151146
н	-4.744272	4.588715	-0.233627
н	-2.649596	5.567377	-1,118101
N	-2 474895	0 660881	0 654553
c	-3 965910	-0 221338	2 349362
н	-3 618883	0.221356	3 028252
Ċ	-1 919562	-1 171/150	2 77/0/6
L L	= 4, J1JJ02	1 112602	2 797546
п С		-1.113003	1 5167040
c	2 00/195	1 240061	-1.320201
	J.094105	-1.240901	0.052979
	4.112553	-1.8/3323	0.013501
C	5.398389	-1.100138	0.6/180/
н	6.16850/	-1.929581	0.8531/8
H	5.585813	-0./3/3/3	-0.323133
C	4.055394	-3.196240	1.2251//
Н	4.852084	-3.808043	0.771007
Н	3.114112	-3.678675	0.945420
C	5.458397	-0.072767	1.724048
Н	6.452764	0.396649	1.708977
Н	4.713669	0.707154	1.515638
Н	5.285307	-0.465339	2.735800
С	4.199422	-3.171371	2.735947
Н	5.174367	-2.773930	3.051743
Н	3.411786	-2.559571	3.201061
Н	4.118326	-4.194348	3.130896
С	-3.880321	2.695939	0.267809
Н	-4.807936	2.257133	0.639458
С	1.653943	-1.544307	-2.662267
Н	0.911181	-0.736620	-2.574588
Н	2.652610	-1.086697	-2.698245
Н	1.480948	-2.050495	-3.623647
С	-3.409389	-1.335276	-1.190629
С	-5.232707	-3.271499	-0.300091
С	-3.836806	-2.333272	-2.036257
Н	-2.723257	-0.565631	-1.551379
С	-4.748484	-3.315258	-1.586128
Н	-5.950423	-4.018602	0.047324
Н	-3.479261	-2.361245	-3.068133
Н	-5.078014	-4.101332	-2.268866

I-1'7

Lowest frequency = 13.7602 cm^{-1} Charge = 1, Multiplicity = 1

С	-1.034542	-0.685353	1.689725
С	-0.648496	-0.079227	2.926225
С	-0.916481	1.242675	3.161204
Н	-0.122551	-0.688094	3.661613
Н	-0.606836	1.707683	4.099692
С	-0.361833	0.479474	-1.937847
Ν	0.579670	0.633341	-1.063126
С	1.752189	1.421423	-1.403442
Н	1.883052	1.446331	-2.502469
Н	-0.209050	0.890063	-2.946252
Pd	0.926387	-0.550554	0.540773
С	0.309934	3.475970	-1.488716
Н	0.253828	4.549213	-1.256099
Н	0.251628	3.379408	-2.585149
Н	-0.575293	3.003815	-1.043247
С	2.770023	3.737212	-1.528610
Н	2.782868	3.667649	-2.628304
Н	2.621202	4.795964	-1.269652
Н	3.748428	3.424493	-1.149158
0	1.501813	-1.815393	1.976046
С	1.200068	-3.044232	1.647477
0	0.595030	-3.320887	0.620325
С	1.688856	-4.082482	2.619527
Н	1.620857	-3.724520	3.654911
Н	1.120457	-5.010823	2.487629
Н	2.750052	-4.292157	2.411925
Н	-1.012285	-1.771413	1.553430
С	-1.598328	-0.194950	-1.734182
С	-2.452558	-0.683121	-2.715337
С	-3.524627	-1.337740	-2.057684
Н	-2.287478	-0.607113	-3.788892
С	-3.295750	-1.203042	-0.659501
С	-4.677080	-2.015277	-2.507549
С	-4.197523	-1.684833	0.293916
С	-5.559089	-2.507591	-1.566757
Н	-4.865162	-2.139303	-3.575853
С	-5.321664	-2.338773	-0.182959
Н	-4.020718	-1.559223	1.363317
Н	-6.458855	-3.034680	-1.889506
Н	-6.045037	-2.739809	0.530395
Ν	-2.108840	-0.524068	-0.481816
С	-1.700497	0.082546	0.729421

С	-1.617188	2.032252	2.206901
С	-2.029856	1.445777	0.969238
С	1.620944	2.912785	-0.937796
С	2.973924	0.715989	-0.811795
0	4.007025	1.259681	-0.559849
Ν	2.787237	-0.692326	-0.483006
С	3.885432	-1.201641	0.389892
Н	3.485046	-2.099728	0.871136
Н	4.014856	-0.454415	1.183030
С	2.513311	-1.592156	-1.662112
Н	2.726243	-2.607253	-1.301970
Н	1.438066	-1.580825	-1.875121
С	5.213812	-1.505137	-0.275087
Н	5.917111	-1.810736	0.513359
Н	5.150321	-2.341682	-0.985188
Н	5.639617	-0.627357	-0.777193
С	3.298562	-1.265599	-2.917945
Н	3.077008	-2.030405	-3.676578
Н	3.013945	-0.294038	-3.348642
Н	4.382976	-1.258080	-2.756378
С	1.612457	2.999862	0.588194
Н	0.803303	2.391437	1.020534
Н	2.569048	2.676922	1.023292
Н	1.441775	4.040198	0.901696
С	-2.786357	2.215216	0.048855
С	-1.932911	3.389465	2.452843
С	-3.097502	3.524777	0.332960
Н	-3.134095	1.756756	-0.878660
С	-2.654973	4.119688	1.535295
Н	-1.606406	3.845269	3.390277
Н	-3.691402	4.108995	-0.372825
Н	-2.901258	5.163349	1.742678

TS(1-2)'⁷ Lowest frequency = -486.7322 cm⁻¹ Charge = 1, Multiplicity = 1

С	-0.659403	-0.260980	1.396887
С	-0.518467	0.429676	2.638066
С	-1.381679	1.435607	2.984617
Н	0.285900	0.135820	3.316606
Н	-1.270610	1.958079	3.937628
С	-0.126127	0.573400	-1.992978
Ν	0.775141	0.727242	-1.078008
С	1.864957	1.667766	-1.287474
Н	2.061323	1.777790	-2.372611

