Supporting information for

Pair Distribution Function and ⁷¹Ga NMR Study of Aqueous Ga³⁺ Complexes

Ida Gjerlevsen Nielsen,¹ Sanna Sommer,¹ Ann-Christin Dippel,² Jørgen Skibsted,³ Bo Brummerstedt Iversen^{1,*}

¹Center for Materials Crystallography, Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark

²Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany

³Department of Chemistry and iNANO, Aarhus University, 8000 Aarhus C, Denmark

*Corresponding author: <u>bo@chem.au.dk</u>

Contents

Data	2
Anion signals and ligands	3
Octahedral region	4
Polyoxogallate region	10
GaOOH region	26
Tetrahedral region	29
Variations across salt	
Concentration	

Data

Figure S1. PDFs of the pH series for the three salts a) $Ga_2(SO_4)_3$, b) $Ga(NO_3)_3$ and c) $GaCl_3$. The hydrolysis ratio R denotes the calculated ratio of Ga^{3+} and OH⁻ ions in the solutions.

Anion signals and ligands

To identify the signals of the gallium structures, we first need to account for the signal of the anions, which are present in the solutions. It is clearly observed that some structural signals change with increasing hydrolysis ratio, R, while other signals are present independent of R (Figure S1). The latter originates form the anions: For the sulfate S-O and O-O distances are observed at 1.48 and 2.40 Å,¹ while for nitrate N-O and O-O distances are observed at 1.21 and 2.19 Å.² The chloride anion have previously been reported to induce a broad signal around 3.2 Å, which is ascribed to a Cl-O coordination.^{3,4} A comparison showing similar features in the present data and simulated PDFs of the anion signals are presented in Figure S2.

The sulfate and nitrate correlations are narrow and well defined compared the Cl-O signal. This correspond well with the known nature of the anion nature: The bonds in nitrate and sulfate are covalent and thus strong and well defined, while the Cl-O bonding is a weaker solvent coordination, where the distances vary more thus giving a broader signal in the PDF.

Considering the coordination species for all the we must note that Raman spectroscopy has previously shown that anions coordinates to gallium in both first and second shell depending on the concentration and that sulfate bonds stronger than nitrate.^{5,6} As first shell coordination of nitrate is at a level of less than 5% at concentrations similar to the ones used here, these effects are expected to give only minor changes in the PDF, they will not be treated further here. Thus, the modelled oxygen is here referred to as water or solvent as this is by far the main component of the coordination shells. Furthermore as the scattering power of hydrogen is very low, we will only use oxygen atoms as a descriptor for the ligated water.

The calculated anion contributions (Figure S2b) was included with refinement of a relative scale factor.

Figure S2. Comparison of a) the experimental PDFs of $Ga_2(SO_4)_3$, $Ga(NO_3)_3$ and $GaCl_3$ with R = 0 to b) the calculated PDFs of the anions SO_4^{2-} , NO_3^{-} and Cl^- .

Octahedral region

Figure S3. PDFs the three salts with R = 0 fitted with: a) Monomer model with 8 solvent oxygen with refined positions and a box restraint of 0.2 and b) Dimer with refined positions and box restraint of 0.9. c) shows the improvement obtained when relaxing the dimer model relative to the published structure by Sommer *et al.*

Figure S4. PDFs the three salts with R = 0 fitted with: a) Monomer model with 8 solvent directly from crystal structure⁷ b) Dimer as in previous report⁸, c) Dimer with refined positions and box restraint of 0.2.

	Ga(NO ₃) ₃		GaCl ₃		$Ga_2(SO_4)_3$	
	R _w	Zoom	R _w		R _w	
Monomer – zoom	0.460	1.001	0.495	1.003	0.543	1.003
Monomer – 0.2	0.284	-	0.208	-	0.322	-
restraint						
Dimer – zoom	0.499	0.998	0.426	1.000	0.550	0.999
Dimer – 0.2	0.421	-	0.290	-	0.481	-
restraint						
Dimer – 0.9	0.412	-	0.278	-	0.458	-
restraint						

Table S1. R_w and zoom values for the 5 models refined against the R = 0 PDFs of the three salts.

Table S2. Refined models against the three salts. Atomic positions for the original clusters and the refinedpositionsforthethreesalts.

Original cluster from $Ga(NO_3)_3 \bullet 9 H_2O^7$					Refi	ined GaCl ₃	R = 0 restra	int 0.2	
Ga 6	.980 0.000	0.000	575 2		Ga	6.980000	0.000000	0.000000	
O 6.	149 -0.849	-1.529			Ο	6.209954	-1.050757	-1.452360	
O 8.	803 -2.731	-2.272			Ο	8.800810	-2.796772	-2.144862	
O 3.	961 -2.345	-1.420			Ο	4.025947	-2.491609	-1.229306	
O 6.	357 -3.648	1.409			0	6.193931	-3.447107	1.381111	
O 8.	282 -2.094	3.190			Ο	8.269910	-2.295188	3.391767	
O 5.	846 -1.013	1.213			Ο	6.046921	-1.196219	1.228562	
O 8.	287 -1.438	0.066			0	8.194466	-1.560837	-0.040743	
O 7.	603 3.648 -	-1.409			0	7.804901	3.851368	-1.299531	
O 5.	679 2.094 -	-3.190			Ο	5.478878	2.155416	-3.218800	
O 8.	115 1.013 -	-1.213			0	7.912718	1.215080	-1.213113	
O 5.	674 1.438 -	-0.066			Ο	5.644019	1.596245	-0.084558	
O 7.	812 0.849	1.529			0	7.611003	0.999746	1.465206	
O 5.	158 2.731	2.272			0	5.256305	2.931406	2.119614	
O 10	0.000 2.345	1.420			Ο	9.875138	2.311488	1.219114	
Refi	ned Ga(NC	$(D_3)_3 R = 0 re$	straint 0.2		Refi	ined Ga ₂ (SC	$(D_4)_3 R = 0 re$	estraint 0.2	
Ga	6.980000	0.000000	0.000000		Ga	6.980000	0.000000	0.000000	
0	6.084957	-1.050019	-1.516551		0	6.103749	-0.901627	-1.512109	
Ō	9.003598	-2.530215	-2.185884		Ō	8.849986	-2.684628	-2.248716	
Ō	3.980794	-2.322978	-1.218328		Ō	3.885423	-2.313478	-1.482246	
0	6.334670	-3.437772	1.202755		0	6.332507	-3.573180	1.209005	
0	8.349012	-1.966551	3.379313		0	8.446494	-2.248218	3.283072	
0	5.978980	-0.986473	1.134986		0	5.799251	-1.020233	1.249759	
0	8.268634	-1.390398	-0.119191		0	8.268396	-1.397679	-0.041388	
0	7.733324	3.478653	-1.203604		0	7.402800	3.487235	-1.211105	
0	5.879065	2.019369	-3.257977		0	5.878805	2.255116	-3.060234	
0	8.080812	1.025998	-1.066177		0	8.260430	1.029715	-1.312777	
0	5.666777	1.386968	-0.059847		0	5.630186	1.397840	0.017680	
0	7.734186	0.966007	1.388094		0	7.837193	0.846398	1.520427	
0	5.142330	2.576249	2.066845		0	5.090730	2.735466	2.187150	
0	9.797840	2.321711	1.214471		0	10.019824	2.324459	1.494240	

