Electronic Supporting Information(ESI) for:

Synthesis of Axially Chiral Dibenzazepines by CuH-Catalyzed Diastereo-

and Enantioselective Reductive Cyclization

Patricia Rodríguez-Salamanca, Rocío Martín-de la Calle, Verónica Rodríguez, Pedro Merino,

Rosario Fernández*, José M. Lassaletta*, and Valentín Hornillos*

Table of Contents

Expe	rimental Procedures				
1. Ge	neral information2				
2. Sy	nthesis of starting materials				
2.1.	Synthesis of precursors				
2.2.	General procedure for the synthesis of aldimines substrates ¹ 6				
3. Ge cycliz	neral procedure for the synthesis of dibenzazepines by CuH-catalyzed intramolecular zation				
4. Kir	netic resolution of 1Ga followed by reduction of the remaining enantioenriched imine				
5. Optimization studies for the Cu-catalyzed intramolecular borylative cyclization of 1Aa					
Table	e S1. Screening of reaction conditions and ligands ^a 28				
6. General procedure for the synthesis of borylated dibenzazepines 4 by Cu-catalyzed intramolecular borylative cyclization					
7. De	rivatization reactions				
7.1.	Synthesis of 5 by demethylation of 2Ae				
7.2.	Synthesis of 6 by Suzuki-Miyaura reaction				
7.3.	Oxidation of organoboronate 4Aa for the synthesis of 7				
7.4.	Intramolecular Suzuki Coupling for the synthesis of 8				
8. Co	mputational Details				
8.1.	Computational Methods				
8.2.	Conformational Study				
9. NMR spectra of new compounds71					
Refei	rences				

Experimental Procedures

1. General information

¹H-NMR spectra were recorded at 400 MHz; ¹³C-NMR spectra were recorded at 100 MHz; with the solvent peak used as the internal reference (7.26 and 77.0 ppm for ¹H and ¹³C respectively for CDCl₃); column chromatography was performed on silica gel (Merck Kieselgel 60). Analytical TLC was performed on aluminium backed plates (1.5×5 cm) pre-coated (0.25 mm) with silica gel (Merck, Silica Gel 60 F254). Compounds were visualized by exposure to UV light or by dipping the plates in a solution of 5% (NH₄)₂Mo₇O₂₄·4 H₂O in 95% EtOH (w/v) and heating.

All reactions were carried out under a nitrogen atmosphere ("U" quality) using oven dried glassware and standard Schlenk techniques. Evaporations of solvents have been performed in a rotary evaporator at temperatures below 40 ^oC. Anhydrous THF were obtained by distillation from sodium using benzophenone as indicator. Et₂O, TBME, CH₂Cl₂ and toluene were dried by passage through solvent-purification columns containing activated alumina under a positive pressure of argon prior to use. Anhydrous t-BuOH were purchased from Sigma-Aldrich in a Sure-Seal® bottle and used as received. Diethoxymethylsilane (DEMS) was purchased from Sigma-Aldrich (stored at 4°C) acetate, and used received. Copper(II) (-)-1,2-Bis((2R,5R)-2,5as diphenylphospholano)ethane ((*R*,*R*)-Ph-BPE) and (+)-1,2-Bis((2*S*,5*S*)-2,5diphenylphospholano)ethane ((*S*,*S*)-Ph-BPE) were purchased from Sigma-Aldrich and stored in a nitrogen-filled glovebox. All other commercial reagents and ligands were purchased from Sigma-Aldrich or TCI Chemicals and used as received. All the compounds were purified by flash column chromatography using silica gel. Purification of imine substrates were performed on silica gel eluting with hexanes/triethylamine mixtures (20:1 v/v). The deactivated silica gel was prepared by washing the silica gel with hexanes/triethylamine (20:1 v/v) prior to purification. Reactions were monitored by TLC, and/or NMR analysis. Final products and all new intermediate compounds were characterized by ¹H NMR, ¹³C NMR, and high-resolution mass spectrometry. The yields reported for the CuH-catalyzed synthesis are of isolated compounds on a 0.2 mmol scale. Racemic samples were prepared following general procedure for the CuH catalyzed synthesis of dibenzo[b,d]azepine 2 using a equimolar mixture of ((*R*,*R*)-Ph-BPE) and ((*S*,*S*)-Ph-BPE) as ligand.

2. Synthesis of starting materials

2.1. Synthesis of precursors

Tert-butyl (2'-vinyl-[1,1'-biphenyl]-2-yl)carbamate (9A). Following a described procedure.¹ An

oven-dried 150 mL round-bottom flask equipped with a magnetic stir bar was oc charged with Pd(dba)₂ (110 mg, 0.19 mmol, 5 mol%), SPhos (110 mg, 0.23 mmol, 6 mol%) and the reaction vessel was capped then evacuated and backfilled with N₂ using the Schlenk line (this process was repeated a total of three times). Thoroughly

degassed THF (56 mL) was then added via syringe and the resulting mixture was stirred for 5 min at room temperature. Then, 1-bromo-2-vinylbenzene (701 mg, 3.83 mmol), (2-((*tert*-butoxycarbonyl)amino)phenyl)boronic acid (1.14 g, 4.79 mmol), K₂CO₃ (1.6 g, 11.5 mmol) and H₂O (19 mL for a THF/H₂O = 3:1) were added, and the resulting mixture was placed in a preheated oil bath and stirred at 60 °C for 18 h. The reaction crude was allowed to reach room temperature, water (30 mL) was added and the resulting mixture was extracted with AcOEt (3×15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (20:1 hexane/EtOAc) to afford the title compound as a yellow oil (941 mg, 83% yield). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 8.3 Hz, 1H), 7.75 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.48-7.37 (m, 3H), 7.27-7.24 (m, 1H), 7.17-7.10 (m, 2H), 6.49 (dd, *J* = 17.5, 11.0 Hz, 1H), 6.14 (s, 1H), 5.75 (dd, *J* = 17.5, 1.2 Hz, 1H), 5.21 (dd, *J* = 11.0, 1.2 Hz, 1H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 152.9, 136.6, 136.4, 136.0, 134.6, 134.5, 130.7, 130.4, 129.8, 128.5, 128.3, 125.5, 122.8, 119.6, 115.5, 80.4, 28.3.

2'-Vinyl-[1,1'-biphenyl]-2-amine (10A). Following a described procedure.² Compound 9A (1403 mg, 4.75 mmol) was treated with TFA (3 ml) in CH₂Cl₂ (12 ml) at rt. After 30 min, the solvent was blown off with N₂, the residue was diluted with CH₂Cl₂, basified with sat. NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel by eluting 15:1 hexane/EtOAc to give 10A (862 mg, 93%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 7.0 Hz, 1H), 7.40 (m, 2H), 7.30 (m, 1H), 7.24 (td, *J* = 7.7, 1.7 Hz, 1H), 7.09 (dd, *J* = 7.7, 1.7 Hz, 1H), 6.88 (t, *J* = 7.5 Hz, 1H), 6.83 (d, *J* = 8.1 Hz, 1H), 6.63 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.77 (d, *J* = 17.6 Hz, 1H), 5.22 (d, *J* = 11.0 Hz, 1H), 3.62 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 143.5, 137.8, 136.3, 135.0, 130.8, 130.7, 128.7, 128.2, 128.0, 126.6, 125.2, 118.6, 115.5, 114.9.

5-Methyl-2'-vinyl-[1,1'-biphenyl]-2-amine (10B). An oven-dried 150 mL round-bottom flask H₃C equipped with a magnetic stir bar was charged with Pd₂(dba)₃ (20 mg, 0.022 MH₂ mmol, 3 mol%), SPhos (18 mg, 0.044 mmol, 6 mol%) and the reaction vessel was capped then evacuated and backfilled with N₂ using the Schlenk line (this process was repeated a total of three times). Thoroughly degassed THF (3.6 mL) was then

added via syringe and the resulting mixture was stirred for 5 min at room temperature. Then, 1bromo-2-vinylbenzene (94 μL, 0.73 mmol), (2-((tert-butoxycarbonyl)amino)-5methylphenyl)boronic acid³ (233 mg, 0.91 mmol), K₂CO₃ (303 mg, 2.19 mmol) and H₂O (1.2 mL for a THF/H₂O = 3:1) were added, and the resulting mixture was placed in a preheated oil bath and stirred at 60 °C for 18 h. The reaction crude was allowed to reach room temperature, water (30 mL) was added and the resulting mixture was extracted with AcOEt (3×15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated in vacuo. The residue was then treated with TFA (0.46 ml) in CH₂Cl₂ (1.8 ml) at rt. After 30 min, the solvent was blown off with N₂, the residue was diluted with CH₂Cl₂, basified with sat. NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel by eluting 15:1 hexane/EtOAc to give **10B** as a colorless oil (151 mg, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.74-7.72 (m, 1H), 7.42-7.33 (m, 2H), 7.29-7.26 (m, 1H), 7.03 (d, *J* = 8.1 Hz, 1H), 6.89 (s, 1H), 6.71 (d, / = 8.1 Hz, 1H), 6.68-6.58 (m, 1H) 5.77 (dt, / = 17.6, 1.6 Hz, 1H), 5.20 (dt, / = 11.0, 1.5 Hz, 1H), 3.41 (br s, 2H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 138.2, 136.2, 135.1, 131.2, 130.7, 129.2, 128.2, 127.9, 127.5, 126.6, 125.1, 115.5, 114.7, 20.5..

5-Methoxy-2'-vinyl-[1,1'-biphenyl]-2-amine (10C). Following the same procedure as for compound **10B**, using Pd₂(dba)₃ (19 mg, 0.021 mmol, 3 mol%), SPhos (17 mg, 0.044 mmol, 6 mol%), degassed THF (3.5 mL), 1-bromo-2-vinylbenzene (90 μ L, 0.69 mmol), (2-((*tert*-butoxycarbonyl)amino)-5-methoxyphenyl)boronic acid (230 g, 0.86 mmol), K₂CO₃ (286 mg, 2.19 mmol) and H₂O (1.1 mL for a THF/H₂O = 3:1). Then TFA (0.44 ml) in CH₂Cl₂ (1.7 ml) to give **10C** as a colorless oil (110 mg, 71% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (d, *J* = 7.2 Hz, 1H), 7.54-7.32 (m, 2H), 7.30-7.16 (m, 1H), 6.81 (dd, *J* =

8.7, 2.9 Hz, 1H), 6.72 (d, J = 8.6 Hz, 1H), 6.66 (d, J = 2.9 Hz, 1H), 6.61 (dd, J = 17.6, 11.0 Hz, 1H), 5.75 (dd, J = 17.6, 1.2 Hz, 1H), 5.20 (dd, J = 11.0, 1.2 Hz, 1H), 3.76 (s, 3H), 3.16 (br s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 152.4, 137.9, 137.6, 136.2, 134.9, 130.5, 128.2, 128.0, 127.6, 125.2, 116.6, 115.8, 115.0, 114.7, 55.8.

5-Fluoro-2'-vinyl-[1,1'-biphenyl]-2-amine (10D). Following the same procedure as for compound **10B**, using Pd₂(dba)₃ (23 mg, 0.025 mmol, 3 mol%), SPhos (20 mg, 0.05 mmol, 6 mol%), degassed THF (4.1 mL), 1-bromo-2-vinylbenzene (106 μL, 0.82 mmol), (2-((*tert*-butoxycarbonyl)amino)-5-fluorophenyl)boronic acid (260 mg, 1.02 mmol), K₂CO₃ (340 mg, 2.46 mmol) and H₂O (1.4 mL for a THF/H₂O = 3:1).

Then TFA (0.53 ml) in CH₂Cl₂ (2 ml) to give **10D** as a colorless oil (131 mg, 75% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 7.5 Hz, 1H), 7.44-7.35 (m, 2H), 7.25 (dd, *J* = 7.5, 1.6 Hz, 1H), 6.93 (td, *J* = 8.5, 3.0 Hz, 1H), 6.81 (dd, *J* = 9.0, 3.0 Hz, 1H), 6.71 (dd, *J* = 8.8, 4.8 Hz, 1H), 6.59 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.76 (dd, *J* = 17.6, 1.1 Hz, 1H), 5.22 (dd, *J* = 11.0, 1.1 Hz, 1H), 3.41 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 156.0 (d, *J* = 236.5 Hz), 140.1 (d, *J* = 2.2 Hz), 136.8 (d, *J* = 1.5 Hz), 136.2, 134.6, 130.4, 128.3, 125.3, 117.1, 116.9, 116.1, 116.0, 115.3, 115.2, 115.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -126.9.

5'-Methyl-2'-vinyl-[1,1'-biphenyl]-2-amine (10E). An oven-dried 150 mL round-bottom flask equipped with a magnetic stir bar was charged with Pd₂(dba)₃ (43 mg, 0.047 mmol, 3 mol%), SPhos (45 mg, 0.094 mmol, 6 mol%) and the reaction vessel was capped then evacuated and backfilled with N₂ using the Schlenk line (this process was repeated a total of three times). Thoroughly degassed THF (5.2 mL) was then added

via syringe and the resulting mixture was stirred for 5 min at room temperature. Then, 2-bromo-4methyl-1-vinylbenzene (307 mg, 1.56 mmol), (2(2-((tert-butoxycarbonyl)amino)phenyl)boronic acid (460 mg, 1.94 mmol), K₂CO₃ (650 mg, 4.68 mmol) and H₂O (2.6 mL for a THF/H₂O = 3:1) were added, and the resulting mixture was placed in a preheated oil bath and stirred at 60 °C for 18 h. The reaction crude was allowed to reach room temperature, water (30 mL) was added and the resulting mixture was extracted with AcOEt (3×15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was then solved in CH₂Cl₂ (3.5 ml) and HCl (4M in dioxane, 3.9 ml, 15.6 mmol) was added at 0 °C. The reaction was then allowed to reach rt and after 2 h, the solvent was removed under vacuum. The resulting mixture was dissolved with CH₂Cl₂, basified with sat. NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel by eluting 15:1 hexane/EtOAc to give **10E** as a yellow oil (135 mg, 42% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, / = 8.0 Hz, 1H), 7.26-7.22 (m, 2H), 7.15 (s, 1H) 7.10 (dd, / = 7.5, 1.6 Hz, 1H), 6.88 (t, / = 7.4 Hz, 1H), 6.80 (d, J = 8.0 Hz, 1H), 6.63 (dd, J = 17.6, 11.0 Hz, 1H), 5.75 (d, J = 17.6 Hz, 1H), 5.18 (dd, J = 11.0, 1.3 Hz, 1H), 3.56 (s, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.1, 137.9, 134.9, 133.5, 131.3, 130.7, 128.8, 128.6, 126.6, 125.1, 118.3, 115.2, 113.9, 21.2.

2-(2-VinyInaphthalen-1-yl)aniline (10F). An oven-dried 150 mL round-bottom flask equipped with a magnetic stir bar was charged with Pd₂(dba)₃ (24 mg, 0.026 mmol, 3 mol%), SPhos (24 mg, 0.05 mmol, 6 mol%) and the reaction vessel was capped then evacuated and backfilled with N₂ using the Schlenk line (this process was repeated a total of three times). Thoroughly degassed THF (3.2 mL) was then

added via syringe and the resulting mixture was stirred for 5 min at room temperature. Then, 1bromo-2-vinylnaphthalene ⁴ (197 mg, 0.85 mmol), (2-((*tert*-butoxycarbonyl)amino)-5methylphenyl)boronic acid (252 mg, 1.1 mmol), K₂CO₃ (352 mg, 2.55 mmol) and H₂O (1.1 mL for a THF/H₂O = 3:1) were added, and the resulting mixture was placed in a preheated oil bath and stirred at 60 °C for 18 h. The reaction crude was allowed to reach room temperature, water (30 mL) was added and the resulting mixture was extracted with AcOEt (3×15 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The residue was then solved in CH₂Cl₂ (1.5 ml) and HCl (4M in dioxane, 1.5 ml, 6.1 mmol) was added at 0 °C. The reaction was then allowed to reach rt and after 2 h, the solvent was removed under vacuum. The resulting mixture was dissolved with CH₂Cl₂, basified with sat. NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel by eluting 1:4 hexane/toluene to give **10F** as a colorless oil (144 mg, 97% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.87 (m, 3H), 7.53 (d, *J* = 8.4 Hz, 1H), 7.49 (ddd, *J* = 8.1, 6.7, 1.3 Hz, 1H), 7.44-7.37 (m, 1H), 7.32 (td, *J* = 7.7, 1.6 Hz, 1H), 7.09 (dd, *J* = 7.4, 1.6 Hz, 1H), 6.94 (td, *J* = 7.4, 1.1 Hz, 1H), 6.87 (dd, / = 8.0, 1.1 Hz, 1H), 6.72 (dd, / = 17.6, 11.0 Hz, 1H), 5.87 (dd, / = 17.6, 1.1 Hz, 1H), 5.28 (dd, I = 11.1, 1.0 Hz, 1H), 3.36 (s, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 144.6, 135.2, 134.5, 133.6, 133.5, 132.6, 131.6, 128.9, 128.2, 128.0, 126.6, 126.6, 126.1, 123.5, 122.7, 118.5, 115.4, 115.2.

2.2. General procedure for the synthesis of aldimines substrates ¹

Aldimines **1** were made from corresponding aniline using a literature protocol.⁵ A mixture of aniline derivative (1 equiv) and MgSO₄ (360 mg/mmol aniline) was evacuated/refilled with N₂ three times. To this mixture, anhydrous toluene was added, followed by the addition of aldehyde derivative (1.1 equiv) and glacial acetic acid (286 µL/mmol aniline). Then, the reaction mixture was stirred overnight at 80 °C and cooled to room temperature. The mixture was filtered through celite, and the filtrate was concentrated *in vacuo*. The residue was purified via flash column chromatography with silica gel (eluting with 20:1 Hexane/Et₃N) to yield the corresponding imine.

(E)-1-Phenyl-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Aa). Prepared following general

procedure, using **10A** (59 mg, 0.3 mmol), benzaldehyde (34 μ L, 35 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Aa** (81 mg, 95% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.68-7.65 (m, 2H), 7.62 (m, 1H), 7.46-7.36 (m, 4H), 7.35-7.26 (m, 5H), 7.12 (ddd, *J* = 7.8, 1.2, 0.6 Hz, 1H), 6.60 (dd, *J* = 17.5,

11.0 Hz, 1H), 5.60 (dd, J = 17.5, 1.3 Hz, 1H), 5.10 (dd, J = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 150.6, 138.7, 136.4, 136.3, 136.07, 136.05, 134.4, 131.2, 131.1, 130.9, 128.7, 128.5, 127.3, 127.1, 125.3, 124.8, 118.8, 114.0. HRMS (ESI) calcd. for C₂₁H₁₈N (M + H⁺) 284.1439. Found 284.1431.

(E)-1-o-Tolyl-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ab). Prepared following general

procedure, using **10A** (59 mg, 0.3 mmol), 2-methylbenzaldehyde (38 μL, 40 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Ab** (80 mg, 90% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.72 (d, *J* = 7.7 Hz, 1H), 7.63 (d, *J* = 7.3 Hz, 1H), 7.45 (m, 1H), 7.36-7.25 (m, 6H), 7.21 (m, 1H), 7.13 (m, 2H), 6.61

(dd, *J* = 17.6, 11.0 Hz, 1H), 5.61 (d, *J* = 17.5 Hz, 1H), 5.11 (d, *J* = 11.0 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 151.3, 138.9, 138.5, 136.3, 135.9, 134.2, 134.1, 131.1, 130.84, 130.83, 130.6, 128.6, 128.5, 127.3, 127.2, 126.1, 125.2, 124.8, 119.1, 114.1, 19.5. HRMS (ESI) calcd. for C₂₂H₂₀N (M + H⁺) 298.1596. Found 298.1587.

(*E*)-1-*m*-Tolyl-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ac). Prepared following general procedure, using 10A (59 mg, 0.3 mmol), 3-methylbenzaldehyde (39 μ L, 40 mg, 0.33 mmol) and toluene (0.7 mL) to obtain 1Ac (80 mg, 90% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.63 (m, 1H), 7.50-7.41 (m, 3H), 7.34-7.23 (m, 7H), 7.11 (dd, *J* = 7.8, 1.2 Hz, 1H),

6.60 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.61 (dd, *J* = 17.5, 1.4 Hz, 1H), 5.11 (dd, *J* = 11.0, 1.4 Hz, 1H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.9, 150.8, 138.7, 138.2, 136.4, 136.3, 136.1, 134.2, 131.9, 131.2, 130.9, 129.1, 128.5, 128.4, 127.3, 127.1, 126.0, 125.2, 124.8, 118.9, 114.0, 21.3. HRMS (ESI) calcd. for C₂₂H₂₀N (M + H⁺) 298.1596. Found 298.1593.

(E)-1-(3-Methoxyphenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ad). Prepared

following general procedure, using **10A** (98 mg, 0.5 mmol), 3methoxybenzaldehyde (67 μ L, 75 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Ad** (126 mg, 80% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.74-7.59 (m, 1H), 7.45 (ddd, *J* = 7.9, 6.8, 2.1 Hz, 1H), 7.35-7.28 (m, 6H), 7.26 (m, 1H), 7.21 (dt, J = 7.5, 1.3 Hz, 1H), 7.14 (ddd, J = 7.9, 1.3, 0.6 Hz, 1H), 6.99 (ddd, J = 8.2, 2.7, 1.1 Hz, 1H), 6.62 (dd, J = 17.5, 11.0 Hz, 1H), 5.62 (dd, J = 17.5, 1.3 Hz, 1H), 5.12 (dd, J = 11.0, 1.3 Hz, 1H), 3.80 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 159.8, 150.3, 138.8, 137.9, 136.3, 136.1, 134.5, 131.1, 130.9, 129.5, 128.6, 127.3, 127.1, 125.5, 124.7, 122.1, 118.6, 118.0, 113.9, 111.8, 55.3. HRMS (ESI) calcd. for C₂₂H₂₀NO (M + H⁺) 314.1545. Found 314.1537.

(*E*)-1-(4-Methoxyphenyl)-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ae). Prepared following general procedure, using 10A (98 mg, 0.5 mmol), 4methoxybenzaldehyde (67 μ L, 75 mg, 0.55 mmol) and toluene (1.2 mL) to obtain 1Ae (145 mg, 93% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.69-7.62 (m, 3H), 7.45 (m, 1H), 7.38-7.30 (m, 5H), 7.14 (d, *J* = 7.9 Hz, 1H), 6.92 (m, 2H), 6.65 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.64 (d, *J* = 17.5 Hz, 1H), 5.13

(d, *J* = 11.0 Hz, 1H), 3.85 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 162.1, 159.8, 150.9, 139.0, 136.4, 136.2, 134.4, 131.2, 131.0, 130.4, 129.6, 128.6, 127.3, 127.1, 125.0, 124.8, 118.9, 114.0, 113.9, 55.4. HRMS (ESI) calcd. for C₂₂H₂₀NO (M + H⁺) 314.1545. Found 314.1541.

(E)-1-(2-Bromophenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Af). Prepared

following general procedure, using **10A** (59 mg, 0.3 mmol), 2bromobenzaldehyde (39 μL, 61 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Af** (104 mg, 95% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.69 (s, 1H), 7.82-7.79 (m, 1H), 7.64-7.62 (m, 1H), 7.57-7.55 (m, 1H), 7.48-7.44 (m, 1H),

7.37-7.25 (m, 7H), 7.17-7.15 (m, 1H), 6.57 (dd, J = 17.5, 11.0 Hz, 1H), 5.60 (dd, J = 17.5, 1.3 Hz, 1H), 5.11 (dd, J = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 150.3, 138.6, 136.3, 135.9, 134.8, 134.5, 132.9, 132.1, 131.2, 130.8, 129.2, 128.6, 127.6, 127.4, 127.1, 125.8, 125.6, 124.8, 118.9, 114.1. HRMS (ESI) calcd. for C₂₁H₁₇BrN (M + H⁺) 362.0544. Found 362.0540.

(*E*)-1-(4-Bromophenyl)-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ag). Prepared following general procedure, using **10A** (98 mg, 0.5 mmol), 4bromobenzaldehyde (102 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Ag** (155 mg, 85% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.58 (d, *J* = 7.5 Hz, 1H), 7.49 (s, 4H), 7.41 (ddd, *J* = 7.9, 6.1, 2.9 Hz, 1H) 7.32-7.26 (m, 4H) 7.25-7.21 (m, 1H) 7.08 (d, *L* = 7.7 Hz, 1H) 6.52 (dd, *L* = 17.5, 11.0 Hz, 1H)

1H), 7.32-7.26 (m, 4H), 7.25-7.21 (m, 1H), 7.08 (d, *J* = 7.7 Hz, 1H), 6.52 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.55 (dd, *J* = 17.5, 1.3 Hz, 1H), 5.05 (dd, *J* = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) 159.1, 150.2,

138.7, 136.3, 136.0, 135.3, 134.5, 131.9, 131.2, 130.9, 130.1, 128.6, 127.5, 127.2, 125.7, 124.8, 118.6, 114.1. HRMS (ESI) calcd. for C₂₁H₁₆BrN (M + H⁺) 362.0544. Found 362.0538.

