Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

> Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

> > Supporting Information for

Dibenzocycloheptanones construction through a removable *P*-centered radical: Synthesis of allocolchicine analogues

Yan Zhang, ^{*a} Zhenzhi Cai,^a Julia Struwe,^b Chanchan Ma,^a Wangyu Zeng,^a Xinyi Liao,^a Min Xu^a and Lutz Ackermann^{*b}

 ^a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, and Drug Discovery & Innovation Center, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, 321004 Jinhua P. R. China *zhangyan001@zjnu.edu.cn
 ^b Institut für Organische und Biomolekulare Chemie, Georg–August–Universität Göttingen Tammannstraße 2, 37077 Göttingen, Germany *Lutz.Ackermann@chemie.uni–goettingen.de

Table of Contents

1. General Remarks	S2
2. General Procedure for Cascade Cyclization/Phosphorylation	S5
3. Characterization Data of Products 3–63	S6
4. Synthesis of NSC 51046 Analogue 66	S42
5. Mechanistic Studies	S44
5.1 Radical Trapping Experiment	S44
5.2 Trapping Experiment for By Product 42 Using ³¹ P-NMR and HRMS	S46
6. References	S47
7. NMR Spectra	S48-S135

1. General Remarks

NMR spectra were recorded on BRUKER AVANCE III 400 or BRUKER AVANCE III 600. CDCl₃ was used as the solvent. Chemical shifts were referenced relative to residual solvent signal (CDCl₃: ¹H NMR: δ 7.26 ppm, ¹³C NMR: δ 77.16 ppm). The following abbreviations are used to describe peak patterns where appropriate: br = broad, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants (*J*) are reported in Hertz (Hz). Electrospray-ionization (ESI) mass spectra were obtained on AB Sciex LC 30A-Triple TOF 4600 apparatus or Waters GCT Premier GC-TOF (EI). All systems are equipped with time-of-flight (TOF) analyzers. Melting points were measured with micro melting point apparatus. Unless otherwise noted, some materials (or alternatively chemicals) obtained from commercial suppliers were used directly without further purification. Alkynones **1** were prepared according to the literature.^[1,2]

Table S–1. Scopes of Alkynones **1**. (${}^{t}Bu = tert-butyl$)

1m'

1n'

O Ar 1a	$Ph + H \stackrel{O}{\downarrow} $	catalyst (20 mol%) additive (2.5 equiv) solvent, 70 °C, 10 h	P(OEt) ₂ Ph Ar 3	= § OMe
Entry	Catalyst	Additive	Solvent	Yield / %
1	Cu(OTf) ₂	TBHP	MeCN	trace
2	Cu(OAc) ₂	TBHP	MeCN	25
3	—	Mn(OAc) ₃	MeCN	15
4	AgNO ₃	$K_2S_2O_8$	MeCN	41
5	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane	27
6	AgNO ₃	$K_2S_2O_8$	1,4-Dioxane/MeCN	36
7	AgNO ₃	$K_2S_2O_8$	MeCN/H ₂ O (1:1)	trace
8	AgNO ₃	$K_2S_2O_8$	DMF/H ₂ O (1:1)	31
9	AgNO ₃	$K_2S_2O_8$	MeOH/H ₂ O (1:1)	8
10	AgNO ₃	$K_2S_2O_8$	THF/H ₂ O (1:1)	28
11	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	67
12	AgNO ₃	$K_2S_2O_8$	DMSO/H ₂ O (1:1)	trace
13	AgNO ₃	$K_2S_2O_8$	EtOAc /H ₂ O (1:1)	20
14	AgNO ₃	$Na_2S_2O_8$	1,4–Dioxane/H ₂ O	46
15	AgNO ₃	$Zn(NO_3)_2$	1,4–Dioxane/H ₂ O	51
16 ^[b]	AgNO ₃	_	1,4–Dioxane/H ₂ O	48
17	AgNO ₃	_	1,4–Dioxane/H ₂ O	trace
18	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	42
19	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	33
20 ^[c]	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	30
			(1:1)	
21 ^[d]	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	49
22 ^[e]	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	45
23	AgNO ₃	$Na_2S_2O_8$	1,4–Dioxane/H ₂ O	54
24 ^[f]	AgNO ₃	$K_2S_2O_8$	1,4-Dioxane/H2O	50
25 ^[g]	AgNO ₃	$K_2S_2O_8$	1,4–Dioxane/H ₂ O	52

 Table S-2. Optimization of the cascade cyclization/phosphorylation.