Pd 1.203250 -0.514436 0.4 C 0.173043 3.533582 -1.3 H -0.014780 4.580573 -1.0 H 0.159089 3.486449 -2.4 H -0.667163 2.941117 -0.9 C 2.592207 4.080249 -1.2 H 2.647813 4.083702 -2.3 H 2.326381 5.099260 -0.9 H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.057764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.22382 -1.8 C -2.013372 -0.789313 -2.9 C -3.652178	12//92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	137851
H -0.014780 4.580573 -1.0 H 0.159089 3.486449 -2.4 H -0.667163 2.941117 -0.9 C 2.592207 4.080249 -1.2 H 2.647813 4.083702 -2.3 H 2.326381 5.099260 -0.9 H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.55 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.06 H -3.783617 -1.876131 1.06 H -5.587617 -3.279456 0.6 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 <td>30788</td>	30788
H 0.159089 3.486449 -2.4 H -0.667163 2.941117 -0.9 C 2.592207 4.080249 -1.2 H 2.647813 4.083702 -2.3 H 2.326381 5.099260 -0.9 H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.22 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.55 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.587617 -3.279456 0.6 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.397617 -0.5 <td>)52319</td>)52319
H -0.667163 2.941117 -0.9 C 2.592207 4.080249 -1.2 H 2.647813 4.083702 -2.3 H 2.326381 5.099260 -0.9 H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.55 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.6 H -3.783617 -1.876131 1.00 H -5.587617 -3.279456 0.60 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8	31824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39087
H 2.647813 4.083702 -2.3 H 2.326381 5.099260 -0.9 H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.55 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.44 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.037467 -1.046367 -1.9 </td <td>248830</td>	248830
H2.3263815.099260 -0.9 H3.5849353.845397 -0.8 O1.849559 -1.764185 1.8C1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.06 H -5.587617 -3.279456 0.06 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2	349503
H 3.584935 3.845397 -0.8 O 1.849559 -1.764185 1.8 C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H	31039
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	348615
C 1.073553 -2.697136 2.2 O -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.55 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7	377962
C -0.129908 -2.773797 1.9 C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C -2.60845 1.139139 0.8 C -2.60845 1.139139 0.8 C -2.60845 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.608445 1.139139 0.8 C -2.60845 0.2 H -2.125356 -0.699419 -2.4 H -2.897912 -2.121159 -1.7 C -2.50181 -0.777365 -2.7 H -2.50166 -3.7	87328
C 1.695419 -3.745094 3.1 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -4.076372 -2.376840 -2.9 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	377378
C 1.033413 -3.743034 3.14 H 0.946894 -4.154867 3.8 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.587617 -3.279456 0.00 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3	61067
In 0.940894 -4.194807 3.6 H 2.046294 -4.565002 2.5 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.587617 -3.279456 0.00 N -1.873498 -0.609481 -0.6 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 2.125356 -0.699419 -2.4 H 2.125356 -0.699419 -2.4 H 2.125356 -0.699419 -2.4 H 2.125356 -0.699419 -2.4 H 2.125356 -0.699419 $-$	2/0528
H 2.040294 -4.303002 2.3 H 2.557764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.99 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.89454 0.2 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.77365 -2.7 H 4.102227 -1.250166 $-3.$	11696
H 2.337764 -3.341721 3.7 H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.1250156 -0.699419 -2.4 H 2.1250156 -0.699419 -2.7 H 4.102227 -1.250166	704607
H -0.423219 -1.498721 1.4 C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.250181 -0.77365 -2.7 H 4.102227 -1.250166 -3.7	177417
C -1.300498 -0.223382 -1.8 C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	F/2415
C -2.013372 -0.789313 -2.9 C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	
C -3.052178 -1.570407 -2.3 H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	100019
H -1.773233 -0.681109 -3.9 C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.6 C -4.968290 -2.973219 -2.6 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.00 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.00 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	307070
C -2.956119 -1.415975 -0.9 C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.55 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	92079
C -4.076372 -2.376840 -2.9 C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	156242
C -3.866412 -2.010612 -0.0 C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	906562
C -4.968290 -2.973219 -2.0 H -4.160015 -2.519054 -3.9 C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	1/6204
H-4.160015-2.519054-3.9C-4.863731-2.788227-0.6H-3.783617-1.8761311.0H-5.771052-3.600163-2.4H-5.587617-3.2794560.0N-1.873498-0.609481-0.6C-1.7058030.0909210.5C-2.4317851.8258672.1C-2.6084451.1391390.8C1.5230753.100670-0.7C3.1220151.057034-0.6N3.111364-0.397617-0.5C4.255558-0.8894540.2H5.171709-0.403540-0.1H2.125356-0.699419-2.4H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7)38113
C -4.863731 -2.788227 -0.6 H -3.783617 -1.876131 1.0 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.0 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	985877
H -3.783617 -1.876131 1.6 H -5.771052 -3.600163 -2.4 H -5.587617 -3.279456 0.6 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	539357
H-5.771052-3.600163-2.4H-5.587617-3.2794560.0N-1.873498-0.609481-0.6C-1.7058030.0909210.5C-2.4317851.8258672.1C-2.6084451.1391390.8C1.5230753.100670-0.7C3.1220151.057034-0.6N3.111364-0.397617-0.5C4.255558-0.8894540.2H5.171709-0.403540-0.1H2.125356-0.699419-2.4H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	03423
H -5.587617 -3.279456 0.6 N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	30918
N -1.873498 -0.609481 -0.6 C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7)14591
C -1.705803 0.090921 0.5 C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	577118
C -2.431785 1.825867 2.1 C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	648801
C -2.608445 1.139139 0.8 C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	.10990
C 1.523075 3.100670 -0.7 C 3.122015 1.057034 -0.6 N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	365504
C3.1220151.057034-0.6N3.111364-0.397617-0.5C4.255558-0.8894540.2H5.171709-0.403540-0.1H4.088712-0.5128621.2C3.037467-1.046367-1.9H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	'52587
N 3.111364 -0.397617 -0.5 C 4.255558 -0.889454 0.2 H 5.171709 -0.403540 -0.1 H 4.088712 -0.512862 1.2 C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	50899
C4.255558-0.8894540.2H5.171709-0.403540-0.1H4.088712-0.5128621.2C3.037467-1.046367-1.9H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	62346
H5.171709-0.403540-0.1H4.088712-0.5128621.2C3.037467-1.046367-1.9H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	257246
H4.088712-0.5128621.2C3.037467-1.046367-1.9H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	L09908
C 3.037467 -1.046367 -1.9 H 2.125356 -0.699419 -2.4 H 2.897912 -2.121159 -1.7 C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	274618
H2.125356-0.699419-2.4H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	905761
H2.897912-2.121159-1.7C4.250181-0.777365-2.7H4.102227-1.250166-3.7	103247
C 4.250181 -0.777365 -2.7 H 4.102227 -1.250166 -3.7	/33213
Н 4.102227 -1.250166 -3.7	76259
	/57840
Н 4.405860 0.299500 -2.9	945532
H 5.174970 -1.188233 -2.3	348477
C 4.404440 -2.394110 0.2	270085
Н 5.155277 -2.657358 1.0	28351

3.466683	-2.890448	0.549221
4.759889	-2.798828	-0.687984
4.034273	1.687703	-0.207161
1.434457	3.114679	0.773422
1.157556	4.122579	1.115968
0.662457	2.421143	1.138101
2.393461	2.858992	1.245154
-3.645526	1.551120	-0.014268
-3.309749	2.889239	2.433489
-4.471791	2.593947	0.328594
-3.782377	1.035212	-0.966120
-4.306560	3.264612	1.562856
-3.180309	3.408740	3.385627
-5.264723	2.906847	-0.353818
-4.976442	4.087135	1.822861
	3.466683 4.759889 4.034273 1.434457 1.157556 0.662457 2.393461 -3.645526 -3.309749 -4.471791 -3.782377 -4.306560 -3.180309 -5.264723 -4.976442	3.466683-2.8904484.759889-2.7988284.0342731.6877031.4344573.1146791.1575564.1225790.6624572.4211432.3934612.858992-3.6455261.551120-3.3097492.889239-4.4717912.593947-3.7823771.035212-4.3065603.264612-3.1803093.408740-5.2647232.906847-4.9764424.087135

