Supplementary Information

Ritter-Type Iodo(III)amidation of Unactivated Alkynes for the Synthesis of
\section*{Multisubstituted Enamides}
Jinkui Chai, ${ }^{\text {a,b }}$ Wei Ding, ${ }^{\text {b,c }}$ Chen Wang, ${ }^{\text {d }}$ Shingo Ito, ${ }^{\text {b }}$ Junliang Wu, ${ }^{\text {a* }}$ Naohiko Yoshikai ${ }^{\text {b,e* }}$
${ }^{\text {a }}$ College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
${ }^{\mathrm{b}}$ Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
${ }^{\text {c }}$ Division of Molecular Catalysis and Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P.R. China
${ }^{\mathrm{d}}$ Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P.R. China
${ }^{\text {e }}$ Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan

Contents

\qquad
Materials and MethodsS2
Optimization of Reaction Conditions S4
General Procedures and Product Characterization S6
Control Experiments S31
Product Transformations S33
DFT Calculations S42
Reference S51
NMR Spectra S53

Materials and Methods

General. All reactions dealing with air- or moisture-sensitive compound were performed by standard Schlenk techniques in oven-dried reaction vessels under nitrogen atmosphere or in the argon-filled glove box. Analytical thin-layer chromatography (TLC) was performed on Merck 60 F254 silica gel plates. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-400 $(400 \mathrm{MHz})$ or Bruker AV-500 $(500 \mathrm{MHz})$ spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl_{3} (77.0 ppm), or MeOH (3.31 ppm) and MeOH (49.00 ppm), respectively. High-resolution mass spectra (HRMS) were obtained with a Q-Tof Premier LC HR mass spectrometer. Melting points were determined using a capillary melting point apparatus and are uncorrected.

Materials. Unless otherwise noted, commercial reagents were purchased from Aldrich, Alfa Aesar, and other commercial suppliers and were used as received. MeCN and DCM were distilled over CaH_{2} and stored under N_{2}. THF was distilled over Na and stored under N_{2}. Hexafluoroisopropanol (HFIP) was distilled over Mg and stored under N_{2}. Anhydrous DMF (Alfa Aesar) were used without further purification and stored under N_{2}. Deionized water was used for the reaction, while tap water was used in the workup procedure. Alkynes $\mathbf{2 d},{ }^{1} \mathbf{2 h},{ }^{2}$ $\mathbf{2 i},{ }^{3} \mathbf{2 j} \mathbf{- 2 p},{ }^{4}$ and $\mathbf{2 q}{ }^{5}$ were prepared according to the literature procedure, and other alkynes were purchased from commercial suppliers. All nitriles were purchased from commercial suppliers, and except for MeCN , used as received. 3,3-Bis(trifluoromethyl)-1 λ^{3} benzo $[d][1,2]$ iodaoxol-1 $(3 H)$-yl trifluoromethanesulfonate (benziodoxole triflate, BXT, 1) was prepared according to the literature procedure. ${ }^{4 \mathrm{a}}$

$R=R$

2j ($\mathrm{R}=\mathrm{OMe}$)
2k ($\mathrm{R}=\mathrm{Me}$)
$21\left(\mathrm{R}=\mathrm{CO}_{2} \mathrm{Et}\right)$
2m ($\mathrm{R}=\mathrm{COMe}$)
2n ($\mathrm{R}=\mathrm{CF}_{3}$)

Figure S1. Alkynes and nitriles used in this study.

Optimization of Reaction Conditions

Table S1. Iodo(III) acetamidation of alkyne $\mathbf{2 a}$ in $\mathrm{MeCN}^{[a]}$

entry	x	y	z	yield (\%) ${ }^{[b]}$
1	1.5	1.0	2.0	40
2	1.5	2.0	2.0	61
3	1.5	3.0	2.0	66
4	1.5	3.0	1.5	71
5	1.5	3.0	1.0	78
6	2.0	3.0	1.0	90
$7{ }^{[c]}$	2.0	3.0	1.0	79
$8^{[d]}$	2.0	3.0	1.0	83
$9^{[e]}$	2.0	3.0	1.0	90
$10^{[f]}$	1.5	3.0	0	31
$11^{[f]}$	1.5	3.0	0.5	65
$12^{[f]}$	1.5	3.0	1.0	54
$13^{[f]}$	1.5	3.0	2.0	48

[a] The reaction was performed on a 0.1 mmol scale. [b] Determined by ${ }^{19} \mathrm{~F}$ NMR using 1,4 bis(trifluoromethyl)benzene as the internal standard. [c] Performed at 0.4 M . [d] Performed at 0.2 M. [e] Performed at 0.1 M. [f] The reaction was set up in an open air at a concentration of 0.2 M. Caution is needed for these entries as significant batch-to-batch variation was observed.

Table S2. Iodo(III)acetamidation of alkyne 2a in HFIP ${ }^{[a]}$

$\mathrm{Pr}=\mathrm{Pr}+$

2a

entry	x	y	z	solvent	yield (\%) ${ }^{[b]}$
1	1.5	3.0	2.0	DCE	$\mathrm{nd}^{[\mathrm{c}]}$
2	1.5	3.0	2.0	toluene	$\mathrm{nd}^{[\mathrm{cc}]}$
3	1.5	3.0	2.0	TFE	36
4	1.5	2.0	2.0	HFIP	63
$5^{[d]}$	1.5	2.0	2.0	HFIP	66
$6^{[\mathrm{e}]}$	1.5	3.0	1.0	HFIP	70
$7^{[e]}$	2.0	3.0	1.0	HFIP	85
$8^{[e]}$	3.0	3.0	1.0	HFIP	84
$9^{[\mathrm{e}]}$	2.0	2.0	1.0	HFIP	88
$10^{[f]}$	1.5	3.0	2.0	HFIP	16
$11^{[g]}$	1.5	3.0	2.0	HFIP	33
$12^{[\mathrm{h}]}$	1.5	3.0	2.0	HFIP	51

[a] The reaction was performed on a 0.1 mmol scale. [b] Determined by ${ }^{19} \mathrm{~F}$ NMR using 1,4 bis(trifluoromethyl)benzene as the internal standard. [c] Not detected. [d] Performed at 0.1 M. [e] Performed at 0.2 M. [f] 2 equiv of MeCN was used. [g] 5 equiv of MeCN was used. [h] 10 equiv of MeCN was used.

General Procedures and Product Characterization

General Procedure A: In an argon-filled glove box, an $8-\mathrm{mL}$ vial equipped with a magnetic stir bar was charged sequentially with $\mathrm{Na}_{2} \mathrm{CO}_{3}(63.6 \mathrm{mg}, 0.60 \mathrm{mmol})$, nitrile (4 mL), alkyne (0.20 mmol), and $\mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{mg}, 0.20 \mathrm{mmol})$, followed by the addition of BXT ($207 \mathrm{mg}, 0.40$ mmol). The vial was closed and taken out of the glove box. The resulting mixture was vigorously stirred $(1500 \mathrm{rpm})$ at room temperature for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and then the mixture was extracted with EtOAc ($10 \mathrm{~mL} x \mathrm{3}$). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product.

General Procedure B: In an argon-filled glove box, a 4-mL vial equipped with a magnetic stir bar was charged sequentially with $\mathrm{Na}_{2} \mathrm{CO}_{3}(42.4 \mathrm{mg}, 0.40 \mathrm{mmol})$, hexafluoroisopropanol (HFIP, 1 mL), nitrile (4 mmol), alkyne (0.20 mmol), and $\mathrm{H}_{2} \mathrm{O}(3.6 \mathrm{mg}, 0.20 \mathrm{mmol})$, followed by the addition of BXT ($207 \mathrm{mg}, 0.40 \mathrm{mmol}$). The vial was closed and taken out of the glove box. The resulting mixture was vigorously stirred (1500 rpm) at room temperature for $4 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and then the mixture was extracted with EtOAc (10 mL x 3). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product.

Note: The yield of the reaction would be affected by the rate of stirring; Slow or inefficient stirring would lead to lower yields. In the above procedure, once all the reagents and solvents have been introduced into the vial in the glove box, it should be transferred to the stirrer outside the glovebox as quickly as possible.

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4

yl)acetamide (4aa): Synthesized by the general procedure A in 85% yield $(91.3 \mathrm{mg})$ or by the general procedure B in 87% yield $(93.5 \mathrm{mg})$; White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $162-$ $164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.12(\mathrm{dd}, J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 2.66$ (brs, 2H), 2.45 (brs, 2H), 2.13 ($\mathrm{s}, 3 \mathrm{H}$), 1.73-1.49 (brs, 2H), 1.49$1.32(\mathrm{brs}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. The signal of the amide proton was merged with that of the methanol proton at 4.86 ppm . All the β-iodanyl enamides reported here displayed the same behavior in $\mathrm{CD}_{3} \mathrm{OD} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.8,148.4$, $133.6,133.5,131.5,131.3,130.7,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.7 \mathrm{~Hz}\right), 122.5,110.9,83.1-81.9(\mathrm{~m}), 41.1$, 39.3, 23.5, 22.8, 21.8, 14.0, 13.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.2$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$538.0678, found 538.0670. Recrystallization from hexane/ethyl acetate afforded single crystals suitable for X-ray diffraction analysis, which unambiguously confirmed the molecular structure of 4aa (Figure S2 and Table S3). ${ }^{6}$

Procedure for a 2-mmol scale reaction: In an argon-filled glove box, a 100-mL Schlenk tube equipped with a magnetic stir bar was charged sequentially with $\mathrm{Na}_{2} \mathrm{CO}_{3}(636 \mathrm{mg}, 6.0 \mathrm{mmol})$, $\mathrm{MeCN}(40 \mathrm{~mL})$, 4-octyne ($220 \mathrm{mg}, 2.0 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}(36 \mathrm{mg}, 2.0 \mathrm{mmol})$, followed by the addition of BXT ($2.07 \mathrm{~g}, 4.0 \mathrm{mmol}$). The vial was closed and taken out of the glove box. The resulting mixture was vigorously stirred (1500 rpm) at room temperature for $8 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added, and then the mixture was extracted with EtOAc ($100 \mathrm{~mL} x$ 3). The combined organic layer was washed with $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over MgSO_{4}, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product (white solid, $0.77 \mathrm{~g}, 72 \%$).

Figure S2. ORTEP drawing of 4aa (thermal ellipsoids shown at 50\% probability level).

Table S3. Crystal data and structure refinement for 4aa

Identification code	ito 117m
Chemical formula	$\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{NNO}_{2}$
Formula weight	$537.27 \mathrm{~g} / \mathrm{mol}$
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal size	$0.010 \times 0.100 \times 0.220 \mathrm{~mm}$
Crystal habit	colorless plate
Crystal system	monoclinic
Space group	P $121 / \mathrm{c} 1$
Unit cell dimensions	$\mathrm{a}=10.9318(5) \AA \quad \alpha=90^{\circ}$
	$\mathrm{b}=28.7192(12) \AA$ 这 $\quad \beta=92.8262(19)^{\circ}$
	$\mathrm{c}=13.4936(5) \AA \quad \gamma=90^{\circ}$
Volume	4231.2(3) \AA^{3}
Z	8
Density (calculated)	$1.687 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$1.580 \mathrm{~mm}^{-1}$
F (000)	2128
Theta range for data collection	2.00 to 28.74°
Index ranges	$-14<=\mathrm{h}<=14,-38<=\mathrm{k}<=38,-14<=\mathrm{l}<=18$
Reflections collected	40809
Independent reflections	$10915[\mathrm{R}($ int $)=0.1026]$
Coverage of independent reflections	99.5\%
Max. and min. transmission	0.9840 and 0.7230
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$
Data / restraints / parameters	10915 / 2145 / 881
Goodness-of-fit on F2	1.077
Final R indices	7437 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \quad \mathrm{R} 1=0.0669, \mathrm{wR} 2=0.1307$
	all data $\quad \mathrm{R} 1=0.1108, \mathrm{wR} 2=0.1466$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0398 \mathrm{P})^{2}+15.6109 \mathrm{P}\right]$
Largest diff. peak and hole	1.814 and -1.904 $\mathrm{e}^{\text {- }}$ -
R.M.S. deviation from mean	$0.168 \mathrm{e}^{\text {A }}{ }^{-3}$

(E)-N-(4-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)hex-3-en-3-yl)

acetamide (4ba): Synthesized by the general procedure A in 81% yield $(82.5 \mathrm{mg})$ or by the general procedure B in 88% yield (89.6 mg); White solid; $R_{f} 0.2\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $185-$ $187{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.12(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, 1H), 7.67-7.59 (m, 2H), 3.00-2.25 (brs, 4H), 2.14 (s, 3H), 1.07 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.1,148.8,133.7,133.5,131.5,131.3,130.7$, $125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=288.7 \mathrm{~Hz}\right), 123.7,110.8,83.1-82.0(\mathrm{~m}), 32.7,30.5,22.7,13.9,12.0 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) δ-77.3; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 510.0365$, found 510.0366 .