[a] **1a** (0.20 mmol), **2** (0.50 mmol, 2.5 equiv), catalyst (0.04 mol, 0.2 equiv), additive (0.5 mmol, 2.5 equiv), solvent (2 mL), under N₂, 70 °C, 14 h. Yield of the isolated products. [b] AgNO₃ (2.0 eq). [c] AgNO₃ (0.1 eq). [d] 80 °C. [e] $K_2S_2O_8$ (1.5 eq). [f] **2** (0.30 mmol, 1.5 equiv). [g] 60 °C.

2. (A) General Procedure for Cascade Cyclization/Phosphorylation.

To a 25 mL sealed tube containing biarylynone **1** (0.3 mmol, 1.0 equiv.), HPO(OEt)₂ (**2**) (0.75 mmol, 2.5 equiv.), AgNO₃ (0.06 mmol, 0.2 equiv.), and K₂S₂O₈ (0.75 mmol, 2.5 equiv.) were added 1,4–dioxane/H₂O (v/v = 1:1, 3 mL) under a N₂ atmosphere. After stirring at 70 °C for 10 h, the reaction mixture was cooled to room temperature. It was diluted with EtOAc and transferred to a round bottom before the crude product was concentrated. Column purification on silica gel using petroleum ether/ethyl acetate (v/v = 2:1) as the eluent gave the desired product.

(B) General Procedure for Dephosphorylation.

To a solution of phosphorylation product (0.15 mmol, 1.0 eq.) in THF (0.05 M, 3 mL) under air, potassium methoxide (42 mg, 0.60 mmol, 4.0 eq.) was added in one portion at room temperature. The reaction mixture was stirred for another 2 h at room temperature. Evaporation of the solvent and subsequent purification by flash chromatography on silica gel (petroleum ether/ethyl acetate = 10:1) gave the dephosphorylation product with excellent yields.

3. Characterization Data of All the Synthesized Products (3–63)

yl)phosphonate (3)

The general procedure (A) was followed using **1a** (102.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 1:1) yielded **3** (86.0 mg, 60%) as a white solid. **M.p.**: 120–122 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.61 (td, *J* = 7.2, 1.2 Hz, 1H), 7.52–7.47 (m, 2H), 7.39–7.25 (m, 5H), 6.73 (d, *J* = 2.4 Hz, 1H), 6.35 (d, *J* = 2.4 Hz, 1H), 4.17–4.14 (m, 1H), 4.06–4.00 (m, 1H), 3.93–3.87 (m, 1H), 3.85 (s, 3H), 3.78–3.74 (m, 1H), 3.22 (s, 3H), 1.16 (t, *J* = 7.2 Hz, 3H), 1.01 (t, *J* = 7.2 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 197.8 (d, *J* = 9.1 Hz), 160.9, 160.3, 150.8 (d, *J* = 6.0 Hz), 144.9 (d, *J* = 4.5 Hz), 141.6 (d, *J* = 7.6 Hz), 140.3 (d, *J* = 1.5 Hz), 135.9, 133.0 (d, *J* = 175.2 Hz), 130.7, 128.5, 127.8, 127.8, 127.0, 125.1, 120.1, 112.0, 106.5, 99.6, 62.5 (d, *J* = 6.0 Hz), 62.1 (d, *J* = 6.0 Hz), 57.6, 55.5, 16.1 (d, *J* = 6.0 Hz), 16.0 (d, *J* = 7.6 Hz). ³¹P **NMR** (243 MHz, CDCl₃) δ 10.49. **HR–MS** (ESI) *m*/*z* calc. for C₂₇H₂₈O₆P [M+H]⁺: 479.1618, found: 479.1614.