I-2'7

Lowest frequency = 23.3782 cm^{-1} Charge = 1, Multiplicity = 1

С	-0.640383	0.408491	1.127011
С	-0.676698	1.135322	2.346233
С	-1.794821	1.849011	2.702154
Н	0.191955	1.122138	3.009574
Н	-1.821906	2.392459	3.649985
С	0.248061	0.617328	-2.088559
Ν	1.080156	0.728917	-1.107160
С	2.352759	1.415751	-1.290863
Н	2.659619	1.341461	-2.352921
Н	0.551454	1.003913	-3.072452
Pd	1.092509	-0.347662	0.565316
С	1.111965	3.549186	-1.771114
Н	1.111083	4.639647	-1.630076
Н	1.221580	3.364568	-2.852298
Н	0.127079	3.182362	-1.446019
С	3.564664	3.619177	-1.411601
Н	3.751243	3.451570	-2.484896
Н	3.479128	4.705434	-1.260507
Н	4.431373	3.261537	-0.844600
0	1.276176	-1.510479	2.265915
С	0.404794	-2.182733	2.831242
0	-0.850902	-2.146775	2.498028
С	0.735472	-3.092870	3.958558
Н	1.820268	-3.176415	4.077961
Н	0.288781	-2.689291	4.880363
Н	0.281606	-4.078772	3.785816

Н	-0.988961	-1.429200	1.831295
С	-1.004091	-0.066923	-2.054787
С	-1.536926	-0.764263	-3.130889
С	-2.610464	-1.548632	-2.634617
Н	-1.143429	-0.753318	-4.146223
С	-2.719606	-1.259038	-1.246780
C	-3.497124	-2.473255	-3.223988
C	-3.699981	-1.852135	-0.441757
C	-4.456779	-3.065301	-2.427013
H	-3.422991	-2.711249	-4.287080
C	-4.553648	-2.756303	-1.050730
Н	-3.788919	-1.610576	0.618576
н	-5.155171	-3.783764	-2.860416
н	-5.324293	-3.245670	-0.451010
N	-1.741174	-0.347016	-0.908837
c	-1.743314	0.420208	0.291694
c	-2.918442	1,921425	1,840503
c	-2.910442	1 217955	0 595756
c	2.054455	2 9/2678	-0 961131
c	3 398106	0 65557 <i>1</i>	-0.004404
N	3 1/5208	-0 752500	-0.440334
C	1 097091	1 250799	-0.282392
	4.007001 E 110E01	-1.559700	0.069195
	2.050847	-1.155080	1 622596
н С	3.950847	-0.815909	1.033580
C II	3.036848	-1.504957	-1.5592/3
н	2.256297	-1.03/483	-2.16960/
H	2.660/58	-2.50/245	-1.314/11
C	4.3384/1	-1.580775	-2.335161
н	4.1/0451	-2.108/22	-3.284945
Н	4.730538	-0.579645	-2.573951
Н	5.121004	-2.126291	-1.789279
С	3.868588	-2.842246	0.897219
Н	4.481314	-3.171279	1.748395
Н	2.819757	-3.068617	1.133566
Н	4.173286	-3.445973	0.030551
0	4.324030	1.179393	0.102730
С	2.005189	3.184202	0.523353
Н	1.928052	4.265374	0.710821
Н	1.057701	2.726721	0.845687
Н	2.820816	2.797289	1.149438
С	-3.989046	1.373645	-0.293351
С	-4.052861	2.704391	2.172200
С	-5.065837	2.157824	0.051916
Н	-3.975314	0.877996	-1.264328
С	-5.108772	2.817545	1.299591
Н	-4.066282	3.227248	3.131449
Н	-5.895530	2.272952	-0.648921
Н	-5.975950	3.427051	1.562037

I-1⁷

Lowest frequency = 13.7648 cm^{-1} Charge = 1, Multiplicity = 1

С	-1.737982	-1.285248	-1.426645
С	-2.012893	-2.643809	-1.237823
С	-2.270037	-3.120183	0.031872
Н	-2.003681	-3.317276	-2.095675
Н	-2.485332	-4.181297	0.180734
С	-0.024686	2.290085	-0.320102
Ν	0.756174	1.323822	0.024535
С	2.094216	1.633557	0.525923
Н	2.406751	2.605104	0.113655
0	2.488394	-0.653076	0.080775
Н	0.363707	3.317322	-0.326015
Pd	0.428886	-0.654951	-0.092774
С	1.193626	2.921568	2.492220
Н	1.269471	3.093120	3.575954
Н	1.472983	3.862469	1.991366
Н	0.136799	2.708526	2.274217
С	3.537805	2.092543	2.551291
Н	3.895513	3.048576	2.138941
Н	3.556008	2.187215	3.646676
Н	4.254201	1.301955	2.282548
0	0.505184	-2.625488	-0.045937
С	1.024855	-3.121375	-1.138663
0	1.243753	-2.451419	-2.134852
С	1.337003	-4.590766	-1.046201
Н	0.552991	-5.129360	-0.497580
Н	1.466160	-5.006505	-2.052569
Н	2.275384	-4.717845	-0.484884
Н	-1.597809	-0.881450	-2.431570
С	-1.390934	2.154514	-0.669734
С	-2.233974	3.201097	-1.024653
С	-3.524328	2.657040	-1.229800
Н	-1.933333	4.243361	-1.116743
С	-3.418542	1.260466	-0.983888
С	-4.772299	3.206301	-1.591438
С	-4.522984	0.404687	-1.075707
С	-5.859300	2.361539	-1.688824
Н	-4.870175	4.275959	-1.787362
С	-5.733012	0.976881	-1.430504
Н	-4.438448	-0.664350	-0.874208
Н	-6.835955	2.762330	-1.966676
Н	-6.617198	0.340804	-1.511858
Ν	-2.112373	0.967710	-0.651544
С	-1.737137	-0.378822	-0.335658
С	-2.283504	-2.268533	1.166406

С	-2.063827	-0.869109	0.995056
С	2.113590	1.765347	2.095312
С	2.983395	0.501683	0.040226
Ν	4.221852	0.666291	-0.400869
С	4.944975	-0.535075	-0.851557
Н	6.009181	-0.260545	-0.877402
Н	4.822161	-1.304133	-0.075205
С	4.912440	1.945984	-0.521016
Н	5.877587	1.850740	0.002508
Н	4.350029	2.708188	0.027645
С	4.480205	-1.071138	-2.194541
Н	5.098325	-1.939310	-2.466479
Н	3.433215	-1.404678	-2.158808
Н	4.589304	-0.321519	-2.991165
С	5.125202	2.380370	-1.959390
Н	5.756186	1.671953	-2.514235
Н	4.167494	2.475259	-2.492899
Н	5.629612	3.357185	-1.978596
С	-2.202042	-0.004085	2.100741
С	-2.562057	-2.763174	2.464529
С	-2.486352	-0.517208	3.348949
Н	-2.083407	1.071795	1.955764
С	-2.652659	-1.905821	3.537223
Н	-2.710911	-3.837128	2.597712
Н	-2.590635	0.158283	4.200970
Н	-2.869619	-2.295176	4.533812
С	1.642928	0.486432	2.790154
Н	0.614670	0.215468	2.506025
Н	2.291868	-0.373031	2.573017
Н	1.649744	0.646365	3.878686