(E)- N-(7-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[$\left.d\right][1,2]$ iodaoxol-1(3H)-yl)dodec-6-en-6-yl)
acetamide (4ca): Synthesized by the general procedure A in 80% yield $(94.9 \mathrm{mg})$ or by the general procedure B in 83% yield (98.5 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. 141$143{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.14-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.60$ (m, 2H), 2.72 (brs, 2H), 2.44 (brs, 2H), 2.13 (s, 3H), 1.65-1.44 (brs, 2H), 1.44-1.34 (brs, 2H), $1.29-1.30(\mathrm{~m}, 4 \mathrm{H}), 1.20-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.86(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,148.4,133.6,133.5,131.5,131.3,130.8,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ $289.3 \mathrm{~Hz}), 122.5,111.0,83.1-82.0(\mathrm{~m}), 39.1,37.1,32.3,32.2,29.7,28.0,23.3,23.2,22.8,14.2$, 14.0; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-73.2$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 594.1304, found 594.1306.

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)-1,8-dichlorooct-

4-en-4-yl)acetamide (4da): Synthesized by the general procedure A in 42% yield (50.9 mg) or by the general procedure B in 75% yield $(90.9 \mathrm{mg})$; Light brown solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=\right.$ 2/1); m.p. 141-143 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.08(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.83 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.38$ (brs, 2H), 3.14-3.87 (brs, 2H), 2.76-2.60 (brs, 1H), 2.60-2.45 (brs, 1H), 2.14 (s, 3H), 2.03-1.92 (brs, 2H), 1.90-1.78 (brs, 2H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.1,147.9,133.7,133.6,131.6,131.5,130.4,125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}}\right.$ $\mathrm{F}=289.5 \mathrm{~Hz}$), 122.2, 111.1, 83.1-82.0 (m), 44.8, 44.7, 36.4, 34.6, 32.6, 31.2, 22.8; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, CD 3 OD) $\delta-77.2\left(\mathrm{~d}, J=52.7 \mathrm{~Hz}\right.$); HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+$ $\mathrm{H}]^{+} 605.9898$, found 605.9896 .

(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 ${ }^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl)pent-2-en-3-

$\mathbf{y l}$)acetamide (4ea): Synthesized as a mixture with the minor regioisomer (4ea') by the general procedure A in 74% yield (73.4 mg , regioisomer ratio $=2.4: 1$) or by the general procedure B in 83% yield (82.3 mg , regioisomer ratio $=2: 1$); Light brown solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $169-170{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.11$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 8.01 (dd, $J=8.0,1.2 \mathrm{~Hz}, 0.5 \mathrm{H}$, minor), 7.83 (app. d, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}+0.5 \mathrm{H}$, major + minor), 7.68 $7.59(\mathrm{~m}, 2 \mathrm{H}+1 \mathrm{H}$, major + minor), 2.80-2.47 (brs, $2 \mathrm{H}+1 \mathrm{H}$, major + minor), $2.39(\mathrm{~s}, 3 \mathrm{H}$, major), 2.27 ($\mathrm{s}, 1.5 \mathrm{H}$, minor), 2.14 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.12 ($\mathrm{s}, 1.5 \mathrm{H}$, minor), 1.08 ($\mathrm{t}, J=7.4 \mathrm{~Hz}$, 1.5 H , minor), $0.96\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right.$, major); ${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.9,171.6$,
149.0, 144.6, 133.7 (two signals overlapped), 133.6, 133.5, 131.5 (two signals overlapped), $131.41,131.38,130.4,130.1,125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}\right), 123.5,113.6,110.4,110.0,83.1-82.0$ (m), 32.4, 30.4, 24.84, 24.75, 22.83, 22.76, 13.9, 12.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.3$; HRMS (ESI) Calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~F}_{6} \mathrm{NNO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 496.0208$, found 496.0208. The regiochemistry of the major isomer (4ea) was assumed from that of the related compounds $\mathbf{4 f a}, \mathbf{4 g a}$, and $\mathbf{4 i a}$ (vide infra).

4fa

4fa'

(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)hex-2-en-3-yl)

acetamide (4fa): Synthesized as a mixture with the minor regioisomer (4fa') by the general procedure A in 71% yield $(72.3 \mathrm{mg}$, regioisomer ratio $=2: 1$) or by the general procedure B in 78% yield (79.6 mg , regioisomer ratio $=2: 1$); White solid; $R_{f} 0.2\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $154-156{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, two isomers) $\delta 8.09$ (dd, $J=7.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}$, major), 8.01 (dd, $J=7.8,1.0 \mathrm{~Hz}, 0.5 \mathrm{H}$, minor), 7.82 (app. d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}+0.5 \mathrm{H}$, major + minor), 7.68-7.60 ($\mathrm{m}, 2 \mathrm{H}+1 \mathrm{H}$, major + minor), 2.80-2.45 (brs, $2 \mathrm{H}+1 \mathrm{H}$, major + minor), $2.40(\mathrm{~s}, 3 \mathrm{H}$, major), 2.27 ($\mathrm{s}, 1.5 \mathrm{H}$, minor), 2.13 (s, 3 H , major), 2.12 ($\mathrm{s}, 1.6 \mathrm{H}$, minor), 1.61-1.47 (brs, 1.0H, minor), 1.37-1.46 (m, 2H, major), 0.94 ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 1.5 \mathrm{H}$, minor), 0.82 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, major); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.9,171.3,148.0,145.2,133.7$ (two signals overlapped), 133.6, 133.5, 131.5 (two signals overlapped), 131.34, 131.31, 130.5, 130.1, 125.6 $\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.3 \mathrm{~Hz}\right), 121.7,114.1,110.6,110.0,83.1-82.0(\mathrm{~m}), 40.9,39.1,24.92,24.87,23.4$, 22.83, 22.81, 22.0, 14.00, 13.95; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ - 77.3 ; HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 510.0365$, found 510.0368 . The regiochemistry of the major isomer (4fa) was assigned by the NOESY spectrum that displayed a correlation between the allylic methyl protons and the ortho aryl proton of the BX group (see the attached spectrum).

4ga

4ga'
(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)-4-methylpent-2-en-3-yl)acetamide (4ga): Synthesized as a mixture with the minor regioisomer (4ga') by the general procedure A in 73% yield (74.3 mg , regioisomer ratio $=3.4: 1$) or by the general procedure B in 82% yield (83.5 mg , regioisomer ratio $=2.5: 1$); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}\right.$ $=2 / 1$); m.p. $157-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, two isomers) $\delta 8.25(\mathrm{dd}, J=7.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}$, major), 8.09 (dd, $J=8.0,1.2 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 7.83 (app. d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}+0.3 \mathrm{H}$, major + minor), 7.68-7.59 ($\mathrm{m}, 2 \mathrm{H}+0.6 \mathrm{H}$, major + minor), 3.16 (sep, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$, major), 2.92 (sep, $J=6.6 \mathrm{~Hz}, 0.3 \mathrm{H}$, minor), 2.37 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.25 ($\mathrm{s}, 0.9 \mathrm{H}$, minor), 2.17 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.12 ($\mathrm{s}, 0.9 \mathrm{H}$, minor), 1.09 (d, $J=6.8 \mathrm{~Hz}, 0.9 \mathrm{H}$, minor), $1.10-0.95$ ($\mathrm{m}, 6 \mathrm{H}$, major), 0.96 (d, $J=6.4 \mathrm{~Hz}, 0.9 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, two isomers) $\delta 172.2,172.0,150.9,144.1$, $133.7,133.6,133.51,133.47,132.0,131.6,131.5,131.4,130.8,130.0,125.6\left(q,{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5\right.$ Hz), 116.3 (two signals overlapped), 110.4, 109.9, 83.1-81.9 (m), 38.4, 34.2, 25.2, 24.7, 23.8, 22.8, 22.4, 21.6, 20.1 (two signals overlapped); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.0(\mathrm{q}, J=$ 8.6 Hz, minor), -77.2 (major), -77.4 ($\mathrm{q}, J=8.6 \mathrm{~Hz}$, minor); HRMS (ESI) Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 510.0365$, found 510.0365 . The regiochemistry of the major isomer (4ga) was assigned by the NOESY spectrum that displayed a correlation between the allylic methyl protons and the ortho aryl proton of the BX group (see the attached spectrum).

4ha

4ha'

(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)-1-

cyclohexylprop-1-en-1-yl)acetamide (4ha): Synthesized as a mixture with the minor
regioisomer (4ha') by the general procedure A in 74% yield (81.3 mg , regioisomer ratio $=2.2: 1$) or by the general procedure B in 82% yield (90.1 mg , regioisomer ratio $=1.7: 1$); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $138-140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, two isomers) δ 8.25 (d, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}$, major), 8.07 (d, $J=8.0,0.8 \mathrm{~Hz}, 0.6 \mathrm{H}$, minor), 7.82 (app. d, $J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}+0.6 \mathrm{H}$, major + minor), 7.67-7.58 ($\mathrm{m}, 2 \mathrm{H}+1.2 \mathrm{H}$, major + minor), 2.83-2.75 (m, 1 H , major), 2.60-2.53 (m, 0.6H, minor), 2.38 ($\mathrm{s}, 3 \mathrm{H}$, major), 2.24 ($\mathrm{s}, 1.7 \mathrm{H}$, minor), 2.15 ($\mathrm{s}, 3 \mathrm{H}$, major), $2.14(\mathrm{~s}, 1.8 \mathrm{H}$, minor), $1.80-1.61(\mathrm{~m}, 5 \mathrm{H}+3.1 \mathrm{H}$, major + minor), $1.45-1.28(\mathrm{~m}, 3 \mathrm{H}+$ 1.7 H , major + minor), 1.19-1.05 (m, $2 \mathrm{H}+1.2 \mathrm{H}$, major + minor); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right.$, two isomers) $\delta 172.2,171.7,150.3,144.4,133.7,133.6,133.5,131.6,131.5,131.4,131.3$, $130.9,130.2,130.1,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.3 \mathrm{~Hz}\right), 116.9$ (two signals overlapped), 110.9, 110.1, 83.1-82.0 (m), 44.2, 34.5, 32.5, 31.0, 27.0, 26.8, 26.7, 26.6, 25.2, 24.6, 22.8, 22.4; ${ }^{19}$ F NMR (376 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.0$ (q, $J=8.6 \mathrm{~Hz}$, minor), -77.2 (major), -77.3 ($\mathrm{q}, J=8.6 \mathrm{~Hz}$, minor); HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 550.0678$, found 550.0673. The regiochemistry of the major isomer (4ha) was assumed from that of the related compounds 4fa, 4ga, and 4ia.

(E)-N-(4-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)-2,2-dimethyloct-3-en-3-yl)acetamide (4ia): Synthesized by the general procedure B in 44% yield (49.7 mg); White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $157-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 8.58-7.98 (brs, 1H), 7.82 (app. s, 1H), 7.70-7.66 (m, 2H), 3.12-2.90 (brs, 1H), 2.37-2.19 (brs, $1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.54(\mathrm{brs}, 1 \mathrm{H}), 1.53-1.41($ brs, 1 H$), 1.38-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H})$, $0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.0,153.8,133.9,133.3,131.6$, $131.5,131.2,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.9 \mathrm{~Hz}\right), 125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=288.9 \mathrm{~Hz}\right), 123.2,112.4,83.0-81.8$ (m), 40.9, 40.5, 32.2, 31.0, 23.2, 22.2, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.31,-77.33$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 566.0991$, found 566.0994. Recrystallization
from hexane/ethyl acetate afforded single crystals suitable for X-ray diffraction analysis, which unambiguously confirmed the molecular structure of 4ia (Figure S3 and Table S4). ${ }^{6}$

Figure S3. ORTEP drawing of 4ia (thermal ellipsoids shown at 50% probability level).