Diethyl(8,10-dimethyl-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (4)

The general procedure (A) was followed using **1b** (93.0 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **4** (73.6 mg, 55%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (d, J = 7.8 Hz, 1H), 7.49–7.46 (m, 2H), 7.37–7.27 (m, 6H), 6.90 (s, 1H), 4.12–4.06 (m, 1H), 3.97–3.90 (m, 1H), 3.69–3.62 (m, 2H), 2.36 (s, 3H), 1.77 (s, 3H), 1.20 (t, J = 7.2 Hz, 3H), 0.95 (t, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.9 (d, J = 10.6 Hz), 151.7 (d, J = 4.5 Hz), 145.0 (d, J = 4.5 Hz), 140.3 (d, J = 7.6 Hz), 139.1, 138.8, 138.5 (d, J = 1.5 Hz), 136.8, 134.3 (d, J = 170.6 Hz), 133.3 (d, J = 19.6 Hz), 132.1, 130.7, 129.8, 128.8, 128.7, 127.8, 127.8, 127.6, 124.8, 62.7 (d, J = 6.0 Hz), 62.2 (d, J = 6.0 Hz), 23.1, 21.2, 16.1 (d, J = 7.6 Hz), 15.8 (d, J = 7.6 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 10.33. HR–MS (ESI) *m*/*z* calc. for C₂₇H₂₈O₄P [M+H]⁺: 447.1720, found: 447.1716.

Diethyl(2,3-dimethoxy-4,4'-dioxo-2'-phenyl-4'*H*-spiro[cyclohexane-1,1'naphthalene]-2,5-dien-3'-yl) phosphonate (5)

The general procedure was followed using **10'** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether /EtOAc = 1:1) yielded **5** (89.0 mg, 60%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.23 (dd, J = 7.8, 1.1 Hz, 1H), 7.56 (td, J = 7.6, 1.4 Hz, 1H), 7.51 (t, J = 7.2 Hz, 1H), 7.34–7.31 (m, 2H), 7.27–7.20 (m, 3H), 7.14 (d, J = 7.9 Hz, 1H), 6.36 (d, J = 9.7 Hz, 1H), 6.27 (d, J = 9.7 Hz, 1H), 4.12–4.08 (m, 1H), 4.01–3.90 (m, 2H), 3.80 (s, 3H), 3.76–3.72 (m, 1H), 3.37 (s, 3H), 1.11 (t, J = 7.1 Hz, 3H), 1.03 (t, J = 7.1 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 184.1, 183.0 (d, J = 7.2 Hz), 164.6 (d, J = 6.1 Hz), 160.0, 142.7 (d, J = 1.9 Hz), 140.1, 138.4 (d, J = 1.8 Hz), 136.4 (d, J = 6.5 Hz), 133.7, 132.4, 130.6 (d, J = 7.2 Hz), 129.5, 129.0, 128.9, 128.3 (d, J = 1.4 Hz), 127.7 (d, J = 1.1 Hz), 127.4, 127.3, 127.1, 126.5, 62.7 (d, J = 6.4 Hz), 62.1 (d, J = 6.5 Hz), 61.1, 60.6, 56.5 (d, J = 14.5 Hz), 16.3 (d, J = 6.0 Hz), 16.1 (d, J = 6.0 Hz).³¹**P NMR** (243 MHz, CDCl₃) δ 11.84. **HR–MS** (EI) *m/z* calc. for C₂₇H₂₇O₇P (M)⁺: 494.1494, found: 494.1496.

Diethyl(S)-(11-methyl-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (6)

The general procedure (A) was followed using **1d** (88.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **6** (42.8 mg, 33%) as a white solid. **M.p.**: 121–123 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.64–7.63 (m, 2H), 7.56–7.55 (m, 3H), 7.43 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.36–7.31 (m, 2H), 7.27 (dd, *J* = 7.2, 7.2 Hz, 1H), 7.23 (d, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.2 Hz, 1H), 4.08–3.95 (m, 4H), 2.18 (s, 3H), 1.13–1.10 (m, 6H). ¹³**C NMR** (151 MHz, CDCl₃) δ 185.5 (d, *J* = 3.0 Hz), 164.6 (d, *J* = 6.0 Hz), 156.6, 148.0, 138.4 (d, *J* = 1.5 Hz), 136.4 (d, *J* = 6.0 Hz), 134.0, 133.7 (d, *J* = 187.2 Hz), 131.1, 130.4, 130.4, 129.4, 129.2, 129.1, 128.1, 127.7, 127.4, 127.2, 127.0, 62.5 (d, *J* = 7.6 Hz), 62.4 (d, *J* = 7.6 Hz), 20.5, 16.2 (d, *J* = 1.5 Hz), 16.2 (d, *J* = 1.5 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.88. **HR–MS** (ESI) *m*/*z* calc. for C₂₆H₂₆O₄P [M+H]⁺: 433.1563, found: 433.1558.