(E)-1-(4-Fluorophenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ah). Prepared

following general procedure, using **10A** (98 mg, 0.5 mmol), 4-fluorobenzaldehyde (68 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Ah** (137 mg, 91% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.24 (s, 1H), 7.61 (m, 3H), 7.41 (m, 1H), 7.29 (m, 5H), 7.04 (m, 3H), 6.55 (dd, *J* = 17.5, 11.0

Hz, 1H), 5.57 (d, *J* = 17.5 Hz, 1H), 5.06 (d, J = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6 (d, *J* = 251.6 Hz), 159.0, 150.3, 138.7, 136.3, 136.0, 134.5, 132.8, 131.2, 130.8, 130.7, 130.6, 128.6, 127.4, 127.1, 125.4, 124.7, 118.7, 115.8, 115.6, 114.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -108.6. HRMS (ESI) calcd. for C₂₁H₁₇FN (M + H⁺) 302.1435. Found 302.1337.

(E)-1-(2-Fluorophenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ai). Prepared

following general procedure, using **10A** (59 mg, 0.3 mmol), 2-fluorobenzaldehyde (35 μ L, 41 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Ai** (76 mg, 85% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 7.78 (t, *J* = 6.9 Hz, 1H), 7.62 (d, *J* = 7.6 Hz, 1H), 7.46-7.26 (m, 7H), 7.14-7.05 (m,

3H), 6.57 (dd, J = 17.5, 10.9 Hz, 1H), 5.60 (dd, J = 17.5, 1.4 Hz, 1H), 5.10 (dd, J = 10.9, 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (d, J = 253.1 Hz), 153.7 (d, J = 5.1 Hz), 150.6, 138.7, 136.4, 136.0, 134.7, 132.7 (d, J = 8.8 Hz), 131.1, 130.8, 128.6, 128.1, 127.4, 127.1, 125.7, 124.7, 124.4 (d, J = 3.6 Hz), 124.1 (d, J = 9.2 Hz), 118.6, 115.6 (d, J = 21.0 Hz), 114.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.7. HRMS (ESI) calcd. for C₂₁H₁₇FN (M + H⁺) 302.1435. Found 302.1337.

(E)-1-(4-Chlorophenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine(1Aj).PreparedNfollowing general procedure, using 10A (98 mg, 0.5 mmol), 4-
chlorobenzaldehyde (77 mg, 0.55 mmol) and toluene (1.2 mL) to obtain 1Aj
(111 mg, 70% yield) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s,
1H), 7.56 (m, 3H), 7.42 (m, 1H), 7.31 (m, 7H), 7.09 (d, J = 7.8 Hz, 1H), 6.54

(dd, J = 17.6, 11.0 Hz, 1H), 5.57 (d, J = 17.5 Hz, 1H), 5.07 (d, J = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.0, 150.2, 138.6, 137.1, 136.3, 136.0, 134.9, 134.5, 131.2, 130.8, 129.8, 128.9, 128.6, 127.4, 127.1, 125.6, 124.8, 118.6, 114.0. HRMS (ESI) calcd. for C₂₁H₁₇ClN (M + H⁺) 318.1050. Found 318.1042

(E)-1-(3,4-Dichlorophenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ak). Prepared

following general procedure, using **10A** (59 mg, 0.3 mmol), 3,4dichlorobenzaldehyde (58 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Ak** (75 mg, 71% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1H), 7.74 (s, 1H), 7.63 (d, *J* = 7.5 Hz, 1H), 7.45 (m, 3H), 7.39-7.23 (m, 5H),

7.10 (d, *J* = 7.8 Hz, 1H), 6.55 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.60 (d, *J* = 17.5 Hz, 1H), 5.10 (d, *J* = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.7, 149.8, 138.5, 136.32, 136.27, 135.9, 135.1, 134.5, 133.0, 131.2, 130.8, 130.7, 130.2, 128.6, 127.5 (2C), 127.2, 125.9, 124.8, 118.5, 114.1. HRMS (ESI) calcd. for C₂₁H₁₆Cl₂N (M + H⁺) 352.0660. Found 352.0654.

Methyl (*E*)-3-(((2'-vinyl-[1,1'-biphenyl]-2-yl)imino)methyl)benzoate (1Al). Prepared following general procedure, using 10A (98 mg, 0.5 mmol), methyl 3formylbenzoate (92 mg, 0.55 mmol) and toluene (1.2 mL) to obtain 1Al (145 mg, 85% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.26 (s, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.86 (d, *J* = 7.8 Hz, 1H), 7.60 (d, *J* = 6.7 Hz, 1H), 7.42 (m, 2H), 7.33-7.25 (m, 5H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.56 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.57 (dd, *J* =

17.5, 1.3 Hz, 1H), 5.08 (dd, *J* = 11.0, 1.3 Hz, 1H), 3.92 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 159.4, 150.2, 138.6, 136.8, 136.3, 136.0, 134.5, 132.2, 132.0, 131.2, 130.8, 130.6, 131.4, 128.8, 128.6, 127.4, 127.2, 125.7, 124.8, 118.7, 114.0, 52.3. HRMS (ESI) calcd. for C₂₃H₂₀NO₂ (M + H⁺) 342.1494. Found 342.1486.

(E)-1-(4-(Trifluoromethyl)phenyl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Am).

Prepared following general procedure, using **10A** (98 mg, 0.5 mmol), 4-(trifluoromethyl)benzaldehyde (70 μ L, 96 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Am** (126 mg, 72% yield) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (s, 1H), 7.82-7.69 (m, 2H), 7.68-7.57 (m, 3H), 7.44 (ddd,

J = 7.8, 6.2, 2.7 Hz, 1H), 7.36-7.26 (m, 5H), 7.13 (d, *J* = 8.4 Hz, 1H), 6.57 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.59 (dd, *J* = 17.5, 1.3 Hz, 1H), 5.09 (dd, *J* = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ, 158.8, 149.9, 139.4 (q, J = 1.4 Hz), 138.5, 136.3, 136.0, 134.7, 132.5 (q, *J* = 32.5 Hz), 131.2, 130.8, 128.8, 128.6, 127.5, 127.2, 126.0, 125.5 (q, *J* = 3.9 Hz), 124.8, 123.9 (d, *J* = 272.5 Hz), 118.5, 114.1. ¹⁹F NMR (377 MHz, CDCl₃) δ -62.8. HRMS (ESI) calcd. for C₂₂H₁₇F₃N (M + H⁺) 352.1313. Found 352.1307.

(E)-4-(((2'-Vinyl-[1,1'-biphenyl]-2-yl)imino)methyl)benzonitrile (1An). Prepared following

general procedure, using **10A** (98 mg, 0.5 mmol), 4-formylbenzonitrile (72 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1An** (145 mg, 94% yield) as orange oil. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 7.73-7.69 (m, 2H), 7.66-7.58 (m, 3H), 7.52-7.37 (m, 1H), 7.35-7.22 (m, 5H), 7.11 (d, *J* =

7.8 Hz, 1H), 6.52 (dd, J = 17.5, 11.0 Hz, 1H), 5.56 (dd, J = 17.6, 1.3 Hz, 1H), 5.06 (dd, J = 11.0, 1.3 Hz, 1H).¹³C NMR (100 MHz, CDCl₃) δ 158.1, 149.6, 140.1, 138.4, 136.3, 135.9, 134.9, 132.4, 131.3, 130.8, 128.9, 128.7, 127.6, 127.2, 126.3, 124.8, 118.5, 118.3, 114.2, 114.1. HRMS (ESI) calcd. for C₂₂H₁₇N₂ (M + H⁺) 309.1392. Found 309.1386.

(E)-1-(Naphthalen-1-yl)-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ao). Prepared following general procedure, using 10A (98 mg, 0.5 mmol), 1-naphthaldehyde (75 μL, 86 mg, 0.55 mmol) and toluene (1.2 mL) to obtain 1Ao (141 mg, 85% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.88 (s, 1H), 8.67 (d, *J* = 8.6 Hz, 1H), 7.89 (d, *J* = 8.2 Hz, 1H), 7.84 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.78 (dd, *J* = 7.2, 1.2 Hz, 1H), 7.68 (d, *J* = 6.8 Hz, 1H), 7.53-7.46 (m, 3H), 7.43-7.29 (m, 6H), 7.23

(dd, *J* = 7.8, 1.2 Hz, 1H), 6.67 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.63 (dd, *J* = 17.5, 1.3 Hz, 1H), 5.11 (dd, *J* = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 151.1, 139.2, 136.4, 135.9, 135.0, 133.8, 131.8, 131.7, 131.2, 130.9, 130.8 (x2), 128.8, 128.4, 127.4, 127.3, 127.3, 126.1, 125.6, 125.2, 125.0, 124.8, 118.3, 114.3. HRMS (ESI) calcd. for C₂₅H₂₀N (M + H⁺) 334.1596. Found 334.1587.

(*E*)-1-(Furan-2-yl)-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ap). Prepared following general procedure, using 10A (98 mg, 0.5 mmol), furan-2-carbaldehyde (46 μ L, 53 mg, 0.55 mmol) and toluene (1.2 mL) to obtain 1Ap (55 mg, 40% yield) as orange oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.61 (dd, *J* = 7.0, 1.7 Hz, 1H), 7.51 (d, *J* = 1.7 Hz, 1H), 7.44-7.39 (m, 1H), 7.34-7.26 (m, 5H), 7.09 (d, *J* = 7.8 Hz,

1H), 6.77 (d, J = 3.4 Hz, 1H), 6.55 (dd, J = 17.5, 11.0 Hz, 1H), 6.48-6.45 (d, J = 1.7 Hz, 1H), 5.59 (dd, J = 17.6, 1.3 Hz, 1H), 5.11 (dd, J = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 152.3, 150.6, 149.2, 145.4, 138.5, 136.4, 136.0, 133.9, 131.4, 131.0, 128.5, 127.4, 127.2, 125.3, 124.9, 119.5, 115.2, 114.2, 111.9. HRMS (ESI) calcd. for C₁₉H₁₆NO (M + H⁺) 274.1232. Found 274.1229.

(E)-1-(1-Methyl-1H-pyrrol-2-yl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Aq).

Prepared following general procedure, using **10A** (98 mg, 0.5 mmol), 1-methyl-1*H*-pyrrole-2-carbaldehyde (60 μ L, 60 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Aq** (108 mg, 75% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.66 (d, *J* = 7.5 Hz, 1H), 7.44 (s, 1H), 7.36-7.25 (m, 5H), 7.14 (d, *J* = 7.9 Hz,

1H), 6.85-6.47 (m, 3H), 6.16 (s, 1H), 5.64 (d, *J* = 17.5 Hz, 1H), 5.11 (d, *J* = 11.0 Hz, 1H), 3.57 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.0, 150.2, 139.8, 136.2, 136.1, 135.6, 130.7, 130.7, 130.5, 129.1, 128.7, 127.1, 127.1, 124.9, 124.3, 118.7, 117.5, 113.8, 108.3, 36.9. HRMS (ESI) calcd. for C₂₀H₁₉N₂ (M + H⁺) 287.1548. Found 287.1540.

(*E*)-1-(Thiophen-2-yl)-*N*-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Ar). Prepared following general procedure, using **10A** (98 mg, 0.5 mmol), thiophene-2carbaldehyde (52 μ L, 62 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Ar** (75 mg, 52% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.63 (d, *J* = 7.2 Hz, 1H), 7.42 (d, *J* = 5.9 Hz, 2H), 7.37-7.25 (m, 6H), 7.14 (d, *J* = 7.8 Hz, 1H),

7.07 (t, *J* = 4.4 Hz, 1H), 6.58 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.61 (d, *J* = 17.5 Hz, 1H), 5.11 (d, *J* = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 150.0, 143.2, 138.6, 136.4, 136.1, 134.4, 131.4, 131.2, 130.9, 130.3, 128.5, 127.5, 127.3, 127.1, 125.4, 124.8, 119.0, 114.1. HRMS (ESI) calcd. for C₁₉H₁₆NS (M + H⁺) 290.1003. Found 290.1000.

(E)-1-(Benzofuran-2-yl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1As). Prepared

following general procedure, using **10A** (98 mg, 0.5 mmol), benzofuran-2carbaldehyde (67 μ L, 80 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1As** (124 mg, 77% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (s, 1H), 7.67-7.57 (m, 2H), 7.53 (dd, *J* = 8.3, 0.9 Hz, 1H), 7.43 (ddd, *J* = 7.9, 6.4,

2.5 Hz, 1H), 7.36 (ddd, J = 8.4, 7.2, 1.3 Hz, 1H), 7.33-7.23 (m, 6H), 7.18-7.12 (m, 1H), 7.06 (d, J = 0.9 Hz, 1H), 6.56 (dd, J = 17.6, 11.0 Hz, 1H), 5.59 (dd, J = 17.5, 1.3 Hz, 1H), 5.12 (dd, J = 11.0, 1.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 155.8, 153.2, 150.4, 150.2, 138.3, 136.4, 135.9, 133.7, 131.5, 131.0, 128.5, 127.8, 127.5, 127.3, 126.8, 125.7, 125.1, 123.4, 122.2, 119.8, 114.4, 112.1, 112.0. HRMS (ESI) calcd. for C₂₃H₁₈NO (M + H⁺) 324.1388. Found 324.1380.

(E)-1-(1-Methyl-1H-indol-2-yl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine

Prepared following general procedure, using **10A** (98 mg, 0.5 mmol), 1methyl-1*H*-indole-2-carbaldehyde (90 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1At** (132 mg, 79% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.74-7.60 (m, 2H), 7.48 (ddd, *J* = 7.9, 6.8, 2.2 Hz, 1H),

(1At).

7.41-7.28 (m, 7H), 7.23-7.19 (m, 1H), 7.14 (ddd, *J* = 7.9, 6.1, 1.9 Hz, 1H), 6.90 (d, *J* = 0.7 Hz, 1H), 6.62 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.64 (dd, *J* = 17.6, 1.3 Hz, 1H), 5.11 (dd, *J* = 11.0, 1.3 Hz, 1H), 3.73 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 150.4, 140.4, 139.5, 136.3, 135.9, 135.7, 130.8, 130.7, 128.8, 127.3, 127.2, 126.9, 125.6, 124.5, 124.5, 121.8, 120.1, 117.4, 114.1, 111.7, 31.7. HRMS (ESI) calcd. for C₂₄H₂₁N₂ (M + H⁺) 337.1705. Found 337.1699.

(E)-1-(Benzo[b]thiophen-2-yl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1u). Prepared

following general procedure, using **10A** (98 mg, 0.5 mmol), benzo[*b*]thiophene-2-carbaldehyde (92 mg, 0.55 mmol) and toluene (1.2 mL) to obtain **1Au** (157 mg, 93% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.46 (s, 1H), 7.77 (d, *J* = 7.3 Hz, 2H), 7.59 (s, 1H), 7.54 (s, 1H), 7.47-

7.38 (m, 1H), 7.36-7.27 (m, 7H), 7.15 (d, *J* = 7.7 Hz, 1H), 6.55 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.59 (dd, *J* = 17.5, 1.4 Hz, 1H), 5.09 (dd, *J* = 11.0, 1.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 149.7, 143.5, 141.3, 139.3, 138.5, 136.5, 136.0, 134.6, 131.3, 130.9, 128.8, 128.5, 127.4, 127.1, 126.3, 125.8, 124.9, 124.7, 124.5, 122.8, 118.9, 114.2. HRMS (ESI) calcd. for C₂₃H₁₈NS (M + H⁺) 340.1160. Found 340.1152.

(E)-1-(Pyridin-3-yl)-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)methanimine (1Av). Prepared following

general procedure, using **10A** (59 mg, 0.3 mmol), nicotinaldehyde (31 μL, 35 mg, 0.33 mmol) and toluene (0.7 mL) to obtain **1Av** (77 mg, 90% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.81 (s, 1H), 8.64 (d, *J* = 4.8 Hz, 1H), 8.36 (s, 1H), 7.98 (d, *J* = 7.8 Hz, 1H), 7.62 (d, *J* = 7.4 Hz, 1H), 7.45 (m, 1H), 7.38-7.24

(m, 6H), 7.14 (d, J = 7.8 Hz, 1H), 6.56 (dd, J = 17.5, 11.0 Hz, 1H), 5.59 (d, J = 17.5 Hz, 1H), 5.09 (d, J = 11.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 157.4, 151.8, 150.7, 145.0, 138.5, 136.3, 136.0, 134.9, 134.7, 132.0, 131.2, 130.8, 128.6, 127.5, 127.2, 126.0, 124.8, 123.7, 118.4, 114.1. HRMS (ESI) calcd. for C₂₀H₁₇N₂ (M + H⁺) 285.1392. Found 285.1389.

(E)-2,2-dimethyl-N-(2'-vinyl-[1,1'-biphenyl]-2-yl)propan-1-imine (1Aw). Prepared following

general procedure, using **10A** (130 mg, 0.67 mmol), Pivaldehyde (220 μ L, 172 mg, 2.0 mmol) and toluene (1.7 mL) to obtain **1Aw** (71 mg, 40% yield) as a yellow oil. ¹H NMR (400 MHz, CD₂Cl₂) δ 7.60 (dd, *J* = 7.6, 1.6 Hz, 1H), 7.42 (s, 1H), 7.36–7.24 (m, 3H), 7.21–7.13 (m, 3H), 6.87 (dt, *J* = 7.8, 0.9 Hz, 1H), 6.44 (dd, J =

17.6, 11.0 Hz, 1H), 5.62 (dd, J = 17.6, 1.3 Hz, 1H), 5.10 (dd, J = 11.0, 1.3 Hz, 1H), 0.89 (s, 9H). ¹³C NMR (100 MHz, CD₂Cl₂) δ 173.8, 151.3, 138.7, 136.1, 135.7, 132.7, 130.9, 130.6, 128.3, 127.2, 127.0, 124.4, 124.2, 119.4, 113.8, 36.5, 26.0. HRMS (ESI) calcd. for C₁₉H₂₂N (M + H⁺) 264.1752. Found 264.1747.

(E)-N-(5-Methyl-2'-vinyl-[1,1'-biphenyl]-2-yl)-1-phenylmethanimine (1Ba). Prepared

following general procedure, using **10B** (155 mg, 0.73 mmol), benzaldehyde (81 μ L, 0.8 mmol) and toluene (1.8 mL) to obtain **1Ba** (195 mg, 90% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.71-7.56 (m, 3H), 7.43-7.22 (m, 7H), 7.14 (s, 1H), 7.04 (d, *J* = 8.0 Hz, 1H), 6.61 (dd, *J* = 17.5, 11.0

Hz, 1H), 5.60 (dd, J = 17.5, 1.4 Hz, 1H), 5.09 (dd, J = 11.0, 1.3 Hz, 1H), 2.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 148.1, 139.0, 136.6, 136.3, 136.2, 135.1, 134.5, 131.8, 130.9, 130.9, 129.1, 128.6, 128.5, 127.3, 127.1, 124.7, 118.5, 113.9, 21.0. HRMS (ESI) calcd. for C₂₂H₂₀N (M + H⁺) 298.1596. Found 298.1587.

(E)-N-(5-Methoxy-2'-vinyl-[1,1'-biphenyl]-2-yl)-1-phenylmethanimine (1Ca). Prepared following general procedure, using 10C (110 mg, 0.49 mmol), benzaldehyde (55 μL, 0.54 mmol) and toluene (1.3 mL) to obtain 1Ca (123 mg, 80% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.33 (s, 1H), 7.65-7.63 (m, 3H), 7.39-7.29 (m, 6H), 7.13 (d, *J* = 8.7 Hz, 1H), 6.98 (dd, *J* = 8.7, 2.9 Hz, 1H), 6.89 (d, *J* = 2.9 Hz, 1H), 6.62 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.61 (dd, *J* = 17.5, 1.3 Hz, 1H), 5.09 (dd, *J* = 11.0, 1.3 Hz, 1H), 3.85 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 158.9, 157.5, 143.6,

138.8, 136.7, 136.4, 136.3, 136.1, 130.8, 128.6, 128.5, 127.4, 127.1, 124.8, 119.4, 116.3, 114.1, 114.0, 55.6. HRMS (ESI) calcd. for C₂₂H₂₀NO (M + H⁺) 314.1545. Found 314.1536.

(*E*)-*N*-(5-Fluoro-2'-vinyl-[1,1'-biphenyl]-2-yl)-1-phenylmethanimine (1Da). Prepared following general procedure, using **10D** (133 mg, 0.62 mmol), benzaldehyde (69 μ L, 0.68 mmol) and toluene (1.6 mL) to obtain **1Da** (70 mg, 37% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.65-7.60 (m, 3H), 7.44-7.24 (m, 6H), 7.15-7.08 (m, 2H), 7.05 (dd, *J* = 8.8, 2.5 Hz, 1H), 6.58 (dd, J = 17.5, 11.0 Hz, 1H), 5.60 (dd, J = 17.5, 1.2 Hz, 1H), 5.12 (dd, J = 11.0, 1.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 161.7, 160.48 (d, J = 1.5 Hz), 159.3, 146.7 (d, J = 2.9 Hz), 137.7 (d, J = 1.5 Hz), 136.4 (d, J = 7.8 Hz), 136.33, 136.31, 135.7, 131.2, 130.6, 128.7, 128.6, 127.7, 127.2, 125.0, 119.8 (d, J = 8.4 Hz), 117.8 (d, J = 22.5 Hz), 115.1 (d, J = 22.2 Hz), 114.5. ¹⁹F NMR (377 MHz, CDCl₃) δ -118.3. HRMS (ESI) calcd. for C₂₁H₁₇FN (M + H⁺) 302.1345. Found 302.1337.

(E)-N-(5'-Methyl-2'-vinyl-[1,1'-biphenyl]-2-yl)-1-phenylmethanimine (1Ea). Prepared following general procedure, using 10E (135 mg, 0.65 mmol), benzaldehyde (73 μL, 0.71 mmol) and toluene (1.6 mL) to obtain 1Ea (140 mg, 72% yield) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 7.66-7.4 (m, 2H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.43-7.35 (m, 4H), 7.33-7.28 (m, 2H), 7.13-7.08 (m, 3H), 6.53 (dd, *J* = 17.5, 11.0 Hz, 1H), 5.52 (dd, *J* = 17.5, 1.4 Hz, 1H), 5.02 (dd, *J* = 11.0, 1.4 Hz, 1H),

2.36 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 160.5, 150.6, 138.7, 136.8, 136.5, 135.9, 134.6, 133.7, 131.4, 131.1, 131.0, 128.7, 128.5, 128.5, 128.2, 125.4, 124.6, 118.7, 113.0, 21.2. HRMS (ESI) calcd. for C₂₂H₂₀N (M + H⁺) 298.1596. Found 298.1594.

(E)-1-Phenyl-N-(2-(2-vinylnaphthalen-1-yl)phenyl)methanimine (1Fa). Prepared following

general procedure, using **10F** (144 mg, 0.59 mmol), benzaldehyde (66 μ L, 69 mg, 0.65 mmol) and toluene (1.5 mL) to obtain **1Fa** (147 mg, 80% yield) as yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.92-7.67 (m, 3H), 7.64-7.46 (m, 2H), 7.41 (ddd, *J* = 8.1, 4.0, 2.4 Hz, 3H), 7.35 (ddt, *J* = 8.2, 3.9,

2.2 Hz, 2H), 7.32-7.27 (m, 2H), 7.27-7.16 (m, 3H), 6.64 (dd, J = 17.6, 11.0 Hz, 1H), 5.73 (dd, J = 17.5, 1.2 Hz, 1H), 5.19 (dd, J = 11.0, 1.1 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 151.7, 136.2, 136.0, 135.7, 133.1, 132.9, 131.8, 131.6, 131.0, 128.8, 128.5, 128.4, 127.8, 127.6, 126.9, 126.0, 125.5, 125.3, 122.4, 119.1, 114.5. HRMS (ESI) calcd. for C₂₅H₂₀N (M + H⁺) 334.1596. Found 334.1592.

3. General procedure for the synthesis of dibenzazepines by CuH-catalyzed intramolecular cyclization.

A flamed-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(OAc)_2$ (1.45 mg, 4 mol%) and (*R*,*R*)-Ph-BPE (4.45 mg, 4.4 mol%). Anhydrous THF (300 µL) was added via syringe and the reaction mixture was stirred for 15 min, until a blue homogeneous solution was obtained. Diethoxymethylsilane (64 µL, DEMS, 2.0 equiv) was added via syringe and stirring was continued for 10 min at room temperature. Into a separate flamed-dried Schlenk tube aldimine **1** (0.2 mmol, 1 equiv) was dissolved in anhydrous MTBE (1 mL) and transferred via syringe to the

reaction tube containing the catalyst. Anhydrous *t*BuOH (21 μ L, 1.1 equiv) was added via microsyringe and the reaction mixture was stirred at room temperature under N₂ for 48 h. The reaction mixture was then quenched with saturated aqueous Na₂CO₃ solution, extracted with EtOAc and the combined organic layers were concentrated *in vacuo*. The resulting crude product was purified by flash column chromatography (30:1 hexane/EtOAc) on silica gel to obtain dibenzo[*b,d*]azepine derivatives **2**.

Note. The reaction of **1Aa** at 2 mmol scale was performed following the general procedure using $Cu(OAc)_2$ (14.5 mg, 4 mol%) and (R,R)-Ph-BPE (45 mg, 4.4 mol%). Anhydrous THF (3 mL), diethoxymethylsilane (640 µL, DEMS, 2.0 equiv), aldimine **1Aa** (570 mg, 2mmol) in anhydrous MTBE (10 mL) and anhydrous tBuOH (210 µL, 1.1 equiv), affording **2Aa** (524 mg, 92 %, 98% ee) after column chromatography purification.

