Supporting Information For

Organic Amine Mediated Cleavage of $C_{aromatic}$ - C_{α} Bond in Lignin and Its Platform Molecules

Yu Xin, Xiaojun Shen, Minghua Dong, Xiaomeng Cheng, Shulin Liu, Junjuan Yang, Zhenpeng Wang, Huizhen Liu, * Buxing Han

This PDF file includes:

Fig. S1. The structure of bamboo lignin.

Fig. S2. ¹H-NMR spectrum of *p*-coumaric acid in the mixture of water and DMF solvents.

Fig. S3. ¹H-NMR spectrum of phenol and N,N-dimethylethylamine in the mixture of water and DMF solvents.

Fig. S4. ¹H-NMR spectrum of the product mixture from the reaction of *p*-coumaric acid with DMA in the mixture of water and DMF solvents at 473 K and 1 MPa Ar after 1 h reaction.

Fig. S5. GC-MS trace of the product mixture from the reaction of *p*-coumaric acid

Fig. S6. Mass spectrum of the alkylamine product.

Fig. S7. Mass spectrum of the phenol product.

Fig. S8. Mass spectrum of the 4-ethyl phenol product.

Fig. S9. Mass spectrum of the 4-vinyl phenol product.

Fig. S10. Mass spectrum of the active amine intermediate.

Fig. S11. ¹H-NMR spectrum of the product mixture from the reaction of *p*-coumaric acid with DMA in the mixture of water and DMF solvents at 448 K and 1 MPa Ar after 1 h reaction.

Fig. S12. The bond dissociation energy (BDE) of $C_{aromaic}$ - C_{α} in two intermediates.

Fig. S13. The cleavage of C-C bond experiments. Reaction conditions: (1) 0.6 mmol substrate, 1.5 mL DMF, 2.5 g H₂O, 473 K, 1MPa Ar, 1 h. (2) 0.6 mmol substrate, 40 wt% DMA in water (2.5 g), 1.5 mL DMF, 1 MPa Ar, 1 h.

Fig. S14. The GC trace of the gaseous sample after *p*-coumaric acid transformation. Reaction conditions: 0.6 mmol substrate, 1.5 mL DMF, 40 wt% DMA in water (2.5 g), 473 K, 1MPa Ar, 1 h.

Fig. S15. The GC-MS result of phenol.

Fig. S16. The GC-MS result of the reaction using D_2O . Reaction condition: 0.6 mmol phenol, 2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL D_2O , 473K, 1 MPa Ar, 1h.

Fig. S17. The GC-MS result of the reaction using D_2O . Reaction condition: 0.6 mmol substrate, 2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL D_2O , 473K, 1MPa Ar, 1h.

Fig. S18. The GC-MS result of the gaseous sample using $H_2^{18}O$. Reaction condition: 0.6 mmol substrate, 2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL $H_2^{18}O$, 473K, 1MPa Ar, 1h.

Fig. S19. The GC trace of the gaseous sample after *p*-coumaric acid transformation. Reaction conditions: 0.6 mmol substrate, 1.5 g H₂O, 40 wt% DMA in water (2.5 g), 473 K, 1MPa Ar, 1 h.

Fig. S20. Product distributions for the conversion of **1h** versus time. Reaction conditions: 0.6 mmol substrate, 1.5 mL DMF, 2.5 g 40 wt% DMA in water, 473 K.

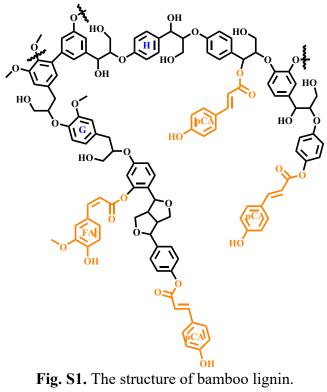

Fig. S21. The 2D-HSQC NMR spectra of the bamboo lignin in deuterated DMSO (DMSO-*d6*) before and after reaction.

Table S1. The transformation of *p*-coumaric acid in the presence of different amines.

Table S2. The transformation of *p*-coumaric acid in the presence of ammonia.

Table S3. Optimization of the reaction parameters.