Di	imer	from previ	ous report ⁸	
Ga	4 47	10 -7145	-3 099	
Ga	4.02	2 -3.334	-4.100	
0	3.887	-1.663	-4.973	
Ō	3.006	-4.266	-5.470	
0	6.292	-6.653	-3.486	
0	2.522	-3.260	-2.912	
0	4.508	-7.032	-1.176	
0	4.874	-9.028	-3.096	
0	4.355	-7.220	-5.074	
0	5.627	-3.529	-5.265	
0	2.571	-7.598	-2.765	
0	4.002	-5.182	-3.270	
0	5.171	-2.535	-2.697	
R	lefine	d Ga(NO ₃	$_{3} R = 0 res$	traint 0.2
G	la	4.470000	-7.145000	-3.099000
G	ha	3.770564	-3.422481	-4.153727
C)	3.758969	-1.733549	-5.099608
C)	2.869799	-4.304055	-5.593109
C)	6.440868	-6.458519	-3.508959
C)	2.476610	-3.470450	-2.710498
C)	4.307493	-6.845642	-1.017345
C) (4.672023	-9.119847	-2.922847
C) (4.377541	-7.371817	-5.014824
C)	5.422995	-3.732183	-5.169929
C)	2.569133	-7.385725	-2.969619
C) (4.146575	-5.256542	-3.472989
C) (4.970766	-2.745843	-2.810253
R	lefine	ed GaCl ₃ R	= 0 restrain	nt 0.2
G	ia	4.470000	-7.145000	-3.099000
G	ia	3.864831	-3.308056	-3.827746
C) (4.041315	-1.673639	-4.993074
C)	2.874804	-4.062893	-5.319943
C)	6.255545	-6.646659	-3.649613
C)	2.321865	-3.474466	-2.708864
C) (4.307943	-6.822615	-1.258286
C)	5.076503	-9.027310	-3.296904
C) (4.154691	-7.263633	-5.036578
C)	5.487027	-3.732943	-5.185660
C)	2.514813	-7.388291	-2.968847
C) (4.071409	-5.261987	-3.426872
C)	5.372455	-2.571735	-2.857417

Refined $Ga_2(SO_4)_3 R = 0$ restraint 0.2							
Ga	4.470000	-7.145000	-3.099000				
Ga	3.741583	-3.469782	-4.191678				
0	3.855508	-1.482860	-4.833796				
0	2.827030	-4.441589	-5.626131				
0	6.303367	-6.597956	-3.285973				
0	2.468997	-3.460670	-2.711946				
0	4.700494	-7.232266	-1.130462				
0	4.900906	-9.024661	-3.076732				
0	4.394950	-7.341393	-5.060303				
0	5.426457	-3.729501	-5.137306				
0	2.593433	-7.396991	-2.965280				
0	4.124843	-5.261045	-3.457397				
0	4.995785	-2.736616	-2.740147				

Refi	ned Ga(NO	$(y_3)_3 R = 0 res$	straint 0.9
Ga	4.470000	-7.145000	-3.099000
Ga	4.001099	-3.385240	-4.099745
Ο	4.325116	-1.408365	-4.708365
0	2.938586	-4.370206	-5.648345
0	6.350631	-6.744695	-3.429840
Ο	2.538986	-3.482725	-2.852740
0	4.622221	-6.577633	-1.270138
Ο	5.050666	-8.997806	-2.999539
0	4.227352	-7.352531	-4.998583
0	5.516174	-3.806462	-5.221819
Ο	2.467505	-6.982115	-3.004395
Ο	4.120963	-5.244789	-3.472752
0	5.207346	-2.980647	-2.652112

Refi	ned GaCl ₃ l	R = 0 restrai	nt 0.9
Ga	4.470000	-7.145000	-3.099000
Ga	3.986390	-3.329662	-3.977388
0	3.983127	-1.684615	-5.038929
0	3.023181	-4.123459	-5.480867
0	6.311253	-6.637163	-3.423430
0	2.367171	-3.361542	-3.006062
0	4.168803	-6.540971	-1.204609
0	5.363590	-9.091462	-3.330297
0	4.372463	-7.303968	-5.039922
0	5.544770	-3.744827	-5.160775
0	2.516266	-7.107568	-3.220449
0	4.145982	-5.227489	-3.512942

-2.521367

-2.891243

0

5.334033

~~		01101000	
0	3.838158	-1.699896	-5.139726
0	2.874622	-4.207509	-5.389773
0	6.311314	-6.592271	-2.756102
0	2.541243	-3.466906	-2.781238
0	3.948497	-6.614080	-1.312174
0	5.250416	-9.071670	-2.948337
0	4.834727	-7.261012	-4.981244
0	5.558376	-3.838892	-5.151391
0	2.473715	-7.082997	-3.577512
0	4.258972	-5.242399	-3.455478
0	5.233675	-3.017075	-2.577154

Table S3. Extracted values of the EXAFS refinements. Structures were used as extracted for the PDF refinements. EXAFS data measured was on 1 M $Ga(NO_3)_3$ in water previously reported. For details on the data see Sommer et al.⁸

	R _w	Amplitude	Energy shift	Expansion	Ss1
Monomer – zoom	0.0290	1.206	9.289	0.00929	0.00595
Monomer – 0.2	0.0243	1.275	6.689	0.0559	0.00321
restraint					
Dimer – zoom	0.0118	1.0002	3.151	-0.00059	0.00311
					0.01878
Dimer – 0.2 restraint	0.0298	1.1654	5.185	0.007678	0.00373
					0.01 (F)
Dimer – 0.9 restraint	0.0306	1.1352	5.074	0.006864	0.00361
					0.01 (F)

Figure S5. Refinement of EXAFS with the monomer model after refinement with zoomscale

Figure S6. Refinement of EXAFS with of the monomer model after refinement with the 0.2 restraint

Figure S7. Refinement of EXAFS with the dimer model after refinement with zoomscale

Figure S8. Refinement of EXAFS with the dimer model after refinement with the 0.2 restraint

Figure S9. Refinement of EXAFS with the dimer model after refinement with the 0.9 restraint

Polyoxogallate region

Short	Full structural nomenclautre	
name		
Ga ₈	$[Ga_8(heidi)_4(\mu_3-OH)_2(\mu_2-OH)_8(H_2O)_4(C_5H_5N)_2]^{2+}$	9
	$(H_3 heidi = N(CH_2COOH)_2(CH_2CH_2OH)$	
Ga ₉	$[(MesGaO)_9] (Mes = Me_3C_6H_2)$	10
Ga ₁₂	$[Ga_{12}TBu_{12}(\mu_3-O)_8(\mu-O)_2(\mu-OH)_4]$	11
planar Ga ₁₃	$[Ga_{13}(\mu_3-OH)_6(\mu_2-OH)_{18}(H_2O)_{24}]$	9,12-13
Ga ₃₀	$[Ga_{30}(\mu_4-O)_{12}(\mu_3-O)_4(\mu_3-OH)_4(\mu_2-OH)_{42}(H_2O)_{16}]^{12+}$	14
Ga ₃₂	$[Ga_{32}(\mu_4-O)_{12}(\mu_3-O)_8(\mu_2-O)_7(\mu_2-OH)_{39}(H_2O)_{20}]^{3+}$	12

Table S4. Nomenclature for reported polyoxogallate structures

To identify the structure observed in this study, the atomic positions of all the previously reported gallium clusters and several known polyoxometalate clusters, such as the Keggin, Waugh, Wells-Dawson and Silverton clusters were extracted from single crystal data (ISCD database). For the latter, the metal atoms were substituted with gallium. For the relevant clusters, an additional motif was constructed where the central metal atom was removed. This have previously been reported to match data for Keggin ions for tungsten.¹⁵ All these structures were refined against the PDF of the Ga(NO₃)₃ solution with R=2, as an example of the measured PDFs. The structures were allowed to expand or contract isotropically, to account for the elemental substitution as well as the motif being in a solvent and not in a crystal. A list of all the structures, modifications and parameters from the refinements are reported in Table S5.

