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CuOs XTA – Long-Time Kinetic Traces

In order to determine the Cu and Os excited-state lifetimes in CuOs, kinetics traces were collected with 3 
ps step size out to 150 ps time delay. Kinetics are shown in Figure S14. The Cu K-edge kinetics were fit 
with an exponential convoluted with a Gaussian, along with an additional Gaussian function (to model the 
sub-ps kinetics) and a shelf. A 49 ps lifetime is obtained for the excited-state decay, with a long-lived shelf. 
For Os, a bi-exponential convoluted Gaussian function is used; the first time constant models the <2 ps 
components shown in Figure 5a, while the second has a lifetime >>150 ps time range used in the 
measurement. This is consistent with the OTA measurements that expected a ~400 ps excited-state decay 
for CuOs at both 500 nm and 625 nm excitation.

CuOs XTA – 500 nm vs. 625 nm Excitation

XTA spectra of CuOs were measured with two excitation wavelengths: 500 nm, where a mixture of Cu and 
Os MLCT are excited, and 625 nm, where predominantly Os MLCT is excited. The XTA spectra at the Cu K- 
and Os LIII-edges are shown in Figure S13. The same general difference signal observed with 500 nm 
excitation is observed here. Although absorption at 625 nm mostly originates from Os MLCT absorption, 
a small tail from the Cu MLCT band allows direct excitation of the Cu MLCT state. Kinetics traces were 
measured following 625 nm excitation, using the same incident energies used in Figure 5a. The kinetics at 
the two excitation wavelengths are plotted together in Figure S18. The Os kinetics at 625 nm overlays 
quite well with the 500 nm kinetics trace, showing that the MLCT dynamics are consistent between the 
two pump wavelengths. It is more difficult to judge the Cu MLCT kinetics because those obtained with the 
625 nm excitation because the difference signal is much weaker, but the rise and decay of the kinetics 
appears consistent with the 500 nm excitation.

XTA Experimental Time Resolution

The time resolution of the XTA measurement, similar to optical measurements, is dependent on both 
temporal width of both the X-ray and optical laser pulses. However, due to the non-stochastic nature of 
the generation of the X-ray pulses, a timing tool is used to correct the arrival time for the X-rays, and the 
bin size chosen will further impact the time resolution. Additionally, the group velocity dispersion 
mismatch of optical and X-ray pulses through liquid media will introduce further temporal broadening. 
Assuming ~50 fs FWHM optical and X-ray pulses, 50 fs timing tool bin size, and 100 μm liquid jet, our 
predicted experimental time resolution is

 = 132 fs          [1]𝐼𝑅𝐹 =  (502) +  (502) +  (502) +  (1002)

To gain an experimental estimate of the instrument response, the derivative of the kinetics traces at the 
Cu K- and Os LIII-edges was fit to a Gaussian response, shown in Figure S2. The fits yielded an IRF of ~120 
fs at the Cu K-edge and ~140 fs at the Os LIII-edge, showing that our effective time resolution is consistent 
with our predicted value. This is consistent with the method used by Katayama et al.1

Cu K-edge XTA Residual Fitting

As discussed in the main text, oscillations are observed in the XTA residuals, assigned as coherent 
vibrational wavepackets. These are modelled using a sum of damped sine waves:



         [1]
∑𝐴𝑖 ∗  𝑠𝑖𝑛(𝜋 ∗

(𝑡 ‒ 𝑡𝑐,𝑖)
𝑤𝑖

) ∗ 𝑒𝑥𝑝(
(𝑡 ‒ 𝑡𝑐,𝑖)

𝜏𝑖
)

where damped sine waves with dephasing time τi and period wi are centered in time at tc,I with amplitude 
Ai. Data in the main text are fit to a single component, with the total fitting results shown in Table S3. The 
weak amplitude of the oscillations makes it difficult to reliably extract a dephasing time; however, the 40 
cm-1 frequency is consistent both with the ISRS measurements, and the rise time in the XTA (half the 
period of the 40 cm-1 mode.)