(*S_a*,6*S*,7*R*)-7-Methyl-6-phenyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Aa). Prepared following general procedure, using **1Aa** (57 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μL, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μL, 16 mg, 0.22 mmol) to obtain **2Aa** (56 mg, 99% yield) as colorless oil. [α]_{D²⁰} +52.3 (c 0.51, CHCl₃) for 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (m, 2H), 7.42 (t, *J* = 7.3 Hz, 1H), 7.29 (m, 5H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 2H), 6.92 (d, *J* = 7.7 Hz, 1H), 6.83 (d, *J* = 7.6 Hz, 1H), 4.98 (d, *J* = 5.1 Hz, 1H), 3.59 (s, 1H), 1.11 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.00, 140.4, 139.7, 133.7, 129.4, 128.9 (2C), 128.8, 128.3, 127.6, 127.4 (2C), 126.7, 126.6, 126.1, 122.5, 120.7, 58.2, 37.9, 15.0. HRMS (ESI) calcd. for C₂₁H₂₀N (M + H⁺) 286.1517. Found 286.1588. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 4.90 min (major) and 6.84 min (minor).

(*Sa*,6S,7R)-7-Methyl-6-(*o*-tolyl)-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ab). Prepared following general procedure, using **1Ab** (50 mg, 0.17 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ab** (48 mg, 95% yield) as colorless oil. [α]_D²⁰ +4.0 (c 0.48, CHCl₃) for 98% *ee.* ¹H NMR (400

MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.43 (t, *J* = 7.5 Hz, 1H), 7.29 (m, 2H), 7.18 (m, 3H), 7.02 (m, 2H), 6.94 (m, 2H), 5.39 (d, *J* = 5.1 Hz, 1H), 3.59 (m, 1H), 2.45 (s, 3H), 1.11 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.9, 140.7, 140.2, 139.5, 135.9, 133.2, 130.0, 129.5, 129.0, 128.7, 128.5, 127.1, 126.8, 126.7 (2C), 125.3, 122.4, 120.7, 68.6, 39.3, 20.1, 14.0. HRMS (ESI) calcd. for C₂₂H₂₂N (M + H⁺)

300.1752. Found 300.1743. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.02 min (major) and 7.36 min (minor).

 $(S_{a},6S,7R)-7-Methyl-6-(m-tolyl)-6,7-dihydro-5H-dibenzo[b,d]azepine$ (2Ac). Prepared
following general procedure, using 1Ac (50 mg, 0.17 mmol), Cu(OAc)₂ (1.5
mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 µL, 54 mg,
0.4 mmol) and anhydrous *t*BuOH (22 µL, 16 mg, 0.22 mmol) to obtain 2Ac
(44 mg, 87% yield) as colorless oil. [α]_{D²⁰}+24.7 (c 0.25, CHCl₃) for 98% *ee*.

¹H NMR (400 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.42 (td, *J* = 7.5, 1.3 Hz, 1H), 7.33-7.26 (m, 2H), 7.19-7.10 (m, 3H), 6.92-6.84 (m, 4H), 4.94 (d, *J* = 5.1 Hz, 1H), 3.57 (dd, *J* = 7.2, 5.1 Hz, 1H), 2.29 (s, 3H), 1.10 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 140.9, 140.3, 139.9, 136.9, 133.6, 129.7, 129.4, 128.7, 128.3, 128.3, 127.3, 126.6 (2C), 126.2, 126.0, 122.5, 120.7, 75.4, 37.9, 21.4, 15.0. HRMS (ESI) calcd. for C₂₂H₂₂N (M + H⁺) 300.1752. Found 300.1745. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.12 min (major) and 10.70 min (minor).

 $(S_a, 6S, 7R)$ -6-(3-Methoxyphenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ad).

Prepared following general procedure, using **1Ad** (62 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ad** (34 mg, 55% vield) as vellow oil. [α]_{D²⁰} +92.5 (c 0.54, CHCl₃)

for 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (ddd, *J* = 7.6, 3.7, 1.5 Hz, 2H), 7.37 (td, *J* = 7.5, 1.3 Hz, 1H), 7.31-7.20 (m, 2H), 7.18-7.10 (m, 2H), 6.88 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.85-6.78 (m, 2H), 6.68 (dt, *J* = 7.6, 1.3 Hz, 1H), 6.55 (dd, *J* = 2.7, 1.5 Hz, 1H), 4.93 (d, *J* = 5.0 Hz, 1H), 3.57 (s, 3H), 3.57-3.51 (m, 1H), 1.08 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.8, 144.8, 142.7, 140.4, 139.8, 133.6, 129.4, 128.8, 128.3, 128.2, 126.6, 126.2, 122.4, 121.4, 120.7, 114.1, 113.4, 75.4, 55.0, 37.8, 15.0. HRMS (ESI) calcd. for C₂₂H₂₂NO (M + H⁺) 316.1701. Found 316.1691. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.93 min (major) and 13.15 min (minor).

(*Sa*,6*S*,7*R*)-6-(4-Methoxyphenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ae).

Prepared following general procedure, using **1Ae** (62 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ae** (38 mg, 60% yield) as yellow oil. [α]_{D²⁰ +7.1 (c 0.57,}

CHCl₃) for 99% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dt, *J* = 7.7, 2.0 Hz, 2H), 7.38 (td, *J* = 7.5, 1.2 Hz,

1H), 7.32-7.20 (m, 3H), 7.13 (td, *J* = 7.5, 1.2 Hz, 1H), 6.96 (d, *J* = 8.6 Hz, 2H), 6.87 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.81 (d, *J* = 7.7 Hz, 1H), 6.76 (d, *J* = 8.6 Hz, 2H), 4.90 (d, *J* = 5.1 Hz, 1H), 3.79 (s, 3H), 3.65 (brad s, 1H), 3.51 (dt, *J* = 12.0, 6.1 Hz, 1H), 1.05 (d, *J* = 7.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 144.9, 140.5, 133.7, 133.1, 129.9, 129.3, 128.7, 128.2, 126.7, 126.6, 127.1, 122.5, 120.7, 112.7, 74.9, 55.2, 37.9, 15.0. HRMS (ESI) calcd. for C₂₂H₂₂NO (M + H⁺) 316.1701. Found 316.1689. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 8.58 min (major) and 10.91 min (minor).

(*S_a*,6*S*,7*R*)-6-(2-Bromophenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Af).

Prepared following general procedure, using **1Af** (70 mg, 0.19 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Af** (47 mg, 66% yield) as colorless oil. [α]_{D²⁰} +35.0 (c 0.26, CHCl₃) for 90% *ee*. ¹H

NMR (400 MHz, CDCl₃) δ 7.57 (dd, *J* = 7.8, 1.6 Hz, 1H), 7.49 (m, 2H), 7.43 (td, *J* = 7.5, 1.3 Hz, 1H), 7.30 (m, 2H), 7.18 (td, *J* = 7.5, 1.3 Hz, 1H), 7.15-7.05 (m, 2H), 6.97 (m, 2H), 6.90 (d, *J* = 7.7 Hz, 1H), 5.64 (d, *J* = 5.3 Hz, 1H), 3.87-3.34 (m, 2H), 1.19 (d, *J* = 7.2 Hz, 3H).). ¹³C NMR (100 MHz, CDCl₃) δ 144.7, 140.4, 140.2, 139.8, 133.6, 132.3, 131.3, 129.4, 128.9, 128.8, 128.4, 126.84, 126.82, 126.6, 126.5, 124.7, 122.7, 120.9, 72.0, 38.6, 14.1. HRMS (ESI) calcd. for C₂₁H₁₉BrN (M + H⁺) 364.0701. Found 364.0509. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 4.78 min (major) and 6.55 min (minor).

$(S_a, 6S, 7R)$ -6-(4-Bromophenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ag).

Prepared following general procedure, using **1Ag** (72 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ag** (58 mg, 80% vield) as colorless oil. [α]_{D²⁰} –8.1 (c 0.26, CHCl₃)

for 91% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, *J* = 3.5 Hz, 2H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.25 (q, *J* = 7.2 Hz, 2H), 7.17 (q, *J* = 8.6, 7.5 Hz, 1H), 6.90 (t, *J* = 8.1 Hz, 3H), 6.77 (d, *J* = 7.7 Hz, 1H), 4.91 (d, *J* = 5.0 Hz, 1H), 3.69 (s, 1H), 3.58-3.47 (m, 1H), 1.05 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) 144.3, 140.3, 139.7, 139.0, 133.7, 130.6, 130.5, 129.4, 129.1, 128.8, 128.3, 126.9, 126.0, 122.9, 121.5, 120.8, 74.9, 37.4, 15.0. HRMS (ESI) calcd. for C₂₁H₁₉BrN (M + H⁺) 364.0701. Found 364.0692. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 7.38 min (minor) and 10.27 min (major).

(Sa,6S,7R)-6-(4-Fluorophenyl)-7-methyl-6,7-dihydro-5H-dibenzo[b,d]azepine

Prepared following general procedure, using **1Ah** (60 mg, 0.2 mmol), $Cu(OAc)_2$ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 µL, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 µL, 16 mg, 0.22 mmol) to obtain **2Ah** (58 mg, 96% yield) as colorless oil. [α]_D²⁰ +26.2 (c 0.50, CHCl₃)

(2Ah).

for 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 2H), 7.41 (td, *J* = 7.5, 1.3 Hz, 1H), 7.31-7.24 (m, 2H), 7.17 (td, *J* = 7.5, 1.2 Hz, 1H), 7.04-7.00 (m, 2H), 6.96-6.85 (m, 3H), 6.79 (d, *J* = 7.7 Hz, 1H), 4.94 (d, *J* = 5.0 Hz, 1H), 3.54 (dt, *J* = 12.3, 6.1 Hz, 1H), 1.07 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 162.4 (d, *J* = 245.2 Hz), 144.5, 140.4, 139.2, 136.5, 133.7, 130.3 (d, *J* = 7.9 Hz), 129.4, 128.8, 128.3, 126.7, 126.8, 126.0, 122.8, 120.8, 114.2 (d, *J* = 21.1 Hz), 74.8, 37.6, 15.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -115.2. HRMS (ESI) calcd. for C₂₁H₁₉FN (M + H⁺) 304.1502. Found 304.1492. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 10.81 min (minor) and 12.27 min (major).

(*Sa*,6*S*,7*R*)-6-(2-Fluorophenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ai).

Prepared following general procedure, using **1Ai** (60 mg, 0.19 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ai** (42 mg, 70% yield) as colorless oil. [α]_{D²⁰} +44.0 (c 0.48, CHCl₃) for 92% *ee*. ¹H NMR

(400 MHz, CDCl₃) δ 7.49 (m, 2H), 7.42 (td, *J* = 7.5, 1.3 Hz, 1H), 7.32-7.17 (m, 4H), 7.05 (m, 1H), 6.97-6.88 (m, 3H), 6.84 (dd, *J* = 8.0, 1.0 Hz, 1H), 5.50 (d, *J* = 5.2 Hz, 1H), 3.62 (m, 1H), 1.16 (dd, *J* = 7.2, 2.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.7 (d, *J* = 245.2 Hz), 144.5, 140.3, 139.3, 133.7, 130.6 (d, *J* = 4.1 Hz), 129.4, 128.8, 128.7, 128.6, 128.3, 126.81, 126.77, 126.0, 123.3 (d, *J* = 3.6 Hz), 122.8, 120.9, 114.4 (d, *J* = 22.8 Hz), 66.0, 37.8, 14.1 (d, *J* = 1.5 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ -118.5. HRMS (ESI) calcd. for C₂₁H₁₉FN (M + H⁺) 304.1502. Found 304.1494. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.36 min (major) and 8.39 min (minor).

(*Sa*,6*S*,7*R*)-6-(4-Chlorophenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Aj).

Prepared following general procedure, using **1Aj** (63 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Aj** (51 mg, 80% yield) as colorless oil. [α]_D²⁰ +3.7 (c 0.49, CHCl₃)

for 92% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (ddd, *J* = 7.6, 3.7, 1.5 Hz, 2H), 7.39 (td, *J* = 7.5, 1.2 Hz, 1H), 7.33-7.22 (m, 3H), 7.21-7.11 (m, 3H), 6.98 (d, *J* = 8.4 Hz, 2H), 6.94-6.86 (m, 1H), 6.77 (d, *J* = 7.7 Hz, 1H), 4.92 (d, *J* = 5.0 Hz, 1H), 3.66 (br s, 1H), 3.58-3.51 (m, 1H), 1.06 (d, *J* = 7.2 Hz, 3H). ¹³C NMR

(100 MHz, CDCl₃) 144.5, 140.4, 139.4, 139.1, 133.7, 133.3, 130.2, 129.4, 128.8, 128.3, 127.6, 126.8, 126.8, 126.0, 122.8, 120.8, 74.9, 37.5, 15.0. HRMS (ESI) calcd. for C₂₁H₁₉ClN (M + H⁺) 320.1206. Found 320.1195. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 7.08 min (minor) and 9.24 min (major).

(*Sa*,6*S*,7*R*)-6-(3,4-Dichlorophenyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ak).

Prepared following general procedure, using **1Ak** (70 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ak** (68 mg, 99% yield) as colorless oil. [α]_D²⁰ –5.3 (c 0.45, CHCl₃)

for 33% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (m, 2H), 7.43 (td, *J* = 7.5, 1.3 Hz, 1H), 7.29 (m, 3H), 7.19 (td, *J* = 7.5, 1.2 Hz, 1H), 7.13 (d, *J* = 2.0 Hz, 1H), 6.92-6.87 (m, 2H), 6.79 (d, *J* = 7.7 Hz, 1H), 4.92 (d, *J* = 4.9 Hz, 1H), 3.58 (dd, *J* = 7.2, 5.0 Hz, 1H), 1.11 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.2, 141.3, 140.2, 138.6, 133.6, 131.4, 131.3, 130.8, 129.5, 129.3, 128.8, 128.4, 128.2, 127.0, 126.9, 125.9, 122.9, 120.7, 74.4, 37.4, 15.0. HRMS (ESI) calcd. for C₂₁H₁₈Cl₂N (M + H⁺) 354.0816. Found 354.0792. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.05 min (major) and 6.65 min (minor).

Methyl $3-((S_a, 6S, 7R)-7-Methyl-6, 7-dihydro-5H-dibenzo[b,d]azepin-6-yl)benzoate$ (2Al).

Prepared following general procedure, using **1Al** (63 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Al** (18 mg, 25% yield) as a white solid. [α]_{D²⁰} +31.4 (c

0.64, CHCl₃) for 86% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (dt, *J* = 7.6, 1.6 Hz, 1H), 7.74 (s, 1H), 7.46 (td, *J* = 7.4, 1.5 Hz, 2H), 7.39 (td, *J* = 7.5, 1.3 Hz, 1H), 7.29-7.17 (m, 4H), 7.14 (td, *J* = 7.5, 1.2 Hz, 1H), 6.88 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 5.01 (d, *J* = 5.0 Hz, 1H), 3.88 (s, 3H), 3.70 (br s, 1H), 3.63-3.54 (m, 1H), 1.07 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 144.6, 141.5, 140.4, 139.1, 133.5, 133.4, 130.1, 129.4, 129.3, 128.9, 128.8, 128.4, 127.5, 126.8, 125.9, 122.6, 120.7, 75.1, 52.0, 37.6, 15.0. HRMS (ESI) calcd. for C₂₃H₂₂NO₂ (M + H⁺) 344.1651. Found 344.1643. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 15.32 min (minor) and 18.26 min (major).

(Sa,6S,7R)-7-Methyl-6-(4-(trifluoromethyl)phenyl)-6,7-dihydro-5H-dibenzo[b,d]azepine

(2Am). Prepared following general procedure, using 1Am (70 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain 2Am (24 mg, 33% yield) as white solid. [α]_D²⁰

+21.9 (c 0.50, CHCl₃) for 63% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 4H), 7.42 (td, *J* = 7.5, 1.2 Hz, 1H), 7.33-7.28 (m, 1H), 7.25 (td, *J* = 7.6, 1.5 Hz, 1H), 7.20-7.16 (m, 3H), 6.91 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.76 (d, *J* = 7.7 Hz, 1H), 5.03 (d, *J* = 5.1 Hz, 1H), 3.70 (br s, 1H), 3.61 (qd, *J* = 7.1, 4.9 Hz, 1H), 1.10 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 144.4, 140.4, 138.9, 133.6, 129.7 (q, *J* = 32.3 Hz), 129.5, 129.2, 128.8, 128.3, 126.9, 125.9, 124.3, 124.2, 124.27 (d, J = 272.1 Hz), 122.8, 120.8, 75.1, 37.5, 14.9. HRMS (ESI) calcd. for $C_{22}H_{19}F_{3}N$ (M + H⁺) 354.1470. Found 354.1458. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.11 min (minor) and 7.60 min (major). ¹⁹F NMR (377 MHz, CDCl₃) δ -62.3.

4-((*S_a*,6*S*,7*R*)-7-Methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepin-6-yl)benzonitrile (2An).

Prepared following general procedure, using **1An** (62 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2An** (31 mg, 50% yield) as yellow oil. [α]_{D²⁰}-10.5 (c 0.28,

CHCl₃) for 36% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.43 (m, 4H), 7.39 (td, *J* = 7.5, 1.2 Hz, 1H), 7.33-7.25 (m, 1H), 7.21 (td, *J* = 7.5, 1.4 Hz, 1H), 7.18-7.10 (m, 3H), 6.88 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.68 (d, *J* = 7.7 Hz, 1H), 5.00 (d, *J* = 4.9 Hz, 1H), 3.63-3.56 (m, 1H), 1.07 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 146.4, 144.1, 140.2, 138.4, 133.5, 131.2, 129.6, 129.6, 128.9, 128.4, 127.1, 126.9, 125.8, 123.0, 120.8, 119.0, 111.4, 75.1, 37.3, 14.9. HRMS (ESI) calcd. for C₂₂H₁₉N₂ (M + H⁺) 311.1548. Found 311.1540. HPLC (IB column, 98:2 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 33.61 min (minor) and 36.80 min (major).

$(S_a, 6S, 7R)$ -7-Methyl-6-(naphthalen-1-yl)-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ao).

Prepared following general procedure, using **1Ao** (67 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ao** (33 mg, 50% yield) as colorless oil. [α]_D²⁰ +6.8 (c 0.53, CHCl₃) for 97% *ee*. ¹H NMR

(400 MHz, CDCl₃) δ 8.20 (d, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 9.4 Hz, 1H), 7.77 (dd, *J* = 5.8, 3.7 Hz, 1H), 7.53-7.49 (m, 4H), 7.41 (td, *J* = 7.5, 1.3 Hz, 1H), 7.35-7.23 (m, 4H), 7.18-7.10 (m, 1H), 6.92 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.83 (d, *J* = 7.7 Hz, 1H), 6.03 (br s, 1H), 4.22-3.43 (m, 2H), 1.02 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 140.6, 140.3, 137.3, 133.5, 133.1, 132.2, 129.6, 129.0, 128.8, 128.6, 127.8, 126.8, 126.8, 126.7, 125.8, 125.2, 125.0, 122.8, 122.3, 120.6, 67.0, 39.9, 14.9. HRMS (ESI) calcd. for C₂₅H₂₂N (M + H⁺) 336.1752. Found 336.1741. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.55 min (major) and 11.42 min (minor).

(*Sa*,6*S*,7*R*)-6-(Furan-2-yl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ap). Prepared following general procedure, using **1Ap** (45 mg, 0.16 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol)to obtain **2Ap** (31 mg, 56% yield) as colorless oil. [α]_{D²⁰} +31.8 (c 0.50, CHCl₃) for 99% *ee.* ¹H NMR (400

MHz, CDCl₃) δ 7.47-7.44 (m, 2H), 7.38 (t, *J* = 7.7 Hz, 1H), 7.35-7.26 (m, 3H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.05 (d, *J* = 7.5 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.30 (dd, *J* = 3.2, 1.8 Hz, 1H), 5.97 (d, *J* = 3.2 Hz, 1H), 5.06 (d, *J* = 5.0 Hz, 1H), 3.73 (s, 1H), 3.51-3.40 (m, 1H), 1.18 (d, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 144.1, 141.4, 140.0, 139.9, 133.6, 129.4, 128.6, 128.3, 126.8, 126.7, 125.7, 122.8, 120.9, 110.1, 107.5, 68.8, 38.0, 14.4. HRMS (ESI) calcd. for C₁₉H₁₈NO (M + H⁺) 276.1388. Found 276.1380. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.76 min (major) and 8.19 min (minor).

(Sa,6S,7R)-7-Methyl-6-(1-methyl-1H-pyrrol-2-yl)-6,7-dihydro-5H-dibenzo[b,d]azepine

(2Aq). Prepared following general procedure, using 1Aq (57 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain 2Aq (29 mg, 51% yield) as colorless oil. [α]_D²⁰ –14.4 (c 0.16, CHCl₃) for 99% *ee*.

¹H NMR (400 MHz, CDCl₃) δ 7.48 (m, 2H), 7.39 (td, *J* = 7.5, 1.4 Hz, 1H), 7.35-7.22 (m, 2H), 7.12 (dd, *J* = 7.5, 1.3 Hz, 1H), 7.12-7.03 (m, 1H), 6.86 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.54 (t, *J* = 2.3 Hz, 1H), 6.08 (dd, *J* = 3.5, 2.7 Hz, 1H), 5.89 (s, 1H), 5.12 (d, *J* = 4.8 Hz, 1H), 3.72 (br s, 1H), 3.46 (qd, *J* = 7.1, 4.7 Hz, 1H), 3.35 (s, 3H), 1.15 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 141.2, 140.3, 131.8, 129.8, 129.08, 128.7, 128.3, 127.0, 126.8, 126.3, 123.0, 122.1, 120.6, 109.0, 106.5, 67.3, 39.6, 34.6, 14.5. HRMS (ESI) calcd. for C₂₀H₂₁N₂ (M + H⁺) 289.1705. Found 289.1703. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.78 min (major) and 9.60 min (minor).

(Sa,6S,7R)-7-Methyl-6-(thiophen-2-yl)-6,7-dihydro-5H-dibenzo[b,d]azepine (2Ar). Prepared

following general procedure, using **1Ar** (58 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ar** (47 mg, 80% vield) as colorless oil. [α]_{D²⁰} +44.5 (c 0.51, CHCl₃) for 98% *ee*. ¹H NMR (400

MHz, CDCl₃) δ 7.48-7.45 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.30-7.25 (m, 2H), 7.19-7.15 (m, 2H), 6.99-6.94 (m, 2H), 6.91-6.88 (m, 2H), 5.26 (d, *J* = 5.0 Hz, 1H), 3.93 (br s, 1H), 3.48 (dt, *J* = 12.2, 6.1 Hz, 1H), 1.18 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 144.0, 140.4, 139.1, 134.2, 129.4, 128.7, 128.3, 126.8, 126.7, 126.4, 125.6, 125.3, 124.8, 123.1, 120.9, 71.4, 37.7, 14.9. HRMS (ESI) calcd. for C₁₉H₁₈NS (M + H⁺) 292.1160. Found 292.1154. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.64 min (major) and 11.95 min (minor).

(*Sa*,6*S*,7*R*)-6-(Benzofuran-2-yl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2As).

Prepared following general procedure, using **1As** (65 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2As** (36 mg, 55% yield) as colorless oil. [α]_D²⁰ –36.3 (c 0.51, CHCl₃)

for 93% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.46 (m, 4H), 7.40 (td, *J* = 7.5, 1.3 Hz, 1H), 7.32-7.25 (m, 3H), 7.25-7.15 (m, 2H), 7.04 (d, *J* = 7.7 Hz, 1H), 6.94 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.36 (s, 1H), 5.17 (d, *J* = 5.0 Hz, 1H), 3.78 (br s, 1H), 3.55 (td, *J* = 7.2, 5.2 Hz, 1H), 1.27 (d, *J* = 7.3 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.7, 154.6, 144.0, 140.0, 139.7, 133.7, 129.5, 128.7, 128.4, 128.3, 126.9, 126.9, 125.9, 123.8, 123.0, 122.6, 121.0, 120.9, 111.2, 104.6, 69.1, 38.0, 14.6. HRMS (ESI) calcd. for C₂₃H₂₀NO (M + H⁺) 326.1445. Found 326.1539. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 8.92 min (major) and 10.34 min (minor).

(Sa,6S,7R)-7-Methyl-6-(1-methyl-1H-indol-2-yl)-6,7-dihydro-5H-dibenzo[b,d]azepine (2At).

Prepared following general procedure, using **1At** (67 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2At** (60 mg, 90% yield) as yellow oil. [α]p²⁰ –18.6 (c 0.51, CHCl₃)

for 97% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.8 Hz, 1H), 7.57-7.48 (m, 2H), 7.44 (t, *J* = 7.5 Hz, 1H), 7.33-7.28 (m, 3H), 7.23 (t, *J* = 7.5 Hz, 1H), 7.19-7.12 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 6.92 (d, *J* = 7.8 Hz, 1H), 6.28 (s, 1H), 5.34 (d, *J* = 5.0 Hz, 1H), 3.79 (br s, 1H), 3.64-3.54 (m, 1H), 3.49 (s, 3H), 1.19 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 140.8, 140.3, 139.3, 138.2, 132.9, 129.8, 128.8,

127.2, 127.2, 127.0, 126.4, 122.5, 121.3, 120.8, 120.4, 119.5, 109.2, 102.5, 68.1, 39.2, 30.7, 14.6. HRMS (ESI) calcd. for C₂₄H₂₃N₂ (M + H⁺) 339.1861. Found 339.1849. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 8.36 min (major) and 10.84 min (minor).