Supplementary Text

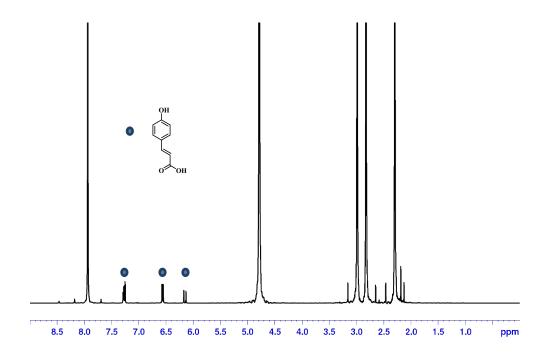
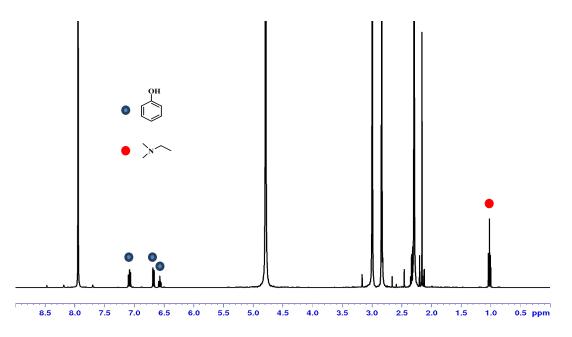
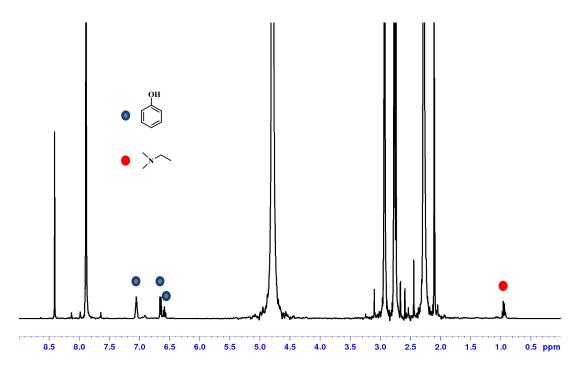




Fig. S2. ¹H-NMR spectrum of *p*-coumaric acid in the mixture of water and DMF solvents.

Fig. S3. ¹H-NMR spectrum of phenol and N,N-dimethylethylamine in the mixture of water and DMF solvents.

Fig. S4. ¹H-NMR spectrum of the product mixture from the reaction of *p*-coumaric acid with DMA in the mixture of water and DMF solvents at 473 K and 1 MPa Ar after 1 h reaction.

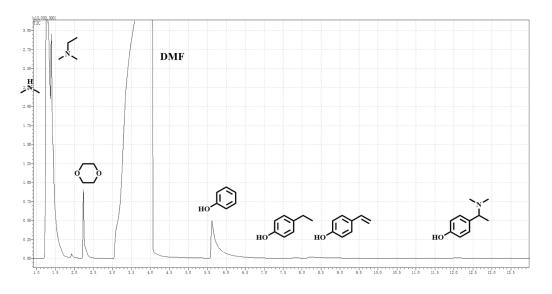


Fig. S5. GC-MS trace of the product mixture from the reaction of *p*-coumaric acid.

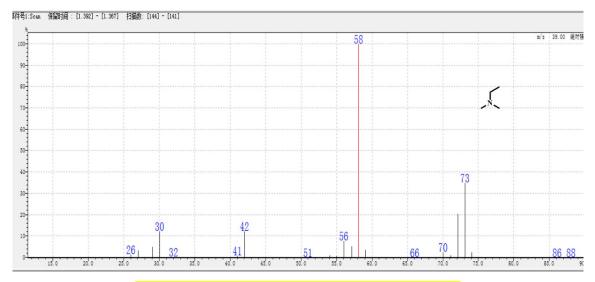


Fig. S6. Mass spectrum of the alkylamine product.

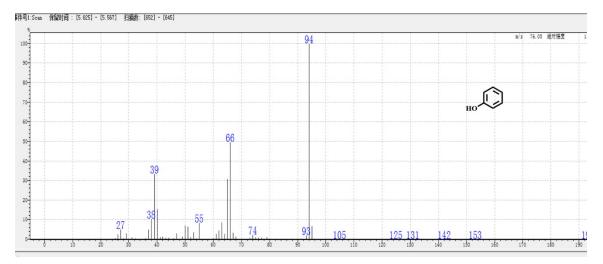


Fig. S7. Mass spectrum of the phenol product.