CuOs Computational Results – Molecular Orbitals and Vibrational Modes

DFT calculations were used to generate molecular orbitals (Mos) for CuOs, as well as determine the nature 
of the low frequency vibrational modes that appear in the ISRS/XTA. Computational details are shown in 
Experimental. MOs for the HOMO, LUMO, and LUMO + 1 are shown in Figure S16. The HOMO is largely 
localized on the Os center and the surrounding ligands, while the LUMO and LUMO + 1 are largely 
delocalized across the tpphz bridging ligand. This demonstrates that upon photoexcitation, electron 
density will ultimately be distributed across the bridging ligand in close proximity to both the Cu and Os 
centers. 

ISRS measurements of CuOs revealed vibrational modes of ~50, 240 and 430 cm-1. To assign these 
vibrations, ground-state Raman modes were calculated for CuOs, with representative modes shown in 
Figure S17 - Figure S19. The 430 cm-1 vibrational mode likely corresponds to breathing modes on the tpphz 
ligand at the Cu and Os centers, as shown in the 431 and 443 cm-1 modes, respectively. There are two 
calculated modes that could likely represent the experimental 240 cm-1 mode. At 232 cm-1, distortions are 
seen in the rotation of the Cu HETPHEN center which involves modulating π-stacking interactions between 
the tpphz ligand and the mesityl group at the phenanthroline 2,9 positions. At 238 cm-1, a large breathing 
mode in the tpphz ligand is observed, causing expansion of the tpphz ligands while altering the Os-N and 
Cu-N bond distances. Finally, the 60 cm-1 vibrational mode detected by ISRS likely corresponds to an 
additional tpphz breathing mode (calculated at 58 cm-1), similar to that at 238 cm-1. Importantly, both the 
experimental 50 and 240 cm-1 modes can be ascribed to breathing modes in the tpphz ligands, which serve 
to cause alterations in the metal-ligand bonding distance, which should cause the vibrational modes to 
manifest in the XTA kinetics. The 240 cm-1 is difficult to observe via XTA, however, as the period of this 
vibrational mode is approaching the time-resolution of that measurement, and the 50 fs step size used 
would cause such an oscillatory feature to be under-sampled.

Cyclic Voltammetry

Cyclic voltammetry was used to determine the redox potentials for the Cu and Os centers in CuOs and 
OsOs, with the results plotted in Figure S15. CuOs and OsOs have nearly identical potentials for the 
Os+2/Os+3 couple around 900 mV. CuOs exhibits a Cu+1/Cu+2 couple around 540 mV. Therefore, CuOs 
should have ~360 mV driving force for hole transfer from the Os to the Cu. This is similar to the driving 
force for hole transfer observed in the previously published CuH2-CuMe2,2 which is also a tpphz-bridged 
complex. Relevant redox potentials for CuOs, OsOs, and related complexes are shown in Table S2.

XTA – Laser Power Titration



Laser power scans were performed to determine the linear/non-linear optical absorption regimes, shown 
in Figure S1. Difference signal is linear in pulse energy until ~15 μJ; 14.37 μJ pulse energy used in 
experiments, giving fluence of ~80 mJ/cm2.



Figure S1: Power titration curve measured at the Cu K-edge with 500 nm excitation. X-ray energy is 
8.986 keV
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Figure S2: Derivative of Cu K-edge (top) and Os LIII-edge (bottom) kinetics traces. Derivative was fit to 
Gaussian to estimate experimental time resolution.



Figure S3: Top: UV-Vis of CuOs compared with the sum of Cu and Os spectra. Bottom: UV-Vis of OsOs 
compared with the sum of two Os spectra.



Figure S4: OTA spectra of CuOs following 500 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves. These are consistent with the data in 
Figure 2A, but include the additional fit impurity component (as τ5)



Figure S5: OTA spectra of CuOs following 625 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves



Figure S6: OTA spectra of OsOs following 625 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves



Figure S7: OTA spectra of Os following 625 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves



Figure S8: nsOTA spectra of Os following 625 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves



Figure S9: OTA spectra of Os following 500 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves



Figure S10: nsOTA spectra of Os following 500 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves 



Figure S11: ISRS spectra for CuOs following 540 nm excitation. a) Individual spectra; b) decay-associated 
spectra; c) individual kinetics traces; d) amplitude decay curves 



Figure S12: a) ISRS data before subtraction of multiexponential fit (described in Figure S11.) Residuals 
are shown as 2D plot (b) and in individual wavelength cuts (c)



Figure S13: Cu K-edge (top) and Os LIII-edge (bottom) XTA spectra following 625 nm excitation. Spectra 
collected at 13 ps and 5 ps time delays, respectively.