(Sa,6S,7R)-6-(Benzo[b]thiophen-2-yl)-7-methyl-6,7-dihydro-5H-dibenzo[b,d]azepine (2Au).

Prepared following general procedure, using **1Au** (68 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Au** (51 mg, 75% yield) as colorless oil. [α]_D²⁰ –41.1 (c 0.50, CHCl₃)

for 95% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.73 (m, 2H), 7.53-7.50 (m, 2H), 7.46 (ddt, *J* = 7.5, 6.5, 1.4 Hz, 1H), 7.40-7.28 (m, 4H), 7.25-7.18 (m, 1H), 7.17 (s, 1H), 7.09-7.03 (m, 1H), 6.92 (dd, *J* = 7.7, 1.2 Hz, 1H), 5.32 (d, *J* = 5.1 Hz, 1H), 3.95 (br s, 1H), 3.60-3.53 (m, 1H), 1.28 (d, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 146.6, 144.0, 140.4, 139.9, 139.1, 139.0, 134.2, 129.5, 128.8, 128.3, 126.9, 126.9, 126.6, 123.9, 123.8, 123.2, 122.4, 121.9, 121.0, 72.1, 37.6, 15.0. HRMS (ESI) calcd. for C₂₃H₂₀NS (M + H⁺) 342.1316. Found 342.1305. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 12.07 min (major) and 16.44 min (minor).

(Sa,6S,7R)-7-Methyl-6-(pyridin-3-yl)-6,7-dihydro-5H-dibenzo[b,d]azepine (2Av). Prepared

following general procedure, using **1Av** (57 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Av** (42 mg, 73% yield) as white solid. [α] $_{D^{20}}$ +31.3 (c 0.53, CHCl₃) for 96% *ee*. ¹H NMR (400

MHz, CDCl₃) δ 8.49 (d, *J* = 3.9 Hz, 1H), 8.33 (s, 1H), 7.47-7.43 (m, 2H), 7.38 (td, *J* = 7.5, 1.2 Hz, 1H), 7.31-7.19 (m, 3H), 7.15 (td, *J* = 7.5, 1.2 Hz, 1H), 7.09 (dd, *J* = 7.9, 4.7 Hz, 1H), 6.89 (dd, *J* = 7.8, 1.2 Hz, 1H), 6.72 (d, *J* = 7.7 Hz, 1H), 4.97 (d, *J* = 4.9 Hz, 1H), 3.65 (s, 1H), 3.64-3.56 (m, 1H), 1.08 (d, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 150.1, 149.1, 144.4, 140.4, 138.7, 136.4, 133.6, 129.5, 128.9, 128.4, 127.0, 125.7, 122.8, 122.6, 120.8, 72.9, 37.4, 14.9. HRMS (ESI) calcd. for C₂₀H₁₉N₂ (M + H⁺) 287.1548. Found 287.1543. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 14.97 min (major) and 23.91 min (minor).

(*Ra*,6*S*,7*R*)-6-(*tert*-butyl)-7-methyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Aw). Prepared

following general procedure, using **1Aw** (53 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Aw** (45 mg, 85% yield) as colorless oil. [α]_D²⁰ -165.1 (c 0.41, CHCl₃) for 97% *ee*. ¹H NMR (400

MHz, CDCl₃) δ 7.62 (d, *J* = 7.5 Hz, 1H), 7.46 (d, *J* = 7.7 Hz, 1H), 7.29 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 7.1 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 6.6 Hz, 1H), 6.74 (t, *J* = 7.0 Hz, 1H), 6.67 (d, *J* = 8.0 Hz, 1H), 4.22 (s, 1H), 3.43 (d, *J* = 7.1 Hz, 1H), 3.33 (s, 1H), 1.14 (d, *J* = 7.0 Hz, 3H), 1.08 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 147.9, 145.7, 138.4, 132.2, 130.7, 128.2, 127.6, 126.4, 126.1, 123.5, 117.2, 117.0, 69.2, 43.1, 35.3, 27.5, 14.1. HRMS (ESI) calcd. for C₁₉H₂₄FN (M + H⁺) 266,1909. Found 266.1904. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.54 min (minor) and 6.23 min (major).

 $(S_{a},6S,7R)-2,7-Dimethyl-6-phenyl-6,7-dihydro-5H-dibenzo[b,d]azepine$ (2Ba). Prepared following general procedure, using 1Ba (60 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 µL, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 µL, 16 mg, 0.22 mmol) to obtain 2Ba (42 mg, 70% yield) as yellow oil. [α]p²⁰ +25.1 (c 0.38, CHCl₃) for 98%

ee. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (dd, *J* = 7.6, 1.4 Hz, 1H), 7.40 (td, *J* = 7.5, 1.3 Hz, 1H), 7.29-7.21 (m, 5H), 7.11-7.06 (m, 3H), 6.82-6.80 (m, 2H), 4.91 (d, *J* = 5.3 Hz, 1H), 3.56-3.49 (m, 1H), 2.42 (s, 3H), 1.06 (d, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.0, 140.5, 139.8, 133.9, 132.0, 129.9, 129.3, 129.0, 128.1, 127.6, 127.4, 126.7, 126.6, 126.1, 120.8, 75.6, 37.8, 20.9, 15.0. HRMS (ESI) calcd. for C₂₂H₂₂N (M + H⁺) 300.1752. Found 300.1744. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.50 min (major) and 7.04 min (minor).

(*Sa*,6*S*,7*R*)-2-Methoxy-7-methyl-6-phenyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Ca).

Prepared following general procedure, using **1Ca** (63 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ca** (33 mg, 50% yield) as yellow oil. [α] $_{D^{20}}$ -31.2 (c 0.25,

CHCl₃) for 99% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.4 Hz, 1H), 7.28-7.20 (m, 5H), 7.08-7.03 (m, 3H), 6.88-6.82 (m, 3H), 4.86 (d, *J* = 5.5 Hz, 1H), 3.86 (s, 3H), 3.48 (m, 1H), 1.03 (d, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 155.8, 140.8, 140.4, 139.9, 138.1, 135.8, 128.9, 127.9, 127.6, 127.5, 126.9, 126.6, 126.2, 122.0, 114.7, 113.9, 75.7, 55.7, 37.7, 15.0. HRMS (ESI) calcd.

for C₂₂H₂₂NO (M + H⁺) 316.1701. Found 316.1690. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.18 min (major) and 9.58 min (minor).

$(S_a, 6S, 7R)$ -2-Fluoro-7-methyl-6-phenyl-6,7-dihydro-5*H*-dibenzo[*b*,*d*]azepine (2Da).

Prepared following general procedure, using **1Da** (60 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Da** (57 mg, 95% yield) as yellow oil. [α]_D²⁰ –2.5 (c 0.58, CHCl₃) for

99% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.39 (m, 2H), 7.31-7.18 (m, 5H), 7.08-7.04 (m, 2H), 6.99 (td, J = 8.4, 3.0 Hz, 1H), 6.85-6.82 (m, 2H), 4.90 (d, J = 5.4 Hz, 1H), 3.58 (s, 1H), 3.51 (dd, J = 7.4, 5.6 Hz, 1H), 1.07 (d, J = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 159.1 (d, J = 239.9 Hz), 140.9, 140.7, 139.7 (d, J = 27.9 Hz), 135.9 (d, J = 7.8 Hz), 128.9, 128.0, 127.7, 127.5, 127.3, 126.7, 126.3, 121.89 (d, J = 8.0 Hz), 115.63 (d, J = 22.7 Hz), 114.95 (d, J = 22.1 Hz), 75.6, 37.7, 29.8, 15.0. ¹⁹F NMR (377 MHz, CDCl₃) δ -121.8. HRMS (ESI) calcd. for C₂₁H₁₉FN (M + H⁺) 304.1502. Found 304.1492. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.43 min (major) and 7.85 min (minor).

(Sa,6S,7R)-7,10-Dimethyl-6-phenyl-6,7-dihydro-5H-dibenzo[b,d]azepine (2Ea). Prepared

following general procedure, using **1Ea** (59 mg, 0.2 mmol), Cu(OAc)₂ (1.5 mg, 0.008 mmol), (*R*,*R*)-Ph-BPE (4.5 mg, 0.0088 mmol), DEMS (64 μ L, 54 mg, 0.4 mmol) and anhydrous *t*BuOH (22 μ L, 16 mg, 0.22 mmol) to obtain **2Ea** (24 mg, 40% yield) as colorless oil. [α]_D²⁰ +6.3 (c 0.43, CHCl₃) for 96%

ee. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, *J* = 7.5, 1.6 Hz, 1H), 7.29-7.19 (m, 5H), 7.13 (td, *J* = 7.5, 1.2 Hz, 1H), 7.07-7.03 (m, 3H), 6.87 (dd, *J* = 7.7, 1.2 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 4.91 (d, *J* = 5.1 Hz, 1H), 3.67 (s, 1H), 3.49 (dt, *J* = 12.4, 6.1 Hz, 1H), 2.43 (s, 3H), 1.03 (d, *J* = 7.2 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 144.9, 141.1, 140.2, 136.7, 136.0, 133.9, 129.3, 129.0, 128.9, 128.6, 127.5, 127.4, 126.0, 122.5, 120.8, 75.4, 37.5, 21.2, 15.0. HRMS (ESI) calcd. for C₂₂H₂₂N (M + H⁺) 300.1752. Found 300.1748. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 4.99 min (major) and 6.77 min (minor).

4. Kinetic resolution of 1Ga followed by reduction of the remaining enantioenriched imine.

A flamed-dried Schlenk tube equipped with a magnetic stir bar was charged with $Cu(OAc)_2$ (1.45 mg, 4 mol%) and (*R*,*R*)-Ph-BPE (4.45 mg, 4.4 mol%). Anhydrous THF (300 µL) was added via syringe and the reaction mixture was stirred for 15 min, until a blue homogeneous solution was

obtained. Diethoxymethylsilane (64 μ L, DEMS, 2.0 equiv) was added via syringe and stirring was continued for 10 min at room temperature. Into a separate flamed-dried Schlenk tube aldimine **1Fa** (77 mg, 0.2 mmol, 1 equiv) was dissolved in anhydrous MTBE (1 mL) and transferred via syringe to the reaction tube containing the catalyst. Anhydrous *t*BuOH (21 μ L, 1.1 equiv) was added via microsyringe and the reaction mixture was stirred at room temperature under N₂ for 48 h. The reaction mixture was then quenched with saturated aqueous Na₂CO₃ solution, extracted with EtOAc and the combined organic layers were concentrated *in vacuo*. The residue was dissolved in Et₂O (1.25 mL) and slowly added over a suspension of LiAlH₄ (15 mg) in Et₂O (0.4 mL) at 0°C. The mixture was then allowed to reach room temperature and stirred for 2h. Saturated aqueous NH₄Cl solution was then added, and the mixture was extracted with AcOEt (3 × 3 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (4:1 hexane/toluene) on silica gel to obtain **2Fa** (21 mg, 39% yield) and **3Fa** (17 mg, 32% yield) as light-yellow oils.

(Sa,6S,7R)-7-Methyl-6-phenyl-6,7-dihydro-5*H*-benzo[*b*]naphtho[1,2-*d*]azepine (2Fa). $[\alpha]_{D^{20}}$

+18.3 (c 0.43, CHCl₃) for 90% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 9.0 Hz, 1H), 7.95-7.88 (m, 2H), 7.64-7.59 (m, 2H), 7.47 – 7.42 (m, 2H), 7.39-7.32 (m, 4H), 7.27-7.22 (m, 3H), 6.80 (d, *J* = 7.7 Hz, 1H), 4.34 (d, *J* = 11.2 Hz, 1H), 3.49-3.41 (m, 1H), 1.15 (d, *J* = 6.9 Hz, 3H).¹³C NMR (100 MHz, CDCl₃) δ 145.0,

144.9, 139.1, 135.6, 133.2, 132.0, 131.1, 130.4, 128.9, 128.5, 128.2, 128.0, 127.7, 126.7, 126.3, 126.0, 125.1, 123.0, 122.0, 121.5, 77.0, 38.5, 16.2. HRMS (ESI) calcd. for C₂₅H₂₂N (M + H⁺) 336.1752. Found 336.1745. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 6.29 min (major) and 9.85 min (minor).

(*R*)-*N*-(2-(2-Vinylnaphthalen-1-yl)benzyl)aniline (3Fa). [α]_{D²⁰} –6.0 (c 0.43, CHCl₃) for >99% *ee*.

¹H NMR (400 MHz, CDCl₃) δ 7.86 (m, 3H), 7.51-7.46 (m, 2H), 7.41-7.37 (m, 1H), 7.30 (ddd, *J* = 8.7, 7.5, 1.7 Hz, 1H), 7.23-7.18 (m, 3H), 7.15-7.13 (m, 2H), 7.05 (dd, *J* = 7.4, 1.7 Hz, 1H), 6.87 (td, *J* = 7.4, 1.1 Hz, 1H), 6.78 (d, *J* = 8.2 Hz, 1H), 6.69 (dd, *J* = 17.6, 11.0 Hz, 1H), 5.85 (dd, *J* = 17.6, 1.0 Hz, 1H),

5.28 (dd, *J* = 11.0, 1.0 Hz, 1H), 4.25 (d, *J* = 4.2 Hz, 2H).¹³C NMR (100 MHz, CDCl₃) δ 145.3, 139.2, 135.2, 134.1, 133.9, 133.5, 132.9, 131.3, 129.0, 128.4, 128.4, 128.0, 127.0, 127.0, 126.6, 126.6, 126.1, 123.6, 122.7, 117.6, 115.3, 111.3, 48.0. HRMS (ESI) calcd. for C₂₅H₂₂N (M + H⁺) 336.1752. Found 336.1745. HPLC (OJ-H column, 98:2 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 12.70 min (major) and 25.47 min (minor).

5. Optimization studies for the Cu-catalyzed intramolecular borylative cyclization of 1Aa.

Table S1. Screening of reaction conditions and ligands^a

Entry ^[a]	[Cu] (10 mol%)	L*(12 mol%)	Base	Proton source	Solvent	Comment ^[b]
1	CuCl	Ph Ph Ph Ph Ph (R,R)-Ph-BPE	NaOtBu	<i>t</i> BuOH	TBME	40% conv.
2	CuCl	Ph Ph Ph Ph Ph (R,R)-Ph-BPE	LiO <i>t</i> Bu	<i>t</i> BuOH	TBME	Full conv. 40% yield. 80% ee, >20:1 dr
3	[Cu(MeCN)4]PF6	Ph Ph Ph Ph Ph Ph (S,S)-Ph-BPE	KO <i>t</i> Bu	<i>i</i> PrOH	THF	Full conv. 93% ee, >20:1 dr
4	[Cu(MeCN)4]PF6	Ph Ph Ph ^P , Ph (S,S)-BDPP	KO <i>t</i> Bu	iPrOH	THF	Full conv. 20% ee
5	[Cu(MeCN)4]PF6	(R)-QuinoxP	KO <i>t</i> Bu	iPrOH	THF	Full conv. Racemic.
6	[Cu(MeCN) ₄]PF ₆ [c]	Ph Ph Ph Ph Ph (S,S)-Ph-BPE	KO <i>t</i> Bu	iPrOH	THF	Full conv. 85% yield 98% ee, >20:1 dr

^a0.2 mmol **1Aa** (1.2 mL THF). ^[b]Conversions and d.r. were estimated by ¹H-NMR spectroscopy. Ee's were determined by chiral HPLC analysis. ^[c] [Cu] (5 mol %)/L* (6 mol%).

6. General procedure for the synthesis of borylated dibenzazepines 4 by Cu-catalyzed intramolecular borylative cyclization.

To a 10 mL reaction vial was added Cu(MeCN)₄PF₆ (0.01 mmol, 3.7 mg, 5 mol %), (-)-1,2-Bis((2R,5R)-2,5-diphenylphospholano)ethane (0.012 mmol, 6.1 mg), KO*t*Bu (0.3 mmol, 34 mg) and THF (1.0 mL). The mixture was stirred at room temperature for 10-15 min before the addition of B₂pin₂ (0.3 mmol, 78.0 mg). After brief stirring (10 min), a solution of **1** (0.2 mmol) in anhydrous THF (0.7 mL) was then added at room temperature under nitrogen atmosphere. Degassed and dry isopropanol (0.4 mmol, 30 µL) was added under nitrogen atmosphere and the reaction mixture was then stirred at r.t. for 12 h. After reaction completion, the resulting solution was filtered through a silica plug, and the crude material was concentrated in vacuo. The resulting crude product was purified by flash column chromatography on silica gel to obtain borylated dibenzo[*b*,*d*]azepine derivatives **4**.

(Sa,6S,7R)-6-Phenyl-7-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-6,7-dihydro-

5*H***-dibenzo[***b***,***d***]azepine (4Aa)**. Prepared following general procedure 5, using **1Aa** (56 mg, 0.2 mmol) to obtain **4Aa** (72 mg, 85% yield) as colorless oil. [α]_{D²⁰} +46 (c 0.55, CHCl₃) for 98% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.43 (m, 2H), 7.35 (t, *J* = 7.3 Hz, 1H), 7.29-7.18 (m, 5H), 7.14 (t, *J* = 7.2 Hz, 1H), 7.06 (m, 2H), 6.87 (d, *J* = 7.7 Hz, 1H), 6.80 (br s, 1H), 5.02 (d, *J* = 4.9 Hz, 1H), 3.76-3.62 (m, 2H), 1.14 (s, 6H), 1.06 (s, 6H), 0.94 (d, *J* = 8.2 Hz, 2H).¹³C NMR (100 MHz, CDCl₃).

δ 145.0, 141.0, 140.5, 139.9, 134.0, 129.3, 129.0, 128.6, 128.1, 127.4, 127.4, 126.4, 122.4, 120.8, 83.1, 75.9, 39.3, 24.7, 24.5, 12.7. ¹¹B NMR (160 MHz, CDCl₃): δ 33.9 ppm. HRMS (ESI) calcd. for C₂₇H₃₁BNO₂ (M + H⁺) 412,2448. Found 412.2438. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.04 min (major) and 6.46 min (minor).

(Sa,6S,7R)-7-((4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-6-(o-tolyl)-6,7-

dihydro-5*H***-dibenzo[***b***,***d***]azepine (4Ab). Prepared following general procedure 5, using 1Ab** (60 mg, 0.2 mmol) to obtain **4Ab** (70 mg, 82% yield) as colorless oil. [α]_{D²⁰} +19 (c 0.52, CHCl₃) for 97% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.25-7.21 (m, 3H), 7.15-7.10 (m, 3H), 7-01-6.87 (m, 4H), 5.37 (d, *J* = 5.1 Hz, 1H), 3.72 (br s, 1H), 2.43 (s, 3H), 1.05 (s, 6H), 0.95 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 140.0, 136.0, 130.0, 129.4,

128.6, 127.3, 127.1, 126.7, 126.5, 125.3, 123.1, 121.1, 83.0, 70.3, 40.0, 24.7, 24.4, 20.2, 11.2. ¹¹B NMR (160 MHz, CDCl₃): δ 33.4 ppm. HRMS (ESI) calcd. for C₂₈H₃₃BNO₂ (M + H⁺) 426,2604. Found

426.2598. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 4.68 min (major) and 6.49 min (minor).

(Sa,6S,7R)-6-(2-Bromophenyl)-7-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-

6,7-dihydro-5*H***-dibenzo[***b***,***d***]azepine (4Af). Prepared following general procedure 5, using 1Af** (72 mg, 0.2 mmol) to obtain **4Af** (29 mg, 40% yield) as colorless oil. [α]_{D²⁰} +57 (c 1.33, CHCl₃) for 92% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.2 Hz, 1H), 7.50–7.44 (m, 2H), 7.38 (t, *J* = 7.5 Hz, 1H), 7.30–7.21 (m, 2H), 7.19-7.13 (m, 1H), 7.10-7.03 (m, 3H), 6.99-6.80 (m, 2H), 5.63 (d, *J* = 5.2 Hz, 1H), 3.81 (br s, 1H), 3.63 (br s, 1H), 1.07 (s, 6H), 0.96 (s, 8H).

. ¹³C NMR (100 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 144.7, 140.5, 140.2, 139.6, 134.1, 132.3, 131.3, 129.3, 128.8, 128.7, 128.3, 127.0, 126.6, 126.5, 126.4, 124.8, 122.7, 121.0, 83.0, 73.1, 40.1, 24.7, 24.4, 11.4. ¹¹B NMR (160 MHz, CDCl₃): δ 32.7 ppm. HRMS (ESI) calcd. for C₂₇H₃₀BBrNO₂ (M + H⁺) 490,1553. Found 490.1545. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 4.44 min (major) and 5.76 min (minor).

(Sa,6S,7R)-6-(4-Fluorophenyl)-7-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-

6,7-dihydro-5*H***-dibenzo[***b***,***d***]azepine (4Ah)**. Prepared following general procedure 5, using **1Ah** (60 mg, 0.2 mmol) to obtain **4Ab** (72 mg, 84% yield) as colorless oil. [α]_{D²⁰} –59 (c 0.70, CHCl₃) for 97% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.43 (m, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.29-7.12 (m, 4H), 7.05-6.96 (m, 2H), 6.93-6.83 (m, 3H), 6.77 (d, *J* = 7.0 Hz, 1H), 4.99 (d, *J* = 5.1 Hz,

1H), 3.68 (br s, 1H), 1.13 (s, 6H), 1.05 (s, 6H), 0.89 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (d, *J* = 245.2 Hz), 144.1, 140.2, 139.3, 136.2, 134.1, 130.5, 130.5, 129.3, 128.7, 128.3, 126.6, 126.6, 126.4, 123.0, 121.0, 114.1 (d, *J* = 21.1 Hz), 83.2, 75.1, 39.0, 24.7, 24.5, 12.4. ¹⁹F NMR (377 MHz, CDCl₃) δ - 115.4. ¹¹B NMR (160 MHz, CDCl₃): δ 33.9 ppm. HRMS (ESI) calcd. for C₂₇H₃₀BFNO₂ (M + H⁺) 430,2354. Found 430.2345. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.95 min (minor) and 6.30 min (major).

(Sa,6S,7R)-6-(4-Chlorophenyl)-7-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)-

6,7-dihydro-5*H***-dibenzo[***b***,***d***]azepine (4Aj). Prepared following general procedure 5, using 1Aj** (64 mg, 0.2 mmol) to obtain **4Aj** (65 mg, 73% yield) as colorless oil. [α]_{D²⁰} +19 (c 0.51, CHCl₃) for 94% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.42 (m, 2H), 7.34 (t, *J* = 7.2 Hz, 1H), 7.27-7.12 (m, 6H), 6.98-6.96 (m, 2H), 6.91 (d, *J* = 7.1 Hz, 1H), 6.76 (d, *J* = 7.2 Hz, 1H), 4.98 (d, *J* = 5.2 Hz, 1H), 3.66 (br s, 1H), 1.13 (s, 6H), 1.04 (s, 6H), 0.90-0.86 (m, 2H). ¹³C NMR

(100 MHz, CDCl₃) δ 140.0, 139.0, 134.2, 133.3, 130.4, 129.3, 128.7, 128.3, 127.5, 126.8, 126.4, 123.3, 121.1, 83.2, 75.1, 38.8, 24.7, 24.5, 12.4. ¹¹B NMR (160 MHz, CDCl₃): δ 33.7 ppm. HRMS (ESI) calcd. for C₂₇H₃₀BClNO₂ (M + H⁺) 446,2058. Found 446.2049. HPLC (IB column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 5.87 min (minor) and 7.01 min (major).

(Sa,6S,7R)-6-(1-Methyl-1H-indol-2-yl)-7-((4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)methyl)-6,7-dihydro-5*H***-dibenzo[***b***,***d***]azepine** (4At). Prepared following general procedure 5, using **1At** (67 mg, 0.2 mmol) to obtain **4At** (67 mg, 72% yield) as colorless oil. $[\alpha]_D^{20}$ +1.0 (c 0.53, CHCl₃) for 96% *ee*. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.8 Hz, 1H), 7.52-7.50 (m, 2H), 7.39 (td, *J* = 7.5, 1.3 Hz, 1H), 7.29-7.24 (m, 4H), 7.23-7.19 (m, 1H), 7.17-7.04 (m, 3H),

6.91 (d, J = 7.8 Hz, 1H), 6.31 (br s, 1H), 5.39 (d, J = 4.8 Hz, 1H), 3.73 (br s, 1H), 3.50 (br s, 3H), 1.09 (s, 6H), 1.03 (m, 8H). ¹³C NMR (100 MHz, CDCl₃) δ 144.3, 140.2, 138.2, 129.9, 129.0, 128.7, 127.2, 126.9, 126.8, 121.2, 120.4, 119.4, 109.2, 102.6, 83.1, 30.6, 27.0, 24.8, 24.5, 11.8. ¹¹B NMR (160 MHz, CDCl₃): δ 34.3 ppm. HRMS (ESI) calcd. for C₃₀H₃₄BN₂O₂ (M + H⁺) 465,2713. Found 465.2706. HPLC (IA column, 95:5 *n*-Hex/*i*-PrOH, 30 °C, 1.0 mL/min): t_R 9.32 min (major) and 10.60 min (minor).