#	Structure	Motif	Original	Rw	Zoomscale	Ref
1	Ga ₈			0.5424	0.9890	9
2	Ga ₉			0.6659	1.028	10
3	Ga ₁₂			0.7736	1.053	11
4	Ga ₁₃	Flat		0.6043	0.9806	9
	_			0.6577	0.9866	12
				0.6667	0.9852	13
5	Ga ₃₀	Keggin-like		0.3658	1.002	14
6	Ga ₃₂	Keggin-like		0.3776	1.001	12
7	Ga ₁₃	α-Keggin	Al ₁₃ modified from #9	0.5594	1.034	
8	Ga ₁₃	β-Keggin	Al ₁₃ modified from #9	0.4566	1.034	
9	Ga ₁₃	γ-Keggin	Al ₁₃	0.3702	1.034	16
10	Ga ₁₃	δ-Keggin	Al ₁₃	0.3992	1.032	17
11	Ga ₁₃	ε-Keggin	Al ₁₃	0.6191	1.036	18
12	Ga ₁₂	α-Keggin, no center	Al ₁₂ modified from #7	0.7198	1.039	
13	Ga ₁₂	β-Keggin, no center	Al ₁₂ modified from #8	0.6497	1.027	
14	Ga ₁₂	γ-Keggin, no center	Al ₁₂ modified from #9	0.5793	1.028	
15	Ga ₁₂	δ-Keggin, no center	Al_{12} modified from #10	0.6125	1.030	
16	Ga ₁₂	ε-Keggin, no center	Al_{12} modified from #11	0.7659	1.039	
17	Ga ₂₀	Wells-Dawson	P_2W_{18}	0.8685	0.9947	19
18	Ga ₁₈	Wells-Dawson, no center	W_{18} modified from #17	0.8992	0.9423	
19	Ga ₁₃	Silverton	CeMo ₁₂	0.8876	0.9030	20
20	Ga ₁₂	Silverton, no center	Mo ₁₂ modified from #19	0.8871	0.9097	
21	Ga ₁₀	Waugh	CoMo ₉	0.8872	0.9414	21
22	Ga ₉	Waugh, no center	Mo ₉ modified from #21	0.8983	0.9290	
23	Ga ₇	Anderson	GaMo ₆	0.8245	1.039	22
24	Ga ₆	Anderson, no center	Mo ₆ modified from #23	0.8863	1.043	
25	Ga ₆	Lindqvist	Ta ₆	0.8000	1.018	23

Table S5. Extracted polyoxometalate clusters, their substitution and refinement parameters for a simple refinement with expansion/contraction.

Figure S10. Fits of the most common polyoxometalate clusters to the $Ga(NO_3)_3 R = 2$ data. The refinements includes the nitrate ion to describe the peaks at 1.6 and 2.2 Å. a) Structures #1-4, b) Structures #12-16. c) Structures #17, 19, 21 23 and 25 and d) Structures #18, 20, 22 and 24.

Table S6. Atomic positions of the five Ga_{13} Keggin isomers, the Ga_{30} and Ga_{32} structures used for refinements.

α-0	7 812										
Ga	-1661810	371 24 563	7	0	-18 193 13	684 22 65	9	0	-14 604 7	552 22 321	
Ga	-19.612 10	683 23307	,	0	-10.175 15	401 21.62	3	0	-13,800, 8	800 24 548	
Ga	-18 446 13	064 2443	5	Ő	-18 756 12	296 26 10	2	Ő	-13 461 12	107 26 43	'n
Ga	-17.450 12	074 21.904	5	Ő	-19.839 10	126 25.06	3	Ő	-14.660 9	971 27.250)
Ga	-17.805 7.	.678 23.146		Ō	-19.027 9.	013 22.741	-	Ō	-15.760 12	.048 27.440	5
Ga	-17.717 11	.254 27.447	7	Ō	-16.708 10	.491 21.23	2	Ō	-19.151 14	.712 25.010	5
Ga	-14.154 11	.898 23.138	3	0	-15.791 12	.722 22.42	8	0	-17.353 12	.907 20.179	9
Ga	-15.605 9.	.045 21.751		0	-16.646 13	.607 24.77	3	0	-21.382 10	.181 22.830	0
Ga	-18.919 8.	.898 26.222		0	-16.766 10	.128 28.57	6	0	-13.055 12	.702 21.77	7
Ga	-16.277 8.	.695 27.532		0	-19.304 10	.203 27.54	8	0	-14.943 8.	932 19.948	
Ga	-14.901 13	011 25.744	1	0	-18.354 7.	634 24.921	<u> </u>	0	-19.081 6.	390 22.540	
Ga	-13.577 10	0.411 25.620)	0	-16.999 7.	810 21.405	5	0	-18.276 12	.341 28.93	0
Ga	-15.096 7.	.468 24.146		0	-14.251 10	.162 22.29	1	О	-11.990 9.	876 26.507	
0	-17.808 11.	.378 23.707		0	-12.707 11	.125 24.07	7	0	-14.075 6.	043 24.634	
0	-17.253 9.9	930 26.156		0	-13.975 13	.486 24.17	1	0	-20.505 7.	898 26.564	
0	-16.335 8.9	918 23.574		0	-17.967 7.	845 27.532	2	0	-15.688 7.	631 28.950	
0	-15.095 11.	.263 24.766		0	-15.852 7.	601 25.891		0	-14.427 14	.620 26.67	
0	-20.150 12.	.421 23.8/2		0	-16.546 6.	365 23.572	2				
R (30										
р - ч	Ja ₁₃	2 (20	20 725	0	9.791	-5.207	31.737	0	13.206	-6.169	25.640
Ga C-	12.1//	-3.039	28.735	0	8.636	-3.048	30.787	0	12.051	-4.074	24.632
Ga	10.240	-5.927	30.029	0	8.581	-5.336	29.374	0	13.562	-2.416	26.090
Ga	8 017	-5.410	28 047	0	12.082	-3.935	31.981	0	13.663	-0.082	27.454
Ga	0.917	-3.331	26.947	0	11.947	-6.238	30.702	0	15.117	-2.044	28.709
Ga	13 961	-3 609	31 400	0	10.677	-6.567	28.342	0	14.058	-1.597	30.767
Ga	10 874	-0.732	29 233	0	9.255	-4.029	27.169	0	9.940	-2.882	33.195
Ga	10.633	-4 001	25 872	0	9.458	-1.798	28.662	О	7.082	-3.167	28.544
Ga	13.725	-6.142	29.977	0	10.843	-1.642	30.914	0	9.649	-7.669	30.498
Ga	15.565	-4.056	28.980	0	15.674	-3.430	30.706	0	9.702	0.645	29.895
Ga	13.804	-0.727	29.165	0	14.158	-5.480	31.704	0	9.305	-3.768	24.500
Ga	12.311	-1.148	26.690	0	13.337	-6.636	28.184	0	11.710	-8.250	26.604
Ga	13.529	-4.293	25.792	0	10.579	-5.888	25.721	0	14.589	-3.199	33.170
0	10.693	-4.046	29.629	0	10.897	-2.194	26.071	0	12.453	-0.172	25.071
0	13.586	-4.217	29.631	0	11.006	-0.008	27.492	0	14.850	-4.319	24.541
0	12.073	-4.431	27.142	0	12.362	0.321	29.782	0	14.103	-7.953	30.436
0	12.295	-1.880	28.519	0	15.558	-5.895	29.421	0	17.410	-4.086	28.682
				0	14.776	-4.593	27.203	0	15.131	0.579	29.626
γ-($\Im a_{13}$										
Ġa	1.644	-31.017	4.741	0	0.576	-32.102	0.897	0	2.481	-27.052	5.530
Ga	3.632	-31.985	2.339	0	2.984	-30.905	0.945	0	0.806	-28.694	6.818
Ga	1.011	-33.185	2.394	0	1.602	-34.158	3.866	0	-1.639	-29.851	6.830
Ga	1.283	-30.431	1.547	0	4.005	-33.072	3.803	0	0.293	-31.571	7.751
Ga	4.531	-29.490	4.637	0	4.472	-30.510	3.090	0	-0.441	-33.272	6.292
Ga	2.996	-33.928	5.115	0	1.963	-28.830	2.240	О	0.268	-34.732	1.616
Ga	-1.391	-30.953	3.654	0	-0.385	-30.145	2.311	0	0.800	-29.568	-0.097
Ga	2.173	-27.905	3.877	0	-0.661	-32.644	3.143	0	5.267	-32.436	1.485
Ga	3.740	-31.839	7.007	0	1.899	-34.660	6.422	0	-2.914	-31.201	2.503
Ga	1.141	-33.220	7.280	0	4.381	-33.504	6.354	0	1.978	-26.239	2.934
Ga	-1.161	-31.591	6.505	0	4.762	-31.002	5.694	О	6.397	-29.212	4.327
Ga	-0.609	-28.872	5.594	0	4.056	-27.896	3.672	0	3.776	-35.646	4.747
Ga	2.696	-28.547	6.669	0	0.381	-28.016	4.266	0	-1.402	-27.262	6.205
0	1.842	-31.557	3.057	0	-1.922	-29.242	4.258	0	2.951	-27.657	8.235
0	2.236	-32.269	5.839	0	-2.375	-31.757	5.071	0	5.140	-31.657	8.288
0	2.583	-29.514	4.932	0	2.659	-32.765	8.313	0	0.419	-34.210	8.691
0	-0.070	-30.696	5.081	0	2.947	-30.236	(.)1/	0	-2.401	-32.252	7.812
U	2./10	-33.4/2	1.5/9	0	4.34/	-28.4/3	0.205				