Table S4. Crystal data and structure refinement for 4ia

Identification code	ito 123 m
Chemical formula	$\mathrm{C}_{84} \mathrm{H}_{104} \mathrm{~F}_{24} \mathrm{I}_{4} \mathrm{~N}_{4} \mathrm{O}_{8}$
Formula weight	$2261.31 \mathrm{~g} / \mathrm{mol}$
Temperature	100(2) K
Wavelength	$0.71073 \AA$
Crystal size	$0.020 \times 0.040 \times 0.180 \mathrm{~mm}$
Crystal habit	colorless needle
Crystal system	monoclinic
Space group	P 1211
Unit cell dimensions	$\mathrm{a}=9.9670(9) \AA$
	$\mathrm{b}=16.2018(14) \AA$
	$\mathrm{c}=13.8919(13) \AA$
Volume	2243.3(4) Å3
Z	1
Density (calculated)	$1.674 \mathrm{~g} / \mathrm{cm} 3$
Absorption coefficient	1.494
Theta range for data collection	1.93 to 32.11°
Index ranges	$-14<=\mathrm{h}<=14,-24<=\mathrm{k}<=24,-20<=\mathrm{l}<=20$
Reflections collected	51158
Independent reflections	$15649[\mathrm{R}(\mathrm{int})=0.1105]$
Coverage of independent reflections	99.9\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9710 and 0.7750
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2018/3 (Sheldrick, 2018)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	15649 / 1/570
Goodness-of-fit on F^{2}	0.965
$\Delta / \sigma_{\text {max }}$	0.001
Final R indices	9720 data; $\mathrm{I}>2 \sigma(\mathrm{I}) \mathrm{R} 1=0.0543, \mathrm{wR} 2=0.0728$
	all data $\quad \mathrm{R} 1=0.1273, \mathrm{wR} 2=0.0888$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}{ }^{2}\right)+(0.0152 \mathrm{P})^{2}\right]$
Absolute structure parameter	-0.056(15)
Largest diff. peak and hole	1.066 and -1.577 e \AA^{-3}
R.M.S. deviation from mean	$0.170 \mathrm{e}^{\text {A }}$ -

(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)-1-(4-methoxy

phenyl)hex-1-en-1-yl)acetamide (4ja): Synthesized by the general procedure A in 42% yield (51.7 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $113-115{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.34(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $2 \mathrm{H}), 6.88-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.46$ (brs, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.46-$ $1.37(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.5,162.4,147.8$, $133.4,132.5,131.9,131.2$ (two signals overlapped), $130.9,125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}\right), 123.3$, 114.8, 110.8, 82.9-81.8 (m), 55.8, 37.5, 32.6, 23.2, 22.9, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ -77.3; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$616.0783, found 616.0782 .

(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)-1-(p-tolyl)hex-1-en-1-yl)acetamide (4ka): Synthesized by the general procedure A in 33% yield (39.6 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $158-159{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.33$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.20($ app. d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.14 (app. d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 2.80-2.50 (brs, 2H), $2.30(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 2 \mathrm{H})$, 1.46-1.37 (m, 2H), $0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.5,148.0$, $141.2,137.5,133.5,133.4,131.3,131.2,130.9,130.2,130.0,125.4\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.0 \mathrm{~Hz}\right), 123.9$, $110.8,82.9-81.7(\mathrm{~m}), 37.4,32.5,23.3,22.9,21.3,14.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.3; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 600.0834$, found 600.0837.

Ethyl (E)-4-(1-acetamido-2-(3,3-bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)hex-1-en-1-yl)benzoate (4la): Synthesized by the general procedure B in 51% yield (67.1 $\mathrm{mg})$; White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $166-168{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 8.26(\mathrm{dd}, J=8.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ (app. d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (app. d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.70-7.61 (m, 2H), 7.42 (app. d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.33$ (q, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.98-2.50 (brs, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.6,162.2,147.7,144.8,133.6,133.4,132.5,131.4$, 131.3, 130.7, 130.43, 130.41, 125.6, $125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}\right), 110.0,82.9-81.8(\mathrm{~m}), 62.4$, 37.3, 32.3, 23.3, 22.9, 14.5, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.3$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 658.0889$, found 658.0894 .

(E)-N-(1-(4-Acetylphenyl)-2-(3,3-bis(trifluoromethyl)-1 ${ }^{3}$-benzo[d][1,2]iodaoxol-1(3H)-yl)hex-1-en-1-yl)acetamide (4ma): Synthesized by the general procedure B in 53% yield (65.3 mg); White liquid; $R_{f} 0.2\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.26(\mathrm{~d}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92$ (app. d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.73$ (app. d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H})$, 7.45 (app. d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.95-2.58 (brs, 2H), 2.54 (s, 3H), 2.14 (s, 3H), 1.69-1.62 (m, 2H), 1.49-1.40 (m, 2H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 199.5,171.7$, $146.7,144.9,138.8,133.6,133.4,131.4,131.3,130.7,130.6,129.4,125.6,125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=\right.$ 289.3 Hz), 110.0, 82.9-81.7 (m), 37.3, 32.3, 26.7, 23.3, 22.9, 14.1; ${ }^{19} \mathrm{~F}$ NMR (376 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta-77.3$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{NNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$628.0783, found 628.0777.

Ethyl (E)-4-(1-acetamido-2-(3,3-bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)hex-1-en-1-yl)benzoate (4na): Synthesized by the general procedure B in 51\% yield (67.1 $\mathrm{mg})$; White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $157-158{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 8.05-8.02(\mathrm{~m}, 1 \mathrm{H}), 7.94$ (app. d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 2 \mathrm{H})$, 7.39 (app. d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (app. d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$), 2.81-2.26 (brs, 2H), 1.93 (s, 3H), 1.49-1.42 (m, 2H), 1.29-1.20 (m, 2H), $0.75(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.7,146.3,144.2,133.7,133.4,132.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=32.4 \mathrm{~Hz}\right), 131.5,131.3,130.9,130.7,126.8$, $125.3\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}\right), 126.3\left(\mathrm{q},{ }^{3} J_{\mathrm{C}-\mathrm{F}}=3.8 \mathrm{~Hz}\right), 125.9,111.1,82.9-81.8(\mathrm{~m}), 37.3,32.3$, 23.3, 22.8, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-64.4, -77.4; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~F}_{9} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$654.0552, found 654.0554 .

(E)-N-(2-(3,3-Bis(trifluoromethyl)-113-benzo[d][1,2]iodaoxol-1(3H)-yl)-1-(3-

methoxyphenyl)hex-1-en-1-yl)acetamide (40a): Synthesized by the general procedure A in 39% yield (50.0 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $124-125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.82(\mathrm{~m}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 2.85-2.53(\mathrm{brs}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.68-1.60$ (m, 2H), 1.47-1.38 (m, 2H), $0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 171.6, $161.0,147.6,141.7,133.6,133.4,131.3,131.2,130.9,130.7,125.5\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}\right), 124.6$, $122.2,116.5,115.5,111.3,82.9-81.8$ (m) , 55.7, 37.4, 32.4, 23.3, 22.9, 14.1; ${ }^{19}$ F NMR (376
$\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.3; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 616.0783$, found 616.0785.

Ethyl (E)-4-(1-acetamido-2-(3,3-bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-

 yl)hex-1-en-1-yl)benzoate (4pa): Synthesized by the general procedure B in 42% yield (67.1 mg); White solid; $R_{f} 0.2\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=3 / 1\right)$; m.p. $163-164{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.25(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{app} . \mathrm{s}, 1 \mathrm{H}), 7.75-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.52$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{t}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99-2.53$ (brs, 2H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.8,167.1,146.7,141.0,134.4,133.7,133.4,131.7$, $131.5,131.3$ (two signals overlapped), 130.9, 130.8, 129.7, 125.6, 125.4 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}$), 111.3, 82.9-81.7 (m), 62.3, 37.3, 32.2, 23.4, 22.9, 14.5, 14.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ -77.4; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 658.0889$, found 658.0881 .
(E)-N-(2-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)-1-(cyclohex-1-en-

1-yl)prop-1-en-1-yl)acetamide (4qa): Synthesized by the general procedure A in 65% yield $(71.1 \mathrm{mg})$; Light brown solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $99-101{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.20-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 5.82-5.84(\mathrm{~m}, 1 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.06($ brs, 2 H$), 1.93$ (brs, 2H), 1.57-1.53 (m, 4H); ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.3,150.0,138.5,133.6,133.4$ (two signals overlapped), 131.3, 131.2,
130.6, $125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.3 \mathrm{~Hz}\right), 113.6,111.7,83.1-82.0(\mathrm{~m}), 27.6,25.9,24.6,23.2,22.8$, 22.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.3$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{6} \mathrm{INO} 2[\mathrm{M}+\mathrm{H}]^{+}$ 548.0521, found 548.0518 .

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)oct-4-en-4-

$\mathbf{y l}$)acetamide-2,2,2- $\boldsymbol{d}_{3}\left(\left[\mathrm{D}_{3}\right]-\mathbf{4 a a}\right)$: Synthesized by the general procedure B in 67% yield (72.4 $\mathrm{mg})$; White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $149-150{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta 8.13-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.82$ (app. d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68-7.60 (m, 2H), 2.89-2.55 (brs, 2H), 2.55-2.22 (brs, 2H), 1.72-1.48 (brs, 2H), 1.48-1.25 (brs, 2H), 0.93 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 0.84 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.9,148.4,133.6,133.5,131.5,131.3$, 130.7, $125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.3 \mathrm{~Hz}\right), 122.5,110.9,83.1-82.0(\mathrm{~m}), 41.1,39.3,23.5,22.3-21.7(\mathrm{~m})$, 21.8, 14.0, 13.9; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.3$; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{D}_{3} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 541.0866$, found 541.0861 .

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-
yl)propionamide (4ab): Synthesized by the general procedure B in 89% yield (98.1 mg); White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $147-148{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.16-8.12 (m, 1H), 7.82 (app. d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.68-7.62(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.57$ (brs, 2H), 2.562.22 (brs, 2H), $2.40(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 1.70-1.47 (brs, 2H), 1.47-1.31 (brs, 2H), 1.23 (t, $J=$ $7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.6,148.5,133.62,133.58,131.5,131.3,130.7,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}\right), 122.3,110.9$,
83.1-82.0 (m), 41.2, 39.3, 30.3, 23.4, 21.8, 14.0, 13.9, 10.4; ${ }^{19}$ F NMR (376 MHz, CD 3 OD) δ 77.2; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 552.0834$, found 552.0833 .

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)oct-4-en-4-

yl)butyramide (4ac): Synthesized by the general procedure B in 92% yield (104.1 mg); White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $143-144{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.16-8.12$ (m, 1H), 7.82 (app. s, 1H), 7.69-7.62 (m, 2H), 2.91-2.56 (brs, 2H), 2.56-2.22 (brs, 2H), $2.36(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1,70(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.48$ (brs, 2 H), 1.48-1.32 (brs, 2H), $1.02(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 174.7, 148.4, 133.63, 133.59, 131.5, 131.3, 130.8, $125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=290.1 \mathrm{~Hz}\right), 122.4,110.9$, 83.1-82.0 (m), 41.2, 39.5, 39.0, 23.5, 20.4, 14.1, 14.0, 13.9; ${ }^{19}$ F NMR (376 MHz, CD 3 OD) δ 77.3; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 566.0991$, found 566.0989 .

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)
pentanamide (4ad): Synthesized by the general procedure B in 83% yield (96.1 mg); White solid; $R_{f} 0.4\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $140-141{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.16-8.12$ (m, 1H), 7.82 (app. d, $J=3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.69-7.62 (m, 2H), 2.91-2.56 (brs, 2H), 2.56-2.23 (brs $+\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}+2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.48(\mathrm{brs}, 2 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.98(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 174.9,148.4,133.62,133.59,131.5,131.3,130.8,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.4 \mathrm{~Hz}\right), 122.4,110.9$,
83.1-81.9 (m), 41.2, 39.4, 36.8, 29.1, 23.4, 21.8, 14.1, 14.0, 13.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 580.1147$, found 580.1146 .