TS(1-2)⁷ Lowest frequency = -225.8320 cm⁻¹ Charge = 1, Multiplicity = 1

С	1.199263	-0.188554	-1.413910
С	1.244293	0.561886	-2.628133
С	2.017472	1.688035	-2.730198
Н	0.653945	0.216351	-3.479988
Н	2.046815	2.258225	-3.661686
С	-0.155725	0.315710	1.837140
Ν	-0.871081	0.458995	0.770208
С	-2.146629	1.163385	0.870443
Н	-2.307312	1.442907	1.923934
0	-2.835769	-0.652252	-0.497973
Н	-0.566239	0.682472	2.789807
Pd	-0.806326	-0.615953	-0.928006
--------	-----------------------	-----------	------------------
С	-0.867384	3.262872	0.407640
Н	-0.883492	4.255277	-0.065970
Н	-0.781079	3.416893	1.495564
Н	0.036683	2.742075	0.060204
С	-3.361440	3.335785	0.430222
Н	-3.375146	3.574391	1.505514
н	-3.334225	4.291582	-0.112826
н	-4.306670	2.840672	0.162873
0	-1.038344	-1.802544	-2.518438
Ċ	-0.144327	-2.692475	-2.754699
0	0.962467	-2.727873	-2.192750
Ċ	-0.519206	-3.739489	-3.763433
H	-1.223458	-3.337029	-4.501147
н	0.381585	-4.136248	-4.246047
н	-1.017231	-4.563662	-3.229709
Н	1.064402	-1.407656	-1.559793
C	1.120833	-0.308424	1,933389
Ċ	1.665983	-0.865327	3.082951
c	2.892697	-1.476215	2.716525
н	1,196644	-0.868501	4.065477
c	3.073250	-1.229268	1.327808
c	3,876593	-2,197789	3,424412
c	4,214628	-1,649054	0.636723
c	4,998448	-2.621978	2,740900
н	3 750716	-2 410587	<i>A A</i> 87913
Ċ	5 164186	-2 346942	1 363196
н	4 340482	-1 446377	-0 427971
н	5 774852	-3 181111	3 266612
н	6 064446	-2 702720	0 857322
N	1 978749	-0 533114	0.860932
Ċ	1 984925	0.223716	-0 341719
c	2 797844	2 136639	-1 630818
c	2.757044	1 388987	-0 108102
c	-2.121712	2 498615	0.400402
c	-3 186629	0 151305	0.040037
N	-1 /18618	0.191909	0.901079
C	-5 322572	-0 921087	0.002000
н	-6 342864	-0 613480	0.505202
ц	-5 222525	-0.015400	-0.78/132
п С	-3.233333	0.840108	2 01/04132
с ц	-4.92//11 5 96/750	1 211021	2.014047
п	-3.004/39	1 692002	1.00/032
п С	-4.231310	1.002005	2.224233
	-5.045267	-2.34/2/0	0.751271
n u	-3.//0294	-2.022310	0,2/37/8
n u	-4.039035 E 129260	-2.002022	1 020117
п С	-2.120200	-2.400224	1.03941/
	-5.101004	0.043355	3.209012
н	-5.930491	-0./28013	3.122903
н	-4.230664	-0.452694	3.000514

Н	-5.507362	0.701809	4.079549
С	3.561036	1.853718	0.692915
С	3.582809	3.312864	-1.707386
С	4.304685	3.003922	0.583893
Н	3.557742	1.291278	1.628059
С	4.319918	3.736430	-0.625748
Н	3.593083	3.879065	-2.641531
Н	4.891588	3.355002	1.435152
Н	4.921907	4.644900	-0.698093
С	-2.177036	2.261117	-1.469323
Н	-1.295687	1.705982	-1.823752
Н	-3.077117	1.715711	-1.789036
Н	-2.177075	3.232879	-1.985095

I-2⁷

Lowest frequency = 18.4300 cm^{-1} Charge = 1, Multiplicity = 1

С	1.072670	-1.156452	0.371755
С	1.353039	-2.542749	0.514783
С	2.506848	-3.085435	0.005766
Н	0.643905	-3.183654	1.045465
Н	2.719579	-4.149383	0.137362
С	-0.462293	1.157606	-1.518340
Ν	-1.100712	0.201515	-0.931290
С	-2.454506	-0.123086	-1.374237
Н	-2.714491	0.558607	-2.199513
0	-2.843115	-0.128803	0.974121
Н	-0.968933	1.690475	-2.337068
Pd	-0.736988	-0.577854	0.866112
С	-1.406799	-1.786296	-2.919228
Н	-1.512954	-2.758719	-3.421856
Н	-1.392384	-1.009568	-3.701012
Н	-0.433907	-1.778158	-2.406374
С	-3.890845	-1.727228	-2.691161
Н	-3.977625	-1.007313	-3.520502
Н	-3.953911	-2.734040	-3.128948
Н	-4.758800	-1.609656	-2.025419
0	-0.573516	-1.259088	2.808273
С	0.372112	-1.077393	3.581863
0	1.507963	-0.560165	3.210917
С	0.287698	-1.450269	5.018255
Н	-0.725706	-1.780172	5.267032
Н	1.009116	-2.256487	5.220187
Н	0.581483	-0.591739	5.638719
Н	1.501843	-0.449190	2.229713

С	0.808785	1.692038	-1.148721
С	1.142608	3.032302	-1.295779
С	2.320459	3.258750	-0.537944
Н	0.552109	3.773841	-1.831701
С	2.691146	2.005393	0.021419
С	3.103935	4.399872	-0.268919
С	3.829988	1.861114	0.823843
С	4.220933	4.258264	0.530234
Н	2.828789	5.371171	-0.685103
С	4.576255	3.000780	1.070302
Н	4.116140	0.892494	1.236477
Н	4.843274	5.127068	0.753160
Н	5.464790	2.927277	1.701293
Ν	1.768639	1.057460	-0.369889
С	1.986089	-0.347721	-0.280668
С	3.426280	-2.289233	-0.722581
С	3.158346	-0.896061	-0.897720
С	-2.565310	-1.583150	-1.940440
С	-3.331670	0.134131	-0.146115
Ν	-4.568391	0.623601	-0.235377
С	-5.314515	0.791680	1.018730
Н	-6.376036	0.869557	0.742526
Н	-5.191677	-0.132993	1.600915
С	-5.212509	1.085903	-1.459774
Н	-6.205789	0.611248	-1.512512
Н	-4.657116	0.705916	-2.321993
С	-4.879601	1.984105	1.853134
Н	-5.490932	2.033385	2.765965
Н	-3.828767	1.883762	2.155818
Н	-5.003632	2.933297	1.313583
С	-5.342486	2.596099	-1.546271
Н	-5.981415	3.002718	-0.749934
Н	-4.358705	3.085162	-1.478547
Н	-5.798720	2.872924	-2.507765
С	-2.509761	-2.654897	-0.851188
Н	-1.561885	-2.629852	-0.292392
Н	-3.334487	-2.562024	-0.129474
Н	-2.585895	-3.647428	-1.319682
С	4.042020	-0.132664	-1.703749
С	5.151451	-0.714290	-2.273536
Н	3.836971	0.922632	-1.885232
С	4.589104	-2.851332	-1.307104
С	5.439537	-2.080391	-2.063199
Н	5.815017	-0.111913	-2.897802
Н	4.790317	-3.914378	-1.154450
Н	6.330398	-2.523489	-2.513140