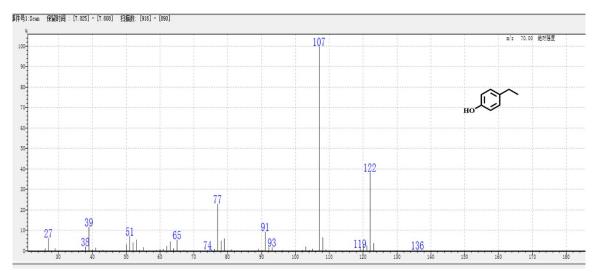


Fig. S8. Mass spectrum of the 4-ethyl phenol product.

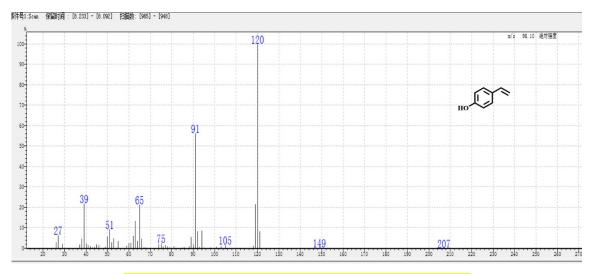


Fig. S9. Mass spectrum of the 4-vinyl phenol product.

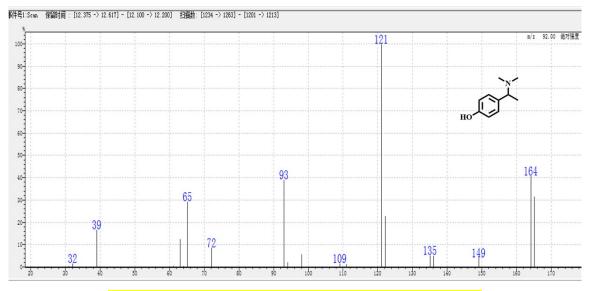
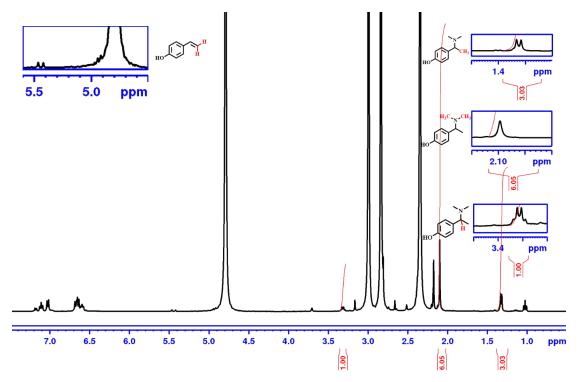



Fig. S10. Mass spectrum of the active amine intermediate.

Fig. S11. ¹H-NMR spectrum of the product mixture from the reaction of *p*-coumaric acid with DMA in the mixture of water and DMF solvents at 448 K and 1 MPa Ar after 1 h reaction.

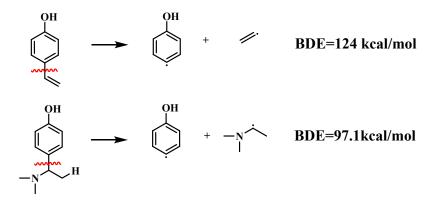
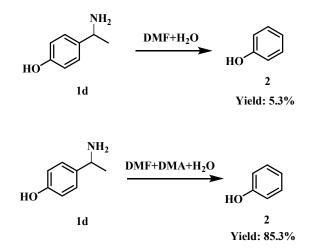
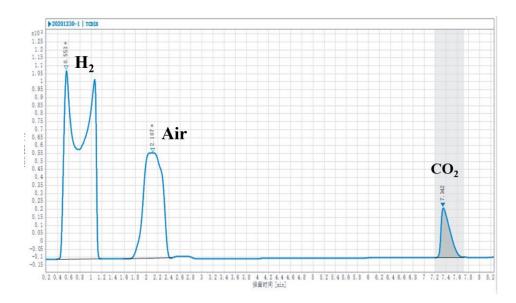




Fig. S12. The bond dissociation energy (BDE) of $C_{aromaic}$ - C_{α} in two intermediates.