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-2-

 cyclopropylacetamide (4ae): Synthesized by the general procedure B in 71\% yield (81.9 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $152-153{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 8.17-8.14 (m, 1H), 7.82 (app. s, 1H), 7.68-7.63 (m, 2H), 2.89-2.58 (brs, 2H), 2.58-2.32 (brs, $2 \mathrm{H}), 2.26$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.72-1.49 (brs, 2H), 1.49-1.31 (brs, 2H), 1.21-1.10 (m, 1H), 0.94 $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.62-0.58(\mathrm{~m}, 2 \mathrm{H}), 0.29-0.25(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.4,148.4,133.62,133.58,131.5,131.3,130.8,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.6\right.$ $\mathrm{Hz})$, 122.6, 110.9, 83.1-82.0 (m), 42.2, 41.2, 39.4, 23.4, 21.8, 14.1, 14.0, 8.9, 4.9; ${ }^{19}$ F NMR (376 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 578.0991$, found 578.0984.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-2-

 phenylacetamide (4af): Synthesized by the general procedure B in 61% yield (74.8 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $154-155{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 8.11-8.07 (m, 1H), 7.80 (app. s, 1H), 7.65-7.59 (m, 2H), 7.40-7.32 (m, 4H), 7.27 (t, $J=7.1 \mathrm{~Hz}$, 1 H), 3.66 ($\mathrm{s}, 2 \mathrm{H}$), 2.47 (app. t, $J=58.7 \mathrm{~Hz}, 4 \mathrm{H}$), $1.55-1.22$ (brs, 4H), 0.80 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$), $0.77(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.5,148.2,136.5,133.6,133.5$,$131.5,131.3,130.7,130.1,129.8,128.2,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}\right), 122.8,110.8,83.1-82.0$ (m), 44.2, 41.1, 39.3, 23.3, 21.7, 14.0, 13.8; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.2$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 614.0991$, found 614.0984 .

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)but-

3-enamide (4ag): Synthesized by the general procedure B in 58% yield (65.3 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right) ;$ m.p. $137-138{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.14-8.11(\mathrm{~m}$, $1 \mathrm{H}), 7.82$ (app. d, $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.68-7.62 (m, 2H), 6.06-5.96 (m, 1H), 5.28 (dd, $J=17.1$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ (dd, $J=10.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (d, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.96-2.55$ (brs, 2H), 2.552.19 (brs, 2H), 1.71-1.48 (brs, 2H), 1.48-1.30 (brs, 2H), 0.92 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), 0.83 (t, $J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.3,148.3,133.61,133.58,132.5,131.5,131.3$, 130.7, $125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.6 \mathrm{~Hz}\right), 122.7,119.3,110.8,83.1-82.0(\mathrm{~m}), 42.1,41.1,39.3,23.4$, 21.8, 14.0, 13.9; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{2}$ $[\mathrm{M}+\mathrm{H}]^{+} 564.0834$, found 564.0828.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-yl)-2-(cyclohex-1-en-1-yl)acetamide (4ah): Synthesized by the general procedure B in 66% yield (81.4 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $151-152{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.15-8.11(\mathrm{~m}, 1 \mathrm{H}), 7.81($ app. s, 1H), 7.68-7.62 (m, 2H), $5.71(\mathrm{~s}, 1 \mathrm{H}), 3.0(\mathrm{~s}, 2 \mathrm{H})$, 2.83-2.31 (brs, 4H), 2.08 (app. s, 4H), 1.71-1.66 (m, 2H), 1.63-1.57 (m, 2H), 1.57-1.47 (brs,
$2 \mathrm{H}), 1.42$ (app. d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 172.8,148.4,133.6$ (two signals overlapped), 133.2, 131.5, 131.3, 130.8, $127.2,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}\right), 122.6,110.9,83.1-82.0(\mathrm{~m}), 46.5,41.1,39.4,29.5,26.4$, 23.9, 23.5, 23.1, 21.8, 14.1, 14.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.2$; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$618.1304, found 618.1306.

(E) $-N$-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-

yl)isobutyramide (4ai): Synthesized by the general procedure B in 71% yield (80.2 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $85-86{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.17-$ $8.13(\mathrm{~m}, 1 \mathrm{H}), 7.82($ app. s, 1 H$), 7.69-7.64(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.55($ brs $+\mathrm{m}, 2 \mathrm{H}+1 \mathrm{H}), 2.55-2.24$ (brs, 2H), 1.68-1.46 (brs, 2H), 1.46-1.34 (brs, 2H), $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.7,148.4,133.64,133.61$, $131.5,131.3,130.8,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}\right), 122.4,110.9,83.1-82.0(\mathrm{~m}), 41.2,39.4,36.4$, 23.4, 21.8, 19.9, 14.04, 13.96; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 566.0991$, found 566.0984.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-
yl)cyclopropanecarboxamide (4aj): Synthesized by the general procedure B in 71\% yield (80.0 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $116-117{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.11-8.07(\mathrm{~m}, 1 \mathrm{H}), 7.81$ (app. s, 1H), 7.67-7.61 (m, 2H), 2.94-2.57 (brs, 2H), 2.58-
2.19 (brs, 2H), 1.80-1.76 (m, 1H), 1.66-1.48 (brs, 2H), 1.48-1.30 (brs, 2H), 0.99-0.87 (m, 7H), $0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.2$, 148.6, 133.6 (two signals overlapped), 131.5, 131.3, 130.7, 125.6 ($\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.5 \mathrm{~Hz}$), 121.9, 110.8, 83.1-82.0 (m), 41.2, 39.3, 23.4, 21.9, 15.0, 14.0, 13.9, 8.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.2$; HRMS (ESI) Calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 564.0834$, found 564.0836.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)oct-4-en-4-

yl)cyclopentanecarboxamide (4ak): Synthesized by the general procedure B in 65% yield (76.8 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $142-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.16-8.12 (m, 1H), 7.82 (app. s, 1H), 7.69-7.64 (m, 2H), 2.87-2.80 (m, 1H), 2.782.56 (brs, 2H), 2.56-2.25 (brs, 2H), 2.01-1.94 (m, 2H), 1.87-1.75 (m, 4H), 1.71-1.62 (m, 2H), $1.60-1.47$ (brs, 2H), 1.47-1.32 (brs, 2H), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 177.8,148.6,133.64,133.61,131.5,131.3,130.8,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}\right.$ $=289.5 \mathrm{~Hz}), 122.2,110.8,83.1-82.0(\mathrm{~m}), 46.5,41.2,39.4,31.6,27.1,23.4,21.8,14.04,13.97$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.2$; HRMS (ESI) Calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 592.1147, found 592.1149.

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-
yl)pivalamide (4al): Synthesized by the general procedure B in 67% yield (77.6 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $65-67{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.18-8.16(\mathrm{~m}$,

1 H), 7.82 (app. d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71-7.64 (m, 2H), 2.95-2.21 (brs + m, 2H + 2H), 1.67-1.46 (brs, 2H), 1.46-1.35 (brs, 2H), $1.30(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 180.0,149.1,133.7,133.6,131.5,131.3,130.9,125.6$ (q, J_{C} $\mathrm{F}=289.6 \mathrm{~Hz}), 123.2,110.9,83.1-81.9(\mathrm{~m}), 41.2,40.3,39.3,27.8,23.3,21.7,14.1,14.0 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~F}_{6}\left[\mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}\right.$580.1147, found 580.1145.

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-(1-

Ad)amide (4am): Synthesized by the general procedure B in 26% yield (34.2 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right) ;$ m.p. $161-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.19-8.14(\mathrm{~m}$, 1 H), 7.82 (app. d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.71-7.64$ (m, 2H), 2.55 (app. d, $J=34.6 \mathrm{~Hz}, 4 \mathrm{H}$), 2.09 (brs, 3 H), 1.99 (app. d, $J=2.6 \mathrm{~Hz}, 6 \mathrm{H}$), 1.82 (app. t, $J=15.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.63-1.45 (brs, 2H), 1.451.31 (brs, 2 H$), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 179.5,149.1,133.7,133.6,131.5,131.3,130.9,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.9 \mathrm{~Hz}\right), 123.1,110.9$, 83.1-81.9 (m) , 42.6, 41.2, 40.3, 39.4, 37.5, 29.7, 23.3, 21.7, 14.1, 14.0; ${ }^{19}$ F NMR (376 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta-77.3$; $\mathrm{HRMS}(\mathrm{ESI}) \mathrm{Calcd}$ for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~F}_{6} \mathrm{NNO}_{2}[\mathrm{M}+\mathrm{H}]+658.1617$, found 658.1616.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[$\left.d\right][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-yl)

benzamide (4an): Synthesized by the general procedure B in 46% yield (55.1 mg); White solid;
$R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right) ;$ m.p. $136-137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.28-8.26(\mathrm{~m}$, 1H), 7.94-7.92 (m, 2H), 7.85 (app. d, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73-7.66$ (m, 2H), 7.63-7.59 (m, 1H), 7.55-7.52 (m, 2H), 2.80-2.51 (app. q, $J=37.7 \mathrm{~Hz}, 4 \mathrm{H}$), 1.74-1.52 (brs, 2H), 1.52-1.36 (brs, $2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.0$, $148.8,135.0,133.7,133.6,133.4,131.5,131.4,130.9,129.8,128.7,125.6\left(q,{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.9\right.$ Hz), 123.3, 110.9, 83.1-82.0 (m), 41.3, 39.4, 23.5, 21.9, 14.1, 14.0; ${ }^{19} \mathrm{~F}$ NMR (376 MHz , $\mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$600.0834, found 600.0830.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-4methoxybenzamide (4ao): Synthesized by the general procedure B in 45% yield (56.6 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $136-137{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.28-8.26 (m, 1H), 7.94-7.90 (m, 2H), 7.84 (app. d, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.73-7.67 (m, 2H), 7.08$7.04(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{~s}, 3 \mathrm{H}), 3.11-2.22(\mathrm{brs}, 4 \mathrm{H}), 1.68-1.51$ (brs, 2 H), 1.51-1.36 (brs, 2 H), 0.91 ($\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$), $0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.5,164.6$, $149.1,133.7,133.6,131.5,131.3,131.0,130.8,126.9,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=290.3 \mathrm{~Hz}\right), 122.9,115.0$, $\left.111.0,82.9-82.3(\mathrm{~m}), 56.0,41.3,39.4,23.5,21.9,14.1,14.0 ;{ }^{19} \mathrm{~F} \mathrm{NMR} \mathrm{(376} \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ -77.2; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$630.0940, found 630.0937.

(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d][1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-4-

 chlorobenzamide (4ap): Synthesized by the general procedure B in 54% yield (68.4 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $130-131{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 8.27-8.23 (m, 1H), 7.93-7.91 (m, 2H), 7.86-7.84 (m, 2H), 7.72-7.66 (m, 2H), 7.57-7.53 (m, 2H), 7.47-7.53 (m, 1H), 3.31-2.22 (brs, 4H), 1.71-1.52 (brs, 2H), 1.51-1.32 (brs, 2H), 0.91 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 167.7,148.6,139.5$, $133.64,133.60,131.5,131.3,130.9,130.44,130.36,129.7,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=290.3 \mathrm{~Hz}\right), 123.3$, 111.0, 82.9-82.3 (m), 41.2, 39.4, 23.5, 21.9, 14.1, 14.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{ClF}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$634.0444, found 634.0446.
(E)- N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)oct-4-en-4-yl)-4methylbenzamide (4aq): Synthesized by the general procedure B in 53% yield (65.0 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $158-159{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 8.26-8.22 (m, 1H), 7.85 (app. s, 1H), 7.70-7.66 (m, 2H), $7.46(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.00-2.69(\mathrm{brs}, 2 \mathrm{H}), 2.69-2.33(\mathrm{brs}+\mathrm{s}, 2 \mathrm{H}+3 \mathrm{H}), 1.74-1.39$ (brs, 4H), $0.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ $171.5,148.3,137.2,137.1,133.7,133.6,132.1,131.6,131.5,131.4,130.9,128.1,127.0,125.6$ $\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=289.6 \mathrm{~Hz}\right), 123.3,111.0,83.1-82.0(\mathrm{~m}), 41.3,39.4,23.5,21.9,14.1,14.0 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, $\mathrm{CD}_{3} \mathrm{OD}$) δ-77.2; HRMS (ESI) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~F}_{6} \mathrm{INO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$614.0991, found 614.0990.

(E)-N-(5-(3,3-Bis(trifluoromethyl)-1 λ^{3}-benzo[d] [1,2]iodaoxol-1(3H)-yl)-oct-4-en-4-

yl)thiophene-2-carboxamide (4ar): Synthesized by the general procedure B in 54\% yield (65.4 mg); White solid; $R_{f} 0.3\left(\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}=2 / 1\right)$; m.p. $107-108{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.23-8.21(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.75(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.19$ ($\mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.64 (app. q, $J=40.2 \mathrm{~Hz}, 4 \mathrm{H}$), 1.71-1.51 (brs, 2H), 1.51-1.31 (brs, 2H), $0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 162.9,148.3$, $139.3,133.7,133.6,133.1,131.5,131.3,130.9,130.8,129.1,125.6\left(\mathrm{q},{ }^{1} J_{\mathrm{C}-\mathrm{F}}=289.7 \mathrm{~Hz}\right), 123.6$, 111.0, 83.1-82.0 (m), 41.2, 39.7, 23.5, 21.9, 19.9, 14.1, 14.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ -77.2; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{INO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$606.0398, found 606.0396.