7. Derivatization reactions

7.1. Synthesis of 5 by demethylation of 2Ae

Following a described procedure.⁶ Boron tribromide (18 μ L, 0.19 mmol) was added to a solution of **2Ae** (21 mg, 0.07 mol) in CH₂Cl₂ (1 mL) at – 40 °C, then stirred for 30 min at rt. Saturated NaHCO₃ solution (2 mL) was added, the organic layer was separated and the aqueous phase was extracted with CH₂Cl₂ (2 mL × 3). The organic layers were combined and concentrated to give an orange oil. This was purified by flash column chromatography (9:1 toluene/Et₃N) to afford the title compound

as a white foam (14 mg, 70% yield). $[\alpha]_{D^{20}}$ –17.1 (c 0.6, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.45 (t, J = 1.7 Hz, 1H), 7.43 (t, J = 1.7 Hz, 1H), 7.36 (td, J = 7.3, 1.3 Hz, 1H), 7.28 – 7.20 (m, 3H), 7.12 (td, J = 7.5, 1.3 Hz, 1H), 6.90–6.85 (m, 3H), 6.80 (d, J = 8.1 Hz, 1H), 6.67 (m, 2H), 4.87 (d, J = 5.1 Hz, 1H), 3.52-3.45 (m, 1H), 1.04 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 144.9, 140.4, 139.8, 133.7, 132.9, 130.0, 129.3, 128.7, 128.2, 126.7, 126.5, 126.1, 122.5, 120.7, 114.3, 74.9, 37.8, 15.0. HRMS (ESI) calcd. for C₂₁H₂₀NO (M + H⁺) 302.1545. Found 302.1539.

7.2. Synthesis of 6 by Suzuki-Miyaura reaction

Following a described procedure.¹ An oven-dried 5 mL schlenk tube equipped with a magnetic stir bar was charged with Pd₂(dba)₃ (3.2 mg, 3 mol%), SPhos (2.8 mg, 6 mol%) and the reaction vessel was capped then evacuated and backfilled with N₂ using the Schlenk line (this process was repeated a total of three times). Thoroughly degassed THF (0.6 mL) was then added via syringe and the resulting mixture was stirred for 5 min at room temperature. Then, 2Ag (42 mg, 0.12 mmol), pyren-1-ylboronic acid (35 mg, 0.14 mmol), K_2CO_3 (48 mg, 0.35 mmol) and H_2O (0.2 mL for a THF/H₂O = 3:1) were added, and the resulting mixture was placed in a preheated oil bath and stirred at 60 °C for 18 h. The reaction crude was allowed to reach room temperature, water (3 mL) was added and the resulting mixture was extracted with AcOEt (3×5 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. The crude mixture was purified by flash column chromatography (4:1 cyclohexane/toluene) to afford the title compound as a yellow oil (48 mg, 85% yield). [α]_{D²⁰} –123.4 (c 0.51, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 8.27–8.19 (m, 4H), 8.13 (m, 2H), 8.08–8.02 (m, 3H), 7.58-7.52 (m, 4H), 7.47 (td, / = 7.5, 1.4 Hz, 1H), 7.38–7.32 (m, 2H), 7.30– 7.27 (m, 2H), 7.22 (t, J = 7.4 Hz, 1H), 7.03-6.99 (m, 2H), 5.12 (d, J = 5.1 Hz, 1H), 3.71-3.65 (m, 1H), 1.25 (d, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 140.2, 139.4, 137.5, 134.0, 131.5, 131.0, 130.5, 129.8, 129.5, 129.0, 128.8, 128.5, 128.4, 127.7, 127.4, 127.4, 127.1, 127.0, 126.3, 126.0, 125.31, 125.1, 125.0, 124.9, 124.8, 124.7, 121.1, 75.4, 37.7, 15.1. HRMS (ESI) calcd. for C₃₇H₂₈N (M + H⁺) 486.2222. Found 486.2210

7.3. Oxidation of organoboronate 4Aa for the synthesis of 7

Sodium perborate tetrahydrate (38 mg, 0.24 mmol) was added in one portion to a solution of boryl dibenzoacepine **4Aa** (20 mg, 0.048 mmol) in aqueous THF (560 µL, THF/H₂O = 1/1), and the mixture was stirred for 2 h. After diluting the reaction mixture with water (3 mL), the aqueous solution was extracted with EtOAc (3 × 5 mL). The combined organic layer was dried over Na₂SO₄ and the solvent evaporated. The residue was purified by flash column chromatography (SiO₂, *n*-pentane/AcOEt 1:1), affording product **3** (14 mg, 96% yield) as a yellow solid. [α]_D²⁰ +42 (c 0.78, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.45 (m, 2H), 7.40 (t, *J* = 7.5 Hz, 1H), 7.29-7.20 (m, 6H), 7.14 (d, *J* = 7.4 Hz, 1H), 7.12-7.07 (m, 2H), 6.88 (d, *J* = 7.7 Hz, 1H), 6.65 (d, *J* = 7.2 Hz, 1H), 5.23 (d, *J* = 5.0 Hz, 1H), 3.79–3.70 (m, 2H), 3.58 (q, *J* = 7.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 140.9, 140.6, 136.2, 133.1, 129.4, 128.9, 128.7, 128.5, 127.8, 127.7, 127.0, 126.8, 125.6, 122.6, 120.9, 71.2, 61.7, 46.1, 26.9. HRMS (ESI) calcd. for C₂₁H₂₀NO (M + H⁺) 302,1545. Found 302.1537.

7.4. Intramolecular Suzuki Coupling for the synthesis of 8

Following a described procedure.⁷ Pd(OAc)₂ (3.6 mg, 0.016 mmol), KO*t*Bu (54 mg, 0.48 mmol), and Sphos (13 mg, 0.032 mmol) were added to a dry Schlenk tube equipped with a stir bar. The tube was evacuated and refilled with N₂. A solution of boryl dibenzoacepine **4Ae** (78 mg, 0.16 mmol) in toluene (1.6 mL) and H₂O (0.2 mL) was introduced to the Schlenk tube by syringe, respectively. The resulting reaction mixture was stirred vigorously at 80 °C for 24 h. The reaction mixture was concentrated in vacuum and the residue was purified by flash column chromatography (SiO₂, *n*-pentane/AcOEt 20:1) to afford **8** (25 mg, 56% yield) as a solid. [α]_{D²⁰} +167 (c 0.48, CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.31 (m, 6H), 7.29-7.25 (m, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 7.02 (d, *J* = 7.4 Hz, 1H), 6.96 (t, *J* = 8.1 Hz, 1H), 6.46 (d, *J* = 7.6 Hz, 1H), 5.27 (d, *J* = 8.5 Hz, 1H), 3.84 (q, *J* = 9.0 Hz, 1H), 2.93 (dd, *J* = 16.3, 9.0 Hz, 1H), 2.77 (dd, *J* = 16.2, 9.3 Hz, 1H). ¹³C NMR (100

MHz, CDCl₃) δ 144.5, 143.7, 143.1, 140.3, 139.3, 136.4, 130.0, 129.8, 129.1, 128.9, 128.3, 127.9, 127.8, 127.6, 127.4, 126.0, 124.4, 124.2, 124.1, 75.1, 48.5, 39.1. HRMS (ESI) calcd. for C₂₁H₁₈N (M + H⁺) 284,1439. Found 284.1436.

8. Computational Details

8.1. Computational Methods

All of the calculations were performed using the Gaussian09 program.⁸ Computations were done using wb97xd functional⁹ in conjunction with def2SVP and def2TZVP basis sets.¹⁰ Geometry full optimizations were made at wb97xd/def2SVP level and then single point calculations at wb97xd/def2TZVP level were carried out in order to obtain more accurate values of the energies. For the purpose of comparison and benchmarking with the experimental observations, the energy values were also calculated using m062x functional¹¹ in conjunction with cc-pvtz basis set¹². Solvent effects (diisopropylether, taken as the closer to the experimentally used mixture) were considered using the CPCM model.¹³ The nature of stationary points was defined on the basis of calculations of normal vibrational frequencies. The optimizations were carried out using the Berny analytical gradient optimization method.¹⁴ Analytical second derivatives of the energy were calculated to classify the nature of stationery points and to provide zero-point vibrational energy corrections, and thermal and entropic contributions to the free energies, using the unscaled frequencies. NCI (non-covalent interactions) were computed as described.¹⁵ Quantitative data were obtained with the NCIPLOT4 program.¹⁶ A density cutoff of ρ =0.5 a.u. was applied and isosurfaces of s(r) = 0.5 were colored by $sign(\lambda_2)\rho$ in the [-0.03,0.03] a.u. range using VMD software. ¹⁷ s(**r**) against sign(λ_2) ρ (**r**) plots were generated with gnuplot software. Structural representations were generated using CYLView.¹⁸

8.2. Conformational Study

To check the possibility of a thermodynamic equilibrium between the observed S_{a} , 6S, 7R-stereoisomer and its axial epimer with R_a , 6S, 7R configuration we calculated the rotation about the axis of the biphenyl moiety for compound **2Aa**. The most stable conformation was found to be **C1a**, the same that had been obtained by X-ray crystallography. Actually, the cycloheptadiene ring can adopt two conformations a and b depending on the pseudoaxial/pseudoequatorial orientation of the substituents at the stereogenic centers. The interconversion of the S_a , 6S, 7R-**C1a**/ S_a , 6S, 7R-**C1b** and R_a , 6S, 7R-**C2a**/ R_a , 6S, 7R-**C2b** conformers have free energy barriers of 15.1 and 13.5 kcal/mol, respectively and the difference between free energy of conformers accounts for the preferred **C1a** and **C2b** conformations in each case (Figure S1). The interconversion between S_a , 6S, 7R-**C1b**/ R_a , 6S, 7R-**C2b** conformations involving epimerization of the axial chirality by biphenyl bond rotation has free energy barriers of 2.3 and 7.8 kcal/mol for the direct and inverse transformation, respectively (see Figure S2 with the energy profiles). Consequently, the limiting state is the first transformation with a barrier of 15.1 kcal/mol.

Those values of energy barriers clearly showed that an equilibrium is established at 25°C (a barrier of 15.1 kcal/mol corresponds, approximately, to a kinetic constant of 52.11 s-1 with T1/2 of 0.0133 s) and, consequently, the observed population of conformers depends on their stability. In this respect, the calculated free energies for the S_a ,6S,7R-**C1a**/ S_a ,6S,7R-**C1b** and R_a ,6S,7R-**C2a**/ R_a ,6S,7R-**C2b** conformers correspond to a predicted 99:1 S_a ,6S,7R-**C1a**/ R_a ,6S,7R-**C2b** ratio. Considering these values and the assumed DFT experimental error it is possible to conclude that, essentially, only S_a ,6S,7R-C1a will be observed in agreement with the experimental results. Similar values were obtained by using the alternative level m062x/cc-pvtz (see below).

In order to evaluate the influence of electronic factors the conformational study was also carried out with the 4-cyanophenyl derivative **2An** ($R^1 = Me$, $R^2 = 4$ -CNC₆H₄). Essentially, very similar values were obtained to those of compound **2Aa** ($R^1 = Me$, $R^2 = Ph$) demonstrating that the observed differences between stereoisomers are mostly due to steric factors (Figure S1).

Figure S1. Conformational study of compounds **2Aa**, **2An**. Geometries have been optimized at wb97xd/def2svp/cpcm=diisopropylether level of theory and free energies have been calculated at wb97xd/def2tzp/ cpcm=diisopropylether level of theory. Relative free energies are given in kcal/mol.

On the other hand, when the aryl group is exchanged by a tert-butyl group ($R^1 = Me$, $R^2 = tert$ -Bu, compound **2Aw**) a slight reversal in the thermodynamic stability of the conformers is observed and conformer R_a , 6S, 7R-**C2b** is found to be the most sable by 1.7 kcal/mol predicting that mixtures of diastereomers might be observed (a difference of 1.7 kcal/mol accounts for a 95:5 ratio at 25°C). The rate-limiting state is also the interconversion of S_a , 6S, 7R-**C1a**/ S_a , 6S, 7R-**C1b** conformers with a
barrier of 16.9 kcal/mol. The interconversion between *S*_a,6*S*,7*R*-**C1b**/*R*_a,6*S*,7*R*-**C2b** conformations involving epimerization of the axial chirality has barriers of 1.6 and 7.2 kcal/mol for the direct and inverse transformation, respectively (see Figure S2).

With no substituents ($R^1 = H$, $R^2 = H$, compound **2Ax**) the barrier between enantiomeric conformers is 4.3 kcal/mol and the rate limiting state, corresponding to the conformational **C1a/C1b** interconversion, has a barrier of 6.1 kcal/mol.

Figure S2. Energy profiles for the conformational studies illustrated in Figure S1. **TS3** corresponds to the barrier of the biphenyl bond rotation. Free energies have been calculated at wb97xd/def2tzp/ cpcm=diisopropylether level of theory. Relative free energies are given in kcal/mol.

Energies

Table S2. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2Aa** ($R^1 = Me$, $R^2 = Ph$) calculated at wb97xd/def2tzvp/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/ cpcm=diisopropylether level.

	Eo	ΔE_0	G	ΔG	im. freq
C1a	-866.113330529	0.0	-866.157874529	0.0	
TS1	-866.091021097	14.0	-866.133746097	15.1	-46.4
C1b	-866.100397725	8.1	-866.145159725	8.0	
TS3	-866.098362862	9.4	-866.142813862	9.5	
C2b	-866.093897858	12.2	-866.136303858	13.5	-31.3
TS2	-866.108999946	2.7	-866.153892946	2.5	
C2a	-866.097882234	9.7	-866.141464234	10.3	-60.5

Table S3. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2Aa** ($R^1 = Me$, $R^2 = Ph$) calculated at m062x/cc-pvtz/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/ cpcm=diisopropylether level.

	· · · · · · · · · · · · · · · · · · ·				
_	Eo	ΔE_0	G	ΔG	im. freq
C1a	-866.035176280	0.0	-866.079720280	0.0	
TS1	-866.013261049	13.8	-866.055986049	14.9	-46.4
C1b	-866.023215559	7.5	-866.067977559	7.4	
TS3	-866.020182199	9.4	-866.064633199	9.5	
C2b	-866.015837444	12.1	-866.058243444	13.5	-31.3
TS2	-866.030332032	3.0	-866.075225032	2.8	
C2a	-866.020091443	9.5	-866.063673443	10.1	-60.5

Table S4. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2An** ($R^1 = Me$, $R^2 = 4$ -NC-C₆H₄) calculated at wb97xd/def2tzvp/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/ cpcm=diisopropylether level.

Eo	ΔΕο	G	ΔG	im. freq
-958.359339820	0.0	-958.406258820	0.0	23.8
-958.336534081	14.3	-958.381897081	15.3	-45.2
-958.345741511	8.5	-958.393134511	8.2	
-958.343253743	10.1	-958.389484743	10.5	-60.2
-958.354900958	2.8	-958.402369958	2.4	
-958.341233175	11.4	-958.387870175	11.5	-211.3
-958.344406608	9.4	-958.391454608	9.3	
	$\begin{array}{r} E_0 \\ -958.359339820 \\ -958.336534081 \\ -958.345741511 \\ -958.343253743 \\ -958.354900958 \\ -958.341233175 \\ -958.344406608 \end{array}$	$\begin{array}{c c} E_0 & \Delta E_0 \\ \hline & -958.359339820 & 0.0 \\ \hline & -958.336534081 & 14.3 \\ \hline & -958.345741511 & 8.5 \\ \hline & -958.343253743 & 10.1 \\ \hline & -958.354900958 & 2.8 \\ \hline & -958.341233175 & 11.4 \\ \hline & -958.344406608 & 9.4 \\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Table S5. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2Aw** derivative ($R^1 = Me$, $R^2 = tert$ -Bu) calculated at wb97xd/def2tzvp/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/ cpcm=diisopropylether level.

<u></u>		<u>, , p/ epem</u>		1.0	
	Eo	ΔE_0	G	ΔG	im. freq
C1a	-792.289103462	0.0	-792.331998462	0.0	
TS1	-792.263296602	16.2	-792.305096602	16.9	-51.8
C1b	-792.281829039	4.6	-792.325726039	3.9	
TS3	-792.280200445	5.6	-792.323261445	5.5	-40.0
C2b	-792.290299066	-0.8	-792.334665066	-1.7	
TS2	-792.268213699	13.1	-792.310026699	13.8	-52.6
C2a	-792.270640316	11.6	-792.314035316	11.3	
LZa	-/92.2/0640316	11.6	-792.314035316	11.3	

Table S6. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2Ax** derivative ($R^1 = H$, $R^2 = H$) calculated at wb97xd/def2tzvp/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/cpcm=diisopropylether level.

		F/ ·F·			
	Eo	ΔE_0	G	ΔG	im. freq
C1a	-595.851056697	0.0	-595.887723697	0.0	
TS1	-595.842150167	5.6	-595.877962167	6.1	-124.2
C1b	-595.843370704	4.8	-595.880090704	4.8	
TS3	-595.838145029	8.1	-595.874039029	8.6	-93.0
C2b	-595.843371704	4.8	-595.880091704	4.8	
TS2	-595.842150167	5.6	-595.877962167	6.1	-124.2
C2a	-595.851056697	0.0	-595.887723697	0.0	

Table S7. Absolute (hartree) and relative (kcal/mol) energies for the conformational study corresponding to **2Ax** derivative ($R^1 = H$, $R^2 = H$) calculated at m062x/cc-pvtz/cpcm=diisopropylether level from geometries optimized at wb97xd/def2svp/ cpcm=diisopropylether level.

1	Eo	ΔE_0	G	ΔG	im. freq
C1a	-595.797570324	0.0	-595.834237324	0.0	
TS1	-595.788767609	5.5	-595.824579609	6.1	-124.2
C1b	-595.790404771	4.5	-595.827124771	4.5	
TS3	-595.784817838	8.0	-595.820711838	8.5	-93.0
C2b	-595.790405771	4.5	-595.827125771	4.5	
TS2	-595.788767609	5.5	-595.824579609	6.1	-124.2
C2a	-595.797570324	0.0	-595.834237324	0.0	

Geometries

Figure S3. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the conformers of compound **2Aa** ($R^1 = Me$, $R^2 = Ph$).

2-Aa-TS3 (R¹ = Me; R² = Ph)

Figure S4. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the transition structures corresponding to the conformational analysis of compound **2Aa** ($R^1 = Me$, $R^2 = Ph$).

2An-C1a ($R^1 = Me$; $R^2 = 4$ -NC-C₆H₄)

2An-C2a ($R^1 = Me$; $R^2 = 4$ -NC-C₆H₄)

2An-C2b (R¹ = Me; R² = 4-NC-C₆H₄)

Figure S5. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the conformers of compound **2An** ($R^1 = Me$, $R^2 = 4$ -NC-C₆H₄).

2An-TS1 ($R^1 = Me$; $R^2 = 4-NC-C_6H_4$)

2An-TS2 (R¹ = Me; R² = 4-NC-C₆H₄)

2An-TS3 (R¹ = Me; R² = 4-NC-C₆H₄)

Figure S6. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the transition structures corresponding to the conformational analysis of compound **2An** ($R^1 = Me$, $R^2 = 4$ -NC-C₆H₄).

Figure S7. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the conformers of compound **2Aw** ($R^1 = Me$, $R^2 = tert$ -Bu).

2Aw-TS3 (R¹ = Me; R² = *tert*-Bu)

Figure S8. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the transition structures corresponding to the conformational analysis of compound **2Aw** ($R^1 = Me$, $R^2 = tert$ -Bu).

Figure S9. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the conformers of compound **2Ax** ($R^1 = H$, $R^2 = H$).

Figure S10. Optimized (wb97xd/def2svp/ cpcm=diisopropylether level) geometries of the transition structures corresponding to the conformational analysis of compound **2Ax** ($R^1 = H, R^2 = H$).

NCI calculations

Quantitative NCI calculations were carried out for the conformers derived from 2Aa ($R^1 = Me$, $R^2 = Ph$) and 2Aw ($R^1 = Me$, $R^2 = tert$ -Bu). These calculations give an idea of non-covalent interactions. From the inspection of the surfaces it can be suggested that for compound 2Aa the conformer with less repulsive interactions is 2Aa-C1a. On the other hand, for compound 2Aw, the conformer with less repulsive interactions is 2Aa-C2b. For this compound, conformer 2Aw-C1a presents more gauche interactions. Nevertheless, the quantitative analyses are too close in their values to be conclusive, even though the above mentioned trend can be appreciated.

Figure S11. NCI analysis of conformers for compound **2Aa** (R¹ = Me, R² = Ph). Thin, delocalized green surface indicates van der Waals interactions. Small, lenticular, bluish surfaces indicate strong interactions such as hydrogen bonding. Steric clashes are shown as red isosurfaces.

2Aw-C1a (R¹ = Me; R² = *tert*-Bu)

2Aw-C1b (R¹ = Me; R² = *tert*-Bu)

2Aw-C2a (R¹ = Me; R² = *tert*-Bu)

2Aw-C2b (R¹ = Me; R² = *tert*-Bu)

Figure S12. NCI analysis of conformers for compound **2Aw** ($R^1 = Me$, $R^2 = tert$ -Bu). Thin, delocalized green surface indicates van der Waals interactions. Small, lenticular, bluish surfaces indicate strong interactions such as hydrogen bonding. Steric clashes are shown as red isosurfaces.

Figure S13. $s(\mathbf{r})$ against $sign(\lambda_2)\rho(\mathbf{r})$ plots for conformers of compound **2Aa** (R¹ = Me, R² = Ph). Blue area corresponds to strong NCI (H-bond, halogen, etc.); green area corresponds to van der Waals interactions and red area corresponds to repulsive interactions (steric clashes, etc.)

Figure S14. $s(\mathbf{r})$ against $sign(\lambda_2)\rho(\mathbf{r})$ plots for conformers of compound **2Aw** (R¹ = Me, R² = *tert*-Bu). Blue area corresponds to strong NCI (H-bond, halogen, etc.); green area corresponds to van der Waals interactions and red area corresponds to repulsive interactions (steric clashes, etc.)

Table S8. Integration over the volumes of $sign(\lambda_2)\rho(\mathbf{n})$ according to ref. 7 for the NCI analysis of conformers of compound **2Aa** (R¹ = Me, R² = Ph). A value of n=2.5 has been selected.^a

interval	2-Aa-C1a	2-Aa-C1b	2-Aa-C2a	2-Aa-C2b
all	-1.91340375	-1.91845067	-1.91539783	-1.91831888
-1.0 to -0.02	-0.13427248	-0.13818054	-0.13530882	-0.13749164
-0.02 to 0.02	0.00247284	0.00247533	0.00237806	0.00251146
0.02 to 1.0	0.26053374	0.26245422	0.25972112	0.26238465

^a The interval [-0.1, -0.02] gives information about strong NCI (H-bond, halogen, etc.). The interval [-0.02, 0.02] gives information about van der Waals interactions. The interval [0.02, 1.00] gives information about repulsive interactions (steric clashes, etc.).

Table S9. Integration over the volumes of $sign(\lambda_2)\rho(\mathbf{n})$ according to ref. 7 for the NCI analysis of conformers of compound **2Aw** (R¹ = Me, R² = *tert*-Bu). A value of n=2.5 has been selected.^a

interval	2-Aw-C1a	2-Aw-C1b	2-Aw-C2a	2-Aw-C2b
all	-1.86361908	-1.86371795	-1.86462397	-1.86167954
-1.0 to -0.02	-0.13205122	-0.13513051	-0.13196776	-0.13407211
-0.02 to 0.02	0.00224793	0.00246851	0.00239254	0.00237936
0.02 to 1.0	0.25564306	0.26061294	0.25861175	0.26074991

^a The interval [-0.1, -0.02] gives information about strong NCI (H-bond, halogen, etc.). The interval [-0.02, 0.02] gives information about van der Waals interactions. The interval [0.02, 1.00] gives information about repulsive interactions (steric clashes, etc.).