δG	a										
0-0	a ₁₃	1 5 4 2	20.920	0	0 220	0.541	10 141	0	12 (11	2.0(1	15 270
Ga	9.446	-1.543	-20.830	0	8.329	0.541	-18.141	0	12.611	-3.901	-15.279
Ga	15./34	-3.865	-16.//3	0	13.353	-0.951	-18.797	0	14.382	-2.1/4	-16.330
Ga	15.091	-1.585	-17.947	0	10.272	1.68/	-16.839	0	9.436	2.764	-19.232
Ga	11.515	-5.154	-18.216	0	12.649	-0.176	-21.464	0	10.577	-5.136	-16.609
Ga	10.945	-3.389	-15.949	0	8.545	-1.878	-19.198	0	6.875	-1.474	-17.013
Ga	12.092	-1.883	-22.004	О	11.662	-3.671	-22.309	0	13.972	2.670	-17.535
Ga	14.232	-0.545	-20.560	0	11.881	1.486	-18.937	0	15.117	0.203	-17.425
Ga	10.082	1.054	-18.638	0	13.839	-2.163	-21.390	0	11.068	0.836	-14.299
Ga	13 503	0.886	-18 125	0	9 049	-0.345	-15 832	0	11 275	-7.087	-18 452
Ga	10.688	-4 202	-20.809	Ő	10.611	-0.655	-17 853	õ	10.097	-5 799	-21 710
Ga	8 726	1 200	17 469	0	10.011	-0.055	10 159	0	10.350	1 2 1 2	22.1.710
Ga C-	0.720	-1.200	-17.400	0	14.270	-4.009	-19.136	0	10.339	-1.515	-22.409
Ga	11./0/	-1.820	-18.051	0	14.570	1.151	-19.780	0	1.110	-0.900	-21.089
Ga	10.880	0.074	-16.053	0	9.112	-3.346	-21.305	0	15.190	-4.737	-15.847
0	11.145	-2.271	-20.252	0	15.724	-1.206	-19.653	0	10.044	-3.799	-14.269
0	11.348	-1.618	-15.397	0	13.196	-5.466	-17.502	0	15.401	0.079	-21.969
0	9.298	-2.806	-16.708	О	12.625	0.562	-16.492	0	12.714	-1.683	-23.817
0	11.989	-3.276	-17.603	0	14.717	-3.368	-18.263	0	16.925	-1.881	-17.361
0	9.823	0.251	-20.335	0	12.162	-4.975	-19.960				
s G	a										
6-U	a13	2.072	2 (10	0	17 212	2 1 1 7	2 (02	0	16 720	4.525	0 5 4 7
Ga	-18.015	-2.072	-3.619	0	-17.312	3.117	-3.602	0	-16.738	-4.535	-0.547
Ga	-21.249	-1.621	-2.816	0	-16.683	-6.965	-4.903	0	-20.265	-3.460	-5.834
Ga	-20.700	-1.664	-5.702	0	-20.554	2.480	-4.200	0	-21.451	0.240	-2.987
Ga	-19.965	0.654	-4.076	0	-18.189	-5.189	-6.342	0	-16.208	-4.852	-3.189
Ga	-17.212	1.185	-3.513	О	-14.565	0.092	-0.174	0	-15.476	-2.252	-1.273
Ga	-15.730	-0.463	-1.650	0	-18.109	-3.074	-2.077	0	-14.834	-2.417	-4.535
Ga	-15,103	-0.556	-4.496	0	-15.722	1.188	-4.588	0	-20.220	-1.459	-1.240
Ga	-17 032	-2 714	-0.401	Ő	-16 208	-2 691	1 355	Õ	-14 268	-2 854	-7 261
Ga	-17 690	-5.034	-2.032	Ő	-21 263	-3 673	0.170	Ő	-16 281	1 312	-1 879
Ga	-17.090	2 2 2 9	-2.032	0	18 281	-5.075	4.020	0	-10.281	2.050	-1.879
Ga	-19.790	-3.200	-1.008	0	-10.301	1.013	-4.930	0	-10.079	-2.930	0.420
Ga	-1/.104	-5.076	-4.828	0	-22.929	-1./24	-1.88/	0	-18.848	0.944	-2.618
Ga	-15.808	-2.835	-6.090	0	-18.479	-5.441	-3.649	0	-19.657	-1.338	-3.972
Ga	-18.621	-3.392	-6.702	0	-20.930	-3.385	-2.450	0	-19.294	-5.090	-1.080
0	-17.505	-3.133	-5.009	0	-15.888	-1.002	-6.101	0	-16.792	-0.759	-3.354
0	-13.429	-0.120	-5.367	0	-14.321	-0.318	-2.833	0	-19.196	-1.639	-6.773
0	-21.987	-1.692	-7.138	О	-15.619	-4.662	-5.829	0	-22.050	-1.953	-4.463
0	-19.402	-3.881	-8.383	0	-17.209	-0.848	-0.549	0	-17.294	-6.888	-1.720
0	-16.990	-3.075	-7.468	0	-20.864	0.179	-5.618				
Ga ₃₀	0										
C	12 550	10 20 4	5.050	0	12.047	12 202	Z 10 Z	0	15.025	10.461	10 575
Ga	13.550	-10.294	5.850	0	13.847	-13.383	7.127	0	15.825	-10.461	10.575
Ga	10.164	-11.487	6.094	0	11.940	-15.252	6.206	0	9.990	-16.272	8.034
Ga	12.032	-11.890	3.179	0	14.300	-14.209	4.442	0	14.798	-7.440	11.126
Ga	12.791	-13.682	5.513	0	12.171	-6.819	10.523	0	7.009	-15.209	4.277
Ga	13.646	-7.601	9.500	0	10.331	-8.804	9.660	Ga	9.182	-8.568	6.626
Ga	7.744	-13.647	5.220	0	8.593	-13.006	3.616	Ga	12.568	-7.375	6.382
Ga	15.850	-8.074	6.960	0	11.633	-13.551	4.012	Ga	10.701	-6.972	9.297
Ga	16.871	-10.825	6.342	0	9.277	-14.669	5.841	Ga	9.941	-5.180	6.963
Ga	12 563	-12 558	8 3 2 0	õ	11 829	-14 280	8 816	Ga	9.086	-11 260	2 976
Ga	11.570	0 753	8 561	0	16.514	6 405	7 671	Ga	14 088	5 215	7.256
Ga C-	11.379	-9.755	0.301	0	(92(-0.403	(010	Ua C-	(992	-3.213	7.230
Ga	14.937	-12.452	3./88	0	0.830	-14.002	6.910	Ga	0.882	-10.788	5.510
Ga	7.571	-12.604	8.010	0	13.623	-12.549	2.292	Ga	5.861	-8.036	6.134
Ga	16.151	-9.134	4.000	0	17.407	-9.181	7.251	Ga	10.170	-6.304	4.156
Ga	14.597	-10.440	9.005	0	16.184	-12.294	5.271	Ga	11.154	-9.108	3.915
Ga	10.505	-14.516	7.327	0	17.669	-10.066	4.738	Ga	7.795	-6.409	8.688
0	10.320	-9.941	7.104	0	15.870	-11.387	7.892	Ga	15.162	-6.258	4.466
0	15.284	-9.631	5.782	0	13.938	-12.185	9.600	Ga	6.581	-9.727	8.476
õ	13 332	-11 797	4 808	Ő	11 237	-11 511	9 275	Ga	8 135	-8 477	3 471
õ	13.002	-10.677	7 617	0	7 062	_10 082	8 070	Ga	12 227	_1 2/5	5 1/0
0	12.073	-10.077	2 1 1 2	0	15 202	-10.703	2 1 15	Ga	12.22/	-+.J+J 0 0 1 1	5 272
0	12.100	-7.900	0.112	0	13.392	-10.009	J.14J	0	12.412	-0.921	3.372
0	11.330	-12./83	0./04	U C	9.202	-13.522	8.404	0	/.448	-9.230	0.694
U	8.381	-11.984	6.227	0	6.636	-13.376	9.601	0	9.400	-/.065	/.668
Û	13.082	-9.506	9.974	0	18.521	-11.788	6.836	0	9.639	-8.185	4.859
0	16.612	-7.505	5.112	0	16.320	-13.345	2.680	0	10.566	-10.962	4.364
0	14.932	-8.626	8.513	0	17.281	-8.646	2.448	0	11.402	-6.079	5.772