Control Experiments

Reactions using ${ }^{18} \mathbf{O}$-labeled water (conditions A): The reaction between $\mathbf{1}$ and $\mathbf{2 a}$ in MeCN was performed on a 0.2 mmol scale under conditions A , except using $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ instead of $\mathrm{H}_{2} \mathrm{O}$. Standard workup and purification afforded the product $\mathbf{4 a a}$ ($83.5 \mathrm{mg}, 78 \%$). Analysis of the peak intensities in the ESI-MS spectrum of this product indicated 62% incorporation of ${ }^{18} \mathrm{O}$ isotope (see below).

Reactions using ${ }^{18} \mathbf{O}$-labeled water (conditions B): The reaction between $\mathbf{1 , 2 a}$ and MeCN in HFIP was performed under conditions B, except using $\mathrm{H}_{2}{ }^{18} \mathrm{O}$ instead of $\mathrm{H}_{2} \mathrm{O}$. Standard workup and purification afforded the product $\mathbf{4 a a}(68.7 \mathrm{mg}, 64 \%)$. Analysis of the peak intensities in the ESI-MS spectrum of this product indicated 71% incorporation of ${ }^{18} \mathrm{O}$ isotope (see below).

Reaction in the absence of $\mathrm{H}_{2} \mathrm{O}: 1,1,1,3,3,3-$ Hexafluoro-2-(2-iodophenyl)propan-2-yl (E)-$N-\left((E)-5-\left(3,3-b i s(t r i f l u o r o m e t h y l)-1 \lambda^{3}\right.\right.$-benzo $[d][1,2]$ iodaoxol-1(3H)-yl)oct-4-en-4-
$\mathbf{y l}$)acetimidate (4aa'). The reaction between $\mathbf{1}$ and $\mathbf{2 a}$ in MeCN was performed on a 0.1 mmol scale under conditions A, except for the omission of $\mathrm{H}_{2} \mathrm{O}$. Standard workup and purification afforded the acetimidate derivative $\mathbf{4 a x}$ as a white solid ($26.7 \mathrm{mg}, 30 \%$). $R_{f} 0.2$ (hexane/EtOAc $=3 / 1$); m.p. 218-220 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.02(\mathrm{~m}, 1 \mathrm{H})$, 2.47-2.12 (m, 7H), 1.44-1.25(m, 2H), 1.02-0.89 (m, 2H), $0.86(t, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.65(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 156.2,153.5,144.2,132.2,131.5,130.8,130.5$ (two signals overlapped), 130.2, 128.9, 127.9, 126.5, $124.2\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=290.8 \mathrm{~Hz}\right), 122.1\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}\right.$ $=289.4 \mathrm{~Hz}$), 109.9, 107.5, 92.1, 84.7-83.5 (m), 81.8-80.6 (m), 41.1, 36.2, 23.0, 21.7, 17.9, 13.40, 13.39; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-76.0$ (two signals overlapped); HRMS (ESI) Calcd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{I}_{2} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 889.9861$, found 889.9852 .

Product Transformations

(\boldsymbol{E})- N -(5-((Trimethylsilyl)ethynyl)oct-4-en-4-yl)acetamide (5): Under N_{2} atmosphere, an 8mL vial equipped with a stir bar was charged sequentially with $\mathbf{4 a a}(53.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.010 \mathrm{mmol})$, $\mathrm{CuI}(1.9 \mathrm{mg}, 0.010 \mathrm{mmol})$, and THF $(0.5 \mathrm{~mL})$. To the mixture was added trimethylsilylacetylene ($19.6 \mathrm{mg}, 0.20 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(20.2 \mathrm{mg}, 0.20$ mmol), and the resulting mixture was stirred at room temperature for 12 h . The mixture was diluted with EtOAc $(10 \mathrm{~mL})$ and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a yellow oil ($22.8 \mathrm{mg}, 86 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.69-6.35$ (brs, $1 \mathrm{H}), 2.71(\mathrm{brs}, 2 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 4 \mathrm{H}), 0.94-0.90(\mathrm{~m}, 6 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.7,143.2,113.6,104.4,98.5,34.4,32.5,24.1,21.1$ (two signals overlapped), 13.7 (two signals overlapped), 0.00 ; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NOSi}[\mathrm{M}+$ $\mathrm{H}]^{+}$267.1936, found 267.1956.

(\boldsymbol{E})-(1-Methoxy-2-methylbuta-1,3-dien-1-yl)benzene (6): Under N_{2} atmosphere, a $10-\mathrm{mL}$ Schlenk tube equipped with a stir bar was charged sequentially with $\mathbf{4 a a}(53.7 \mathrm{mg}, 0.10 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(7.0 \mathrm{mg}, 0.01 \mathrm{mmol})$, and $\mathrm{DMF}(0.5 \mathrm{~mL})$. To the solution was added tributyl(vinyl)tin ($63.4 \mathrm{mg}, 0.20 \mathrm{mmol}$), and the resulting mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h. The mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and washed with
$\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc = 3/1) to afford the title compound 5 as a white solid ($14.2 \mathrm{mg}, 73 \%$ yield, $E / Z=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) $\delta 6.40$ (app. dd, $J=17.2,11.0 \mathrm{~Hz}$, $1 \mathrm{H}+0.2 \mathrm{H}$, major + minor), 6.57-6.53 (brs, 1 H , major), 6.42-6.30 (brs, 1 H , minor), 5.34 (d, J $=18.3 \mathrm{~Hz}, 0.2 \mathrm{H}$, minor), 5.23 (app. d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}+0.2 \mathrm{H}$, major + minor $), 5.10(\mathrm{~d}, J=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}$, major), 2.54 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, major), 2.20 (app. t, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}+0.4 \mathrm{H}$, major + minor), $2.08(\mathrm{~s}, 3 \mathrm{H}$, major), 1.99-1.88 (brs, 0.6 H , minor), $1.50-1.37(\mathrm{~m}, 4 \mathrm{H}+0.8 \mathrm{H}$, major + minor), $0.94-0.88(\mathrm{~m}, 6 \mathrm{H}+1.2 \mathrm{H}$, major + minor $) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, major isomer) $\delta 168.4,134.9,133.1,129.9,113.7,31.4,29.0,23.9,21.7,14.3,13.8$; HRMS (ESI) Calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$196.1701, found 196.1699.

(E)-N-(5-Cyanooct-4-en-4-yl)acetamide (7): Under N_{2} atmosphere, an 8-mL vial equipped with a stir bar was charged sequentially with $\mathrm{CuCN}(17.9 \mathrm{mg}, 0.20 \mathrm{mmol}$), L-proline (11.5 mg , $0.10 \mathrm{mmol})$, and DMF (0.5 mL). After stirring at room temperature for $10 \mathrm{~min}, \mathbf{4 a a}(53.7 \mathrm{mg}$, 0.10 mmol) was added, and the resulting mixture was stirred at $105^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to room temperature, diluted with EtOAc (15 mL), and washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a colorless oil ($14.4 \mathrm{mg}, 74 \%$ yield) and its isomer 7^{\prime}, as a white solid ($4.7 \mathrm{mg}, 24 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84(\mathrm{~s}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 1.66-1.51(\mathrm{~m}, 4 \mathrm{H}), 0.970(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.965(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,151.6,119.0,100.3,35.0,30.2,24.4,21.4,21.0,13.5,13.4 ;$ HRMS (ESI)

Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$195.1497, found 195.1498 .
(Z)-N-(5-Cyanooct-4-en-4-yl)acetamide (7'): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.33$ (s, 1H), $2.73(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.17(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.48(\mathrm{~m}, 4 \mathrm{H}), 0.97(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.0,153.5,118.2,95.8$, 30.4, 29.5, 24.7, 22.1, 21.4, 13.8, 13.4; HRMS (ESI) Calcd for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$195.1497, found 195.1494.

(E)-N-(5-Iodooct-4-en-4-yl)acetamide (8): Under N_{2} atmosphere, an $8-\mathrm{mL}$ vial equipped with a stir bar was charged sequentially with $\mathrm{CuCN}(17.9 \mathrm{mg}, 0.20 \mathrm{mmol})$, L-proline ($11.5 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, and DMF (0.5 mL). After stirring at room temperature for 10 min , $\mathbf{4 a}(53.7 \mathrm{mg}, 0.10$ mmol) was added, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to room temperature, diluted with $\mathrm{EtOAc}(15 \mathrm{~mL})$, and washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ $(5 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a colorless solid ($21.6 \mathrm{mg}, 73 \%$ yield, $E / Z=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.40(\mathrm{~s}, 1 \mathrm{H}$, major), 6.24 ($\mathrm{s}, 0.2 \mathrm{H}$, minor), $2.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, major), $2.51-2.41(\mathrm{~m}, 2 \mathrm{H}+0.8 \mathrm{H}$, major + minor), $2.06(\mathrm{~s}, 3 \mathrm{H}$, major), $1.94(\mathrm{~s}, 0.6 \mathrm{H}$, minor), $1.59-1.42(\mathrm{~m}, 4 \mathrm{H}+0.8 \mathrm{H}$, major + minor), $0.96-0.87\left(\mathrm{~m}, 6 \mathrm{H}+1.2 \mathrm{H}\right.$, major + minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both isomers) $\delta 172.0$, 168.0, 137.5, 136.9, 109.1, 104.0, 42.7, 41.5, 41.2, 40.3, 29.7, 23.3, 22.7, 22.5, 20.4, 20.2, 20.0, 13.7, 13.0, 12.8; HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+} 296.0511$, found 296.0510 .

(Z)-N-(Oct-4-en-4-yl)acetamide (9): Under N_{2} atmosphere, a Schlenk tube equipped with a stir bar was charged sequentially with $\mathrm{HCO}_{2} \mathrm{H}(9.2 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(30.3 \mathrm{mg}, 0.30 \mathrm{mmol})$, and DMF (0.5 mL). After stirring at room temperature for 10 min , 4aa ($53.7 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(11.6 \mathrm{mg}, 0.010 \mathrm{mmol})$ were added, and the resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 18 h . The mixture was cooled to room temperature, diluted with $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a colorless liquid ($14.4 \mathrm{mg}, 85 \%$ yield, $E / Z=5: 1$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, two isomers) δ $6.42(\mathrm{~s}, 1 \mathrm{H}$, major), $6.19(\mathrm{~s}, 0.2 \mathrm{H}$, minor), $5.32(\mathrm{t}, J=5.5 \mathrm{~Hz}, 0.2 \mathrm{H}$, minor), $5.05(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 1 H , major), $2.28(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, major), $2.05(\mathrm{~s}, 3 \mathrm{H}), 1.97-1.91(\mathrm{~m}, 2 \mathrm{H}+0.4 \mathrm{H}$, major + minor), $1.83(\mathrm{~s}, 0.6 \mathrm{H}$, minor), 1.47-1.34 ($\mathrm{m}, 4 \mathrm{H}+0.8 \mathrm{H}$, major + minor), $0.92-0.87(\mathrm{~m}, 6 \mathrm{H}+$ 1.2 H , major + minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both isomers) $\delta 172.6,168.1,134.7,134.3$, $127.3,121.5,39.3,36.9,29.3,29.0,23.7,22.4,22.2,20.6,20.3,20.2,19.8,13.8,13.7,13.5$; HRMS (ESI) Calcd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 170.1545$, found 170.1544 .