Cartesian Coordinates

2Aa-C1a

01

C	0 1 2 1 4 2 0 7 0 0 7	1 1/55//0/01	07540147024
C	-0.1214307897	-1.1455446461	-0.0032175099
C	-1 5763672670	-2 4376516974	-0.6943793078
C	-0.6917386299	-3 5126224158	-0.6505961273
c	0.0917500299	-3 4073573805	0.0930635756
c	0.7568381709	-2 2319458949	0.0930033730
н	-2 4883021380	-2 5099747443	-1 2918717615
Н	-0.9166484224	-4 4275360132	-1 2029804475
н	1 1864869669	-4 2404523848	0 1 3 1 8 0 3 3 4 9 5
Н	1.1001009009	-2 1647599071	1 3698096735
C	-2 2588928954	-0.1131537520	-0.0864294725
c	-1 7943600350	1 1973610517	-0.3507706891
C	-3 6367882260	-0 3314906446	0.0284758891
C	-2 7317331604	2 2276888341	-0 5217364127
C	-4 5588201601	0.6992300243	-0.1402753613
н	-3 9900478971	-1 3417001527	0.2500964862
C	-4 0989355966	1 9827869291	-0.4298808085
н	-2 3708459723	3 2380099801	-0.7324140144
Н	-5 6281305473	0.4995276130	-0.0483336441
н	-4 8054382578	2 8040084891	-0 5703014977
C	0.1538668021	0 1445941930	1 4999713271
н	-0.8051339152	0.4665767632	1 9399678853
C	0.5587614308	1 2806485491	0 5254954734
н	0.6088370224	2 1970134136	1 1472903815
N	-0.4299903407	1 4519113873	-0 5373804986
C	1 9350588757	1.0692387795	-0.0805369649
C	3 0591060297	1.6746594734	0 4902316294
C	2 1107237305	0 2 3 7 5 8 6 5 0 6 7	-1 1927683072
C	4 3348876069	1 4444605784	-0.0251536187
н	2 9341268640	2 3370428654	1 3514391932
C	3 3837923004	0.0050105764	-1 7099372418
н	1.2331498497	-0.2195289045	-1.6532756481
C	4 5006675009	0.6051125307	-1 1262635167
H	5.2013430545	1.9274258661	0.4323136427
Н	3 5050351797	-0.6484326596	-2 5770233598
Н	5 4978022354	0 4245595341	-1 5341611865
C	1.1436436578	0.0181111785	2.6540828231
H	1.2205607200	0.9724911745	3.1961812007
Н	2.1549496136	-0.2485682253	2.3147974538
Н	0.8076791717	-0.7497940477	3.3656723175
Н	-0.2777537413	2.3332632173	-1.0157274401
	0.2///00//120	=.000=00=170	1.010.1.101

2Aa-C1b

С	1.1888815749	-1.5147865379	-0.1503249824
С	2.1304849782	-0.4571908372	-0.0919828075
С	3.4980463907	-0.8238841230	-0.0797058114
С	3.9410208889	-2.1295419514	-0.2185590246
С	3.0076662356	-3.1514351813	-0.3772735329
С	1.6611795547	-2.8286526781	-0.3277914981
Η	4.2491092042	-0.0482369640	0.0665169712
Η	5.0114216651	-2.3448233747	-0.2002135702
Η	3.3233250326	-4.1878066860	-0.5138214899
Η	0.9238188035	-3.6313803218	-0.4166889965
С	1.8602573240	1.0226004795	-0.0475993249
С	0.7133513262	1.6348728585	0.5129753206
С	2.8568655048	1.8920888175	-0.5392943794
С	0.6875385928	3.0283985567	0.7081108640
С	2.8111170587	3.2703966317	-0.3787497973
Η	3.7071379684	1.4699345212	-1.0753575823
С	1.7292560160	3.8417559139	0.2913938092
Η	-0.1978829385	3.4711685165	1.1724291740
Η	3.6160121677	3.8924007886	-0.7744954763
Η	1.6757605414	4.9209205901	0.4506062980
С	-0.3208247379	-1.4293332299	0.0330917882
Η	-0.7690172533	-2.0689460051	-0.7461050036
С	-0.9075018920	-0.0254992530	-0.1755864076
Η	-0.5663656580	0.3222441462	-1.1684347125
Ν	-0.4201008217	0.9005337837	0.8416627173
С	-2.4242358592	-0.0550731086	-0.2240371193
С	-3.0607126491	-0.2898410699	-1.4484795548
С	-3.2172415211	0.1101106782	0.9181280260
С	-4.4500272993	-0.3572404800	-1.5332617267
Η	-2.4567615074	-0.4172626732	-2.3510893735
С	-4.6085943988	0.0502779843	0.8355145186
Η	-2.7507550981	0.2756452735	1.8923552632
С	-5.2301736250	-0.1849267658	-0.3896945520
Η	-4.9258358844	-0.5377752303	-2.4996899349
Η	-5.2088747873	0.1834516070	1.7382196723
Η	-6.3193293084	-0.2322993140	-0.4540936087
С	-0.7110980842	-2.0064058138	1.4000461556
Н	-1.8022152412	-2.1016791665	1.4944964704
Н	-0.3464677450	-1.3489584421	2.2027259485
Η	-0.2735143407	-3.0031187626	1.5468912056
Η	-1.1555371779	1.5028168230	1.1921670646

2Aa-C2a

01			
С	1.8702436488	-0.9380093369	-0.3039613784
С	1.8109595801	0.4293582824	0.0621181583
С	2.9913353524	1.0300514720	0.5567624557
С	4.1795738823	0.3389996667	0.7297458304
С	4.2310938358	-1.0093968138	0.3845970572

С	3.0942193512	-1.6128449726	-0.1302266231
Η	2.9773875462	2.0961009803	0.7862306885
Η	5.0623680455	0.8558591673	1.1116309947
Η	5.1543724896	-1.5823127967	0.4938179321
Η	3.1598712469	-2.6598796246	-0.4324652144
С	0.6314310327	1.3442716373	-0.0437748536
С	-0.3080424622	1.2842217909	-1.0941081111
С	0.4801200003	2.3756331341	0.9003816770
С	-1.2651918816	2.3004782884	-1.2326840553
С	-0.4881713653	3.3650540572	0.7761447385
Н	1.1430745139	2.4008728800	1.7669979164
С	-1.3478849861	3.3450933489	-0.3215801463
Η	-1.9767000719	2.2393816658	-2.0605383127
Н	-0.5685888767	4.1480638770	1.5325031924
Η	-2.1071468837	4.1198954266	-0.4483398469
С	0.7788060297	-1.7907316715	-0.9568932777
Η	1.2088349063	-2.0415101767	-1.9415097354
С	-0.5535970979	-1.1194083551	-1.3223723703
Η	-0.9757498534	-1.7567963011	-2.1139452367
Ν	-0.3280139715	0.1868137219	-1.9610769459
С	-1.6223024202	-1.0545336439	-0.2352272914
С	-2.9662428325	-1.1340318457	-0.6192174640
С	-1.3331083001	-0.8370698033	1.1172177503
С	-3.9939361338	-0.9940536133	0.3121924741
Η	-3.2140428726	-1.3060269290	-1.6710527063
С	-2.3565145563	-0.6970887322	2.0538441402
Η	-0.2959847548	-0.7743858801	1.4505466720
С	-3.6905077724	-0.7720972854	1.6551071448
Η	-5.0349408434	-1.0611495321	-0.0119361499
Н	-2.1071323080	-0.5259500663	3.1034093541
Н	-4.4913662932	-0.6614032784	2.3895341539
С	0.5286182388	-3.1244166953	-0.2351606393
Н	1.4086808414	-3.7797207005	-0.2671596131
Η	0.2566074353	-2.9767452238	0.8189241724
Η	-0.2978052185	-3.6661295371	-0.7203794120
Н	-0.9958712212	0.3343594187	-2.7098591193

2Aa-C2b

С	-1.2914956657	-1.4854743769	-0.2343437349
С	-2.2070914591	-0.4484521376	0.0287412965
С	-3.5400099742	-0.7806321729	0.3180926431
С	-3.9707999273	-2.1036637218	0.3452395020
С	-3.0631682228	-3.1284543817	0.0857330360
С	-1.7371646045	-2.8115255474	-0.1985097531
Η	-4.2482526858	0.0185932527	0.5480770775
Η	-5.0127047860	-2.3326787155	0.5791750251
Η	-3.3841992020	-4.1721289754	0.1071132813
Η	-1.0240290720	-3.6142670542	-0.4055982457

С	-1.8067877870	0.9826131206	0.0165364101
С	-0.6077245668	1.4261478815	0.6244975336
С	-2.6598682803	1.9341182660	-0.5601202874
С	-0.3536893142	2.8094758731	0.6793508655
С	-2.3891257027	3.2982087125	-0.5153330647
Η	-3.5671129504	1.5849209848	-1.0590303784
С	-1.2319195797	3.7348376246	0.1286648821
Η	0.5630889944	3.1547141565	1.1654417340
Η	-3.0759254888	4.0113275839	-0.9747816513
Η	-0.9989347944	4.8004672045	0.1875609425
С	0.1589510506	-1.2017037885	-0.5674338169
Η	0.6354960807	-2.1802865247	-0.7336122382
С	0.8997723925	-0.6364216258	0.6688344635
Η	0.8391921355	-1.4355886128	1.4280760222
Ν	0.2876084250	0.5575843373	1.2407874373
С	2.3783596045	-0.4311774087	0.3669388184
С	3.2677768214	-1.5017732445	0.5073578506
С	2.8718376206	0.7960198199	-0.0896091297
С	4.6180006969	-1.3551927411	0.1928462399
Η	2.8968312258	-2.4639590413	0.8726635402
С	4.2224757161	0.9472493253	-0.4024256914
Η	2.1910529132	1.6416825458	-0.2123570961
С	5.0999732330	-0.1279756343	-0.2632510756
Η	5.2985785210	-2.2013274932	0.3114821161
Η	4.5907050053	1.9116135950	-0.7595990459
Η	6.1581251472	-0.0090157757	-0.5061925461
С	0.3441134836	-0.4134771792	-1.8714865235
Η	1.4036133849	-0.3946450366	-2.1632451873
Η	-0.0056915845	0.6250979692	-1.8028505279
Η	-0.2199162822	-0.9051946843	-2.6774577497
Η	0.9361394783	1.0462086207	1.8462450261

2Aa-TS1

01			
С	-1.1670020299	-1.5238136780	0.2420519951
С	-2.1603126877	-0.5194343973	0.1010598615
С	-3.4796723478	-0.9063496439	-0.2060237077
С	-3.8570019548	-2.2316499555	-0.3688106190
С	-2.8871153906	-3.2184238459	-0.2426792901
С	-1.5774934158	-2.8556752408	0.0515244268
Η	-4.2283868511	-0.1269215758	-0.3572394891
Η	-4.8911796230	-2.4834259956	-0.6124409910
Η	-3.1391274290	-4.2724298750	-0.3785909249
Η	-0.8503980940	-3.6592127530	0.1427158051
С	-1.9411180744	0.9555672296	0.1494265002
С	-0.8361361698	1.5395196631	-0.4988037093
С	-2.9213187374	1.8083365411	0.6802831768
С	-0.7898771759	2.9264018235	-0.6921948765
С	-2.8592596338	3.1888669015	0.5137342737

Η	-3.7612022961	1.3749129705	1.2278858797
С	-1.8028224712	3.7468919215	-0.2063299758
Η	0.0691608818	3.3608223644	-1.2105193971
Η	-3.6385747700	3.8255661281	0.9369995685
Η	-1.7489404157	4.8265343068	-0.3628171775
С	0.2840221830	-1.2869063084	0.6950564843
Η	0.2433977039	-1.2733833938	1.7992863017
С	0.8777553686	0.1129603502	0.3084593932
Η	0.6793967178	0.7717628560	1.1716460397
Ν	0.2358999724	0.7160219763	-0.8699396118
С	2.3838024018	0.1115370430	0.1309777443
С	3.2135652026	0.4114260547	1.2155795194
С	2.9751365865	-0.2008763146	-1.1000250284
С	4.6017664452	0.3923420817	1.0802364190
Η	2.7664701705	0.6625801602	2.1811879880
С	4.3614007587	-0.2132124246	-1.2402626475
Η	2.3447039648	-0.4505044545	-1.9572292600
С	5.1803339717	0.0802924879	-0.1493099585
Η	5.2336195141	0.6298349258	1.9389741077
Η	4.8052874424	-0.4591851022	-2.2075284395
Η	6.2669140886	0.0688138111	-0.2587607026
С	1.2158881905	-2.4503811800	0.3301112196
Η	2.2352534665	-2.2519719660	0.6819703340
Η	1.2575619752	-2.6182120907	-0.7573657095
Η	0.9033948892	-3.3851949756	0.8114106770
Η	0.9173206723	1.2468925745	-1.4030171998

2Aa-TS2

С	1.9016649797	-0.8412885386	-0.1786630885
С	1.7391494905	0.5370227357	0.1033127618
С	2.8537026217	1.2362558790	0.6214455456
С	4.0709666794	0.6323248705	0.8916044018
С	4.2232507212	-0.7267447694	0.6263925894
С	3.1534634157	-1.4274152037	0.0918628039
Η	2.7634168507	2.3098075121	0.7901951359
Η	4.8989881057	1.2241280148	1.2871373119
Η	5.1729370771	-1.2327327013	0.8126065037
Η	3.2948745541	-2.4839782033	-0.1473798881
С	0.5135941619	1.3692736894	-0.1134621000
С	-0.3671418660	1.1945826484	-1.2022037194
С	0.2579090783	2.4450223138	0.7560561265
С	-1.3648901048	2.1486910349	-1.4523750843
С	-0.7513096967	3.3717143601	0.5221143955
Η	0.8715011340	2.5579787661	1.6515375478
С	-1.5479552797	3.2409086707	-0.6148623173
Η	-2.0279452582	1.9994004242	-2.3087847188
Η	-0.9119218876	4.1924725168	1.2236895961
Η	-2.3368899967	3.9653284119	-0.8285989015

С	0.9112378072	-1.7906290938	-0.8602373417
Η	1.4014681933	-1.9819722401	-1.8283864646
С	-0.4537811382	-1.2290079787	-1.2787285127
Η	-0.8344396941	-1.9404740750	-2.0280299997
Ν	-0.2919790946	0.0455341400	-1.9950892278
С	-1.5310441173	-1.1449923812	-0.1995444511
С	-2.8727649776	-1.1763344298	-0.5976325599
С	-1.2469313572	-0.9625826975	1.1581786186
С	-3.9035901961	-1.0192803212	0.3268873135
Η	-3.1157497698	-1.3214137210	-1.6546255222
С	-2.2740906033	-0.8070804616	2.0885434982
Η	-0.2104214708	-0.9426394076	1.5004399167
С	-3.6057038452	-0.8310365027	1.6765814253
Η	-4.9432253805	-1.0470806769	-0.0072122948
Η	-2.0294017366	-0.6636749651	3.1433599795
Η	-4.4095756235	-0.7075003511	2.4056121464
С	0.7486016213	-3.1624052961	-0.1600422997
Η	0.9411197967	-3.9879345273	-0.8596692302
Η	1.4309897736	-3.2825786389	0.6912759932
Η	-0.2698193788	-3.2968156083	0.2293116787
Η	-0.9330935888	0.1036198019	-2.7783105677

2Aa-TS3

С	-0.9956239805	-1.5835977469	-0.1233506900
С	-2.0719646154	-0.6808119662	0.0834964614
С	-3.3453055351	-1.2824410366	0.2387368187
С	-3.5613785778	-2.6520087704	0.2535970501
С	-2.4860869383	-3.5215855191	0.1041125473
С	-1.2306083298	-2.9695676148	-0.0878629187
Η	-4.2339555563	-0.6667922617	0.3376816138
Η	-4.5770747217	-3.0327724303	0.3801415869
Η	-2.6232110895	-4.6045594798	0.1222664279
Η	-0.3754253323	-3.6352646829	-0.2329149136
С	-2.0052333992	0.8341477475	0.1361102071
С	-0.8782690353	1.6640586776	-0.1345822179
С	-3.1941571269	1.5343637246	0.4614664865
С	-1.0409748356	3.0695510385	-0.1961455543
С	-3.3355460075	2.9109862394	0.4309510863
Η	-4.0756263057	0.9791479921	0.7677312368
С	-2.2415878721	3.6955445500	0.0644325251
Η	-0.1612080425	3.6709717949	-0.4411031445
Η	-4.2934520716	3.3643787605	0.6913806505
Η	-2.3163896398	4.7836787413	0.0107075182
С	0.4337899586	-1.2215825826	-0.4704338944
Η	1.0566099620	-2.0523575016	-0.1039680277
С	0.9457497255	0.0333600504	0.2568479527
Η	0.6086522374	-0.0417640884	1.3089878934
Ν	0.4157766335	1.2295777981	-0.3506520954

С	2.4630561724	0.0718388834	0.2778484623
С	3.1454854366	-0.5563384538	1.3265670739
С	3.2119080664	0.6774902161	-0.7382670273
С	4.5380206343	-0.5815643166	1.3611776012
Η	2.5750847758	-1.0303535926	2.1300921371
С	4.6068561747	0.6585907791	-0.7030949899
Н	2.7052236841	1.1664436568	-1.5736206846
С	5.2747599383	0.0280992088	0.3449878229
Η	5.0507752326	-1.0741916947	2.1902648521
Н	5.1732533592	1.1380258419	-1.5045577346
Η	6.3664246545	0.0133384726	0.3721499806
С	0.6124384778	-1.1426417020	-1.9894873342
Η	1.6638569129	-0.9635934369	-2.2585342108
Н	0.0037144248	-0.3308829495	-2.4123548873
Н	0.2990261211	-2.0874328299	-2.4563316041
Н	1.0746284304	1.9975424841	-0.3552410634

2An-C1a

С	0.1426781854	1.1306922151	0.7444237756
С	1.3198950966	1.1915316185	-0.0283527329
С	1.6135954408	2.3612017639	-0.7411453934
С	0.7578055661	3.4595166411	-0.7040794806
С	-0.4080602744	3.3973785928	0.0553331542
С	-0.7062339540	2.2404259434	0.7737078563
Η	2.5200109220	2.4007519723	-1.3498973171
Η	0.9999461566	4.3594785631	-1.2733676136
Η	-1.0902220280	4.2495519222	0.0899092648
Η	-1.6220611247	2.2076807547	1.3659012516
С	2.2441057943	0.0302948577	-0.1013559066
С	1.7465981271	-1.2727079408	-0.3380384624
С	3.6277724087	0.2164547802	0.0018328277
С	2.6561650160	-2.3295715651	-0.4935830677
С	4.5225685103	-0.8399499122	-0.1522427233
Η	4.0073625724	1.2213081266	0.2029963257
С	4.0294453856	-2.1171083279	-0.4139216993
Η	2.2693834851	-3.3345741415	-0.6823186589
Η	5.5969843970	-0.6652415383	-0.0700642734
Η	4.7144142895	-2.9582465052	-0.5420004912
С	-0.1622072573	-0.1426856729	1.5071981552
Η	0.7896484568	-0.4912485548	1.9416731353
С	-0.6061079604	-1.2754818784	0.5446996743
Η	-0.7011524450	-2.1814796229	1.1753425182
Ν	0.3743361911	-1.4992045892	-0.5136190379
С	-1.9689582810	-1.0043993531	-0.0671249820
С	-3.1247021817	-1.5253707077	0.5239866505
С	-2.0944699493	-0.1982701117	-1.2047568382
С	-4.3842250116	-1.238744404	0.0092851768
Η	-3.0392630326	-2.1681379440	1.4033675921

С	-3.3454940589	0.0987728578	-1.7307281293
Η	-1.1924201574	0.1895228808	-1.6796291196
С	-4.4980846902	-0.4192892562	-1.1218210273
Η	-5.2795320354	-1.6509060497	0.4772138568
Η	-3.4353219744	0.7318884764	-2.6148666931
С	-1.1365585180	0.0242543699	2.6694831198
Η	-1.2385418599	-0.9222401254	3.2209804829
Η	-2.1421544191	0.3246488530	2.3414514230
Η	-0.7671247903	0.7862012269	3.3705182806
Η	0.2002701449	-2.3882133873	-0.9699214891
С	-5.7964107104	-0.1172689118	-1.6627539233
Ν	-6.8416462624	0.1267237098	-2.0970155015

2An-C1b

Λ	1
υ	Т

U 1			
С	-1.1280329265	-1.5576117223	0.0717384474
С	-2.1082634369	-0.5345089609	0.0630884530
С	-3.4609699796	-0.9507584321	0.0264904361
С	-3.8544455949	-2.2775239872	0.0969345276
С	-2.8837080956	-3.2704149877	0.2081279033
С	-1.5501500660	-2.8956755435	0.1808385939
Н	-4.2402321602	-0.1971976473	-0.0829353172
Н	-4.9158329183	-2.5317565595	0.0630483982
Н	-3.1604941548	-4.3233906845	0.2909146497
Н	-0.7836122076	-3.6739410885	0.2322165679
С	-1.8933193031	0.9543806494	0.0974057546
С	-0.7706021810	1.6379839556	-0.4265796317
С	-2.9211855386	1.7587481738	0.6336849728
С	-0.7929853338	3.0397593012	-0.5426551621
С	-2.9247058438	3.1444723525	0.5494795131
Н	-3.7559292655	1.2772912666	1.1434206982
С	-1.8635660695	3.7909758341	-0.0841940879
Н	0.0761609902	3.5392910146	-0.9793256721
Н	-3.7519403123	3.7142137064	0.9765143707
Н	-1.8487395637	4.8784932640	-0.1827406815
С	0.3776766628	-1.4076555548	-0.1029586398
Н	0.8481820967	-2.0674550764	0.6456316244
С	0.9099698145	0.0070862868	0.1745006033
Н	0.5621313579	0.2923889197	1.1846502984
Ν	0.3900221013	0.9633239190	-0.7958004440
С	2.4255189873	0.0225252355	0.2191627573
С	3.0712177940	-0.2666252058	1.4274812297
С	3.2074559685	0.2801099206	-0.9137331698
С	4.4573142597	-0.2974988015	1.5122683264
Н	2.4763616094	-0.4671706893	2.3216353527
С	4.5961445964	0.2592475663	-0.8440367106
Η	2.7341677709	0.4887160253	-1.8753135925
С	5.2280200053	-0.0313377142	0.3718117689
Η	4.9464700491	-0.5204397090	2.4615939571

Н	5.1933748953	0.4624475839	-1.7341034338
С	0.7913334688	-1.9010754263	-1.4956356274
Η	1.8851969198	-1.9585180154	-1.5911146663
Н	0.4073325981	-1.2165563466	-2.2658781342
Н	0.3868532571	-2.9026027745	-1.6938468758
Н	1.0994415507	1.6143781207	-1.1109999874
С	6.6642816575	-0.0548966040	0.4502740995
Ν	7.8200655303	-0.0741427446	0.5131405199

2An-C2a

01			
С	1.9201382664	-0.8547572521	-0.2155494039
С	1.7816127676	0.5251846609	0.0725605096
С	2.9194869708	1.2160709801	0.5481805327
С	4.1403438552	0.6011997150	0.7733610141
С	4.2700485554	-0.7591645409	0.5037479750
С	3.1755822721	-1.4516832241	0.0096742699
Η	2.8442109334	2.2906245545	0.7183587174
Η	4.9880885878	1.1854003476	1.1369592777
Η	5.2213185061	-1.2735042491	0.6554349766
Η	3.3021890278	-2.5085311775	-0.2334718839
С	0.5557226524	1.3660501302	-0.0989128812
С	-0.3595082008	1.1991796435	-1.1585162050
С	0.3290167536	2.4331106545	0.7890325730
С	-1.3726974167	2.1472707133	-1.3629011474
С	-0.6936821071	3.3551834609	0.6001921385
Η	0.9752081104	2.5415233611	1.6619342939
С	-1.5321834972	3.2290931242	-0.5069028930
Η	-2.0646866117	2.0034663897	-2.1970155280
Н	-0.8331074103	4.1691697840	1.3139880066
Н	-2.3333942521	3.9499329567	-0.6832909823
С	0.8857947082	-1.8015799884	-0.8303125112
Н	1.3456779176	-2.0919390126	-1.7899696568
С	-0.4689961956	-1.2219927750	-1.2623084537
Н	-0.8448193988	-1.9256289525	-2.0200629667
Ν	-0.3014044431	0.0566794319	-1.9661339574
С	-1.5624331566	-1.1432139134	-0.2003768370
С	-2.8928842701	-1.3004422369	-0.6072860051
С	-1.3092943116	-0.8315484640	1.1410512999
С	-3.9465694116	-1.1445065241	0.2848615642
Н	-3.1114534107	-1.5459910186	-1.6498024947
С	-2.3500687359	-0.6712885252	2.0482899571
Н	-0.2842887278	-0.7075927445	1.4915859280
С	-3.6760243641	-0.8241339158	1.6221155929
Н	-4.9776149027	-1.2706065700	-0.0488848712
Н	-2.1369961811	-0.4239733588	3.0892500864
С	0.6870935982	-3.0984138875	-0.0295137531
Н	1.6006583156	-3.7061536154	-0.0031121255
Н	0.3868579061	-2.9014380153	1.0088889154

Η	-0.0985469942	-3.7136510008	-0.4945282857
Η	-0.9527392970	0.1274847062	-2.7402505973
С	-4.7574048099	-0.6564147566	2.5557125942
Ν	-5.6283255179	-0.5212058755	3.3065231969

