Electronic Supplementary Information

Perfect match between borophene and aluminium in AlB₃ heterostructure with covalent Al-B bonds, multiple Dirac points and high Fermi velocity

Yalong Jiao^{1,#}, Fengxian Ma^{2,#}, Xiaolei Zhang², Thomas Heine^{1,3,4,*}

¹Faculty for Chemistry and Food Chemistry, TU Dresden, Bergstraße 66c, 01069
Dresden, Germany
²College of Physics, Hebei Key Laboratory of Photophysics Research and Application,
Hebei Normal University, 050024 Shijiazhuang, China
³Helmholtz-Center Dresden Rossendorf, Institute of Resource Ecology, Leipzig
Research Branch, 04316 Leipzig, Germany
⁴Department of Chemistry, Yonsei University, 03722 Seoul, Korea

*E-mail: thomas.heine@tu-dresden.de

Fig. S1 Illustration of cleaving the AlB₃ structure from the Al (1 1 1) surface.

Fig. S2 ELF of the experimentally realised (a) AlB_2 and (b) CuS crystal. The isosurface is set to 0.75.

Fig. S3 (a-b) ELF of the GaB_3 and InB_3 heterostructures, where the covalent bands can be seen between the metal and boron atoms. (c-d) The phonon spectrum for the two heterolayers.

Fig. S4 (a, b, c) Molecule (H_2 , O_2 , H_2O) adsorption on the AlB₃ layer and (b,d,f) their corresponding ELF with the isovalue 0.75.

Fig. S5 (a-b) Geometry of fully oxidized AlB_3 heterosheet and (c) its ELF with the isovalue 0.75.

Fig. S6 Band structures of the AlB₃ heterosheet by G_0W_0 method.

Fig. S8 Band structures of the AlB₃ heterosheet when biaxial strain was applied.

Fig. S9 The phonon band dispersion of AlB₃ heterosheet.

Fig. S10 (a-b) Side view of the bilayer/trilayer Al + borophene system and (c-d) their corresponding phonon spectrum.

Fig. S11 The AIMD snapshot of AlB₃ heterosheet at 300 K after 10 ps.

Fig. S12 (a-d) Top and side views of the AlB₃ allotropes obtained from structure search. The space group and relative energy with respect to the AlB₃ heterostructure in the main text (P6MM phase) are presented as well.

Fig. S13 Phonon spectrum for the PMM2 AlB_3 sheet, calculated using a (6x4x1) super cell. The plot shows the remainder of an imaginary branch that shrinks from smaller to larger super cells and that we attribute to the self-interaction of the displaced atom.

Table S1. The elastic constants (in GPa ' nm) of the AlB₃ heterosheet.

Phase	C ₁₁	C ₂₂	C ₆₆	C ₁₂
AlB ₃	269.45	270.88	115.6	40.42