Fig. S13. The cleavage of C-C bond experiments. Reaction conditions: (1) 0.6 mmol substrate, 1.5 mL DMF, 2.5 g H₂O, 473 K, 1MPa Ar, 1 h. (2) 0.6 mmol substrate, 40 wt% DMA in water (2.5 g), 1.5 mL DMF, 1 MPa Ar, 1 h.

Fig. S14. The GC trace of the gaseous sample after *p*-coumaric acid transformation. Reaction conditions: 0.6 mmol substrate, 1.5 mL DMF, 40 wt% DMA in water (2.5 g), 473 K, 1MPa Ar, 1 h.

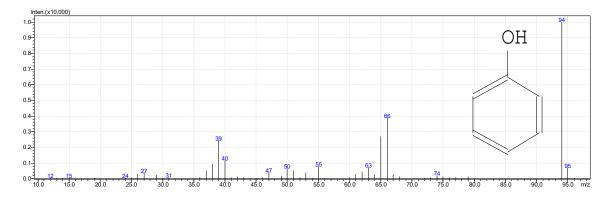


Fig. S15: The GC-MS result of phenol.

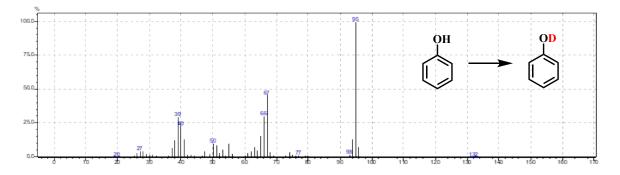


Fig. S16: The GC-MS result of the reaction using D₂O. Reaction condition: 0.6 mmol phenol,2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL D₂O, 473K, 1 MPa Ar, 1h.

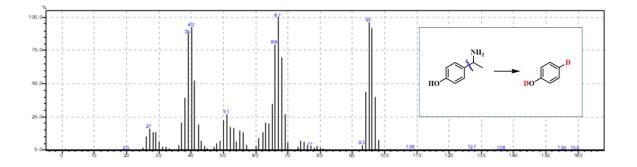


Fig. S17: The GC-MS result of the reaction using D₂O. Reaction condition: 0.6 mmol substrate,2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL D₂O, 473K, 1MPa Ar, 1h.

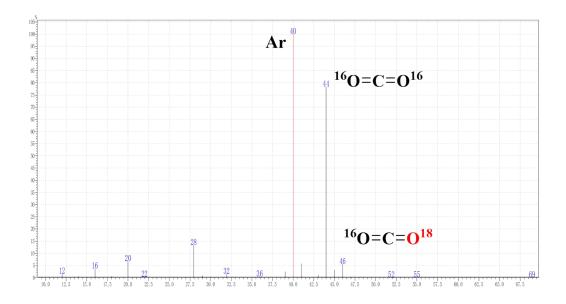
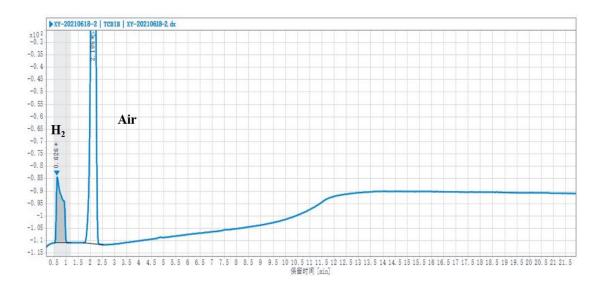



Fig. S18: The GC-MS result of the gaseous sample using H₂¹⁸O. Reaction condition: 0.6 mmol substrate, 2.5 g 40 wt% DMA in water, 1.5 mL DMF, 1 mL H₂¹⁸O, 473K, 1MPa Ar, 1h.

Fig. S19. The GC trace of the gaseous sample after *p*-coumaric acid transformation. Reaction conditions: 0.6 mmol substrate, 1.5 g H₂O, 40 wt% DMA in water (2.5 g), 473 K, 1MPa Ar, 1 h.