0 0	14.351 9.650	-6.878 -9.356	6.249 2.502	0 0	13.455 10.903	-4.192 -4.581	6.635 3.660	0 0	14.770 7.340	-7.878 -8.193	3.497 9.331
0	6.120	-11.357	7.364	0	6.218	-12.457	4.805	0	13.531	-5.339	4.072
0	7.801	-10.236	3.963	0	15.896	-4.860	5.566	0	16.097	-5.485	2.875
0	8.885	-5.478	5.349	0	9.109	-6.313	10.184	0	4.211	-7.073	5.640
0	10.792	-3.610	6.270	0	5.325	-9.680	5.225	0	6.412	-5.516	9.796
0	8.433	-4.652	8.034	0	6.549	-6.567	7.205	0	5.451	-10.216	10.028
0	10.561	-12.042	1.953	0	5.063	-8.796	7.738	0	6.907	-8.400	1.901
0	12.401	-10.058	2.816	0	6.862	-7.475	4.584	0	12.742	-2.590	4.442
0	14.139	-5.855	8.860	0	8.794	-6.677	2.876	0	7.934	-11.422	1.350
0	11.099	-5.311	8.464	0	11.495	-7.351	3.201	0	15.723	-3.652	8.199
Gaa	2										
Ga	18.640	9.625	-6.403	0	23.474	12.077	-6.027	Ga	18.316	13.598	-1.498
Ga	21.560	7.794	-5.859	Ga	19.735	10.942	-1.143	Ga	20.476	15.525	-5.751
Ga	20.578	9.557	-3.631	Ga	18.050	8.544	-2.043	Ga	23.535	14.025	-5.462
Ga	21.188	8.895	-8.659	0	21.323	10.186	-1.936	Ga	22.714	15.604	-3.033
Ga	19.027	6.968	-4.406	0	18.034	11.834	-0.720	Ga	21.962	17.406	-8.275
Ga	15.968	8.468	-4.694	0	19.082	9.238	-0.521	0	20.372	18.019	-9.329
Ga	16.789	6.889	-7.124	0	16.484	9.565	-1.483	0	23.590	16.956	-7.198
Ga	17.541	5.087	-1.882	0	14.702	8.339	-3.239	0	23.098	17.997	-9.782
0	19.131	4.474	-0.828	0	18.872	10.299	-2.898	0	22.231	19.314	-7.632
0	15.913	5.537	-2.958	Ga	24.065	12.983	-2.529	0	23.153	17.416	-2.431
0	16.405	4.495	-0.374	Ga	21.183	13.512	-0.516	0	16.184	15.237	-3.736
0	17.272	3.179	-2.524	0	21.968	14.187	1.156	0	17.327	13.845	-5.931
0	16.351	5.076	-7.725	0	25.679	12.547	-1.471	0	18.715	15.167	-2.581
0	23.319	7.256	-6.421	0	20.718	11.750	0.320	0	18.721	16.212	-5.186
0	22.176	8.648	-4.225	0	22.833	12.678	-1.092	0	21.165	16.163	-4.043
0	20.788	7.326	-7.576	0	24.274	14.853	-2.175	0	20.846	17.125	-6.769
0	20.782	6.280	-4.971	0	25.070	13.230	-4.284	0	21.892	15.629	-9.010
0	18.338	6.330	-6.113	0	22.527	13.700	-3.721	0	19.365	14.148	0.009
0	18.657	5.368	-3.388	0	20.122	12.732	-2.070	0	16.521	14.215	-1.208
0	17.611	6.864	-1.146	Ga	15.438	9.510	-7.628	0	21.582	15.173	-1.465
0	20.138	8.345	-10.165	Ga	18.320	8.981	-9.640	0	23.799	15.816	-4.702
0	22.982	8.278	-8.948	0	17.535	8.306	-11.312	0	22.002	14.564	-6.411
0	17.921	7.320	-8.691	0	13.825	9.946	-8.685	0	19.660	14.620	-7.378
0	15.704	6.677	-5.454	0	18.785	10.742	-10.477	0	19.724	13.785	-4.891
0	17.501	7.929	-3.746	0	16.670	9.815	-9.065	0	17.454	12.988	-3.261
0	19.843	7.873	-2.778	0	15.229	7.640	-7.982	Ga	17.665	11.283	-3.933
0	19.779	8.708	-5.266	0	14.433	9.263	-5.872	Ga	15.553	13.610	-2.811
0	22.049	9.505	-6.896	0	16.976	8.793	-6.435	Ga	14.490	11.216	-5.212
Ga	21.839	11.210	-6.224	0	19.381	9.761	-8.087	Ga	14.888	10.120	-2.446
Ga	23.950	8.883	-7.346	Ga	19.768	11.551	-9.014	0	13.731	9.667	-0.885
Ga	25.013	11.276	-4.945	Ga	21.454	13.949	-8.114	0	13.877	14.468	-2.248
Ga	24.615	12.373	-7.711	0	18.181	12.307	-8.220	0	12.902	11.773	-6.252
0	25.772	12.826	-9.272	0	21.470	10.659	-9.437	0	15.072	11.943	-1.917
0	25.626	8.025	-7.909	0	20.421	13.255	-9.636	0	15.524	11.310	-6.867
0	26.601	10.720	-3.904	0	23.019	12.928	-8.674	0	14.818	12.948	-4.510
0	24.432	10.550	-8.239	0	24.801	14.154	-6.918	0	13.424	10.703	-3.656
0	23.980	11.183	-3.289	0	20.631	12.194	-7.259	0	18.377	11.289	-5.641
0	24.685	9.545	-5.646	Ga	20.863	12.868	-3.754	0	16.029	10.416	-4.130
0	26.079	11.789	-6.500	Ga	17.943	14.699	-4.297				
0	21.126	11.204	-4.515	Ga	18.925	12.935	-6.526				

