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S1. Determination of association constants

In order to obtain more accurate estimates of the hydrogen bond association constants (Kg), we
made use of its increase with decreasing temperature. Rate constants for oxidation of 4-MeOPhenol
by Ru(dmb)s3* were measured with varying base concentrations at temperatures ranging from 2°C to
22°C. A regression to:

Kup[B]

mm=kwm—MaWMmﬂ=<%mm+k“”TIEEET

> [4 — MeOPhenol]

(eq 8 in themain manuscript), keeping [4-MeOPhenol] constant and varying the base concentration,
yielded values for Kug. The natural logarithm of Kyg was plotted against 1/T. According to the van’t
Hoff equation, the natural logarithm of KHB should vary linearly with 1/T following:

AHpp  ASPg

—+
RT R

In(Kyg) =

A linear regression was performed and Hydrogen bond association constants at 22°C were obtained
by interpolation.

S1.1 Association constants for 4-methoxypyridine
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Fig S1.1.1 — Observed rate constants as a function of base concentration at 2°C
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Fig S1.1.2 — Observed rate constants as a function of base concentration at 7°C
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Fig S1.1.3 — Observed rate constants as a function of base concentration at 12°C
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Fig S1.1.4 — Observed rate constants as a function of base concentration at 17°C
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Fig S1.1.5 — Observed rate constants as a function of base concentration at 22°C
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Fig S1.1.6 — Dependence of In(Kug) on 1/T. Kyg at 22°C = 1.85



S1.2 Association constants for pyridine
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Fig S1.2.1 — Observed rate constants as a function of base concentration at 2°C
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Fig S1.2.2 — Observed rate constants as a function of base concentration at 7°C
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Fig S1.2.3— Observed rate constants as a function of base concentration at 12°C
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Fig S1.2.4 — Observed rate constants as a function of base concentration at 17°C
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Fig S1.2.5 — Observed rate constants as a function of base concentration at 22°C
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Fig S1.2.6 — Dependence of In(Kug) on 1/T. Kyg at 22°C = 1.04



S1.3 Association constants for 2,6-Lutidine
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Fig S1.3.1 — Observed rate constants as a function of base concentration at 2°C
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Fig S1.3.2 — Observed rate constants as a function of base concentration at 7°C
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Fig S1.3.3— Observed rate constants as a function of base concentration at 12°C
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Fig S1.3.4 — Observed rate constants as a function of base concentration at 17°C
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Fig S1.3.5 — Observed rate constants as a function of base concentration at 22°C
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Fig S1.3.6 — Dependence of In(Kug) on 1/T. Kyg at 22°C = 1.26



S1.4 Association constant for 2,4,6-collidine
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Fig S1.4.1 — Observed rate constants as a function of base concentration at 22°C



S2 Rate constants

Rate constants were obtained by following the regeneration of Ru(ll), after flash-quench generation
of the Ru(lll) oxidant, through monitoring the change in absorption at 450 nm (see experimental
section in the main manuscript). Observed rate constants were obtained through single exponential
fits. The observed rate constants were plotted as a function of base concentration, and kcepr was
extracted by regression to equation 8 (keeping Kyg fixed to the values determined in section S1).

S2.1 Rate constants with 4-Methoxypyridine
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Figure S2.1.1: Observer rate constants for oxidation with Ru(dmb)s**as a function of base
concentration
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Figure S2.1.2: Observer rate constants for oxidation with Ru(dmb).(bpy)* as a function of
base concentration
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Figure S2.1.3: Observer rate constants for oxidation with Ru(bpy)2(dmb)3*as a function of
base concentration
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Figure S2.1.4: Observer rate constants for oxidation with Ru(bpy)s** as a function of base
concentration
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Figure S2.1.5: Observer rate constants for oxidation with Ru(bpy)2(deeb)s®* as a function of
base concentration



S2.2 Rate constants with pyridine
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Figure S2.2.1: Observer rate constants for oxidation with Ru(dmb)s**as a function of base
concentration
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Figure S2.2.2: Observer rate constants for oxidation with Ru(dmb)2(bpy)* as a function of
base concentration
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Figure S2.2.3: Observer rate constants for oxidation with Ru(bpy)2(dmb)3*as a function of
base concentration
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Figure S2.2.4: Observer rate constants for oxidation with Ru(bpy)s**as a function of base
concentration
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Figure S2.2.5: Observer rate constants for oxidation with Ru(bpy)2(deeb)* as a function of
base concentration



§2.3 Rate constants with 2,6-Lutidine
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Figure S2.3.1: Observer rate constants for oxidation with Ru(dmb)s**as a function of base
concentration with (black) and without (red) addition of 1% v/v DO
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Figure S2.3.2: Observer rate constants for oxidation with Ru(dmb)2(bpy)* as a function of
base concentration
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Figure S2.3.3: Observer rate constants for oxidation with Ru(bpy)2(dmb)3*as a function of
base concentration
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Figure S2.3.4: Observer rate constants for oxidation with Ru(bpy)s** as a function of base
concentration with (black) and without (red) addition of 1% v/v DO
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Figure S2.3.5: Observer rate constants for oxidation with Ru(bpy)2(deeb)* as a function of
base concentration with (black) and without (red) addition of 1% v/v D>O