2An-C2b

С	1,2908384015	-1.4983482308	0.2185320191
Č	2.2002296728	-0.4504522292	-0.0213843342
C	3.5400214404	-0.7667596034	-0.2943514573
C	3.9828758068	-2.0857194778	-0.3294184814
С	3.0809674870	-3.1213570103	-0.0946477809
С	1.7482089391	-2.8199285279	0.1749567652
Н	4.2440318132	0.0414167051	-0.5051636221
Н	5.0300885111	-2.3029951273	-0.5502266392
Н	3.4118446608	-4.1617285120	-0.1229026012
Η	1.0401915123	-3.6314174894	0.3645684692
С	1.7846186583	0.9760897528	-0.0063028278
С	0.5944961030	1.4066516030	-0.6385414974
С	2.6132753300	1.9356189877	0.5912593455
С	0.3235312761	2.7851645185	-0.6996457313
С	2.3249621421	3.2962602843	0.5422581127
Η	3.5145153049	1.5970024019	1.1079483758
С	1.1781910513	3.7205188594	-0.1274581544
Η	-0.5841850787	3.1203493557	-1.2092260052
Η	2.9923173763	4.0173069948	1.0176963012
Η	0.9349563581	4.7834680465	-0.1911257423
С	-0.1639051398	-1.2292868245	0.5461238789
Η	-0.6332660899	-2.2126983322	0.7034250240
С	-0.9026907086	-0.6565166266	-0.6893897764
Η	-0.8653916081	-1.4595580516	-1.4454504230
Ν	-0.2722629968	0.5184927938	-1.2747153137
С	-2.3736895344	-0.4278685885	-0.3700942155
С	-3.2776355975	-1.4903015811	-0.4810976548
С	-2.8430734850	0.8146023304	0.0709861543
С	-4.6184552290	-1.3270820425	-0.1548926436
Η	-2.9262279143	-2.4634008167	-0.8337316593
С	-4.1815183965	0.9951870988	0.3996015235
Η	-2.1510470476	1.6528531050	0.1703322827
С	-5.0763571762	-0.0780896394	0.2881247948
Η	-5.3153591224	-2.1614254724	-0.2477665353
Η	-4.5370641790	1.9666210633	0.7464963982
С	-0.3589760134	-0.4526535413	1.8562807119
Η	-1.4165368986	-0.4563761975	2.1560746645
Η	-0.0287712307	0.5927000365	1.7937162259
Н	0.2180983932	-0.9394932203	2.6556821662
Н	-0.8937799645	0.9875049570	-1.9229105790
С	-6.4634295204	0.1028146209	0.6233930847
Ν	-7.5797278469	0.2483271377	0.8938099967

2An-TS1

01			
С	-1.1616612111	-1.5219945470	0.2420099783
С	-2.1534679134	-0.5168509144	0.0978537523
С	-3.4729501536	-0.9031437903	-0.2092914328
С	-3.8518392866	-2.2284774319	-0.3671987291
С	-2.8837981148	-3.2161875071	-0.2350728487
С	-1.5738514449	-2.8541884988	0.0581779904
Н	-4.2205313115	-0.1233413069	-0.3637941741
Н	-4.8860495148	-2.4797747126	-0.6109213914
Η	-3.1373053956	-4.2704114290	-0.3658144650
Η	-0.8488287598	-3.6589738149	0.1538877174
С	-1.9340834931	0.9581280977	0.1456415395
С	-0.8288934984	1.5429824419	-0.4999480081
С	-2.9142589464	1.8108837410	0.6768238644
С	-0.7792660327	2.9298473565	-0.6896392910
С	-2.8503476485	3.1915267004	0.5128830589
Н	-3.7551179272	1.3774964240	1.2227963354
С	-1.7921625535	3.7504060508	-0.2037956461
Н	0.0810444509	3.3645789463	-1.2055834051
Н	-3.6298074698	3.8280524180	0.9360293690
Η	-1.7369677018	4.8302608544	-0.3577807165
С	0.2911266315	-1.2872597182	0.6914400870
Η	0.2566300543	-1.2783632472	1.7957005305
С	0.8813107126	0.1149629520	0.3068756585
Η	0.6845686736	0.7728668846	1.1709360922
Ν	0.2444712371	0.7186090517	-0.8722137553
С	2.3865594752	0.1082241258	0.1315246325
С	3.2153138719	0.3971504659	1.2203238565
С	2.9755444807	-0.1959150743	-1.1029933886
С	4.5996228554	0.3775428748	1.0918479380
Н	2.7704901899	0.6413464869	2.1876349908
С	4.3566297943	-0.2129867746	-1.2491448176
Н	2.3460156534	-0.4364082604	-1.9623536475
С	5.1765712966	0.0716713464	-0.1478530393
Н	5.2360220768	0.6050872840	1.9483158372
Н	4.8049582205	-0.4525232717	-2.2145295593
С	1.2220691705	-2.4479833676	0.3143812049
Н	2.2428929664	-2.2566540028	0.6665656789
Н	1.2597924275	-2.6083380033	-0.7743251633
Н	0.9107726378	-3.3860068922	0.7892958430
Н	0.9237716716	1.2528162999	-1.4047810201
С	6.6078251417	0.0538334524	-0.2918449157
Ν	7.7595759974	0.0389375897	-0.4079101310

2An-TS2

U 1			
С	1.9315692813	-0.7719922942	-0.2239975311
С	1.7192156414	0.5941137412	0.0818252012
С	2.8143741528	1.3307308772	0.5890737525
С	4.0599791882	0.7722884277	0.8257398864
С	4.2614230702	-0.5756715005	0.5374587434
С	3.2103890486	-1.3117673780	0.0136081956
Η	2.6848831523	2.3971752124	0.7762442659
Н	4.8715174180	1.3911962354	1.2137228034
Н	5.2342073805	-1.0452347680	0.6976713975
Η	3.3890762876	-2.3583641205	-0.2438977586
С	0.4559254272	1.3774068747	-0.0973498851
С	-0.4358005306	1.1862462370	-1.1738461499
С	0.1684110476	2.4221403122	0.7997970965
С	-1.4810801653	2.0972047419	-1.3860450867
С	-0.8866784366	3.3053677318	0.6036927011
Η	0.7931279922	2.5451343616	1.6861657326
С	-1.6980424575	3.1617931669	-0.5212233612
Н	-2.1523980903	1.9361351759	-2.2338229571
Н	-1.0717827344	4.1030486123	1.3254436243
Н	-2.5232139623	3.8532664227	-0.7046015701
С	0.9667353674	-1.7515641840	-0.8993275762
Н	1.4471400636	-1.9162346683	-1.8770390432
С	-0.4227212966	-1.2359002238	-1.2930961105
Н	-0.7920683782	-1.9529953241	-2.0423905879
Ν	-0.3250014818	0.0537966571	-1.9891091210
С	-1.4853243498	-1.1993217253	-0.1964794561
С	-2.8309538293	-1.2565029305	-0.5789154919
С	-1.1837904347	-1.0273363074	1.1590124517
С	-3.8531971909	-1.1339751160	0.3532731474
Η	-3.0860176137	-1.3927039042	-1.6331339181
С	-2.1931420337	-0.9035589631	2.1068468418
Η	-0.1443850574	-0.9882908022	1.4880926694
С	-3.5346626575	-0.9525758376	1.7063130061
Η	-4.8970986380	-1.1795209625	0.0394206521
Η	-1.9431414276	-0.7650988073	3.1596984223
С	0.8657054204	-3.1346742856	-0.2094806824
Η	1.0805829392	-3.9460309217	-0.9188265686
Η	1.5647642994	-3.2342825521	0.6308679289
Η	-0.1407196875	-3.3157337983	0.1926220633
Н	-0.9725171886	0.0989924053	-2.7679260701
С	-4.5839639582	-0.8217415637	2.6820752318

2An-TS3

01

01			
С	0.9889803919	-1.5798263049	0.1068216247
С	2.0659254847	-0.6747267888	-0.0832898598
С	3.3409282292	-1.2740118608	-0.2322248608

N -5.4288913477 -0.7164502844 3.4666476106

С	3.5574236006	-2.6433241786	-0.2583427084
С	2.4811425360	-3.5146591545	-0.1278076038
С	1.2237745352	-2.9653198906	0.0592885387
Η	4.2300829846	-0.6568964970	-0.3162711251
Η	4.5743220381	-3.0226573657	-0.3788133062
Η	2.6188644036	-4.5972864640	-0.1557600434
Η	0.3680159986	-3.6329386734	0.1913204551
С	1.9978185640	0.8403178196	-0.1263894135
С	0.8702591463	1.6682923804	0.1434125581
С	3.1874900618	1.5427875169	-0.4443103427
С	1.0300958254	3.0731224062	0.2098756335
С	3.3270926209	2.9193328024	-0.4077084219
Η	4.0702418250	0.9894938168	-0.7501370646
С	2.2311510801	3.7016309996	-0.0432749214
Η	0.1489265845	3.6729933115	0.4535829024
Η	4.2855343929	3.3746073447	-0.6626048275
Η	2.3045333972	4.7895614017	0.0145518929
С	-0.4413869567	-1.2214413153	0.4528062341
Η	-1.0624176875	-2.0496612758	0.0776315128
С	-0.9502809123	0.0412142558	-0.2652012799
Η	-0.6150788243	-0.0251900566	-1.3184043375
Ν	-0.4274590256	1.2328760472	0.3550687469
С	-2.4663464837	0.0702399586	-0.2830344040
С	-3.1462260880	-0.5667224152	-1.3286000792
С	-3.2137902664	0.6744040619	0.7351560346
С	-4.5339776398	-0.6045411565	-1.3640686197
Η	-2.5772155776	-1.0396491476	-2.1324687117
С	-4.6043857159	0.6492194133	0.7112036413
Η	-2.7078112236	1.1688017942	1.5665711212
С	-5.2710580255	0.0072867752	-0.3398503830
Η	-5.0510226741	-1.1012128796	-2.1864073304
Η	-5.1757189460	1.1240803653	1.5101825657
С	-0.6241516056	-1.1545722826	1.9719990391
Η	-1.6763065562	-0.9818153583	2.2426719203
Η	-0.0181082629	-0.3452451989	2.4028685957
Η	-0.3092489266	-2.1027003988	2.4305081129
Η	-1.0816325392	2.0050035532	0.3436764052
С	-6.7090378621	-0.0217262361	-0.3703316610
Ν	-7.8661955112	-0.0452082448	-0.3946639300

2Aw-C1a

01			
С	0.1636317180	1.1764445460	0.9317604374
С	1.2061954355	1.1216134493	-0.0152951683
С	1.4239295186	2.2379441670	-0.8382118781
С	0.6632925493	3.3965756046	-0.7122713713
С	-0.3291658129	3.4649931752	0.2625532414
С	-0.5700263315	2.3581476502	1.0730369620
Η	2.1968468579	2.1900530406	-1.6081925513

Η	0.8503340798	4.2453635830	-1.3736004866
Η	-0.9231766324	4.3730164202	0.3867662732
Η	-1.3583807232	2.4171906680	1.8251646229
С	2.1058947689	-0.0589777811	-0.1471110008
С	1.6789465797	-1.4142204633	-0.0993489275
С	3.4746635321	0.1953346951	-0.3575901494
С	2.6492057096	-2.4239379467	-0.3085137421
С	4.4136242020	-0.8065283738	-0.5568737890
Η	3.8077869101	1.2355967465	-0.3513432863
С	3.9822012294	-2.1346870485	-0.5429366000
Η	2.3221066752	-3.4672067413	-0.2799002707
Η	5.4645701012	-0.5571645677	-0.7125224385
Η	4.6908436435	-2.9517714993	-0.6971448916
С	-0.1631541280	-0.0694920491	1.7206795296
Η	0.7991239104	-0.4719456536	2.0801803768
С	-0.7141851964	-1.1984115193	0.8035620607
Η	-1.0997173374	-1.9594316071	1.5063242773
Ν	0.3820070371	-1.8422535122	0.0862772566
С	-0.9907624424	0.1595375882	2.9861768626
Η	-1.1070255603	-0.7867659226	3.5348344635
Η	-1.9962485672	0.5529223842	2.7954888256
Η	-0.4745822819	0.8692792859	3.6497201030
Η	0.2968632636	-2.8482546582	0.0491256951
С	-1.9118577593	-0.9219991924	-0.1736687810
С	-1.5178329722	-0.0847502633	-1.3993433381
С	-2.3906308703	-2.2962795495	-0.6787470591
С	-3.0862721369	-0.2506243196	0.5467697617
Η	-1.3367003161	0.9687719751	-1.1509262535
Η	-0.6107518737	-0.4873275655	-1.8740774770
Η	-2.3311325563	-0.1164547333	-2.1418653357
Η	-2.6777730277	-2.9552079164	0.1572056520
Η	-3.2702611744	-2.1794984854	-1.3303264062
Η	-1.6106042764	-2.8029844295	-1.2664903047
Η	-3.9584215783	-0.2076077600	-0.1241998759
Η	-3.3867493845	-0.8103976648	1.4468348451
Η	-2.8500341914	0.7815402045	0.8396198859

2Aw-C1b

С	-1.1921296647	-1.5956463160	0.1284195563
С	-2.1352721472	-0.5352466606	0.1043868406
С	-3.5035740880	-0.8974501018	0.1594294913
С	-3.9465484221	-2.1996237143	0.3238362552
С	-3.0104067042	-3.2247661448	0.4395554309
С	-1.6668708377	-2.9063270373	0.3295332601
Η	-4.2568001864	-0.1186108256	0.0443249111
Η	-5.0176233932	-2.4098191045	0.3572286007
Η	-3.3225451946	-4.2598600261	0.5932632095
Η	-0.9313590253	-3.7132249271	0.3924500436

С	-1.8740766554	0.9441806748	0.0158112337
С	-0.7569948058	1.5264856256	-0.6289456377
С	-2.8402956709	1.8346361815	0.5264346640
С	-0.7355038712	2.9082737513	-0.8898139465
С	-2.7958232042	3.2056884029	0.3054885965
Η	-3.6641773138	1.4389771765	1.1214112817
С	-1.7520292981	3.7423503399	-0.4492025607
Η	0.1244833699	3.3252175548	-1.4212968663
Η	-3.5749448098	3.8495437928	0.7176937168
Η	-1.7066282910	4.8137813469	-0.6566052740
С	0.3233705812	-1.5276293642	-0.0754085521
Η	0.7500329606	-2.1429007079	0.7316623288
С	0.8795552887	-0.1098088979	0.0829500024
Η	0.4812741222	0.2506108295	1.0498502858
Ν	0.3395096914	0.7504289900	-0.9658117132
С	0.7011936002	-2.1754682644	-1.4146391720
Η	1.7648946835	-2.4480693967	-1.4423007588
Η	0.4931446951	-1.4781321305	-2.2396895058
Η	0.1256888536	-3.0941865041	-1.5914226518
Η	1.0440228185	1.2695913367	-1.4728343985
С	2.4258676278	0.0694543465	0.2240893356
С	2.9874408372	-0.9868872148	1.1842510306
С	3.2007970287	-0.0043396899	-1.1031688210
С	2.6656644382	1.4612812082	0.8387588328
Η	2.4234751303	-1.0082044506	2.1303696440
Η	2.9623715279	-1.9962654711	0.7469527232
Η	4.0368639613	-0.7576011970	1.4250994576
Η	2.8949427273	0.7723707983	-1.8215732243
Η	4.2713899758	0.1600092415	-0.9060272805
Η	3.1017983370	-0.9767091560	-1.5999629539
Η	3.7436139658	1.6616113423	0.9370964984
Η	2.2335472126	2.2617403840	0.2184227014
Η	2.2133416887	1.5350680894	1.8398066546

2Aw-C2a

01			
C	1.8157291126	-0.7804729036	-0.0983651590
С	1.7504306500	0.6393509660	0.0031702230
С	2.8837187823	1.2965238923	0.5330773827
С	3.9797278968	0.6356585818	1.0676132343
С	3.9779516604	-0.7524445520	1.0854472117
С	2.9168985269	-1.4258499334	0.4936827250
Н	2.9187382323	2.3844964059	0.5118042286
Н	4.8217766251	1.2068738107	1.4638010703
Н	4.8065245810	-1.3142785888	1.5218620768
Н	2.9678314554	-2.5123053489	0.4765284616
С	0.6094729455	1.5446757827	-0.3678659080
С	-0.4003028691	1.2707254770	-1.3223333268
С	0.5325896787	2.8013127844	0.2736384811

С	-1.2676358600	2.3074256753	-1.7289355430
С	-0.3593807690	3.7991193550	-0.0920243892
Η	1.2007125077	3.0074527131	1.1091789001
С	-1.2428156034	3.5618375498	-1.1451857820
Η	-2.0069230229	2.0845760700	-2.5034966884
Η	-0.3612042047	4.7520998956	0.4399378419
Η	-1.9394814329	4.3336283501	-1.4796788414
С	0.8890146623	-1.6650774331	-0.9396343480
Η	1.2927619062	-1.5446983110	-1.9595530244
С	-0.5763730872	-1.2231506872	-1.1378221104
Η	-0.9714116219	-1.9504416715	-1.8647207941
Ν	-0.5949064522	0.0254977097	-1.8920511432
С	1.0064811561	-3.1650007503	-0.6384460249
Η	1.9834615907	-3.5597268365	-0.9481416955
Η	0.8740851786	-3.3997291520	0.4276679645
Η	0.2478592772	-3.7217484265	-1.2056614596
Η	-1.3430872922	0.0417894312	-2.5725357078
С	-1.5812292744	-1.3124340394	0.0756841896
С	-2.8518653324	-0.5188671818	-0.2711586612
С	-2.0169681016	-2.7765590104	0.2823845083
С	-1.0111089678	-0.7971367072	1.4046510443
Η	-2.6671426998	0.5622904877	-0.3301841688
Η	-3.2808038980	-0.8490349199	-1.2318444002
Η	-3.6165133863	-0.6814179159	0.5039479072
Η	-1.2106098560	-3.4098065677	0.6710713292
Η	-2.8396253579	-2.8165955980	1.0132305390
Η	-2.3830875990	-3.2254984503	-0.6549438675
Η	-1.7562921029	-0.9385012049	2.2039806764
Η	-0.1035317417	-1.3454977307	1.6977166291
Η	-0.7647604223	0.2719901529	1.3642425889

2Aw-C2b

С	0.3967331378	-1.5432630004	0.4507467745
С	1.4786088806	-0.8447165428	-0.1317665027
С	2.5037610519	-1.6070632699	-0.7225940478
С	2.5026788152	-2.9980972776	-0.7000315369
С	1.4538749573	-3.6767816548	-0.0852555457
С	0.4088431188	-2.9421373825	0.4675847644
Η	3.3203548330	-1.0949787685	-1.2346058978
Η	3.3185675070	-3.5483488321	-1.1737782240
Η	1.4368609582	-4.7683365833	-0.0544627930
Η	-0.4366502464	-3.4660401272	0.9222237504
С	1.6253812446	0.6472980564	-0.1232152023
С	0.5722202080	1.6003188224	-0.2236373316
С	2.9355361727	1.1499953913	0.0247664228
С	0.9060833017	2.9772480261	-0.2216752680
С	3.2461908002	2.5010106294	0.0392997002
Н	3.7464263055	0.4332946482	0.1654990882

С	2.2075328178	3.4251806371	-0.0968944580
Η	0.0930881921	3.7021885518	-0.3191631139
Η	4.2792331937	2.8282215414	0.1679443436
Η	2.4109266914	4.4985440327	-0.0944996171
С	-0.8328731356	-0.8180982559	0.9500307942
Η	-1.5760422322	-1.5921615267	1.1865523804
С	-1.3882941665	0.0095569166	-0.2492403871
Η	-1.1091355003	-0.5538095780	-1.1583320154
Ν	-0.7658542512	1.3091149154	-0.3159195639
С	-0.5754791909	-0.0286306919	2.2390759193
Η	-1.4573490810	0.5475846677	2.5477062336
Η	0.2648895561	0.6710356840	2.1399393623
Η	-0.3283582186	-0.7282359397	3.0511972580
Η	-1.3752975357	2.1080866494	-0.2198418750
С	-2.9389431033	0.1327839523	-0.3454393914
С	-3.2972541526	0.9668979328	-1.5890586522
С	-3.5367444521	-1.2689942321	-0.5422312840
С	-3.5701154263	0.7759935747	0.8967961176
Η	-3.0160318172	2.0257669847	-1.4904226192
Η	-2.8001235555	0.5697491506	-2.4878723183
Η	-4.3840508322	0.9371032434	-1.7610940715
Η	-3.3715661512	-1.9219025602	0.3268868764
Η	-4.6246236658	-1.1963594683	-0.6924043155
Η	-3.1060597069	-1.7644438765	-1.4265206691
Η	-4.6466277565	0.9362786754	0.7307593606
Η	-3.4657670536	0.1330761904	1.7830433902
Н	-3.1253925119	1.7555946943	1.1335821646

2Aw-TS1

С	-0.7753942912	-1.4921442228	0.2158393717
С	-1.7781907081	-0.4956933798	0.1082302181
С	-3.0828064046	-0.8601904124	-0.2620389530
С	-3.4297038133	-2.1737746076	-0.5551743117
С	-2.4425490165	-3.1495341003	-0.5015767513
С	-1.1480239039	-2.8035311689	-0.1199354951
Η	-3.8362657405	-0.0759800089	-0.3619035700
Η	-4.4522977886	-2.4220350327	-0.8468969004
Η	-2.6711749172	-4.1878746506	-0.7521177174
Η	-0.4139414216	-3.6052079284	-0.0790965455
С	-1.5195510210	0.9625771789	0.2246071379
С	-0.4032994407	1.5025452784	-0.4416811584
С	-2.4498266404	1.8394541708	0.7987618784
С	-0.2873442384	2.8903416965	-0.5916613578
С	-2.3154253508	3.2199671331	0.6739128799
Η	-3.3049362308	1.4275487774	1.3402487963
С	-1.2440678045	3.7447005621	-0.0499028747
Η	0.5751101556	3.2983712983	-1.1253050719
Η	-3.0520978919	3.8844281671	1.1298924322

Η	-1.1381248130	4.8249626492	-0.1724976324
С	0.6183714382	-1.2246426303	0.8191435620
Η	0.4005248571	-0.9551536896	1.8671686789
С	1.3543591560	0.0568795037	0.2410368021
Η	1.2999445101	0.7954926623	1.0623766223
Ν	0.5953149496	0.6205606820	-0.8877827138
С	1.4257489245	-2.5251065716	0.9088344334
Η	2.3999112883	-2.3738843622	1.3795248999
Η	1.5961926692	-2.9869390301	-0.0726892939
Η	0.8909441767	-3.2536940133	1.5338083163
Η	1.2105253570	1.0913171906	-1.5379803246
С	2.8873518095	0.0398285304	-0.0879242434
С	3.7060614389	-0.1112683994	1.2071868669
С	3.2895071053	-1.0099127779	-1.1359510141
С	3.2806726034	1.4287760625	-0.6462008596
Η	3.5392345909	0.7531330051	1.8690923486
Η	3.4713242430	-1.0129953128	1.7827357755
Η	4.7802499116	-0.1453279821	0.9678827687
Η	2.5777467207	-1.0209207427	-1.9762401198
Η	4.2843322632	-0.7708723283	-1.5434703345
Η	3.3439312068	-2.0238112346	-0.7235061234
Η	4.3756082075	1.5340553214	-0.6217631360
Η	2.9857413633	1.5784025019	-1.6966356138
Η	2.8520724905	2.2455662157	-0.0435746724

2Aw-TS2

-1.5691325840	0.9944827627	-0.2279326680
-1.6714697284	-0.3760583320	0.0816786947
-2.9559509299	-0.9501605609	0.1838286732
-4.1167470447	-0.2171002330	-0.0145934270
-4.0163435726	1.1311133060	-0.3549300307
-2.7588516221	1.7091707782	-0.4575472463
-3.0375465431	-2.0198846810	0.3855668683
-5.0915422603	-0.7026393429	0.0665306503
-4.9112890336	1.7275029203	-0.5453295897
-2.6862657907	2.7701824817	-0.7141928453
-0.5228032115	-1.3138052066	0.1596974574
0.5374169702	-1.2091735086	-0.7659396881
-0.5643538444	-2.4355880654	1.0005876325
1.3863759733	-2.3110812280	-0.9569000324
0.3425900713	-3.4830401346	0.8716006588
-1.3444241088	-2.4960873765	1.7630436063
1.2903010532	-3.4401359700	-0.1519276880
2.1572553853	-2.2595707671	-1.7301626970
0.2880128663	-4.3421343205	1.5429413584
1.9774641053	-4.2751178471	-0.3057875564
-0.3052334723	1.8509605467	-0.1959807041
-0.5200337825	2.6459060908	-0.9254222910
	$\begin{array}{r} -1.5691325840\\ -1.6714697284\\ -2.9559509299\\ -4.1167470447\\ -4.0163435726\\ -2.7588516221\\ -3.0375465431\\ -5.0915422603\\ -4.9112890336\\ -2.6862657907\\ -0.5228032115\\ 0.5374169702\\ -0.5643538444\\ 1.3863759733\\ 0.3425900713\\ -1.3444241088\\ 1.2903010532\\ 2.1572553853\\ 0.2880128663\\ 1.9774641053\\ -0.3052334723\\ -0.5200337825\end{array}$	-1.56913258400.9944827627-1.6714697284-0.3760583320-2.9559509299-0.9501605609-4.1167470447-0.2171002330-4.01634357261.1311133060-2.75885162211.7091707782-3.0375465431-2.0198846810-5.0915422603-0.7026393429-4.91128903361.7275029203-2.68626579072.7701824817-0.5228032115-1.31380520660.5374169702-1.2091735086-0.5643538444-2.43558806541.3863759733-2.31108122800.3425900713-3.4830401346-1.3444241088-2.49608737651.2903010532-3.44013597002.1572553853-2.25957076710.2880128663-4.34213432051.9774641053-4.2751178471-0.30523347231.8509605467-0.52003378252.6459060908