Figure S14: XTA kinetics traces at the Cu K (top) and Os LIII (bottom) edges, following the excited-state 
decay at each metal center. Cu exhibits an excited-state decay time of ~49 ps (with a small, long-lived 
component), while the Os exhibits a >>150 ps excited-state decay, consistent with the CuOs OTA 
measurements. 



Figure S15: Cyclic voltammogram for CuOs in acetonitrile 



Figure S16: Orbital Diagrams of the HOMO, LUMO, and LUMO + 1 for CuOs



Figure S17: Calculated 58 cm-1 vibrational mode



Figure S18: Calculated vibrational modes at 232 cm-1 and 238 cm-1



Figure S19: Calculated 431 cm-1 and 443 cm-1 vibrational modes
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Figure S20: Kinetics at Cu K-edge (top) and Os LIII-edge (bottom) at 500 nm excitation (black) and 625 nm 
excitation (red)



Figure S21: ISRS for CuOs (a) following 640 nm excitation. Solvent response (b) is subtracted from a) to 
generate c); data were scaled based on intensity of DAS1 in a) and b), and fit with same model used for 
540 nm ISRS. d) ISRS spectrum. e) FT Raman spectra at selected wavelength from d)



afixed time constants

Table S2: Fitting parameters for Cu K-edge residuals
A1 -0.0014
τ1 (fs) 1268
w1 (fs) 429
tc,1 (fs) -290

Table S3: Cyclic Voltammagram Potentials For M1M2-tpphz Complexes (vs. SCE)
Sample Cu+1/Cu+2 (mV) Mn+/Mn+1 (mV)
CuOs 540 900
OsOs - 899
CuH2-CuMe2

2 570 880
CuMe2-Ru2 890 1340

Table S1: Fitting Parameters for ISRS measurements of CuOs 
540 nm excitation 640 nm excitation

τ1 (ps) 0.088 0.09
τ2 (ps) 0.625 0.45
τ3 (ps)a 2.6 2.7
τ4 (ps)a 1000 1000



Table 4: CuOs DFT Coordinates (in Angstroms)
Atom X Y Z
C -4.78446 -1.09383 2.43088
H -5.77156 -1.3432 2.80062
C -3.63776 -1.40113 3.16166
H -3.73858 -1.90518 4.11503
C -2.39523 -1.05758 2.66249
H -1.4842 -1.28012 3.20564
C -2.32419 -0.40612 1.42565
C -3.51504 -0.13689 0.74987
C -3.51342 0.53273 -0.52993
C -4.77642 1.35644 -2.28464
H -5.76065 1.50042 -2.7134
C -3.62855 1.79505 -2.94294
H -3.72657 2.29345 -3.89956
C -2.38809 1.5847 -2.37027
H -1.47562 1.90771 -2.85765
C -2.32092 0.9375 -1.13104
C -1.06403 0.66147 -0.44221
C -1.06551 0.00229 0.80984
C 1.21196 0.09794 0.86428
N 0.07549 1.03288 -1.02069
C 1.21365 0.75805 -0.3897
C 2.47493 1.11446 -1.0278
C 2.52855 1.7679 -2.26652
H 1.60608 2.04733 -2.76284
C 3.76034 2.03831 -2.82813
H 3.84573 2.54647 -3.78111
C 4.91223 1.62852 -2.15166
H 5.89662 1.80409 -2.57185
N 4.87562 0.99982 -0.9814
C 3.67964 0.76178 -0.4106
C 3.67785 0.09775 0.89401
C 4.90536 -0.80192 2.61955
H 5.8898 -1.01808 3.02202
C 3.75044 -1.16214 3.3196
H 3.83312 -1.66382 4.27631
C 2.52045 -0.8698 2.76621
H 1.5962 -1.13429 3.26726
C 2.47115 -0.22038 1.52543
C 10.6628 -0.35938 0.16035
C 9.26833 -0.47665 0.0454
C 8.67422 -1.75502 -0.27057
C 7.48267 -4.13084 -0.87488
H 6.96669 -5.05339 -1.11688
C 8.85455 -4.09457 -0.7601