Diethyl(10-chloro-9-methyl-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (7)

The general procedure (A) was followed using **1d** (99.0 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **7** (33.6 mg, 24%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 7.9 Hz, 1H), 7.67–7.65 (m, 2H), 7.57–7.40 (m, 5H), 6.83 (s, 1H), 4.12–4.08 (m, 1H), 4.05–4.00 (m, 1H), 3.81–3.77 (m, 1H), 3.62–3.56 (m, 1H), 2.23 (s, 3H), 1.24 (t, J = 7.1 Hz, 3H), 1.00 (t, J = 7.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.0 (d, J = 8.4 Hz), 153.6 (d, J = 6.0 Hz), 144.2 (d, J = 6.0 Hz), 140.2 (d, J = 9.1 Hz), 137.5, 135.9, 135.2, 134.9, 134.8, 134.5 (d, J = 163.1 Hz), 134.4, 131.1, 130.9, 128.9, 128.7, 128.2, 128.1, 128.1, 125.4, 63.0 (d, J = 5.9 Hz), 62.3 (d, J = 7.6 Hz), 19.9, 16.4 (d, J = 6.0 Hz), 16.2 (d, J = 7.6 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 11.02. HR–MS (ESI) m/z calc. for C₂₆H₂₄O₄P³⁵Cl [M+H]⁺: 467.1174, found: 467.1170.

Diethyl(9-methyl-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6-yl)phosphonate (8)

The general procedure (A) was followed using **1f** (88.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **8** (28.5 mg, 22%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.82 (d, J = 7.8 Hz, 1H), 7.68–7.65 (m, 1H), 7.60–7.59 (m, 1H), 7.56–7.53 (m, 2H), 7.42 (dd, J = 5.4, 5.4 Hz, 2H), 7.34–7.13 (m, 3H), 6.81 (s, 1H), 4.15–4.02 (m, 2H), 3.83–3.78 (m, 1H), 3.63–3.58 (m, 1H), 2.24 (s, 3H), 1.26 (t, J = 7.2 Hz, 3H), 1.03 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.5 (d, J = 11.1 Hz), 153.7 (d, J = 6.6 Hz), 144.3 (d, J = 5.1 Hz), 140.6 (d, J = 8.1 Hz), 137.1, 136.5, 135.9, 133.0, 131.0, 131.0, 130.6, 128.9, 128.3, 128.3, 128.1, 125.4, 63.0 (d, J = 6.7 Hz), 62.2 (d, J = 5.8 Hz), 21.2, (d, J = 7.1 Hz), 16.1 (d, J = 7.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 11.25. HR–MS (ESI) m/z calc. for C₂₆H₂₆O4P [M+H]⁺: 433.1563, found: 433.1558.

Diethyl(8,10-dichloro-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (9)

The general procedure (A) was followed using **1g** (105.0 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **9** (29.2 mg, 20%) as a white solid. **M.p.**: 128–130 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.92 (d, *J* = 7.8 Hz, 1H), 7.74 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.71–7.66 (m, 1H), 7.59–7.53 (m, 3H), 7.38–7.31 (m, 5H), 4.11–4.06 (m, 1H), 3.93–3.88 (m, 1H), 3.84–3.78 (m, 2H), 1.18 (td, *J* = 7.2, 3.0 Hz, 3H), 1.09–1.06 (m, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.9 (d, *J* = 13.5 Hz), 148.8 (d, *J* = 7.6 Hz), 145.2, 140.9, 140.1 (d, *J* = 12.0 Hz), 138.9, 137.1, 137.1 (d, *J* = 170.6 Hz), 135.2, 135.1, 131.1, 129.8, 128.9, 127.7, 127.6, 127.5, 127.4, 125.4, 125.3, 62.9 (d, *J* = 4.5 Hz), 62.6 (d, *J* = 6.0 Hz), 16.1 (t, *J* = 6.8 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 8.93. **HR–MS** (ESI) *m/z* calc. for C₂₅H₂₂³⁵Cl₂O4P [M+H]⁺: 487.0628, found: 487.0687.