Figure S11. Single-pulse ⁷¹Ga NMR spectra (14.09 T, $v_L({}^{71}Ga) = 182.8$ MHz) for the Ga(NO₃)₃ solutions in D₂O at different R-values (R = [OH⁻]/[Ga³⁺]). The spectra were acquired overnight in a 4 mm CP/MAS NMR probe using a 45° excitation pulse ($\gamma B_1/2\pi = 60$ kHz), a relaxation delay of 1 s and typically 65.000 scans. The linebroadening and asymmetric lineshapes observed at increasing R values are tentatively ascribed to residual quadrupolar broadening caused by reduced motional averaging of the second-order quadrupolar interaction for the larger polyoxygallate complexes in solution.

Figure S12. Ratio of tetrahedrally coordinated Ga^{3+} to octahedrally coordinated Ga^{3+} and pH as a function of R-value. (R = [OH⁻]/[Ga³⁺]).

13 $[Ga(OH)(H_2O)_5]^{2+}$ + 19 OH⁻ \rightarrow $[GaO_4Ga_{12}(OH)_{24}(H_2O)_{12}]^{7+}$ + 57 H₂O **Reaction S1**. Formation of Ga₁₃ from octahedral coordinated Ga³⁺

 $32 \ [Ga(OH)(H_2O)_5]^{2+} + 61 \ OH^- \rightarrow [Ga_{32}O_{27}(OH)_{39}(H_2O)_{20}]^{3+} + 167 \ H_2O$

Reaction S2. Formation of Ga₃₂ from octahedral coordinated Ga³⁺

GaOOH region

 $[\text{GaO}_4\text{Ga}_{12}(\text{OH})_{12}(\text{H}_2\text{O})_{24}]^{7+} + 7 \text{ OH}^- \rightarrow 13 \text{ GaOOH} + 21 \text{ H}_2\text{O}$

Reaction S3. Formation of GaOOH from the Ga₁₃

 $[\mathrm{Ga}_{32}\mathrm{O}_{27}(\mathrm{OH})_{39}(\mathrm{H}_2\mathrm{O})_{20}]^{3+} + 3\ \mathrm{OH}^{-} \rightarrow 32\ \mathrm{GaOOH} + 25\ \mathrm{H}_2\mathrm{O}$

Reaction S4. Formation of GaOOH from the Ga₃₂

		#1	#2	#3	#4
	GaOOH ²⁴	Only unit	Unit cell	Unit cell	Unit cell,
		cell	and size	and	atomic
				atomic	positions
				positions	and size
a (Å)	9.7907(8)	9.8384	10.2967	10.0096	9.5144
b (Å)	2.9732(2)	2.9732	2.9904	2.9762	2.9700
c (Å)	4.5171(4)	4.5073	4.1930	4.3215	4.6040
Size (Å)		24 (F)	9.31	24 (F)	10.14
Ga (x)	0.35544(9)	-	-	0.3569	0.3589
Ga (y)	0.25	-	-	-	-
Ga (z)	0.5517(2)	-	-	0.6337	0.5369
O1 (x)	0.1953(6)	-	-	0.1707	0.1587
O1 (y)	0.25	-	-	-	-
O1 (z)	0.3014(13)	-	-	0.5059	0.3812
O2 (x)	0.4447(7)	-	-	0.4560	0.4472
O2 (y)	0.75	-	-	-	-
O2 (z)	0.3030(15)	-	-	0.3985	0.3576
Rw	Ì	0.644	0.497	0.486	0.407

Table S7. Refinement values for the $Ga(NO_3)_3 R = 2.5$ data of single phase GaOOH (Model #1-4)

	GaOOH ²⁴	#	5	#6	5	#	7
		Phase 1	Phase 2	Phase 1	Phase 2	Phase 1	Phase 2
Relative scale		0.1547		0.1547		0.2340	0.7660
a (Å)	9.7907(8)	-	-	9.8040	10.4009	9.7975	10.3356
b (Å)	2.9732(2)	-	-	2.9624	3.0053	2.9705	2.9532
c (Å)	4.5171(4)	-	-	4.5449	4.1320	4.6249	4.1267
Size (Å)		43.77	8.10	43.77	8.10	28.98	10.10
Ga (x)	0.35544(9)	-	-	-	-	0.3579	0.3615
Ga (y)	0.25	-	-	-	-	-	-
Ga (z)	0.5517(2)	-	-	-	-	0.5389	0.6281
O1 (x)	0.1953(6)	-	-	-	-	0.1911	0.1663
O1 (y)	0.25	-	-	-	-	-	-
O1 (z)	0.3014(13)	-	-	-	-	0.2397	0.4170
O2 (x)	0.4447(7)	-	-	-	-	0.4498	0.4294
O2 (y)	0.75	-	-	-	-	-	-
O2 (z)	0.3030(15)	-	-	-	-	0.3642	0.3409
Rw		0.431		0.431		0.307	

Table S8. Refinement values for the $Ga(NO_3)_3 R = 2.5$ data of two phase GaOOH (Model #5-7)

Figure S13. Fits for the $Ga(NO_3)_3 R = 2.5$ data of both single (Model #1-4) and two (Model #5-7) phase GaOOH

Table S9. Refinement values for the $Ga_2(SO_4)_3 R = 2$, $Ga(NO_3)_3 R = 2.5$ and $GaCl_3 R = 3.5$ data using one of the two phase GaOOH models (Model #7).