I-3 Lowest frequency = 20.1286 cm^{-1}

С	-3.273614	-1.140575	0.130934
С	-1.102669	-1.085758	-0.975225
С	-1.317841	-2.389995	-1.477774
С	-2.511453	-3.032353	-1.246583
Н	-0.542900	-2.892965	-2.067727
Н	-2.692513	-4.025865	-1.663814
С	0.350415	0.845272	1.337982
Ν	1.039748	0.068067	0.567606
С	2.416801	-0.268093	0.922098
Н	2.665291	0.287652	1.839462
С	3.266143	0.208382	-0.262376
0	2.763924	0.098641	-1.404307
Н	0.848200	1.233504	2.239527
Pd	0.675995	-0.425502	-1.327206
С	2.497324	-2.694564	0.039363
Н	1.507999	-2.633176	-0.441214
Н	3.266817	-2.466813	-0.712873
Н	2.635841	-3.740485	0.351205
С	3.969215	-1.981511	1.906983
Н	4.094593	-1.368080	2.813179
Н	4.091853	-3.032684	2.205307
н	4.781459	-1.745537	1.205270
С	-0.952583	1.367099	1.110195
C	-1.331096	2.629729	1.558523
C	-2.508659	2,989020	0.860546
H	-0.763598	3,246801	2.253678
C	-2.835192	1.889200	0.019404
C	-3.320917	4.143145	0.850651
Ċ	-3.953674	1.913380	-0.824177
Ċ	-4.420144	4.164894	0.017745
Н	-3.077996	4,996308	1,487280
C	-4.726783	3.060764	-0.812610
H	-4.198970	1.066648	-1.466008
Н	-5.064453	5.045693	-0.010367
н	-5.598604	3,118448	-1.468135
N	-1.893962	0.896996	0.201020
C	-2.070196	-0.449077	-0.227023
c	2,594990	-1.787709	1,266231
N	4,483478	0.734719	-0.119773
c	5,147375	1,205584	-1,342511
н	6.229485	1,153576	-1,167511
н	4 909296	0 495334	-2 143776
Ċ	5,110242	1,111554	1,146490
н	5,140239	2,214079	1,188735
н	1 165157	0 787899	1 9693/13
Ċ	4.403137	2 610100	-1 722611
C	4./2442J	2.010100	- T • / 220TT

Н	5.263945	2.923119	-2.639004
Н	3.647805	2.648315	-1.952384
Н	4.951154	3.342859	-0.944235
С	6.507776	0.554972	1.352400
Н	6.528321	-0.541109	1.278141
Н	7.233236	0.961658	0.634528
Н	6.859638	0.832849	2.356207
С	-3.501406	-2.439907	-0.424415
С	1.506314	-2.165688	2.272203
Н	1.524970	-1.510927	3.158515
Н	0.502297	-2.116170	1.826153
Н	1.666411	-3.196233	2.621051
С	-4.231378	-0.617321	1.038880
С	-4.698567	-3.130881	-0.105767
С	-5.370767	-1.325149	1.343728
Н	-4.058701	0.348593	1.513571
С	-5.619865	-2.584200	0.754291
Н	-4.867869	-4.115027	-0.549080
Н	-6.089231	-0.909083	2.053374
Н	-6.536458	-3.126106	0.996127

I-4

Lowest frequency = 21.1833 cm⁻¹ Charge = 1, Multiplicity = 1

С	1.029206	1.039586	-1.010681
С	1.232094	2.111294	-1.909667
С	2.332673	2.924080	-1.777713
Н	0.524566	2.294841	-2.721933
Н	2.498143	3.739134	-2.486653
С	-0.505472	0.386164	1.875220
Ν	-1.112836	0.819058	0.819121
С	-2.478138	1.313109	0.934985
Н	-2.732742	1.376751	2.004893
0	-2.808784	-0.313638	-0.773344
Н	-1.027392	0.458318	2.842044
С	-1.507094	3.609400	0.895195
Н	-1.642044	4.654799	0.581412
Н	-1.489575	3.593194	1.996846
Н	-0.526120	3.271275	0.530071
С	-3.987233	3.330104	0.785761
Н	-4.067676	3.383644	1.883124
Н	-4.088985	4.356273	0.403767
Н	-4.839184	2.753998	0.394326
С	0.750252	-0.287215	1.917123
С	1.068867	-1.265792	2.852033

L	2.246592	-1.911082	2.398111
Н	0.470992	-1.523681	3.724944
С	2.638115	-1.253535	1.197995
С	3.017369	-2.988515	2.884907
С	3.794875	-1.615743	0.496191
С	4.147424	-3.356237	2.182966
н	2.724344	-3.511991	3.797254
С	4.529858	-2.672357	1.004275
н	4.080264	-1.106567	-0.424097
н	4.762325	-4,184994	2.539397
н	5 430376	-2 992624	0 475417
N	1 714071	-0 269848	0 916181
Ċ	1 923193	0.200040	0.010101
РЧ	-0 723069	0.007750	-1 052187
ru C	2 259006	0.102200	0 70067
c	2 042620	1 676120	0.722007
c	2 644446	2 751007	0.213179
c	-2.044440	2.731007	0.330891
	-3.314030	0.242195	0.251859
	-4.521990	-0.1245/2	0.040024
	-5.21/01/	-1.10001/	-0.124252
н	-6.2/5/48	-1.108/25	0.165/5/
H	-5.152132	-0.892228	-1.186640
C	-5.184483	0.3630/3	1.851616
н	-4.689588	1.2/9185	2.186919
Н	-6.206438	0.661959	1.568434
C	-4.6/4204	-2.5/2922	0.0/8950
н	-4.698403	-2.8/1364	1.13650/
Н	-5.299158	-3.283081	-0.482030
Н	-3.646994	-2.668832	-0.297809
C	-5.220928	-0.658181	2.973928
Н	-5.705464	-0.218509	3.857653
Н	-5.790783	-1.556139	2.697144
Н	-4.205408	-0.973032	3.259021
Ν	0.699910	-2.749809	-1.728941
С	1.350749	-3.825420	-1.021055
Н	0.800922	-4.757693	-1.201836
Н	2.379035	-3.910561	-1.392905
Н	1.380970	-3.627445	0.061434
С	-0.915320	-1.352777	-2.630313
Н	-1.873901	-1.144167	-3.107476
С	1.371976	-1.681312	-2.312926
С	-0.675097	-2.639095	-1.869582
0	2.562614	-1.547598	-2.385793
0	-1.494702	-3.418630	-1.461223
С	0.306167	-0.760294	-2.854558
Н	0.555503	0.024608	-3.567561
С	-2.597997	2.766821	-1.191271
Н	-1.647656	2.371431	-1.581184
Н	-3.420856	2.191644	-1.640685
Н	-2.684714	3.804977	-1.544389