$N, \quad N^{\prime}$-((4E, 6E)-5,6-Dipropyldeca-4,6-diene-4,7-diyl)diacetamide (10): Under N_{2} atmosphere, a $10-\mathrm{mL}$ Schlenk tube equipped with a stir bar was charged sequentially with 4aa ($53.7 \mathrm{mg}, 0.10 \mathrm{mmol}$), $\operatorname{Pd}(\mathrm{acac})_{2}(3.0 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathrm{Zn}(13.0 \mathrm{mg}, 0.20 \mathrm{mmol})$, and THF (1 mL). The resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h . The mixture was cooled to room
temperature, diluted with EtOAc $(15 \mathrm{~mL})$, and washed with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$. The organic layer was dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a colorless solid ($16.3 \mathrm{mg}, 97 \%$ yield, $(E, E) /(E, Z)=4: 1) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.31$ ($\mathrm{s}, 2 \mathrm{H}$, major), 6.16 ($\mathrm{s}, 0.5 \mathrm{H}$, minor), 2.59 ($\mathrm{t}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}$, major), 2.48$2.41(\mathrm{~m}, 4 \mathrm{H}+1 \mathrm{H}$, major + minor), $2.06(\mathrm{~s}, 6 \mathrm{H}$, major), 1.94 ($\mathrm{s}, 1.6 \mathrm{H}$, minor), 1.57-1.44 (m, $8 \mathrm{H}+2 \mathrm{H}$, major + minor), 0.96-0.87 ($\mathrm{m}, 12 \mathrm{H}+3 \mathrm{H}$, major + minor); ${ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}, major isomer) $\delta 167.9,136.8,104.0,41.5,40.3,23.4,22.5,20.4,13.7,13.0$; HRMS (ESI) Calcd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$337.2855, found 337.2857.

4-Ethoxy-6-methyl-2,3-dipropylpyridine (11): This and other pyridine syntheses were performed according to the literature procedure. ${ }^{7}$ Under N_{2} atmosphere, a $10-\mathrm{mL}$ Schlenk tube equipped with a stir bar was charged sequentially with the enamide $9(14.4 \mathrm{mg}, 0.08 \mathrm{mmol})$ and 2-chloropyridine ($9.6 \mu \mathrm{~L}, 0.10 \mathrm{mmol}$), and $\mathrm{DCM}(0.5 \mathrm{~mL})$. The mixture was cooled to $78{ }^{\circ} \mathrm{C}$, and trifluoromethanesulfonic anhydride ($\mathrm{Tf}_{2} \mathrm{O}, 15.8 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) was added dropwise via syringe. After 5 min , the reaction mixture was placed in an ice-water bath, and then ethyl ethynyl ether ($33.0 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 50 \% \mathrm{wt}$. in hexane) was added via syringe. The resulting solution was allowed to warm to ambient temperature. After 1 h , triethylamine (80 $\mu \mathrm{L})$ was introduced to neutralize the trifluoromethanesulfonate salts. DCM (5 mL) was added to dilute the mixture and the layers were separated. The organic layer was washed with brine (2 mL) and dried over MgSO_{4}. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=100 / 30 / 1$) to give the title compound as a yellow liquid ($15.2 \mathrm{mg}, 81 \%$ yield); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 2 \mathrm{H})$,
2.57-2.54 (m, 2H), 2.45 (s, 3H), 1.71-1.63(m, 2H), 1.54-1.46(m, 2H), $1.42(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.99(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.4,160.2$, 156.2, 121.0, 103.8, 63.2, 37.3, 27.2, 24.7, 23.7, 23.1, 14.6, 14.3; HRMS (ESI) Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$222.1858, found 222.1853.

4-(4-Methoxyphenyl)-6-methyl-2,3-dipropylpyridine (12): The reaction between the enamide 9 ($13.9 \mathrm{mg}, 0.082 \mathrm{mmol}$) and 4-ethynylanisole ($20.7 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$) was performed by the same procedure as described for the synthesis of $\mathbf{1 1}$. Purification of the crude product by flash column chromatography on silica gel (eluent: hexane/EtOAc/Et ${ }_{3} \mathrm{~N}=100 / 10 / 1$) afforded the title compound as a yellow liquid ($16.9 \mathrm{mg}, 73 \%$ yield) ; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 2.80-$ 2.76 (m, 2H), 2.53-2.49 (m, 2H), 2.49 (s, 3H), 1.80-1.72 (m, 2H), 1.41-1.31 (m, 2H), 1.04 (t, J $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,158.9,154.2$, 150.1, 133.0, 130.2, 129.6, 122.4, 113.5, 55.3, 37.6, 30.6, 24.3, 24.0, 23.8, 14.43, 14.38; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$284.2014, found 284.2036.

\boldsymbol{N}-(1-(4-Methoxyphenyl)hex-1-en-1-yl)acetamide (9ja): The hydrodehalogenation of 4ja $(61.5 \mathrm{mg}, 0.10 \mathrm{mmol}$) was performed by the same procedure as described for $\mathbf{4} \mathbf{a a}$. The crude product was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=$ $3 / 1)$ to afford the title compound as a colorless solid $(20.0 \mathrm{mg}, 81 \%$ yield, stereoisomer ratio $=$
1.4:1); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36$ ($\mathrm{d}, J=8.6 \mathrm{~Hz}, 1.4 \mathrm{H}$, minor), $7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, 2 H , major), 6.87 (d, $J=8.7 \mathrm{~Hz}, 1.4 \mathrm{H}$, minor), 6.83 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$, major), 6.71 (s, 0.6 H , minor), 6.63 (s, 1H, major), $5.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.7 \mathrm{H}$, minor), $5.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, major), $3.82(\mathrm{~s}, 2.2 \mathrm{H}$, minor), $3.79(\mathrm{~s}, 3 \mathrm{H}$, major), 2.24-2.19 ($\mathrm{m}, 1.5 \mathrm{H}$, minor), 2.15-2.11 ($\mathrm{s}+\mathrm{m}, 3 \mathrm{H}+$ 1.9 H , major + minor $), 1.78(\mathrm{~s}, 2.1 \mathrm{H}$, minor), $1.48-1.32(\mathrm{~m}, 4 \mathrm{H}+3.1 \mathrm{H}$, major + minor $), 0.94-$ $0.90\left(\mathrm{~m}, 3 \mathrm{H}+2.2 \mathrm{H}\right.$, major + minor); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both isomers) $\delta 173.6,168.3$, $159.6,159.3,134.2,132.4,130.8,130.7,126.7,126.6,125.9,125.2,114.1,113.7,55.31,55.26$, $31.24,31.21,28.0,27.6,23.4,22.5,22.4,20.6,13.94,13.90$; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 248.1650$, found 248.1652 .

3-Butyl-4-ethoxy-2-(4-methoxyphenyl)-6-methylpyridine (13): The reaction between the enamide $9 \mathbf{j a}$ ($14.4 \mathrm{mg}, 0.081 \mathrm{mmol}$) and ethyl ethynyl ether ($30.6 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 50 \% \mathrm{wt}$. in hexane) was performed by the same procedure as described for the synthesis of $\mathbf{1 1}$. The crude product was purified by flash column chromatography on silica gel (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=100 / 30 / 1$) to give the title compound as a yellow liquid ($19.6 \mathrm{mg}, 81 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.58$ ($\mathrm{s}, 1 \mathrm{H}$), $4.09(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 2.54-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 163.9,159.0,158.7,156.4,133.9,130.0,121.9,113.4,104.6,63.4,55.3,31.9,25.9$, 24.8, 22.7, 14.6, 13.8; HRMS (ESI) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 300.1964$, found 300.1962.

(Z)-N-(Oct-4-en-4-yl)acetamide (9an): The hydrodehalogenation of 4an (59.9 mg, 0.10 mmol) was performed by the same procedure as described for $\mathbf{4} \mathbf{a}$. The crude product was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc $=3 / 1$) to afford the title compound as a colorless solid ($19.4 \mathrm{mg}, 84 \%$ yield, $Z / E=7: 1$); ${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$ 7.82-7.79 (m, 2H, major), 7.77-7.75 (m, 0.3H, minor), 7.54-7.50 (m, $1 \mathrm{H}+0.1 \mathrm{H}$, major + minor , $7.47-7.44(\mathrm{~m}, 2 \mathrm{H}+0.4 \mathrm{H}$, major + minor $), ~ 7.12-6.92$ (brs, $1 \mathrm{H}+0.1 \mathrm{H}$, major + minor), 5.95 (t, $J=7.6 \mathrm{~Hz}, 0.2 \mathrm{H}$, minor), $5.12(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, minor), $2.42(\mathrm{t}, J=7.7 \mathrm{~Hz}$, 2 H , major), 2.35 (t, $J=7.6 \mathrm{~Hz}, 0.4 \mathrm{H}$, minor), 2.17-2.06 (m, 0.4H, minor), 2.04-1.98 (m, 2H, major), 1.56-1.38 (m, $4 \mathrm{H}+0.7 \mathrm{H}$, major + minor $)$, 1.03-0.88 $(\mathrm{m}, 6 \mathrm{H}+1 \mathrm{H}$, major + minor $)$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$, both isomers) $\delta 166.0,165.4,135.5,134.9,134.7,134.1,131.5$, 131.4, 128.64, 128.61, 127.0, 126.8, 123.1, 121.2, 36.9, 31.8, 29.3, 29.1, 23.1, 22.4, 21.2, 20.8, 13.9, 13.8, 13.7, 13.6; HRMS (ESI) Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$232.1701, found 232.1702.

4-(4-methoxyphenyl)-6-phenyl-2,3-dipropylpyridine (14): The reaction between the enamide 9an ($19.4 \mathrm{mg}, 0.084 \mathrm{mmol}$) and 4-ethynylanisole ($20.7 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) was performed by the same procedure as described for the synthesis of $\mathbf{1 1}$. The crude product was purified by flash column chromatography on silica gel (eluent: hexane/EtOAc/Et ${ }_{3} \mathrm{~N}=100 / 3 / 1$) to give the title compound as a yellow liquid ($16.9 \mathrm{mg}, 58 \%$ yield); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 8.03-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.96$ (m, 2H), 3.87 ($\mathrm{s}, 3 \mathrm{H}), 2.95-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.38(\mathrm{~m}$,
$2 \mathrm{H}), 1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5$, $159.0,153.3,150.3,139.8,133.1,132.0,129.7,128.5,128.3,127.6,119.5,113.6,55.3,37.2$, 30.8, 24.1, 22.9, 14.1; HRMS (ESI) Calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 346.2171$, found 346.2179.

4-cyclohexyl-2-phenyl-5,6-dipropylpyrimidine (15): The pyrimidine synthesis was performed according to the literature procedure. ${ }^{8}$ Under N_{2} gas, a 10 mL Schlenk tube equipped with a stir bar was charged sequentially with the enamide 9 an ($19.0 \mathrm{mg}, 0.082 \mathrm{mmol}$), cyclohexanecarbonitrile ($10.7 \mu \mathrm{~L}, 0.16 \mathrm{mmol}$), 2-chloropyridine ($9.3 \mu \mathrm{~L}, 0.09 \mathrm{mmol}$) and DCM $(0.5 \mathrm{~mL})$. Then the trifluoromethanesulfonic anhydride $\left(\mathrm{Tf}_{2} \mathrm{O}, 15.3 \mu \mathrm{~L}, 0.09 \mathrm{mmol}\right)$ was added dropwise via syringe at $-78^{\circ} \mathrm{C}$. After 5 min , the reaction mixture was placed in an ice-water bath and warmed to $0{ }^{\circ} \mathrm{C}$ for 5 min . The resulting solution was allowed to warm to ambient temperature. After 1 h , triethylamine $(80 \mu \mathrm{~L})$ was introduced to neutralize the trifluoromethanesulfonate salts. DCM (5 mL) was added to dilute the mixture and the layers were separated. The organic layer was washed with brine (2 mL) and dried over MgSO_{4}. The volatiles were removed under reduced pressure and the residue was purified by flash column chromatography on silica gel (eluent: hexane $/ \mathrm{EtOAc} / \mathrm{Et}_{3} \mathrm{~N}=100 / 3 / 1$) to give the title compound as a colorless liquid ($16.9 \mathrm{mg}, 69 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50-8.47$ $(\mathrm{m}, 2 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 1 \mathrm{H}), 2.89-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.91-$ $1.81(\mathrm{~m}, 6 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.07-1.03(\mathrm{~m}, 5 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.6,167.9,160.8,138.9,129.6,128.2,127.9,127.4,41.6,36.7$, 32.2, 29.0, 26.6, 26.0, 24.2, 22.0, 14.5, 14.3; HRMS (ESI) Calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2}[\mathrm{M}+\mathrm{H}]^{+}$ 323.2487, found 323.2471.