	GaOOH ²⁴		Phase 1			Phase 2	
		$Ga_2(SO_4)_3$	$Ga(NO_3)_3$	GaCl ₃	$Ga_2(SO_4)_3$	$Ga(NO_3)_3$	GaCl ₃
Relative scale		0.2076	0.2340	0.2689	0.7924	0.7660	0.7311
a (Å)	9.7907(8)	9.5467	9.7975	9.0606	10.3134	10.3356	10.2109
b (Å)	2.9732(2)	2.9785	2.9705	2.9660	2.9917	2.9532	3.0141
c (Å)	4.5171(4)	4.9157	4.6249	5.0321	4.0793	4.1267	4.0695
Size (Å)		24.77	28.98	15.00	10.48	10.10	8.63
Ga (x)	0.35544(9)	0.3610	0.3579	0.3550	0.3615	0.3615	0.3626
Ga (y)	0.25	-	-	-	-	-	-
Ga (z)	0.5517(2)	0.5340	0.5389	0.5887	0.6098	0.6281	0.6098
O1 (x)	0.1953(6)	0.2077	0.1911	0.2008	0.1418	0.1663	0.14218
O1 (y)	0.25	-	-	-	-	-	-
O1 (z)	0.3014(13)	0.2366	0.2397	0.2600	0.4227	0.4170	0.4228
O2 (x)	0.4447(7)	0.4451	0.4498	0.4792	0.4282	0.4294	0.4223
O2 (y)	0.75	-	-	-	-	-	-
O2 (z)	0.3030(15)	0.3905	0.3642	0.4880	0.3575	0.3409	0.3539
Rw		0.346	0.307	0.198			

Figure S14. Fits for the $Ga_2(SO_4)_3 R = 2$, $Ga(NO_3)_3 R = 2.5$ and $GaCl_3 R = 3.5$ data using one of the two phase GaOOH models (Model #7).

Tetrahedral region

Figure S15. PDFs of a tetrahedral monomer with 5 solvent oxygen against the three salts for R = 5 GaCl₃ and R = 4 for Ga(NO₃)₃ and Ga₂(SO₄)₃. a) Only allowing for expansion (zoom) and b) with refinement of atomic positions with a 0.2 box restraint

Table S10. R_w and zoom values for the 5 models refined against the R = 5 PDF for GaCl₃ and R = 4 PDFs for Ga₂(SO₄)₃ and Ga(NO₃)₃.

	Ga(NO ₃) ₃		GaCl ₃		$Ga_2(SO_4)_3$	
	R _w	Zoom	R _w		R _w	
Monomer with solvent	0.338	0.990	0.461	0.994	0.349	0.993
– zoom						
Monomer with solvent	0.304	-	0.408	-	0.298	-
-0.2 restraint						

Table S11. Atomic positions of tetrahedral Ga³⁺ w. water before refinement and after for the three salts

Te	traeder	w 5 wa	ter
Ga	-17.961	13.983	7.025
0	-18.833	12.438	7.554
0	-18.988	14.674	5.624
0	-18.006	15.066	8.539
0	-16.231	13.653	6.477
0	-17.204	13.024	3.029
0	-15.019	14.519	9.158
0	-21.827	14.351	7.707
0	-16.627	10.208	6.966
0	-16.587	17.042	5.238

Refined $GaCl_3 R = 5$

-17.961	13.983	7.0250
-18.9860651	12.6414521	7.76374437
-18.8483033	14.8559552	5.63135611
-18.2113582	14.8558550	8.63808077
-16.2024945	13.5687103	6.59075646
-17.0038053	13.1157143	3.11259912
-14.9521846	14.4133131	9.29631819
-21.9652213	14.5520774	7.50614765
-16.4407038	10.0062085	6.76559037
-16.7880218	17.1523580	5.07256493
	-17.961 -18.9860651 -18.8483033 -18.2113582 -16.2024945 -17.0038053 -14.9521846 -21.9652213 -16.4407038 -16.7880218	-17.96113.983-18.986065112.6414521-18.848303314.8559552-18.211358214.8558550-16.202494513.5687103-17.003805313.1157143-14.952184614.4133131-21.965221314.5520774-16.440703810.0062085-16.788021817.1523580

Tetraeder w 4 water

Ga	-17.961000	13.983000	7.0250000
0	-18.772310	12.436301	7.6027502
0	-18.932119	14.588625	5.5787933
0	-18.163900	15.251935	8.3456078
0	-16.223992	13.817842	6.5121852
0	-17.001872	12.820389	3.1523900
0	-14.986104	14.708796	9.2857210
0	-21.747816	14.541609	7.8904572
0	-16.426752	10.239216	6.7617086

Refi	ned Ga(NO ₃) ₃ H	R = 4	
Ga	-17.961	13.983	7.0250
0	-18.6320495	12.4321524	7.72124069
0	-19.0317877	14.4799483	5.60810299
0	-18.0960154	15.2661820	8.33641513
0	-16.2705853	13.7176293	6.36738061
0	-17.4044607	12.8234939	3.04927358
0	-15.1625696	14.6689081	9.32925885
0	-21.8632746	14.5511646	7.66860968
0	-16.4574265	10.1764707	6.76586685
0	-16.4984546	17.1966839	5.43960742

Refined $Ga_2(SO_4)_3 R = 4$

Ga	-17.961	13.983	7.0250
0	-18.7844008	12.4376520	7.70422553
0	-19.1236843	14.4734798	5.69950631
0	-18.2079226	15.2378032	8.33892556
0	-16.1828183	13.8530614	6.56007628
0	-17.0035452	13.2250166	3.06082036
0	-14.8179377	14.5458978	9.26717148
0	-21.8800558	14.3383660	7.90783095
0	-16.8281314	10.3830731	7.16700825
0	-16.7771345	17.1068126	5.12019507

Tetraeder w 6 water

Ga	-17.961000	13.983000	7.0250000
0	-18.747141	12.362247	7.3531077
0	-18.903238	14.772678	5.6466696
0	-18.108355	15.056229	8.5064081
0	-16.234537	13.728053	6.4710983
0	-17.402262	12.902791	3.1114765
0	-14.859616	14.721096	9.2193889
0	-21.779137	14.552243	7.7915015
0	-16.422515	9.9957186	6.7640412
0	-16.687599	17.032405	5.4389059
0	-19.121371	12.357997	10.607568

Variations across salt

Figure S16. Fit of PDF of $Ga_2(SO_4)_3 R = 1.5$ with structures illustrated together with the fits. a) γ -Ga₁₃ Keggin ion, b), c) and d) cut-outs of γ -Ga₁₃ Keggin ion marked in red in Figure 7c, e) Ga₃₀ ion and f) cut-out of Ga₃₀ ion similar to the cut-out in c).

Figure S17. PDFs of $Ga_2(SO_4)_3$ solutions as function of R (R = [OH-]/[Ga³⁺]). a) Series with 0.25 steps in R and b) series with 0.1 steps in R around the polyoxogallate structure signal all showing a much stronger peak at 3.5 Å compared to the peak at 3.1 Å.

Concentration

Table S12. Measured pH for the concentration series of $Ga_2(SO_4)_3$, $Ga(NO_3)_3$ and $GaCl_3$ with R=0 and R=2 corresponding to the PDF data in Figure 8.

	R=0			R=2		
c(Ga ³⁺)	$Ga_2(SO_4)_3$	Ga(NO ₃) ₃	GaCl ₃	$Ga_2(SO_4)_3$	Ga(NO ₃) ₃	GaCl ₃
0.5 M	2	1	1	10	8	2
1 M	2	0	0	11	9.5	1,5
2 M	1.5	0	0	8	10	1

Figure S18. ⁷¹Ga NMR spectra (9.39 T, $v_L(^{71}Ga) = 121.9$ MHz) for Ga(NO₃)₃ dissolved in D₂O with concentrations of 0.05, 0.1, 0.2, 0.5, 1 and 2 M. The single-pulse spectra have be obtained at a solution-state spectrometer using a 90° excitation pulse ($\gamma B_1/2\pi = 20$ kHz), a 1 s relaxation delay and 64 – 256 scans.

Figure S19. ⁷¹Ga NMR linewidths (*FWHM*, full width at half maximum) of the resonances observed for the concentration series of $Ga(NO_3)_3$ in D_2O as a function of the $Ga(NO_3)_3$ concentration. The linewidths are determined from the spectra in Figure S19.