С	3.926351	1.556668	1.317058
С	4.372857	3.595221	-0.553102
С	4.989326	2.418985	1.460033
Н	3.761725	0.779367	2.063676
С	5.226464	3.438590	0.512410
Н	4.534946	4.392303	-1.282634
Н	5.656810	2.313347	2.318089
Н	6.080985	4.107061	0.635805

TS(4-5) Lowest frequency = -251.9944 cm⁻¹ Charge = 1, Multiplicity = 1

С	1.133136	0.424407	-1.444001
С	1.230415	1.350986	-2.518673
С	2.154804	2.361491	-2.491771
Н	0.565835	1.245381	-3.380023
Н	2.223505	3.064499	-3.325307
С	-0.209320	0.528047	1.830262
Ν	-0.909994	0.842452	0.795210
С	-2.208669	1.469185	0.976923
Н	-2.395141	1.603942	2.055029
0	-2.840291	-0.173001	-0.637019
Н	-0.609483	0.755332	2.831606
С	-1.058522	3.680680	0.854042
Н	-1.107622	4.719840	0.497098
Н	-1.048088	3.708577	1.955692
Н	-0.105368	3.252502	0.510930
С	-3.550186	3.600355	0.725369
Н	-3.629785	3.722458	1.817044
Н	-3.568435	4.608311	0.285896
Н	-4.444165	3.072340	0.360862
С	1.043650	-0.157323	1.842779
С	1.541275	-0.835008	2.945823
С	2.741899	-1.477956	2.549930
Н	1.060218	-0.882288	3.921822
С	2.957420	-1.133812	1.189356
С	3.680573	-2.287082	3.223336
С	4.104671	-1.535199	0.498566
С	4.805312	-2.695458	2.535714
Н	3.520567	-2.572326	4.265097
С	5.013980	-2.316104	1.189426
Н	4.261005	-1.262800	-0.544580
Н	5.550779	-3.318488	3.033735
Н	5.916161	-2.657734	0.677382
Ν	1.900004	-0.352114	0.755329
С	1.994191	0.524857	-0.362401

Pd	-0.789618	-0.127644	-1.044580
С	3.031629	2.514084	-1.387442
С	2.941774	1.595813	-0.294462
С	-2.256563	2.892736	0.319561
С	-3.206244	0.480218	0.371444
Ν	-4.423871	0.280565	0.863080
С	-5.287607	-0.686740	0.166524
Н	-6.312602	-0.481106	0.506830
Н	-5.243329	-0.455097	-0.907466
С	-4.955526	0.887572	2.078955
Н	-4.317171	1.727006	2.369222
Н	-5.934370	1.327521	1.828610
С	-4.919740	-2.143004	0.391979
Н	-4.909258	-2.402882	1.459980
Н	-5.666056	-2.781559	-0.102517
Н	-3.943749	-2.380096	-0.051165
С	-5.091809	-0.091334	3.230989
Н	-5.470787	0.434830	4.119026
Н	-5.796745	-0.902921	3.002537
Н	-4.121218	-0.543045	3.486624
Ν	-0.161143	-3.258852	-1.286529
С	-0.244821	-4.455041	-0.487611
Н	-1.185597	-4.962029	-0.735568
Н	0.610041	-5.106876	-0.710824
Н	-0.231238	-4.212574	0.586097
С	-0.739291	-1.445097	-2.620351
Н	-1.225381	-1.079133	-3.528103
С	1.014504	-2.565723	-1.497950
С	-1.248618	-2.696040	-1.963117
0	2.108408	-2.899251	-1.131660
0	-2.359630	-3.154841	-1.984605
С	0.657202	-1.357247	-2.344118
Н	1.399244	-1.069391	-3.088291
С	-2.185876	2.834412	-1.206485
Н	-1.255371	2.362037	-1.556213
Н	-3.036725	2.293654	-1.646115
Н	-2.199060	3.858656	-1.607997
C	3.766649	1.810354	0.841044
C	4.659956	2.856355	0.869104
Н	3.695334	1.141480	1.698958
C	3.9/232/	3.5/1121	-1.331466
C	4.//5458	3./380/3	-0.22//10
Н	5.28/555	3.005291	1./50346
H	4.041/13	4.25/622	-2.1/8499
Н	5.496182	4.557644	-0.191843

I-5 Lowest frequency = 20.0041 cm^{-1} Charge = 1, Multiplicity = 1

С	1.567091	-0.063901	-1.804456
С	1.508493	0.794207	-2.963611
С	1.528984	2.149264	-2.872882
Н	1.450292	0.311496	-3.941183
Н	1.486699	2.760449	-3.777187
С	-0.264506	0.340290	1.884852
Ν	-0.961537	0.711088	0.866815
С	-2.364313	1.050408	0.973932
Н	-2.663379	1.068419	2.035277
0	-2.514535	-0.603319	-0.758927
Н	-0.706606	0.361102	2.893595
С	-1.766191	3.461619	1.164037
Н	-1.966280	4.488648	0.824749
Н	-1.984563	3.419792	2.243414
Н	-0.694931	3.264932	1.018546
С	-4.103532	2.857413	0.542085
Н	-4.407011	2.892174	1.599539
Н	-4.264275	3.863909	0.129084
Н	-4.775670	2.174117	0.001968
С	1.092764	-0.112287	1.830663
С	1.845612	-0.496392	2.929204
С	3.175579	-0.720916	2.488979
Н	1.464926	-0.591630	3.945044
С	3.195091	-0.453209	1.094898
С	4.369506	-1.078433	3.147536
С	4.377297	-0.476892	0.353339
С	5.535882	-1.119839	2.410199
Н	4.368048	-1.301016	4.216419
С	5.537151	-0.811491	1.031299
Н	4.386827	-0.260813	-0.714773
Н	6.476594	-1.386924	2.895417
Н	6.480314	-0.846716	0.481996
Ν	1.904175	-0.155116	0.684789
С	1.629985	0.550551	-0.525207
Pd	-0.484435	-0.202103	-0.944635
С	-2.632204	2.476208	0.377105
С	-3.093925	-0.071219	0.223492
Ν	-4.306837	-0.492468	0.563168
С	-4.933116	-1.529750	-0.273266
Н	-6.014847	-1.456229	-0.088361
Н	-4.758040	-1.253148	-1.322660
С	-5.065439	-0.039916	1.725209
Н	-4.570115	0.833376	2.158307
Н	-6.044643	0.316334	1.365824
С	-4.426092	-2.938160	-0.021641
Н	-4.569084	-3.245736	1.023603
Н	-4.990071	-3.637894	-0.655775

Н	-3.366042	-3.036473	-0.289818
С	-5.247678	-1.110509	2.785567
Н	-5.789321	-0.685947	3.643181
Н	-5.832280	-1.964621	2.417028
Н	-4.277711	-1.487655	3.143151
Ν	0.855360	-3.303872	-0.734968
С	0.934777	-4.398890	0.197466
Н	-0.028286	-4.923664	0.179552
Н	1.746450	-5.080376	-0.091333
Н	1.139539	-4.026866	1.212679
С	-0.008470	-1.731084	-2.217108
Н	-0.524783	-1.665845	-3.180913
С	1.960065	-2.577902	-1.125664
С	-0.325675	-2.931044	-1.386826
0	3.088776	-2.785785	-0.765264
0	-1.376299	-3.509234	-1.257832
С	1.490911	-1.548438	-2.147670
Н	2.045687	-1.740851	-3.079721
С	-2.266036	2.548348	-1.106406
Н	-1.201870	2.325376	-1.277561
Н	-2.868556	1.863014	-1.720540
Н	-2.445920	3.569627	-1.473675
С	1.737960	2.001979	-0.432719
С	1.983158	2.645614	0.798760
С	1.642004	2.796974	-1.606427
С	2.074688	4.022815	0.869697
Н	2.116800	2.057838	1.706856
С	1.715829	4.202452	-1.505646
С	1.920762	4.810252	-0.283988
Н	2.273238	4.500446	1.831375
Н	1.627520	4.800477	-2.415603
Н	1.985238	5.898154	-0.215552