DFT Calculations

All the density functional theory (DFT) calculations were carried out using Gaussian 16 program. ${ }^{9}$ Geometry optimizations were performed with the M06-2X functional ${ }^{10}$ and a combined basis set B 1 (i.e. the SDD effective core potential ${ }^{11}$ for iodine, the $6-31 \mathrm{G}(\mathrm{d})$ basis set for all other atoms). Harmonic frequency calculations were performed for each stationary point to ensure that it is either an energy minimum (no imaginary frequency) or a transition state (only one imaginary frequency). For each transition state, intrinsic reaction coordinate $(\text { IRC })^{12}$ analysis was performed to ensure that it connects the correct reactant and product. The single-point energy calculations were further performed with the M06-2X functional and a combined basis set B2 (i.e. the SDD effective core potential for iodine, the $6-311++G(2 d f, 2 p)$ basis set for all other atoms). The SMD model ${ }^{13}$ with 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as the solvent was used for all the calculations. Because HFIP is not a built-in solvent in Gaussian 16, several parameters $\left(\mathrm{eps}=16.7,{ }^{14} \mathrm{epsinf}=1.63,{ }^{15}\right.$ SurfaceTensionAtInterface $=$ 23.2, ${ }^{14}$ CarbonAromaticity $=0$, ElectronegativeHalogenicity $=0.6$) were used to customize it. The HBondAcidity and HBondBasicity of HFIP used the values of 2,2,2-trifluoroethanol (TFE) instead because there is no data available and TFE is the closest to HFIP among the built-in solvents in Gaussian 16. The single-point energies corrected by the thermal correction to Gibbs free energies (TCG, obtained from frequency calculations) were used as the Gibbs free energies reported in this work, corresponding to the reference state of $1 \mathrm{~mol} / \mathrm{L}, 298.15 \mathrm{~K}$. The Mayer bond orders and ADCH atomic charges were calculated using Multiwfn 3.8. ${ }^{16}$ The 3-D structures were drawn using CYLview software. ${ }^{17}$

$$
G(\mathbf{T S} 1 \mathbf{a})-G(\mathbf{T S} 1 \mathbf{b})=1.7 \mathrm{kcal} \mathrm{~mol}^{-1}
$$

Figure S4. Structures of regioisomeric transition states for the addition of MeCN to 4,4-dimethylpent-2-yne activated by BX^{+}. Gibbs free energies were calculated at the SMD(HFIP)-M06-2X/B2//SMD(HFIP)-M06-2X/B1 level. Bond distances are in \AA. Mayer bond orders are shown in the parentheses.

Figure S5. Gibbs free energy diagram for the BXT-mediated addition of MeCN to 4,4-dimethylpent-2-yne.

Thermal correction to Gibbs free energies (TCG), single-point electronic energies (E) and

Cartesian coordinates

alkyne (4,4-dimethylbut-2-yne)
$\mathrm{TCG}=0.137681$ a. .
$\mathrm{E}=-273.8810416$ a.u.

C	1.786593000	-0.000010000	0.000930000
C	0.576935000	-0.000007000	0.001211000
C	3.250783000	-0.000001000	0.000172000
H	3.641083000	0.006924000	-1.022274000
H	3.642193000	0.881788000	0.516914000
H	3.642203000	-0.888704000	0.504923000
C	-0.900247000	-0.000001000	0.000063000
C	-1.409854000	-0.000501000	1.449411000
C	-1.407375000	1.256067000	-0.724973000
C	-1.407396000	-1.255555000	-0.725848000
H	-1.060676000	-0.888481000	1.986230000
H	-1.060726000	0.887139000	1.986823000
H	-2.505684000	-0.000536000	1.456674000
H	-1.056213000	1.277449000	-1.761705000
H	-2.503196000	1.263663000	-0.730570000

H	-1.058063000	2.164508000	-0.223633000
H	-2.503217000	-1.263111000	-0.731469000
H	-1.056214000	-1.276239000	-1.762587000
H	-1.058126000	-2.164349000	-0.225120000

BXT

$\mathrm{TCG}=0.095756 \mathrm{a} . \mathrm{u}$.
$E=-1992.470134$ a.u.

I	0.374912000	-0.814505000	-0.613220000
O	-1.568458000	-1.355187000	-0.307789000
C	-0.466093000	1.119513000	-0.318516000
C	-1.808735000	1.040483000	0.014984000
C	-2.488500000	2.232438000	0.272497000
C	-1.814913000	3.446621000	0.173501000
C	-0.471603000	3.485592000	-0.187088000
C	0.229349000	2.306234000	-0.441658000
H	0.045799000	4.434896000	-0.277029000
H	1.269545000	2.338240000	-0.742259000
H	-3.536985000	2.216345000	0.545835000
H	-2.349813000	4.368648000	0.374545000
C	-2.447006000	-0.338371000	0.071383000
C	-2.904969000	-0.662034000	1.505077000
C	-3.618452000	-0.428277000	-0.924749000
F	-1.860984000	-0.586427000	2.332692000
F	-3.841084000	0.190857000	1.934120000
F	-3.404800000	-1.895209000	1.583227000
F	-4.121686000	-1.661768000	-0.961870000
F	-4.611083000	0.410900000	-0.611516000
F	-3.182890000	-0.122929000	-2.148225000
O	3.968137000	1.886599000	-0.040047000
S	3.264549000	0.648639000	0.251986000
O	2.369286000	0.233791000	-0.911314000
O	2.593541000	0.508896000	1.536610000
C	4.525862000	-0.675234000	0.196994000
F	5.390671000	-0.500581000	1.185703000
F	3.929130000	-1.853247000	0.334760000
F	5.164796000	-0.639617000	-0.962941000

MeCN

$\mathrm{TCG}=0.023084$ a.u.
$E=-132.7500944$ a.u.

C	0.000000000	0.000000000	-1.179326000
H	0.000000000	1.028926000	-1.546349000
H	0.891076000	-0.514463000	-1.546349000
H	-0.891076000	-0.514463000	-1.546349000
C	0.000000000	0.000000000	0.278832000
N	0.000000000	0.000000000	1.434573000

[alkyne-BX] ${ }^{+}$

$$
\mathrm{TCG}=0.241553 \text { a.u. }
$$

$E=-1304.67904$ a.u.

I	0.809551000	-0.746899000	0.818035000
O	-1.189196000	-1.205245000	0.649282000
C	0.091521000	1.097065000	0.006301000
C	-1.255199000	1.021763000	-0.311399000
C	-1.851423000	2.146270000	-0.885913000

C	-1.095985000	3.294308000	-1.106284000
C	0.250906000	3.334554000	-0.760006000
C	0.870283000	2.219580000	-0.193517000
H	0.835257000	4.232837000	-0.929224000
H	1.921362000	2.244972000	0.067171000
H	-2.899602000	2.128570000	-1.160225000
H	-1.568099000	4.163179000	-1.552038000
C	-1.988028000	-0.278321000	-0.020123000
C	-3.180474000	-0.023529000	0.922468000
C	-2.440793000	-0.944413000	-1.332202000
F	-2.745856000	0.580935000	2.029921000
F	-4.111292000	0.753124000	0.359217000
F	-3.761981000	-1.168257000	1.277545000
F	-3.027676000	-2.117053000	-1.095706000
F	-3.300203000	-0.179235000	-2.011744000
F	-1.375827000	-1.164856000	-2.108104000
C	3.311487000	0.016113000	0.324235000
C	3.068443000	0.471562000	1.440231000
C	2.933266000	1.099356000	2.755247000
H	3.869162000	1.614868000	2.991398000
H	2.118868000	1.830177000	2.748729000
H	2.735959000	0.348785000	3.524797000
C	3.828245000	-0.434787000	-0.988264000
C	2.975301000	0.142806000	-2.126925000
C	3.843924000	-1.968250000	-1.051686000
H	2.978166000	1.236955000	-2.108319000
H	3.396294000	-0.188914000	-3.081312000
H	1.939328000	-0.208036000	-2.066930000
H	4.434692000	-2.389431000	-0.232528000
H	2.829491000	-2.376332000	-1.001709000
H	4.292999000	-2.276977000	-2.000773000
C	5.266593000	0.108612000	-1.082113000
H	5.277676000	1.201282000	-1.031296000
H	5.890117000	-0.290489000	-0.276799000
H	5.692836000	-0.201895000	-2.041541000

OTf

TCG $=-0.00405$ a.u.
$E=-961.6689107$ a.u.

O	1.223588000	-0.876823000	-1.131058000
S	0.888810000	0.000143000	-0.000067000
O	1.223788000	1.418203000	-0.193460000
O	1.223576000	-0.541667000	1.324581000
C	-0.937830000	0.000032000	0.000008000
F	-1.405878000	-1.236880000	0.168264000
F	-1.405972000	0.764189000	0.986995000
F	-1.406106000	0.472671000	-1.155202000

[MeCN-alkyne-BX] ${ }^{+}$

$T C G=0.281243$ a.u.
$\mathrm{E}=-1437.43606592$ a.u.

I	-0.198120000	-0.966122000	-0.853148000
O	1.857273000	-1.031443000	-0.813746000
C	0.192201000	0.838686000	0.229074000
C	1.546514000	1.007832000	0.465796000
C	1.941063000	2.141059000	1.180596000
C	0.984329000	3.053733000	1.616848000
C	-0.365930000	2.848057000	1.351231000
C	-0.784048000	1.719279000	0.645537000
H	-1.112251000	3.559880000	1.689195000
H	-1.837190000	1.559276000	0.448345000
H	2.989114000	2.313605000	1.395160000
H	1.301985000	3.932081000	2.168464000

C	2.502470000	-0.051046000	-0.059320000
C	3.535561000	0.579934000	-1.012405000
C	3.190268000	-0.777399000	1.111803000
F	2.899621000	1.233429000	-1.986804000
F	4.336139000	1.444492000	-0.380800000
F	4.301650000	-0.353411000	-1.574780000
F	4.005159000	-1.735307000	0.670379000
F	3.905863000	0.059191000	1.868852000
F	2.262515000	-1.349043000	1.884361000
C	-2.800273000	-0.805756000	-0.248083000
C	-2.673492000	-0.107664000	-1.252104000
C	-2.675755000	0.799701000	-2.401604000
H	-3.711716000	1.042328000	-2.659044000
H	-2.145753000	1.724503000	-2.151272000
H	-2.199251000	0.333944000	-3.268141000
C	-3.174942000	-1.565006000	0.967714000
C	-2.426719000	-1.000987000	2.184381000
C	-2.867160000	-3.056957000	0.783280000
H	-2.656188000	0.059688000	2.328967000
H	-2.742592000	-1.550402000	3.076967000
H	-1.342957000	-1.117295000	2.072998000
H	-3.399812000	-3.462806000	-0.082293000
H	-1.794664000	-3.229463000	0.648220000
H	-3.192350000	-3.597277000	1.677730000
C	-4.690814000	-1.366223000	1.154475000
H	-4.928379000	-0.312779000	1.329444000
H	-5.247894000	-1.723134000	0.283076000
H	-5.008401000	-1.941398000	2.030385000
N	-3.977034000	2.506572000	0.572838000
C	-4.850528000	2.050393000	-0.032669000
C	-5.950921000	1.469068000	-0.793165000
H	-6.814337000	1.327700000	-0.138554000
H	-6.223309000	2.136304000	-1.614329000
H	-5.642104000	0.500880000	-1.197525000

TS1a

$\mathrm{TCG}=0.282382$ a.u.
$E=-1437.411951$ a.u.