H 9.44544 -4.99319 -0.91047
C 9.49829 -2.87804 -0.44817
C 10.92279 -2.73289 -0.31199
H 11.54768 -3.60987 -0.44986
C 11.48011 -1.52863 -0.02274
H 12.55683 -1.42829 0.07314
N 8.43323 0.57227 0.2043
C 8.92451 1.78102 0.45229
C 10.31037 1.99066 0.58649
H 10.68099 2.98802 0.79464
C 11.17311 0.92461 0.44802
H 12.24481 1.06586 0.55056
C 7.89575 2.85825 0.5321
C 7.16516 3.03671 1.71456
C 6.0933 3.93073 1.70934
H 5.51966 4.07085 2.62307
C 5.73198 4.63368 0.56067
C 6.48802 4.44799 -0.59842
H 6.21909 4.99115 -1.50205
C 7.5664 3.56664 -0.63423
C 7.50359 2.24989 2.95666
H 6.89564 2.57469 3.80512
H 8.55901 2.36099 3.22902
H 7.32113 1.18028 2.79984
C 8.33653 3.34754 -1.91379
H 8.32779 2.29045 -2.20619
H 9.38735 3.63923 -1.80618
H 7.90726 3.93005 -2.73344
C 4.53407 5.54974 0.55151
H 3.69686 5.08304 0.01858
H 4.75807 6.49294 0.04267
H 4.19731 5.77881 1.56667
C -8.58024 -0.22882 2.07505
H -8.36948 0.82468 2.20983
C -9.56862 -0.86628 2.80503
H -10.1486 -0.30208 3.52514
C -9.79122 -2.2223 2.59257
H -10.5572 -2.75319 3.1462
C -9.01639 -2.89127 1.65567
H -9.1779 -3.94631 1.47554
C -8.03781 -2.19562 0.95254
C -7.16015 -2.80703 -0.06204
C -7.19389 -4.15381 -0.41016
H -7.88909 -4.8293 0.07157
C -6.32592 -4.63109 -1.382
H -6.34227 -5.67837 -1.66124



C -5.44056 -3.74583 -1.98702
H -4.74507 -4.07192 -2.75074
C -5.45481 -2.41729 -1.59881
H -4.78747 -1.69172 -2.04678
C -8.43403 -0.02714 -2.20902
H -8.06873 -1.03998 -2.32274
C -9.44647 0.46931 -3.01174
H -9.88806 -0.16696 -3.76904
C -9.87214 1.77942 -2.82194
H -10.6634 2.2004 -3.43159
C -9.26802 2.54547 -1.83508
H -9.58971 3.56594 -1.67151
C -8.25419 1.99051 -1.06024
C -7.54569 2.71306 0.01183
C -7.78797 4.04168 0.34685
H -8.52822 4.61883 -0.19219
C -7.06977 4.62888 1.37878
H -7.24906 5.6634 1.64843
C -6.12153 3.8696 2.05565
H -5.53759 4.28404 2.86839
C -5.92425 2.55341 1.67528
H -5.19971 1.92406 2.17664
N -4.73417 -0.47205 1.24732
N -4.72959 0.73138 -1.10249
N 0.07233 -0.26454 1.44596
N 4.87379 -0.19055 1.44067
N 7.32987 -1.80121 -0.38861
N -7.82415 -0.87224 1.16761
N -6.29389 -1.94828 -0.6579
N -7.84317 0.71088 -1.25227
N -6.61706 1.97847 0.67588
Cu 6.43692 0.10357 0.05722
C 6.7349 -2.95042 -0.68004
C 5.24551 -2.91866 -0.78067
C 4.63612 -2.32217 -1.89621
C 3.24372 -2.25081 -1.94071
H 2.76798 -1.78334 -2.80041
C 2.44904 -2.75812 -0.91228
C 3.08113 -3.33786 0.18776
H 2.47766 -3.72046 1.0081
C 4.47037 -3.43004 0.2715
C 5.11682 -4.05926 1.48166
H 4.38875 -4.19059 2.28666
H 5.93827 -3.44472 1.86497
H 5.53546 -5.04406 1.24332
C 5.46207 -1.77718 -3.03582



H 6.15414 -1.00202 -2.6912
H 4.82152 -1.34142 -3.80731
H 6.06608 -2.5662 -3.49905
C 0.94381 -2.71322 -1.00273
H 0.60141 -1.84114 -1.56975
H 0.48462 -2.68414 -0.00971
H 0.56061 -3.60375 -1.515
Os -6.34331 0.02317 0.01349
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