Acetic acid

Lowest frequency = 80.3907 cm^{-1} Charge = 0, Multiplicity = 1

С	0.092812	0.121660	0.000004
0	0.776498	-1.034021	0.000002
0	0.637848	1.192811	0.000001
С	-1.388123	-0.110409	-0.000001
Н	-1.673482	-0.698172	0.884698
Н	-1.911593	0.851449	-0.000114
Н	-1.673448	-0.698350	-0.884594
Н	1.715612	-0.792755	-0.000026

Maleimide

Lowest frequency = 59.2016 cm^{-1} Charge = 0, Multiplicity = 1

13

С	0.677873	-1.617181	-0.000010
С	-0.658070	-1.625990	0.000002
Ν	-0.004891	0.587870	0.000047
Н	1.376374	-2.453228	-0.000011
Н	-1.344819	-2.471715	0.00006
С	-1.144402	-0.206794	0.000005
С	1.146419	-0.192662	0.000005
0	-2.278706	0.195619	-0.000017
0	2.277282	0.219583	-0.000013
С	-0.015264	2.025645	-0.000011
Н	-0.526916	2.413698	-0.892831
Н	-0.527615	2.413725	0.892413
Н	1.029270	2.362703	0.000384

I-1^P

Lowest frequency = 7.1141 cm^{-1} Charge = 0, Multiplicity = 1

С	-2.550775	0.500087	0.098658
С	-3.778914	0.111797	-0.512630
С	-2.325670	1.793669	0.514021
С	-4.052149	-1.219518	-0.918832
С	-4.771415	1.119032	-0.721850
С	-3.324202	2.772332	0.315604
С	-5.247905	-1.535505	-1.521166
Н	-3.306825	-1.997305	-0.740332
С	-5.991545	0.756711	-1.348168
С	-4.512429	2.446357	-0.293447
Н	-3.133272	3.795369	0.646234
С	-6.225331	-0.539363	-1.742839
Н	-5.445363	-2.565241	-1.827427
Н	-6.745862	1.530747	-1.510738
Н	-5.280039	3.207484	-0.455076
Н	-7.169091	-0.804219	-2.224743
С	-0.834106	-0.675585	-2.066562
Н	-1.531032	0.168141	-2.284301
Н	-1.371703	2.047724	0.982265
0	2.691847	-1.596251	-1.251068
С	3.967498	-1.721297	-1.111503

0	4.693062	-1.011500	-0.411719
С	4.546248	-2.872436	-1.900136
Н	4.169250	-2.852236	-2.931932
Н	5.641545	-2.830126	-1.885593
Н	4.210619	-3.819494	-1.451044
С	-0.702287	-1.010512	-0.631046
С	-1.282929	-1.083656	1.532711
С	-0.228743	-2.012329	1.359705
С	-1.887733	-0.861805	2.771935
С	0.221772	-2.757768	2.459300
С	-1.420959	-1.609317	3.842092
Н	-2.686651	-0.127734	2.885256
С	-0.380988	-2.549119	3.689539
Н	1.033425	-3.478879	2.342851
Н	-1.867896	-1.465341	4.828333
Н	-0.045180	-3.117218	4.559712
Ν	-1.557046	-0.501325	0.310278
0	-0.250771	-1.264780	-2.939665
С	2.843635	2.078409	0.982178
С	3.388295	3.408157	0.484819
С	3.079058	3.331155	-1.007474
Н	3.320455	1.727561	1.911094
Н	2.891405	4.240259	1.001588
Н	4.473849	3.474567	0.659899
Н	2.011487	3.547117	-1.175882
Н	3.659593	4.037470	-1.617164
Ν	3.120436	1.113618	-0.107855
С	1.331027	2.145631	1.250180
0	0.821463	3.112388	1.773771
0	0.660728	1.092069	0.883937
Pd	1.628330	-0.268708	-0.176126
Н	3.914627	0.460262	0.060232
С	0.162518	-1.947732	-0.026211
Н	0.756258	-2.671749	-0.582672
С	3.390477	1.879412	-1.355971
Н	4.452814	1.740539	-1.612447
Н	2.795386	1.490538	-2.192770

 $TS(1-2)^{P}$ Lowest frequency = -1011.5504 cm⁻¹ Charge = 0, Multiplicity = 1

С	-2.746131	0.633220	-0.013681
С	-4.040413	0.322782	-0.516998
С	-2.432013	1.893008	0.452945
С	-4.379648	-0.957695	-1.023817

С	-5.026000	1.358237	-0.517549
С	-3.411347	2.908920	0.430144
С	-5.646795	-1.206575	-1.497085
Н	-3.619959	-1.741834	-1.032144
С	-6.323079	1.063436	-1.011340
С	-4.678007	2.646858	-0.036988
Н	-3.150245	3.903158	0.798451
С	-6.628834	-0.189494	-1.487778
н	-5.896938	-2.196532	-1.885378
н	-7.076798	1.855002	-1.008228
н	-5.438489	3.431865	-0.046253
н	-7.631731	-0.402148	-1.865099
C	-0.323384	0.638697	-1.725016
H	-1.238826	1.162013	-2.089904
н	-1.428181	2,093703	0.842770
0	3.418004	-1.564872	-0.707822
Ċ	3.017847	-2,477859	-1.472710
0	1.803337	-2.769482	-1.663663
Ċ	4.042706	-3.265945	-2.233147
н	5.044012	-3.107249	-1.817590
Н	3.777137	-4.331121	-2.223309
н	4.026988	-2.931867	-3.281890
C	-0.541777	-0.314078	-0.631772
Ċ	-1.664550	-1.363535	0.992950
c	-0.365472	-1.929141	0.923956
c	-2.620344	-1.775452	1,926046
c	-0.029954	-2.960348	1.816726
c	-2.254504	-2.793619	2,793963
н	-3.608943	-1.314734	1,966056
c	-0.974081	-3.382256	2.739254
н	0.965053	-3.410239	1.782168
н	-2.973317	-3,146031	3,537337
н	-0.725950	-4.180566	3,442527
N	-1.744810	-0.375827	0.027540
0	0.755757	0.848900	-2,234211
Ĉ	3.087900	2.351711	1,161023
c	3,531274	3,425480	0.163058
c	3,828226	2,624302	-1.099958
н	3.442701	2.572028	2.179981
н	2 746634	4 185730	0 054303
н	4 445457	3 928516	0.054505
н	2 895675	2 331339	-1 610476
н	4 459053	3 160377	-1 822662
N	3 706534	1 079031	0 669983
Ċ	1 552791	2 264625	1 264397
0	0 912685	3 275663	1 /6/368
0	1 035034	1 082282	1 157152
РЧ	2 157102	-0 2717/5	0 0 <u>1</u> 1720
н	4 282749	0.271740	1 301/16
Ċ	9 365109	-1 250115	-0 112017
<u>ر</u>	0.000100	T. 200110	0.11021/