Table S13. Measured pH for the concentration series of $Ga(NO_3)_3$ in D_2O with NMR data in Figure S19-20.

c(Ga(NO ₃) ₃)	Measured pH
2	0
1	0
0.5	0.5
0.2	1
0.1	1.5
0.05	2

References

- V. Vchirawongkwin, B. M. Rode and I. Persson, Structure and Dynamics of Sulfate Ion in Aqueous SolutionAn ab initio QMCF MD Simulation and Large Angle X-ray Scattering Study, *J. Phys. Chem. B*, 2007, **111**, 4150–4155.
- 2 V. Vchirawongkwin, C. Kritayakornupong, A. Tongraar and B. M. Rode, Symmetry Breaking and Hydration Structure of Carbonate and Nitrate in Aqueous Solutions: A Study by Ab Initio Quantum Mechanical Charge Field Molecular Dynamics, *J. Phys. Chem. B*, 2011, **115**, 12527–12536.
- 3 S. Cummings, J. E. Enderby, G. W. Neilson, J. R. Newsome, R. A. Howe, W. S. Howells and A. K. Soper, Chloride ions in aqueous solutions, *Nature*, 1980, **287**, 714–716.
- 4 K. W. Chapman, S. H. Lapidus and P. J. Chupas, Applications of principal component analysis to pair distribution function data, *J. Appl. Crystallogr.*, 2015, **48**, 1619–1626.
- 5 W. W. Rudolph, C. C. Pye and G. Irmer, Study of gallium(III) nitrate hydrate and aqueous solutions: Raman spectroscopy and ab initio molecular orbital calculations of gallium(III) water clusters, *J. Raman Spectrosc.*, 2002, **33**, 177–190.
- 6 W. W. Rudolph and C. C. Pye, Gallium(III) hydration in aqueous solution of perchlorate, nitrate and sulfate. Raman and 71-Ga NMR spectroscopic studies and ab initio molecular orbital calculations of gallium(III) water clusters, *Phys. Chem. Chem. Phys.*, 2002, **4**, 4319–4327.
- 7 A. D. Hendsbee, C. C. Pye and J. D. Masuda, Hexaaqua-gallium(III) trinitrate trihydrate, *Acta Crystallogr., Sect. E Struct. Rep. Online*, 2009, **E65**, i65.
- 8 S. Sommer, I. G. Nielsen and B. B. Iversen, Group 13 Precursor Structures and Their Effect on Oxide Nanocrystal Formation, *Chem. Eur. J.*, 2020, **26**, 1022–1026.
- 9 J. C. Goodwin, S. J. Teat and S. L. Heath, How Do Clusters Grow? The Synthesis and Structure of Polynuclear Hydroxide Gallium(III) Clusters, *Angew. Chem., Int. Ed.*, 2004, **43**, 4037–4041.
- 10 J. Storre, A. Klemp, H. W. Roesky, R. Fleischer and D. Stalke, Synthesis and Characterization of (MesGaO)₉ (Mes = Me₃C₆H₂) and Crystal Structure of the First Galloxane Comparable to Catalytically Active Aluminum Compounds, *Organometallics*, 1997, **16**, 3074–3076.
- 11 C. C. Landry, C. J. Harlan, S. G. Bott and A. R. Barron, Galloxane and Alumoxane Hydroxides: [Ga₁₂tBu₁₂(μ₃-O)₈(μ-O)₂(μ-OH)₄] and [Al₆tBu₆(μ₃-O)₄(μ-OH)₄], *Angew. Chem., Int. Ed.*, 1995, **34**, 1201–1202.
- 12 O. A. Gerasko, E. A. Mainicheva, D. Yu. Naumov, N. V. Kuratieva, M. N. Sokolov and V. P. Fedin, Synthesis and Crystal Structure of Unprecedented Oxo/Hydroxo-Bridged Polynuclear Gallium(III) Aqua Complexes, *Inorg. Chem.*, 2005, 44, 4133–4135.
- 13 E. Rather, J. T. Gatlin, P. G. Nixon, T. Tsukamoto, V. Kravtsov and D. W. Johnson, A simple organic reaction mediates the crystallization of the inorganic nanocluster [Ga₁₃(μ₃-OH)₆(μ₂-OH)₁₈(H₂O)₂₄](NO₃)₁₅, J. Am. Chem. Soc., 2005, **127**, 3242–3243.
- 14 W. H. Casey, M. M. Olmstead, C. R. Hazlett, C. Lamar and T. Z. Forbes, A New Nanometer-Sized Ga(III)-Oxyhydroxide Cation, *Inorganics*, 2015, **3**, 21–26.
- 15 M. Juelsholt, T. L. Christiansen and K. M. Ø. Jensen, Mechanisms for Tungsten Oxide Nanoparticle Formation in Solvothermal Synthesis: From Polyoxometalates to Crystalline Materials, *J. Phys. Chem. C*, 2019, **123**, 5110–5119.
- 16 S. E. Smart, J. Vaughn, I. Pappas and L. Pan, Controlled step-wise isomerization of the Keggin-type Al_{13} and determination of the γ - Al_{13} structure, *Chem. Commun.*, 2013, **49**, 11352–11354.
- 17 S. Abeysinghe, D. K. Unruh and T. Z. Forbes, Crystallization of Keggin-Type Polyaluminum Species by Supramolecular Interactions with Disulfonate Anions, *Cryst. Growth Des.*, 2012, **12**, 2044–2051.
- 18 A. Drljaca, M. J. Hardie and C. L. Raston, Selective isolation of Keggin ions using self-assembled superanion capsules, *J. Chem. Soc., Dalton Trans.*, 1999, 3639–3642.
- 19 X. Wang, R. Zhang, A. Tian and X. Wang, A 3D Polyoxometalate-Based Framework Constructed from Ag/trz Metal-Organic Ribbons and P₂W₁₈ Polyoxoanions: Synthesis, Structure and Electrochemical Properties, Z. Anorg. Allg. Chem., 2015, 641, 1718–1721.

- 20 P. Wang Jing, Y. Shen, G.-L. Guo and J.-Y. Niu, A novel Ni-capped Silverton-type complex: H₄((Ni(H₂O₃)₂(Ce Mo₁₂O₄₂)) * 15 (H₂O), *Chinese J. Struc. Chem.*, 2006, **25**, 204–208.
- 21 Y. Chen, C. Zhang, C. Yang, J. Zhang, K. Zheng, Q. Fang and G. Li, A Waugh type [CoMo₉O₃₂]⁶⁻ cluster with atomically dispersed CoIV originates from Anderson type [CoMo₆O₂₄]³⁻ for photocatalytic oxygen molecule activation, *Nanoscale*, 2017, 9, 15332–15339.
- 22 Z. L. Mensinger, L. N. Zakharov and D. W. Johnson, Triammonium hexa-hydroxidoocta-deca-oxidohexa-molybdogallate(III) hepta-hydrate, *Acta Cryst E*, 2008, **64**, i8–i9.
- 23 G.-L. Guo, Y.-Q. Xu, B.-K. Chen, Z.-G. Lin and C.-W. Hu, Two novel polyoxotantalates formed by Lindqvist-type hexatantalate and Copper-amine complexes, *Inorg. Chem. Commun.*, 2011, 14, 1448– 1451.
- 24 S.-J. Li, C. Zheng and K. C. Lobringn, Refinement of the crystal structure of gallium oxide hydroxide, GaO(OH), Z. Kristallogr. Cryst. Mater., 2003, 218, 11–12.