С	1.0231742011	1.2109624624	-0.7471176014
Η	1.3359735291	1.9051135976	-1.5422331084
Ν	0.7203894837	-0.0249067472	-1.4849304702
С	-0.2758638410	2.5752205118	1.1626096917
Η	-1.2766422199	2.9776132906	1.3717568320
Η	-0.0162802647	1.9072117020	1.9943884588
Η	0.4157742576	3.4248450046	1.1623231736
Η	1.3770227253	-0.1554133803	-2.2453876516
С	2.3242461054	1.1222791330	0.1453306170
С	3.4514570336	0.5588348487	-0.7429242869
С	2.7858011302	2.5316685923	0.5718837510
С	2.2189459080	0.2359344738	1.3991249166
Η	3.2719475416	-0.4815328532	-1.0419936660
Η	3.5869017395	1.1655088996	-1.6537138610
Η	4.4035540682	0.5727474888	-0.1910789091
Η	2.2631306662	2.9006847253	1.4610794378
Η	3.8569955588	2.5065004265	0.8240687627
Η	2.6548590503	3.2690090289	-0.2367299599
Η	3.1262134124	0.3665491530	2.0113480051
Η	1.3565816217	0.4956036480	2.0264406651
Η	2.1406963970	-0.8306103184	1.1533070671

2Aw-TS3

-			
С	-0.6322901896	-1.5938140014	-0.1038054901
С	-1.6313516649	-0.5999835737	0.0931100615
С	-2.9443359723	-1.0921780021	0.2897286686
С	-3.2635733055	-2.4400142203	0.3740513543
С	-2.2606090251	-3.3953843559	0.2506630949
С	-0.9704811748	-2.9526341464	0.0025222318
Η	-3.7798741687	-0.4012939390	0.3604565416
Η	-4.3031289979	-2.7357562006	0.5310643436
Η	-2.4799342678	-4.4624531272	0.3244833552
Η	-0.1729349896	-3.6883692559	-0.1333022736
С	-1.4555711846	0.9084006392	0.0847759609
С	-0.3029630011	1.6455797752	-0.3240319945
С	-2.5617767074	1.7030114799	0.4743913198
С	-0.3920188313	3.0469584668	-0.5031883606
С	-2.6243702160	3.0807529008	0.3452808279
Η	-3.4339531532	1.2245875934	0.9125587318
С	-1.5315070081	3.7614156998	-0.1950132807
Η	0.4973124594	3.5712033845	-0.8638433311
Η	-3.5210530675	3.6163256665	0.6617661960
Н	-1.5544288492	4.8441434186	-0.3367727883
С	0.8007346105	-1.3319322807	-0.5250778345
Η	1.3844964830	-2.2040849825	-0.1987693483
С	1.3675250849	-0.0849485578	0.1750429578
Н	0.9068136534	-0.0568014715	1.1818624633
Ν	0.9333004843	1.0890680912	-0.5410557656

С	0.8577671707	-1.2748625282	-2.0583419328
Н	1.8703564693	-1.0713389823	-2.4301792436
Η	0.1927748673	-0.4891069713	-2.4428774830
Η	0.5258466146	-2.2355829636	-2.4792505018
Н	1.6499991667	1.7492778402	-0.8050417865
С	2.8988332258	-0.0609738278	0.4595194108
С	3.2514000965	-1.2287306513	1.3935484540
С	3.7582728068	-0.1580091320	-0.8084322369
С	3.2368078580	1.2462462005	1.1999145938
Н	2.6502834786	-1.1971419279	2.3158656777
Η	3.0930852577	-2.2071384930	0.9174881263
Η	4.3125742964	-1.1739886330	1.6805611341
Η	3.4895233119	0.6053704228	-1.5555785849
Η	4.8191660237	-0.0101290036	-0.5534602564
Η	3.6692864738	-1.1453298144	-1.2841921404
Η	4.2816135938	1.2255145827	1.5452256706
Η	3.1272996715	2.1382986951	0.5648013502
Η	2.5903526159	1.3808161861	2.0813691073

2Ax-C1a

01			
С	1.5054611561	0.5564648483	0.4336011132
С	0.7497632777	-0.5527045607	0.0072814451
С	1.4180004784	-1.6851165718	-0.4786171791
С	2.8085017596	-1.7244902667	-0.5504275698
С	3.5541830215	-0.6225493128	-0.1348918531
С	2.8998783624	0.5072404754	0.3533360674
Η	0.8345057681	-2.5419748666	-0.8238649556
Η	3.3086242130	-2.6143447822	-0.9388967072
Η	4.6448481030	-0.6416121234	-0.1902522531
Η	3.4830208596	1.3695501639	0.6881428595
С	-0.7351658208	-0.5319102921	0.0713200250
С	-1.4724070136	0.5899594416	-0.3844327211
С	-1.4331467251	-1.6579635845	0.5263906663
С	-2.8751227041	0.5145685583	-0.3976476804
С	-2.8244136015	-1.7181898556	0.5122525721
Η	-0.8609687197	-2.5126359867	0.8959855393
С	-3.5457143535	-0.6261160780	0.0325057104
Η	-3.4433498120	1.3771559632	-0.7564127732
Η	-3.3392884697	-2.6115680939	0.8707305753
Η	-4.6375309681	-0.6526374356	0.0072512741
С	0.7964674821	1.7682088768	0.9773416119
Η	0.0829108862	1.4531496876	1.7569270476
С	0.0501279844	2.5539054794	-0.0951996494
Η	-0.5170104577	3.3643401743	0.4024915822
Ν	-0.8303177279	1.7179352259	-0.9082494235
Η	-1.4754009744	2.2923780327	-1.4391573705
Н	0.7806947024	3.0365489396	-0.7647903818
Η	1.5139732936	2.4460789437	1.4615934281

2Ax-C1b

01			
С	1.2319658512	-1.5323524811	-0.1718395563
С	2.1586064105	-0.4644955299	-0.1274938922
С	3.5297019724	-0.8031451201	-0.0469781361
С	3.9901729145	-2.1105346429	-0.0668080721
С	3.0719580748	-3.1553796214	-0.1584375073
С	1.7202854536	-2.8513095799	-0.1987785782
Η	4.2627841223	-0.0035267304	0.0635428168
Η	5.0613375831	-2.3112849221	0.0024589763
Η	3.4049715153	-4.1952569500	-0.1785872181
Η	0.9925235273	-3.6665577862	-0.2449623707
С	1.8537605710	1.0056442918	-0.1260999437
С	0.7256258199	1.5848985934	0.5031686523
С	2.7977887636	1.8889553742	-0.6836892060
С	0.6617912676	2.9777709376	0.6753243017
С	2.7127927412	3.2690988341	-0.5408165058
Η	3.6355423513	1.4773923876	-1.2490611089
С	1.6519030759	3.8157201868	0.1806070517
Η	-0.2074450695	3.4008271514	1.1863912483
Η	3.4741019488	3.9118181603	-0.9868324440
Η	1.5733107097	4.8956122826	0.3244532446
С	-0.2807361077	-1.4358038423	-0.1582296995
Η	-0.6808339428	-1.9934602896	-1.0215918781
С	-0.9036544282	-0.0563281553	-0.1396286414
Η	-0.7905856666	0.4292145724	-1.1272586428
Ν	-0.3456381660	0.7902782404	0.9086626124
Η	-1.0599582554	1.3396368796	1.3719600384
Η	-1.9836575287	-0.1639966787	0.0359574330
Н	-0.6266124090	-1.9777653122	0.7374265056

2Ax-TS1

С	1.5826827781	0.6404298921	0.2580422274
С	0.7563178668	-0.4863556386	0.0551500045
С	1.3652125873	-1.7077474588	-0.2945964950
С	2.7411170666	-1.8427412979	-0.4253811253
С	3.5557933881	-0.7315754787	-0.2191269978
С	2.9705997444	0.4848595751	0.1099111384
Η	0.7297749367	-2.5722542793	-0.4966007955
Η	3.1715185796	-2.8068776570	-0.7042048814
Η	4.6401338488	-0.8071768315	-0.3256666682
Η	3.6114500518	1.3573206892	0.2642663489
С	-0.7332935259	-0.4798243062	0.1283886534
С	-1.4978334219	0.5681492250	-0.4288694189
С	-1.4149950509	-1.5996677195	0.6303861876

С	-2.8878441892	0.4253296527	-0.5459001659
С	-2.7975756656	-1.7260070677	0.5323831996
Η	-0.8403389688	-2.3993099080	1.1031928667
С	-3.5348544113	-0.7170772766	-0.0863854932
Η	-3.4651972423	1.2393289417	-0.9927448298
Η	-3.2950465621	-2.6122456542	0.9311214333
Η	-4.6189308271	-0.8050555481	-0.1870588358
С	1.1170899054	2.0115553544	0.7065841514
Η	1.1855876679	2.0526397101	1.8071021791
С	-0.2798809176	2.4961845491	0.2881857746
Η	-0.9609957137	2.4696919839	1.1595424725
Ν	-0.8624261945	1.7541211397	-0.8266384967
Η	-1.5026971623	2.3457644053	-1.3456342712
Η	-0.2077731408	3.5505779616	-0.0137648289
Η	1.8646825725	2.7313380422	0.3432156666

2Ax-TS3

С	1.6250515187	0.6668179536	-0.0798381080
С	0.7684724132	-0.4644280353	0.0161788832
С	1.4287810974	-1.7171403658	0.0622283606
С	2.8060214918	-1.8753425200	0.0289040700
С	3.6270742924	-0.7562851505	-0.0562703830
С	3.0197518578	0.4873749789	-0.1056020959
Η	0.8578500696	-2.6382437132	0.1175360815
Η	3.2303190550	-2.8808531246	0.0685601225
Η	4.7146661143	-0.8484481424	-0.0823318913
Η	3.6469447016	1.3803151902	-0.1703928092
С	-0.7521199351	-0.4734487060	0.0387095389
С	-1.6284581309	0.6477873893	-0.0813829858
С	-1.4050392864	-1.7271468635	0.1374566170
С	-3.0251689412	0.4390899885	-0.1908609280
С	-2.7740302582	-1.9186244816	0.0529063670
Η	-0.8195717842	-2.6290397567	0.2852848615
С	-3.6016585923	-0.8126040338	-0.1391768997
Η	-3.6613046433	1.3215149166	-0.3026506893
Η	-3.1866451180	-2.9258310864	0.1320116217
Η	-4.6848534584	-0.9224992825	-0.2247785243
С	1.1944000846	2.1113345787	-0.1721213417
Η	2.0162528300	2.7364731479	0.2070943421
С	-0.0750300467	2.4619360839	0.5737630299
Η	-0.0218005725	2.0835696949	1.6135917574
Ν	-1.2387190840	1.9698002521	-0.1138042173
Η	-2.0200026525	2.6110846799	-0.1184576073
Η	-0.1676755774	3.5549230242	0.6334497488
Н	1.0522965548	2.3924393832	-1.2289389212

9. NMR spectra of new compounds

¹H NMR (400 MHz, CDCl₃) of **9A**:

¹H NMR (400 MHz, CDCl₃) of **10B**:

13C NMR (100 MHz, CDCl₃) of **10B**

¹H NMR (400 MHz, CDCl₃) of **10C**:

^{13}C NMR (100 MHz, CDCl₃) of 10C

¹H NMR (400 MHz, CDCl₃) of **10D**:

¹³C NMR (100 MHz, CDCl₃) of **10D**

¹⁹F NMR (377 MHz, CDCl₃) of **10D**:

¹H NMR (400 MHz, CDCl₃) of **10E**:

¹H NMR (400 MHz, CDCl₃) of **10F**:

¹H NMR (400 MHz, CDCl₃) of **1Aa**:

13C NMR (100 MHz, CDCl₃) of 1Aa

¹H NMR (400 MHz, CDCl₃) of 1Ab

13C NMR (100 MHz, CDCl₃) of 1Ab

¹H NMR (400 MHz, CDCl₃) of **1Ac**:

¹³C NMR (100 MHz, CDCl₃) of **1Ac**:

¹H NMR (400 MHz, CDCl₃) of **1Ad**

13C NMR (100 MHz, CDCl₃) of 1Ad

¹H NMR (400 MHz, CDCl₃) of **1Ae**:

¹³C NMR (100 MHz, CDCl₃) of **1Ae**

¹H NMR (400 MHz, CDCl₃) of **1Af**:

13C NMR (100 MHz, CDCl₃) of 1Af

¹H NMR (400 MHz, CDCl₃) of 1Ag

 ^{13}C NMR (100 MHz, CDCl₃) of 1Ag

¹H NMR (400 MHz, CDCl₃) of **1Ah**

¹⁹F NMR (377 MHz, CDCl₃) of 1Ah

¹H NMR (400 MHz, CDCl₃) of **1Ai**:

13C NMR (100 MHz, CDCl₃) of 1Ai

¹⁹F NMR (377 MHz, CDCl₃) of **1Ai**:

¹H NMR (400 MHz, CDCl₃) of **1**Aj:

¹H NMR (400 MHz, CDCl₃) of **1Ak**:

13C NMR (100 MHz, CDCl₃) of 1Ak

¹H NMR (400 MHz, CDCl₃) of 1Al

13C NMR (100 MHz, CDCl₃) of 1Al

¹H NMR (400 MHz, CDCl₃) of **1Am**:

13C NMR (100 MHz, CDCl₃) of 1Am

¹⁹F NMR (400 MHz, CDCl₃) of 1Am:

¹H NMR (400 MHz, CDCl₃) of 1An:

13C NMR (100 MHz, CDCl3) of 1An

¹H NMR (400 MHz, CDCl₃) of **1Ao**

¹³C NMR (100 MHz, CDCl₃) of **1Ao**

¹H NMR (400 MHz, CDCl₃) of **1Ap**:

¹H NMR (400 MHz, CDCl₃) of **1Aq**:

¹H NMR (400 MHz, CDCl₃) of **1Ar**

¹H NMR (400 MHz, CDCl₃) of **1As**:

¹³C NMR (100 MHz, CDCl₃) of 1As

¹H NMR (400 MHz, CDCl₃) of **1At**:

.

. . . . 110 100 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **1Au**:

^1H NMR (400 MHz, CDCl₃) of 1Av

 ^{13}C NMR (100 MHz, CDCl₃) of 1Av

13C NMR (100 MHz, CDCl₃) of 1Ba

¹H NMR (400 MHz, CDCl₃) of **1Ca**:

. . . .

100 90 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) of **1Da**:

¹³C NMR (100 MHz, CDCl₃) of **1Da**

¹⁹F NMR (400 MHz, CDCl₃) of **1Da**

¹H NMR (400 MHz, CDCl₃) of **1Ea**:

¹³C NMR (100 MHz, CDCl₃) of **1Ea**

¹H NMR (400 MHz, CDCl₃) of **1Fa**:

13C NMR (100 MHz, CDCl₃) of 1Fa

¹H NMR (400 MHz, CDCl₃) of 2Aa:

¹³C NMR (100 MHz, CDCl₃) of 2Aa:

Racemic sample of 2Aa: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Aa:

¹H NMR (400 MHz, CDCl₃) of **2Ab**:

¹³C NMR (100 MHz, CDCl₃) of **2Ab**:

Racemic sample of 2Ab: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ab:

¹H NMR (400 MHz, CDCl₃) of **2Ac**:

¹³C NMR (100 MHz, CDCl₃) of **2Ac**:

Racemic sample of 2Ac: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ac:

¹H NMR (400 MHz, CDCl₃) of 2Ad:

¹³C NMR (100 MHz, CDCl₃) of **2Ad**:

Racemic sample of 2Ad: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ac:

¹H NMR (400 MHz, CDCl₃) of **2Ae**:

13C NMR (100 MHz, CDCl₃) of 2Ae:

Racemic sample of 2Ae: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ae:

¹H NMR (400 MHz, CDCl₃) of **2Af**:

¹³C NMR (100 MHz, CDCl₃) of **2Af**:

Racemic sample of 2Af: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Af:

¹H NMR (400 MHz, CDCl₃) of **2Ag**:

¹³C NMR (100 MHz, CDCl₃) of **2Ag**:

Racemic sample of 2Ag: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ag:

¹H NMR (400 MHz, CDCl₃) of 2Ah:

¹³C NMR (100 MHz, CDCl₃) of **2Ah**:

¹⁹F NMR (377 MHz, CDCl₃) of 2Ah:

Racemic sample of 2Ah: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ah:

¹H NMR (400 MHz, CDCl₃) of 2Ai:

¹³C NMR (100 MHz, CDCl₃) of 2Ai:

¹⁹F NMR (377 MHz, CDCl₃) of 2Ai:

Racemic sample of 2Ai: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ai:

¹H NMR (400 MHz, CDCl₃) of 2Aj:

¹³C NMR (100 MHz, CDCl₃) of **2Aj**:

Racemic sample of 2Aj: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Aj:

¹H NMR (400 MHz, CDCl₃) of **2Ak**:

¹³C NMR (100 MHz, CDCl₃) of **2Ak**:

Racemic sample of 2Ak: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ak:

¹H NMR (400 MHz, CDCl₃) of 2AI:

Racemic sample of 2Al: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Al:

¹H NMR (400 MHz, CDCl₃) of **2Am**:

.

f1 (ppm)

¹⁹F NMR (377 MHz, CDCl₃) of 2Am:

Racemic sample of 2Am: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Am:

¹H NMR (400 MHz, CDCl₃) of **2An**:

¹³C NMR (100 MHz, CDCl₃) of **2An**:

Racemic sample of 2An: IB column, *n*-Hex/*i*-PrOH 98:2, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2An:

¹H NMR (400 MHz, CDCl₃) of **2Ao**:

¹³C NMR (100 MHz, CDCl₃) of **2Ao**:

Racemic sample of 2Ao: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ao:

¹H NMR (400 MHz, CDCl₃) of **2Ap**:

Racemic sample of 2Ap: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ap:

¹H NMR (400 MHz, CDCl₃) of **2Aq**:

13C NMR (100 MHz, CDCl₃) of 2Aq:

Racemic sample of 2Aq: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Aq:

¹H NMR (400 MHz, CDCl₃) of 2Ar:

Racemic sample of 2Ar: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Ar:

¹H NMR (400 MHz, CDCl₃) of **2As**:

Racemic sample of 2As: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2As:

¹H NMR (400 MHz, CDCl₃) of 2At:

¹³C NMR (100 MHz, CDCl₃) of 2At:

Racemic sample of 2At: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2At:

¹H NMR (400 MHz, CDCl₃) of 2Au:

, 100 f1 (ppm) . 180 . 170 . 150 . 140 . 130 **Racemic sample of 2Au:** IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Au:

¹H NMR (400 MHz, CDCl₃) of **2Av**:

13C NMR (100 MHz, CDCl₃) of 2Av:

Racemic sample of 2Av: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-2Av:

Enantioenriched sample of (*R_a*,6*S*,7*R*)-2Aw:

¹H NMR (400 MHz, CDCl₃) of **2Ba**:

13C NMR (100 MHz, CDCl3) of 2Ba:

Racemic sample of 2Ba: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 2Ba:

¹H NMR (400 MHz, CDCl₃) of 2Ca:

Racemic sample of 2Ca: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

9.718 6902172

51.68 452973

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 2Ca:

PDA 233.7 nm

¹H NMR (400 MHz, CDCl₃) of **2Da**:

¹³C NMR (100 MHz, CDCl₃) of **2Da**:

Racemic sample of 2Da: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 2Da:

¹H NMR (400 MHz, CDCl₃) of 2Ea:

100 90 f1 (ppm)

Racemic sample of 2Ea: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 2Ea:

¹H NMR (400 MHz, CDCl₃) of **2Fa**:

Racemic sample of 2Fa: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 2Fa:

¹H NMR (400 MHz, CDCl₃) of 3Fa:

¹³C NMR (100 MHz, CDCl₃) of 3Fa:

Racemic sample of 3Fa: OJ-H column, *n*-Hex/*i*-PrOH 98:2, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)- 3Fa:

¹H NMR (400 MHz, CDCl₃) of 4Aa:

11B NMR (160 MHz, CDCl3) of 4Aa

Racemic sample of 4Aa: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-4Aa:

¹H NMR (400 MHz, CDCl₃) of **4Ab**:

¹³C NMR (100 MHz, CDCl₃) of **4Ab**:

11B NMR (160 MHz, CDCl3) of 4Ab

Racemic sample of 4Ab: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-4Ab:

¹H NMR (400 MHz, CDCl₃) of **4Af**:

13C NMR (100 MHz, CDCl₃) of 4Af:

11B NMR (160 MHz, CDCl3) of 4Af

Racemic sample of 4Aa: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-4Af:

¹H NMR (400 MHz, CDCl₃) of 4Ah:

13C NMR (100 MHz, CDCl₃) of 4Ah:

 ^{11}B NMR (160 MHz, CDCl₃) of 4Ah

Racemic sample of 4Ah: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (Sa,6S,7R)-4Ah:

2

PDA 235.0 nm

2981086

6.295

98.73 364880

¹H NMR (400 MHz, CDCl₃) of 4Aj:

¹³C NMR (100 MHz, CDCl₃) of **4Aj**:

11B NMR (160 MHz, CDCl₃) of 4Aj

Racemic sample of 4Aj: IB column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-4Aj:

¹H NMR (400 MHz, CDCl₃) of 4At:

11B NMR (160 MHz, CDCl3) of 4At

Racemic sample of 4At: IA column, *n*-Hex/*i*-PrOH 95:5, T = 30 °C, F = 1 mL/min

Enantioenriched sample of (*Sa*,6*S*,7*R*)-4At:

¹H NMR (400 MHz, CDCl₃) of **5**:

13C NMR (100 MHz, CDCl₃) of 5:

¹H NMR (400 MHz, CDCl₃) of **6**:

13C NMR (100 MHz, CDCl₃) of 6:

¹H NMR (400 MHz, CDCl₃) of **7**:

¹³C NMR (100 MHz, CDCl₃) of **7**:

¹H NMR (400 MHz, CDCl₃) of 8:

¹³C NMR (100 MHz, CDCl₃) of 8:

References

¹. X.-J. Dai; O. D. Engl; T. Leon, S.L. Buchwald, *Angew. Chem., Int. Ed.*, 2019, **58**, 3407–3411.

⁵. H.M. Wang, H. Zhou, Q.-S., Xu, T.-S. Liu, C.-L. Zhuang, M.-H. Shen, H.-D. Xu, Org. Lett., 2018, 20, 1777–1780.

^{6.} C. W. Lim, O. Tissot, A. Mattison, M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes, A. J. Blacker, *Org. Process Res. Dev.*, 2003, **7**, 379–384.

⁷. H.-M. Wang, H. Zhou, Q.-S. Xu, T.-S. Liu, C.-L. Zhuang, M.-H. Shen, H.-D. Xu, *Org. Lett.*, 2018, **20**, 1777–1780.

⁸ Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian, Inc., Wallingford CT,: 2009.

⁹ Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10, 6615-6620.

¹⁰ (a) Weigend, F. *Phys. Chem. Chem. Phys.* **2006**, *8*, 227-236. (b) Weigend, F.; Ahlrichs, R. *Phys. Chem. Chem. Phys.* **2005**, *7*, 3297-3305.

¹¹ Walker, M.;Harvey, A. J. A.; Sen, A.; Desssent, C. E. H. J. Phys. Chem. **2013**, 117, 12590-12600.

¹² (a) Woon, D. E.; Dunning Jr., T. H. *J. Chem. Phys.* **1993**, *98*, 1358-1371. (b) Dunning Jr., T. H. *J. Chem. Phys.* **1989**, *90*, 1007-1023

¹³ (a) J. Tomasi and M. Persico, *Chem. Rev.*, 1994, **94**, 2027-2094. (b) M. Cossi, G. Scalmani, N. Rega and V. Barone, *J. Chem. Phys.*, 2002, **117**, 43-54.

¹⁴ (a) Schlegel, H. B. *J. Comput. Chem.* **1982**, *3*, 214218. (b) Schlegel, H. B. In *Modern Electronic Structure Theory*; Yarkony, D. R., Ed.; World Scientific Publishing: Singapore, 1994.

¹⁵ (a) Johnson, E. R.; Keinan, S.; Mori-Sanchez, P.; Contreras-Garcia, J.; Cohen, A. J.; Yang, W. J. Am. Chem. Soc. **2010**, 132, 6498-6506. (b) Lane, J. R.; Contreras-Garcia, J.; Piquemal, J.-P.; Miller, B. J.; Kjaergaard, H. G. J. Chem. Theory. Comput. **2013**, 9, 3263-3266.

¹⁶ Boto, R. A.; Peccati, F.; Laplaza, R.; Quan, C.; Carbone, A.; Piquemal, J.-P.; Maday, Y.; Contreras-García, J. *J. Chem. Theory Comput.* **2020**, *16*, 4150-4158.

¹⁷ Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. **1996**, *14*, 33-38.

¹⁸ C. Y. Legault, *Université de Sherbrooke*, 2009, <u>http://www.cylview.org</u>.

². S. W. Youn, S.J. Pastine, D. Sames, *Org. Lett.*, 2004, **6**, 581.

³. H. Lavrard, F. Popowycz, *Eur. J. Org. Chem.*, 2017, 600-608.

⁴. A. Abengozar, D. Sucunza, P. García-García, D. Sampedro, A. Perez-Redondo, J.J., Vaquero, *J. Org. Chem.*, 2019, **84**, 7113-7122.