1.133569	-2.048775	-0.992427
4.514345	1.395051	-0.533173
5.549276	1.637406	-0.232677
4.540282	0.526545	-1.203945
	1.133569 4.514345 5.549276 4.540282	1.133569-2.0487754.5143451.3950515.5492761.6374064.5402820.526545

I-2^P

Lowest frequency = 12.8876 cm^{-1} Charge = 0, Multiplicity = 1

С	3.219220	0.804008	0.834304
С	4.109348	-0.211402	0.372427
С	3.608187	1.692574	1.813127
С	3.762252	-1.124919	-0.655682
С	5.403182	-0.301900	0.973985
С	4.895542	1.608741	2.385048
С	4.650502	-2.095229	-1.057434
Н	2.781944	-1.053806	-1.128662
С	6.291500	-1.317963	0.536305
С	5.769562	0.628101	1.980604
Н	5.185952	2.321507	3.159779
С	5.924440	-2.197524	-0.454394
Н	4.368992	-2.790305	-1.851705
Н	7.277858	-1.386898	1.002084
Н	6.763372	0.551991	2.428764
Н	6.618557	-2.974993	-0.781650
С	0.987229	-1.128717	1.295661
Н	1.889674	-1.124987	1.954234
Н	2.900311	2.456044	2.141994
0	-1.735722	-2.210844	-0.911802
С	-0.706180	-2.702147	-1.374173
0	0.311740	-1.997956	-1.771164
С	-0.541088	-4.176580	-1.496526
Н	-1.519271	-4.668641	-1.524065
Н	0.063093	-4.434282	-2.375103
Н	-0.001535	-4.509426	-0.595391
С	0.866404	0.021015	0.413132
С	1.539046	1.906676	-0.607698
С	0.201129	1.637844	-1.005960
С	2.257695	3.007006	-1.094393
С	-0.441142	2.528661	-1.886376
С	1.598413	3.852892	-1.970845
Н	3.289872	3.188365	-0.789177
С	0.259879	3.622168	-2.360048
Н	-1.481127	2.351538	-2.165759
Н	2.125124	4.724621	-2.366895
Н	-0.225156	4.326118	-3.039816

Ν	1.927977	0.920027	0.264154
0	0.196470	-2.051226	1.341840
С	-4.867930	0.510123	0.283201
С	-5.706420	0.150821	1.507370
С	-4.851872	-0.917313	2.180100
Н	-5.487221	0.836620	-0.566405
Н	-5.889758	1.045600	2.116436
Н	-6.679616	-0.270920	1.206963
Н	-3.991584	-0.453560	2.689978
Н	-5.394326	-1.522125	2.920248
Ν	-4.140248	-0.741186	-0.075258
С	-3.918488	1.690325	0.587405
0	-4.387902	2.697253	1.067167
0	-2.665483	1.535764	0.282002
Pd	-2.091843	-0.255501	-0.310035
Н	-4.466652	-1.102804	-0.967813
С	-0.223372	0.428783	-0.361078
Н	0.179062	-1.054341	-1.466871
С	-4.374879	-1.744213	0.996684
Н	-5.163196	-2.447803	0.678835
Н	-3.459463	-2.321251	1.186536

References

[1] K. Grudzień, B. Trzaskowski, M. Smoleń, R. Gajda, K. Woźniak and K. Grela, *Dalton Trans*.2017, 46, 11790-11799.

[2] J. Zhang, S. Zhang and H. Zou, Org. Lett. 2021, 23, 3466-3471.

[3] J. Zhang, Q. Xu, J. Wu, J. Fan and M. Xie, Org. Lett. 2019, 21, 6361-6365.

[4] Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.

Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato,

A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz,

A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,

B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng,

W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.

Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro,

M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R.

Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.

Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian, Inc., Wallingford CT, **2016**.

[5] (*a*) C. Adamo and V. Barone, *J. Chem. Phys.* 1999, **110**, 6158–6169; (*b*) M. Ernzerhof and G.
E. Scuseria, *J. Chem. Phys.* 1999, **110**, 5029–5036.

[6] (*a*) Grimme, S. Ehrlich and L. Goerigk, *J. Comput. Chem.* 2011, **32**, 1456–1465; (*b*) S. Grimme,
J. Antony, S. Ehrlich and H. Krieg, *J. Chem. Phys.* 2010, **132**, 154104.

[7] (a) F. Weigend, *Phys. Chem. Chem. Phys.* 2006, **8**, 1057–1065; (b) F. Weigend and R. Ahlrichs, *Phys. Chem. Chem. Phys.* 2005, **7**, 3297–3305; (c) A. Schaefer, C. Huber and R. Ahlrichs, *J. Chem. Phys.* 1994, **100**, 5829–5835; (d) A. Schaefer, H. Horn and R. Ahlrichs, *J. Chem. Phys.* 1992, **97**, 2571–2577.

[8] (a) J. M. L. Martin and A. Sundermann, J. Chem. Phys. 2011, 114, 3408–3420; (b) M. Dolg,
U. Wedig. H. Stoll and H. Preuss, J. Chem. Phys. 1987, 86, 866–872.

[9] Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 2005, 109, 5656–5667.

[10] (a) E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, Se. Spicher, C. Bannwarth and S. Grimme, J. Chem. Phys. 2019, 150, 154122; (b) E. Caldeweyher, C. Bannwarth and S. Grimme, J. Chem. Phys. 2017, 147, 034112.

[11] A. V. Marenich, C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

3 (300 MHz, CDCl₃)

-- -

5 (400 MHz, CDCl₃)

5 (162 MHz, CDCl₃)

160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 f1 (ppm)

6 (400 MHz, CDCl₃)

(600 MHz, CDCl₃)

8 (400 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

10 (400 MHz, CDCl₃)

S136

0.07

90 70 30 20 10 0 f1 (ppm) -60 80 60 40 -10 -20 -40 -70 -90 50 -30 -50 80

— 17.82

S141

-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

(600 MHz, CDCl₃)

rigo 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

-50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 f1 (ppm)

20 (400 MHz, CDCl₃)

65.95 65.97 65.97 65.97 65.97 7109.62 7109.62 7109.65

(377 MHz, CDCl₃)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 f1 (ppm)

21 (400 MHz, CDCl₃)

21 (377 MHz, CDCl₃)

5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

-73.28 -73.29 -73.31 -73.32 -73.35

22 (400 MHz, CDCl₃)

24 (400 MHz, CDCl₃)

25 (400 MHz, CDCl₃)

25 (377 MHz, CDCl₃)

0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -55 -60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 f1 (ppm)

26 (600 MHz, CDCl₃)

26 (565 MHz, CDCl₃)

10 -80 f1 (ppm) -17(0 -10 -20 -30 -40 -50 -60 -70 -100 -110 -120 -130 -140 -150 -160 -90

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

28 (400 MHz, CDCl₃)

S159

S160