S2.4 Rate constants with 2,4,6-collidine
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Figure S2.4.1: Observer rate constants for oxidation with Ru(dmb)s**as a function of base
concentration with (blue) and without (red) addition of 1% v/v D>O
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Figure S2.4.2: Observer rate constants for oxidation with Ru(dmb)2(bpy)* as a function of
base concentration
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Figure S2.4.3: Observer rate constants for oxidation with Ru(bpy)2(dmb)3*as a function of
base concentration
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Figure S2.4.4: Observer rate constants for oxidation with Ru(bpy)s** as a function of base
concentration
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Figure S2.4.5: Observer rate constants for oxidation with Ru(bpy)2(deeb)* as a function of
base concentration



S3. Determination of —AGp g7

The driving force of PCET was calculated from the difference in the Bond dissociation free energy
(BDFE) of 4-Methoxyphenol and an apparent BDFE calculated from the pKa of the conjugate acid of
the proton acceptor and reduction potential of the oxidant, as described by Warren et al. The Bond
dissociation enthalpy (BDE) of 4-Methoxyphenol was taken as 81.3 kcal/mol in the gas phase,
converted from photoacoustic measurements in benzene by Wayner et al..? This was converted to a
BDFE in acetonitrile by following the procedure and utilizing values applied by Lymar et al.?
(supplementary information section S2):

BDFE 45 = BDEgas — TS°(H) yas

Where S°(H) 445 = 27.147 cal/(mol K).3*

1+K,
BDFEyocy = BDFEgqs + RTIn <W> — Agasmecn G(H)
Where K,,_; and K., are hydrogen bonding association constants of the phenol before and after
PCET with the solvent (estimated as 110 and 3.3 respectively using Abraham’s hydrogen bond acidity
and basicity constants)®, and Agas—mecn G (H) is taken as 3.36 kcal/mol.2 This resulted in a value of
BDFEyecy = 78.4 kcal/mol.

Apparent BDFEs for the product were calculated with the formula:

BDFE

(eq S3. 1) (kcal/mol)

= 1.37pK, + 23.06E° + C;

Where E%is the reduction potential of the oxidant vs the Fc*/® couple and Cg was taken to be 52.6, as
estimated by Lymar et al.® The driving force for PCET was calculated by taking the difference
between reactant and product BDFEs.

Taking the potential of the MeOPhenol®/? couple as 1.18 V vs SCE (see main manuscript) and
substracting the Ru®"2" of the oxidant used, the driving force for initial ET (—AGgr;) can be
calculated. Substracting this from the driving force for PCET leaves —AGpr, (Since AGpcgr =

AGgrq + AGpr,). Given AGpr, and the pKa of the corresponding pyridinium acceptors (see main
manuscript table 1) a pKa value of 5.4 for the deprotonated Phenol could be estimated. Lymar et al.®
estimated the pKa value of 4-MeOPhenol as 29.2. The energetic coupling between proton and
electron (see main manuscript) therefore corresponds to approximately 23.8 pKa units.

Mechanistic zone diagrams were constructed in the same way as described previously. ¢ Rate
constants were assumed to be diffusion controlled when they reached the value of 10*° /M/s.



S4 Derivation of equation 8

The reaction scheme is described by:

K
AMeOPhenH + B €3 [4MeOPhenH -+ B]
k
AMeOPhenH + Ox — 4MeOPhenH* + Ox™

kerpr);,, + KcepT

[4MeOPhenH --- B] + Ox ————— > 4MeOPhen + HB* + Ox~

This leads to the following expression for the rate of oxidation:

d|O0x
v = _% = kET[4M60Phen][0x] + (kETPTlim + kCEpT)[4M60PhenH"'B][Ox]

The total phenol and base concentrations correspond to:

[4MeOPhen], = [AMeOPhen] + [AMeOPhenH --- B]
[B]l, = [B] + [AMeOPhenH --- B]

The rate therefore becomes:

v = (kgr[4MeOPhen], — [4MeOPhen -- B)[0x] + (kgrpry, + kcepr)[4MeOPhenH - B][0x]

The hydrogen bond association constant

_ [AMeOPhen---B] _ [AMeOPhen - B]
HE ™ [AMeoPhenH][B] ~ ([4MeoPhenH], — [4MeOPhen - B])([Bl, — [4MeOPhen --- B])

In the limit where [B], >» [4MeOPhenH]:

Kygl4MeOPhenH],[B],

4MeOPhenH - B] =
L4Me en ] 1+ Kyp[B]

Substituting this into the rate expression and assuming that kgr = kgrpr,,,, = Ker(prleads to:

Kygl4MeOPhenH],[B],
1+ KyplB]

v = kgr(pr)[4MeOPhen][0x] + kcgpr [0x]

The oxidation can therefore be described with a single rate constant k,, so that:
_ KyglBlo
kox[4M60PhenH]O —_— kET(PT) [4M€0PhenH]O + kCEpT[4M60PhenH]O P ———
1+ KyglBlo

This expression is identical to equation 8 in the main manuscript.
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