I	0.290973000	0.599873000	-0.855169000
O	-1.827757000	0.629700000	-1.204995000
C	-0.416060000	-0.752817000	0.653750000
C	-1.797091000	-0.834169000	0.715887000
C	-2.356256000	-1.670201000	1.686136000
C	-1.532294000	-2.399023000	2.538489000
C	-0.148161000	-2.300273000	2.438143000
C	0.430490000	-1.463672000	1.483717000
H	0.494120000	-2.871341000	3.100485000
H	1.508151000	-1.380734000	1.405889000
H	-3.432652000	-1.754864000	1.777692000
H	-1.978641000	-3.047745000	3.284736000
C	-2.614982000	0.011103000	-0.258846000
C	-3.602759000	-0.875496000	-1.041407000
C	-3.365151000	1.106749000	0.522509000
F	-2.936605000	-1.863401000	-1.646231000
F	-4.538126000	-1.428313000	-0.257701000
F	-4.233050000	-0.171412000	-1.982995000
F	-4.061152000	1.895233000	-0.298966000
F	-4.215618000	0.605329000	1.426775000
F	-2.482117000	1.872932000	1.173083000
C	2.494438000	0.447215000	-0.068468000
C	2.912914000	-0.600768000	-0.652609000
C	2.762584000	-1.835223000	-1.430899000
H	3.094885000	-2.691979000	-0.839595000
H	1.704289000	-1.971962000	-1.673883000
H	3.339450000	-1.782910000	-2.357167000
C	2.916071000	1.600058000	0.820881000
C	2.021406000	1.629120000	2.070256000
C	2.772211000	2.916010000	0.040138000
H	2.151897000	0.722304000	2.669489000
H	2.304258000	2.490410000	2.683904000

H	0.961415000	1.729663000	1.814806000
H	3.361619000	2.890829000	-0.882153000
H	1.729854000	3.130997000	-0.214256000
H	3.140664000	3.736894000	0.663757000
C	4.374167000	1.445477000	1.264185000
H	4.53933000	0.498409000	1.785097000
H	5.061529000	1.509670000	0.417388000
H	4.604328000	2.263650000	1.954661000
N	4.966651000	-0.88567000	-0.387651000
C	6.080336000	-1.167667000	-0.485932000
C	7.490156000	-1.509171000	-0.592976000
H	8.083672000	-0.5922172000	-0.578585000
H	7.771458000	-2.142943000	0.255154000
H	7.662155000	-2.044889000	-1.529370000

TS1b

$\mathrm{TCG}=0.280977$ a.u.
$E=-1437.413296$ a.u.
I -0.199116000
0.269543000 0.507895000 -0.766338000 -0.707457000 -1.340480000 -2.011480000 -2.052938000 -1.420465000 -2.575051000
-1.446433000
-1.311228000
-2.501992000 0.069303000 1.311660000 -0.830117000 2.082492000 1.004342000 2.038603000 -0.202874000
-1.213678000
-1.930376000 -0.459412000 0.366322000 -0.517076000 -1.017696000 -1.648244000 -1.009323000 -2.619205000
-1.783869000 -1.780602000 -1.671033000 -2.486151000 -2.171993000 1.527995000 2.320634000 2.437463000 1.061660000 1.701983000 2.732139000 3.148644000 1.939403000 3.335056000 2.740339000 1.945799000 0.520662000 0.417421000
-1.134332000
-1.274844000 0.622787000 0.814261000 1.943560000 2.824765000 2.596744000 1.480571000 3.284467000 1.306970000 2.137295000 3.695805000 -0.199708000 0.484526000 -0.775669000 0.946066000 1.516863000 -0.376612000 -1.743291000
0.148965000
-1.303016000
-0.733883000
-0.066518000
-0.135429000
-0.326149000
-0.560867000
-1.213890000
-1.036810000
0.393536000
-1.389242000
-2.475060000
-1.067002000
-1.129924000
0.775756000 0.962681000 0.099518000 2.157745000 1.411252000 0.016300000 1.641922000 0.012469000 0.712844000 -0.896982000 2.784680000 2.084807000 2.637609000

INT1a

$\mathrm{TCG}=0.28849$ a.u.
$\mathrm{E}=-1437.452246$ a.u.
$\begin{array}{llll}\text { I } & -0.410135000 & -0.697871000 & -0.786755000 \\ \text { O } & 1.859737000 & -0.759571000 & -1.158672000\end{array}$

C	0.384186000	0.806523000	0.535694000
C	1.765414000	0.877566000	0.607074000
C	2.317355000	1.817831000	1.484012000
C	1.497126000	2.656630000	2.231759000
C	0.113353000	2.565623000	2.122688000
C	-0.458882000	1.626103000	1.266564000
H	-0.530569000	3.219988000	2.701308000
H	-1.537034000	1.547679000	1.183247000
H	3.393349000	1.898400000	1.583038000
H	1.944888000	3.383144000	2.901891000
C	2.608299000	-0.080522000	-0.252698000
C	3.669891000	0.715917000	-1.039589000
C	3.296506000	-1.095444000	0.682607000
F	3.080447000	1.697129000	-1.733567000
F	4.611056000	1.278856000	-0.262749000
F	4.304587000	-0.070078000	-1.913368000
F	4.057175000	-1.952827000	-0.006366000
F	4.076771000	-0.524987000	1.613199000
F	2.363523000	-1.810578000	1.326365000
C	-2.492899000	-0.370589000	-0.146467000
C	-3.113855000	0.654275000	-0.752209000
C	-2.576680000	1.721649000	-1.670984000
H	-2.897975000	2.703059000	-1.308992000
H	-1.489283000	1.708377000	-1.710999000
H	-2.975325000	1.581586000	-2.681159000
C	-3.016338000	-1.424154000	0.824171000
C	-2.135197000	-1.423474000	2.088917000
C	-2.941404000	-2.805095000	0.144122000
H	-2.197287000	-0.463812000	2.612493000
H	-2.495086000	-2.205132000	2.765629000
H	-1.084076000	-1.633421000	1.869745000
H	-3.521729000	-2.815022000	-0.784644000
H	-1.912978000	-3.102714000	-0.082240000
H	-3.361332000	-3.556060000	0.821381000
C	-4.466336000	-1.207544000	1.285649000
H	-4.608378000	-0.228827000	1.754611000
H	-5.185105000	-1.336047000	0.471568000
H	-4.691013000	-1.968873000	2.038936000
N	-4.493973000	0.865880000	-0.563349000
C	-5.602508000	1.159518000	-0.522106000
C	-7.005009000	1.479943000	-0.427417000
H	-7.460096000	0.804059000	0.303251000
H	-7.108572000	2.518384000	-0.100781000
H	-7.465478000	1.341653000	-1.409784000

INT1b

$\mathrm{TCG}=0.288337$ a.u.
$E=-1437.452445$ a.u.

I	0.296049000	-0.396841000	-1.158537000
O	-1.961349000	-0.723813000	-1.188147000
C	-0.430865000	0.899822000	0.397882000
C	-1.789807000	0.830029000	0.650645000
C	-2.299393000	1.641043000	1.670943000
C	-1.460022000	2.488931000	2.386312000
C	-0.098668000	2.533061000	2.102992000
C	0.432509000	1.726234000	1.097981000
H	0.560143000	3.191513000	2.659857000
H	1.495092000	1.755292000	0.883051000
H	-3.355662000	1.611083000	1.910062000
H	-1.874204000	3.113648000	3.170866000
C	-2.650048000	-0.147365000	-0.168998000
C	-3.151113000	-1.262293000	0.770702000
C	-3.845359000	0.603116000	-0.789356000
F	-2.099893000	-1.927376000	1.268772000
F	-3.869400000	-0.809242000	1.809514000
F	-3.912387000	-2.143330000	0.113527000
F	-4.531130000	-0.190069000	-1.616736000
F	-4.717115000	1.072983000	0.118451000
F	-3.403549000	1.645767000	-1.502972000
C	2.340285000	0.344480000	-0.902714000

C	3.278794000	-0.196496000	-0.109062000
N	4.554707000	0.403845000	-0.244292000
C	5.611957000	0.843184000	-0.321126000
C	6.939354000	1.401182000	-0.420115000
H	7.591079000	0.672018000	-0.909560000
H	6.886559000	2.320115000	-1.010423000
H	7.301796000	1.618094000	0.588728000
C	2.568824000	1.506835000	-1.822859000
H	2.480526000	1.175533000	-2.864135000
H	1.785202000	2.255847000	-1.660048000
H	3.539801000	1.987686000	-1.690048000
C	3.344915000	-1.299157000	0.953623000
C	2.009435000	-1.995913000	1.207930000
C	4.367967000	-2.355654000	0.502559000
C	3.805113000	-0.655425000	2.275012000
H	1.231962000	-1.296258000	1.530791000
H	1.658938000	-2.551124000	0.334972000
H	2.163947000	-2.714811000	2.018567000
H	5.374519000	-1.939647000	0.390489000
H	4.418434000	-3.146069000	1.257938000
H	4.068466000	-2.807070000	-0.448982000
H	3.855309000	-1.430627000	3.045821000
H	4.798263000	-0.202169000	2.195934000
H	3.095079000	0.110861000	2.604678000

Reference

(1) Ding, Z.; Yoshikai, N. Org. Lett. 2010, 12, 4180-4183; (b) Scott, L. T.; Cooney, M. J.; Otte, C.; Puls, C.; Haumann, T.; Boese, R.; Smith, A. B.; Carroll, P. J.; de Meijere, A. J. Am. Chem. Soc. 2002, 116, 10275-10283.
(2) Lu, B.; Li, C.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 14070-14072.
(3) (a) Pfeifer, L.; Gouverneur, V. Org. Lett. 2018, 20, 1576-1579; (b) McLaughlin, E. C.; Doyle, M. P. J. Org. Chem. 2008, 73, 4317-4319.
(4) (a) Ding, W.; Chai, J.; Wang, C.; Wu, J.; Yoshikai, N. J. Am. Chem. Soc. 2020, 142, 8619-8624; (b) Chai, J.; Ding, W.; Wu, J.; Yoshikai, N. Chem. Asian J. 2020, 15, 2166-2169.
(5) (a) Zhao, T. S.; Yang, Y.; Lessing, T.; Szabo, K. J. J. Am. Chem. Soc. 2014, 136, 7563-7566; (b) Cao, C.; Li, Y.; Shi, Y.; Odom, A. L. Chem Commun. 2004, 17, 2002-2003.
(6) CCDC 2093231 (4aa) and 2100970 (4ia) provide supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
(7) M. Movassaghi, M. D. Hill, O. K. Ahmad, J. Am. Chem. Soc. 2007, 129, 10096-10097.
(8) M. Movassaghi, M. D. Hill, J. Am. Chem. Soc. 2006, 128, 14254-14255.
(9) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
(10) (a) Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 2006, 110, 13126-13130. (b) Y. Zhao and D. G. Truhlar, Acc. Chem. Res. 2008, 41, 157-167. (c) Y. Zhao and D. G. Truhlar, Chem. Phys. Lett. 2011, 502, 1-13.
(11) M. Dolg, U. Wedig, H. Stoll and H. Preuss, J. Chem. Phys. 1987, 86, 866.
(12) K. Fukui, Acc. Chem. Res. 1981, 14, 363-368.
(13) A. V. Marenich; C. J. Cramer and D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-
6396.
(14) X. Gu, X. Song, C. Shao, P. Zeng, X. Lu, X. Shen, Q. Yang, Int. J. Electrochem. Sci. 2014, 9, 8045-8056.
(15) I. Tanabe, Y. Y. Tanaka, K. Watari, T. Hanulia, T. Goto, W. Inami, Y. Kawata, Y. Ozaki, Sci. Rep. 2017, 7, 5934.
(16) (a) T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580-592. (b) I. Mayer, Chem. Phys. Lett. 1983, 97, 270-274. (c) I. Mayer, Chem. Phys. Lett. 2012, 544, 83-86. (d) T. Lu, F. Chen, J. Theor. Comput. Chem. 2012, 11, 163-183.
(17) C. Y. Legault, CYLView, 1.0b; Universitéde Sherbrooke: Québec, Montreal, Canada, 2009; http://www.cylview.org

NMR Spectra

	$\stackrel{\text { ¢ }}{ }$	\%	\%	\ddagger	
	$\dot{\square}$	$\underbrace{\text { mimimim }}$	\sim		Vivio

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

$$
\begin{aligned}
& \text { —-73.24 } \\
& \text { 4ca }
\end{aligned}
$$

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$\begin{array}{lllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70\end{array}$

 ivin

\qquad Uu

4ha

4ha'

$\begin{array}{llllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & p p m\end{array}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

4na

4na
$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

40a

$$
\begin{aligned}
& \text { Come } \\
& \text { 40a }
\end{aligned}
$$

	\％¢	\％		
	ゾ，		$\Downarrow^{m m m}$	べげざす

$\left[D_{3}\right]$-4aa

$\left[D_{3}\right]$-4aa

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$4 a c$

 Ninvijuinicion

ín

4ad

$\begin{array}{lllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

i

4ae

$\begin{array}{llllllllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

4af

$\begin{array}{lllllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

(20

 $\underbrace{\text { mon }}$

$\begin{array}{lllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90\end{array}$
-20

4aj

$$
\begin{aligned}
& \text { Cles) } \\
& \text { 4aj }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Cles) } \\
& \text { 4al }
\end{aligned}
$$

 -

$\begin{array}{lllllllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

คํํักั	嗗	
\Downarrow	V1	

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

ন্তু

\longrightarrow -
Nil

(20

5

5
5

	あったのロの号	
V1／i）	Ninnom＂	

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \text { ppm }\end{array}$

9an $(Z / E=7: 1)$

9an $(Z / E=7: 1)$

15

15
$\begin{array}{llllllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & \mathrm{ppm}\end{array}$