Diethyl(5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-yl)phosphonate (10)

The general procedure (A) was followed using **1h** (84.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **10** (21.3 mg, 17%) as a white solid. **M.p.**: 156–158 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1H), 7.67–7.65 (m, 2H), 7.52 (s, 2H), 7.57–7.52 (m, 2H), 7.45–7.37 (m, 3H), 7.23–7.21 (m, 1H), 7.01 (dd, *J* = 8.4, 1.2 Hz, 1H), 4.14–4.01 (m, 2H), 3.84–3.77 (m, 1H), 3.63–3.56 (m, 1H), 1.24 (t, *J* = 7.0 Hz, 3H), 1.01 (t, *J* = 7.0 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.3 (d, *J* = 9.1 Hz), 153.6 (d, *J* = 4.5 Hz), 144.5 (d, *J* = 4.5 Hz), 140.6 (d, *J* = 9.1 Hz), 138.5, 136.6 (d, *J* = 19.6 Hz), 135.8, 134.5 (d, *J* = 178.2 Hz), 132.8, 131.1, 131.0, 129.5, 129.3, 128.9, 128.6, 128.5, 128.1, 127.3, 125.4, 62.9 (d, *J* = 6.1 Hz), 62.2 (d, *J* = 6.1 Hz), 16.4 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.13. **HR–MS** (ESI) *m*/z calc. for C₂₅H₂₄O₄P [M+H]⁺: 419.1407, found: 419.1392.

Diethyl(9-(tert-butyl)-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (11)

The general procedure (A) was followed using **1i** (101.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **11** (95.3 mg, 67%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, J = 6.0 Hz, 1H), 7.65–7.60 (m, 2H), 7.54–7.51 (m, 2H), 7.46–7.38 (m, 4H), 6.97 (d, J = 3.0 Hz, 1H), 4.14–4.00 (m, 2H), 3.83–3.77 (m, 1H), 3.62–3.56 (m, 1H), 1.24–1.22 (t, J = 7.2 Hz, 3H), 1.11 (s, 9H), 1.00 (t, J = 10.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.5 (d, J = 8.1 Hz), 154.2 (d, J = 5.1 Hz), 150.0, 144.2 (d, J = 4.0 Hz), 140.8 (d, J = 9.1 Hz), 136.3, 136.1, 135.7, 133.7 (d, J = 179.8 Hz), 131.0, 130.6, 130.0, 128.8, 128.3, 128.2, 127.9, 126.7, 125.4, 62.9 (d, J = 6.1 Hz), 62.2 (d, J = 6.1 Hz), 34.5, 30.9, 16.3 (d, J = 6.1 Hz), 16.1 (d, J = 6.1 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.44. **HR–MS** (ESI) *m/z* calc. for C₂₉H₃₂O4P [M+H]⁺: 475.2033, found: 475.2018.

Dimethyl(9-(*tert*-butyl)-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6-yl)phosphonate (11')

The general procedure (A) was followed using **1i** (101.4 mg, 0.30 mmol) and dimethyl phosphonate (83.0 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) yielded **11'** (64.2 mg, 48%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.83 (d, *J* = 7.9 Hz, 1H), 7.69–7.64 (m, 2H), 7.56–7.54 (m, 2H), 7.50–7.41 (m, 4H), 7.00 (d, *J* = 2.0 Hz, 1H), 3.72 (d, *J* = 11.1 Hz, 3H), 3.34 (d, *J* = 9.8 Hz, 3H), 1.14 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 197.5 (d, *J* = 8.7 Hz), 154.9 (d, *J* = 5.5 Hz), 150.1, 144.1 (d, *J* = 5.0 Hz), 140.6 (d, *J* = 8.3 Hz), 136.0 (d, *J* = 19.6 Hz),

135.8, 135.8, 135.7, 133.0 (d, J = 181.2 Hz), 131.2, 130.7, 130.0, 128.9, 128.4, 128.4, 128.0, 126.9, 125.4, 53.6 (d, J = 3.6 Hz), 52.9 (d, J = 3.7 Hz), 34.6, 31.0. ³¹P NMR (162 MHz, CDCl₃) δ 14.05. **HR–MS** (ESI) m/z calc. for C₂₇H₂₈O₄P [M+H]⁺: 447.1720, found: 447.1740.

