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S1. Machine learning methods

In this study, three traditional PCM methods, namely random forest (RF), support 

vector machine (SVM), and feed-forward neural network (FNN) were developed to 

predict binding affinities. All traditional PCM methods and graph-based methods 

shared the same training, validation, and test sets. For traditional PCM methods, we set 

a list of hyper-parameters to optimize and reported the results under the best hyper-

parameters. Note that hyper-parameters were only optimized in the datasets using the 

random split setting, and keep fixed for all other split settings to save computation cost. 

S1.1 Input representation
In the present study, we chose the most common features for PCM models: 

extended connectivity fingerprints (ECFP)1,2 and protein sequence composition 

descriptors (PSC)3 for compound and protein representation. The molecular 

fingerprints and protein descriptors were calculated using RDkit4 and propy3. For each 

drug-target pair, we obtained a 8676-dimensional feature vector by combining ECFP 

and PSC. The input feature vectors were standardized by removing the mean and 

scaling to unit variance. Since the combined feature vectors were sparse, that contained 

only a small portion of no-zero values, we used a decision tree regressor to select 

important features. The decision tree regressor was implemented using a python library 

sklearn5 with default parameters. 

S1.2 Random forest

RF is a popular algorithm based on ensemble learning ideas for both classification 

and regression problems that operate by constructing a strong classifier/regressor by an 

ensemble of many decision trees6. For RF, the following hyper-parameters were 

optimized using Optuna7: n_estimators {50, 100, 150, 200}, max_depth {2 to 8}, 

min_samples_leaf {1, 3, 5, 10}, min_impurity_decrease {0 to 0.01}.

S1.3 Support vector machine
SVM8 is one of the most popular machine learning methods, and it can be used for 

classification and regression. In this work, the SVM was implemented using a python 
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library sklearn5. The radial basis function was used as the kernel and the following 

hyper-parameters were optimized using Optuna7: C {0.1 to 10} and gamma values {0 

to 0.5}. 

S1.4 Feed-forward neural network
A feedforward neural network is an artificial neural network wherein the 

information moves from the input nodes, through the different nodes, and to the output 

nodes in only one direction. In this work, the FNN was implemented using a python 

library PyTorch9. For FNN, the following hyper-parameters were optimized using 

Optuna7: number_of_hidden_units {512, 1024, 2048}, number_of_hidden_layers {2, 

3, 4}, dropout {0, 0.1, 0.2, 0.5}
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S2. Supplemental Tables
Table S1. The features used in regression tasks (Davis, KIBA, Metz, and ToxCast)

Name Description Dim

Atom type [H, C, N, O, F, Cl, S, Br, I] (one-hot) 9

Atomic Num. The atomic number (integer) 1

Acceptor Accepts electrons [0/1] (binary) 1

Donor Donates electrons [0/1](binary) 1

Aromatic In an aromatic system [0/1](binary) 1

Hybridization [sp, sp2, sp3] (one hot) 3

Hydrogens Number of connected hydrogens (integer) 1

Formal charge Formal charge of the atom (integer) 1

Explicit valence Explicit valence of the atom (integer) 1

Implicit valence Implicit valence of the atom (integer) 1

Explicit Hs. Number of implicit Hs the atom is bound to (integer) 1

Radical electrons Number of radical electrons for the atom (integer) 1

Table S2. The features used in classification tasks (Human and C.elegans )

Name Description Dim

Atom type
[C, N, O, S, F, Si, P, Cl, Br, Mg, Na, Ca, Fe, As, Al, I, B, V, 
K, Tl, Yb,Sb, Sn, Ag, Pd, Co, Se, Ti, Zn, H,Li, Ge, Cu, Au, 
Ni, Cd, In, Mn, Zr, Cr, Pt, Hg, Pb, other]a (one-hot)

44

Degree
Number of covalent bonds [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] (one-
hot)

11

Hydrogens
Number of connected hydrogens [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
(one-hot)

11

Implicit valence
Implicit valence of the atom [[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 
(one-hot)]

11

Hybridization [sp, sp2, sp3, sp3d, sp3d2, other] (one-hot) 6

Aromatic Whether the atom is part of an aromatic system [0/1] (binary) 1

Chirality Whether the atom is a chiral center [0/1] (binary) 1

Chirality type [R, S] (one-hot) 2
a The Human and C.elegans datasets contained compounds with various types of atoms.
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Table S3. Search range and selected values of hyperparameters for MGraphDTA

Hyperparameter Search range Selected value

Number of multiscale blocks [1, 2, 3, 4, 5] 3

Number of graph convolutional layers 
in each multiscale block

[2, 3, 4, 5, 6, 7, 8, 9, 10] 8

The hidden channel number of each 
graph convolutional layer

[32, 64, 96, 128, 160] 64

The brach number of MCNN [2, 3, 4, 5] 3
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S3. Supplemental Figures

Figure S1. Distribution of the binding affinities (labels) in the Davis, filtered Davis, KIBA, Metz, 
Human, C.elegans, and ToxCast datasets used in our experiments.

Figure S2. Distribution of the lengths of the SMILES strings in the Davis, filtered Davis, KIBA, 
Metz, Human, C.elegans, and ToxCast datasets

Figure S3. Distribution of the lengths of the protein sequences in the Davis, filtered Davis, KIBA, 
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Metz, Human, C.elegans, and ToxCast datasets

Figure S4. Additional examples of Grad-AAM (MGNN).
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Figure S5. Additional examples of Grad-AAM (MGNN).