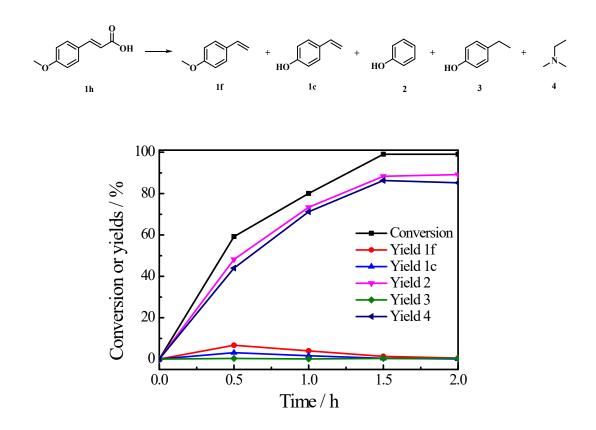
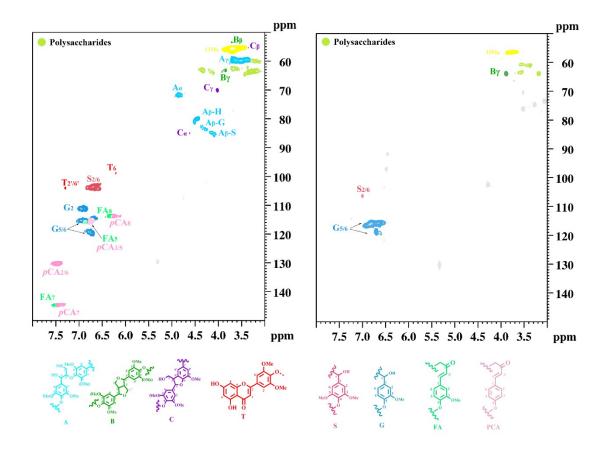



Fig. S20. Product distributions for the conversion of 1h versus time. Reaction conditions: 0.6 mmol substrate, 1.5 mL DMF, 2.5 g 40 wt% DMA in water, 473 K.

Fig. S21. The 2D-HSQC NMR spectra of the bamboo lignin in deuterated DMSO (DMSO-*d6*) before and after reaction.

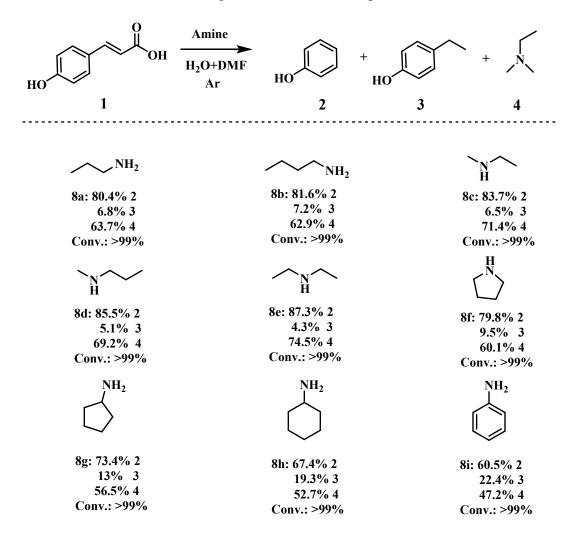


Table S1. The transformation of *p*-coumaric acid in the presence of different amines.^[a]

[a] Reaction conditions: 0.6 mmol substrate, 24 mmol amines, 1.5 g water, 1.5 mL DMF, 473 K,

1 MPa Ar, 4 h.

Table S2. The transformation of <i>p</i> -coumaric acid in the presence of ammonia. ^[a]								
HO HO HO HO HO HO HO HO H								
1	2	3 4						
The amount of ammonia [g]	Conv. [%]	Yield [%]						
The amount of animonia [g]		2	3	4				
0	14.5	0.7	12.1	trace				
2	52.1	15.5	33.3	12.1				

[a] Reaction conditions: 0.6 mmol substrate, 30 wt% ammonia (2 g), 2 mL DMF, 1 MPa Ar, 200

°C, 1 h.

Entry	DMA:Substrate Entry [mol/mol]	DMF [mL]	Conv. [%]	Y ₂ [%]	Y ₃ [%]	Y ₄ [%]
Entry						14[/0]
1	40	0	>99	54.3	3.8	0
2	40	0.5	>99	85.1	4.5	84.2
3	40	1	>99	86.5	3.4	83.1
4	40	1.5	>99	89.3	6.2	85.2

Table S3. Optimization of the reaction parameters.^[a]

[a] Reaction conditions: 0.6 mmol substrate, 40 wt% DMA in water (2.5 g), 473 K, 1MPa Ar, 1

h.