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An outstanding challenge in deep learning in chemistry is its lack of interpretability. The inability
of explaining why a neural network makes a prediction is a major barrier to deployment of AI
models. This not only dissuades chemists from using deep learning predictions, but also has led
to neural networks learning spurious correlations that are difficult to notice. Counterfactuals are a
category of explanations that provide a rationale behind a model prediction with satisfying properties
like providing chemical structure insights. Yet, counterfactuals are have been previously limited to
specific model architectures or required reinforcement learning as a separate process. In this work,
we show a universal model-agnostic approach that can explain any black-box model prediction. We
demonstrate this method on random forest models, sequence models, and graph neural networks in
both classification and regression.
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RF model

Fig. S1 Random forest model fit to test data with area-under curve
analysis of receiver operator characteristic.

RNN model

SELFIES tokens are embedded using a 256 dimensional embed-
ding. The embedded sequence is input to a gated recurrent unit
(GRU) RNN.1 The GRU output goes through one hidden dense
layer of dimension 128 with an ReLU activation and a solubility
is predicted. The loss is mean squared error in units of solubility,
log molarity. The Adam optimizer with a learning rate of 0.01 is
used in training.2 Here, N is a variable which refers to the max-
imum molecule vocabulary length. Sequences are padded with
the “[nop]" SELFIES token. The model fit is shown in Figure S2

Fig. S2 RNN model fit on testing data. Loss is RMSE.

GCN model

Our GCN model follows the original architecture of Kipf and
Welling.3 Namely, our layer definition is:

Table SI RNN model architecture

Layer type Shape Activation

Embedding (N,256) None
GRU layer (N,128) None

Dense layer 1 (128) ReLU
Dense layer 2 (1) None

f (V (l),A) = σ
( 1

D̂
ÂV (l)W (l)) (1)

Here, V (l) are the graph level outputs (node features) of layer
l. A is the adjacency matrix and Â = A+ I where I is the identity
matrix. Â is used here to add self loops. D̂ refers to the node
degree matrix. W (l) are the trainable weight matrix for the lth

layer.
In our GCN model we stacked 4 graph convolutional layers and

2 dense layers with activation ReLU. The model architecture is
shown in table SII. As this is a binary classification task, we use a
sigmoid activation in the last dense layer to output predicted HIV
activity (HIV inactive: 0 or HIV active: 1). Class weights of 1 and
30 for inactive and active classes are used respectively to address
the imbalance in the data. We train our model with binary cross
entropy loss and Adam optimizer. A learning rate of 0.01 is used.
In this model we have padded the input molecules vectors to be
of length 440 (maximum length of molecules in the dataset) to
allow batching.

Table SII GCN model architecture

Layer type Shape (N=400) Activation

Input 1 (N,100) None
Input 2 (N,N) None

GCN layer 1 (N,100) ReLU
GCN layer 2 (N,100) ReLU
GCN layer 3 (N,100) ReLU
GCN layer 4 (N,100) ReLU

Graph Reduction layer (100) None
Dense layer 1 (256) Tanh
Dense layer 2 (1) Sigmoid
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Fig. S3 GCN AUC-ROC plot. Loss is binary cross entropy.

Fig. S4 Additional counterfactuals for the GCN model for predicting
HIV activity. Top 19 counterfactuals for the base molecule are illustrated
here.
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Effect of number of mutations

Fig. S5 Top counterfactual for the selected base molecule for each
allowed number of mutations. RNN model is used here for the generation
of counterfactuals.

Effect of number of samples in the local space

Fig. S6 Percentage of similar molecules as a function of number of
samples in the chemical space from RNN solubility model. Percentage
is percent of molecules in the generated space with Tanimoto similarity
greater than 0.7 relative to the greatest amount observed over whole line
(to make curves comparable). The number of similar molecules saturates
because there are more duplicates as the sample number increases. The
dashed vertical line at 3000 represents the default MMACE parameter.
Five randomly selected molecules are illustrated here. SMILES represen-
ations of the molecules are ‘CCCCCCOC(=O)C1=CC(I)=C(O)C=C1’,
‘CCCCCCCC/C=C/CCCCCCCC(=O)N(CCO)CCO’,
‘c1c(O)C2C(=O)C3cc(O)ccC3OC2cc1(OC)’,
‘Clc1ccc(Cl)c(c1)c2cc(Cl)c(Cl)c(Cl)c2’ and,
‘CC(=O)CC(=O)Nc1ccccc1’ respectively. Other MMACE parame-
ters: 1 mutation, basic alphabet.

.
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