Dibenzyl(9-(*tert*-butyl)-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6-yl)phosphonate (11'')

The general procedure (A) was followed using **1i** (101.4 mg, 0.30 mmol) and dibenzyl phosphonate (196.7 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 3:1) yielded **11''** (88.9 mg, 50%) as a yellow oil. ¹H **NMR** (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.8 Hz, 1H), 7.65–7.62 (m, 2H), 7.49 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.43–7.38 (m, 3H), 7.34 (s, 3H), 7.28 (s, 3H), 7.26–7.23 (m, 4H), 7.06 (d, *J* = 5.7 Hz, 2H), 7.00 (d, *J* = 2.1 Hz, 1H), 5.00 (d, *J* = 8.7 Hz, 2H), 4.70 (t, *J* = 15.6 Hz, 1H), 4.28 (t, *J* = 10.2 Hz, 1H), 1.15 (s, 9H). ¹³C **NMR** (151 MHz, CDCl₃) δ 197.3 (d, *J* = 8.7 Hz), 154.7 (d, *J* = 5.6 Hz), 150.0, 144.1 (d, *J* = 5.0 Hz), 140.7 (d, *J* = 8.3 Hz), 136.4 (d, *J* = 5.6 Hz), 136.2, 136.0, 135.8, 135.7, 133.5 (d, *J* = 181.2 Hz), 131.6, 131.0, 130.7, 130.0, 128.9, 128.5, 128.4, 128.3, 128.3, 128.1, 126.9, 125.6, 68.4 (d, *J* = 5.2 Hz), 67.7 (d, *J* = 5.1 Hz), 34.6, 31.0. ³¹P **NMR** (243 MHz, CDCl₃) δ 12.31. **HR–MS** (ESI) *m/z* calc. for C₃₉H₃₆O₄P [M+H]⁺: 599.2346, found: 599.2311.

Diethyl(9-(tert-butyl)-5-oxo-7-(p-tolyl)-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (12)

The general procedure (A) was followed using 1j (105.6 mg, 0.30 mmol) and 2 (103.4

mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **12** (105.4 mg, 72%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, *J* = 7.9 Hz, 1H), 7.66–7.63 (m, 1H), 7.61 (d, *J* = 8.3 Hz, 1H), 7.54–7.53 (m, 2H), 7.46 (dd, *J* = 8.3, 2.1 Hz, 1H), 7.21 (br s, 2H), 7.02 (d, *J* = 2.0 Hz, 1H), 4.15–4.10 (m, 1H), 4.05–4.02 (m, 1H), 3.83–3.79 (m, 1H), 3.68–3.66 (m, 1H), 2.40 (s, 3H), 1.26 (t, *J* = 7.0 Hz, 3H), 1.14 (s, 9H), 1.03 (t, *J* = 6.9 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.7 (d, *J* = 8.8 Hz), 154.6 (d, *J* = 5.7 Hz), 149.9, 144.3 (d, *J* = 5.0 Hz), 138.7, 137.8 (d, *J* = 8.1 Hz), 136.3 (d, *J* = 19.3 Hz), 135.7, 135.7, 133.2 (d, *J* = 179.2 Hz), 131.0, 130.5, 130.1, 128.6, 128.2, 128.2, 126.7, 125.3, 62.8 (d, *J* = 5.9 Hz), 62.2 (d, *J* = 5.9 Hz), 34.6, 31.0, 21.5, 16.3 (d, *J* = 6.4 Hz), 16.0 (d, *J* = 6.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.56. **HR–MS** (ESI) *m*/*z* calc. for C₃₀H₃₄O₄**P** [M+H]⁺: 489.2189, found: 489.2184.

Diethyl(9-(*tert*-butyl)-7-(4-methoxyphenyl)-5-oxo-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (13)

The general procedure (A) was followed using **1k** (110.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **13** (105.8 mg, 70%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 1H), 7.63–7.58 (m, 2H), 7.50 (d, J = 3.6 Hz, 2H), 7.44 (dd, J = 8.4, 1.8 Hz, 1H), 7.01 (d, J = 2.4 Hz, 1H), 6.91 (d, J = 5.4 Hz, 2H), 4.15–4.02 (m, 2H), 3.84 (s, 3H), 3.79–3.63 (m, 2H), 1.26 (t, J = 6.6 Hz, 3H), 1.13 (s, 9H), 1.02 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.8 (d, J = 9.1 Hz), 160.1, 154.2 (d, J = 6.0 Hz), 135.0 (d, J = 179.7 Hz), 131.6, 130.9, 130.6, 130.1, 128.2, 128.1, 126.7, 125.3, 62.8 (d, J = 6.0 Hz), 62.2 (d, J = 6.0 Hz), 55.4, 34.6, 31.0, 16.4 (d, J = 6.0 Hz), 16.1 (d, J = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.68. **HR–MS** (ESI) *m*/*z* calc. for C₃₀H₃₄O₅P [M+H]⁺: 505.2139, found: 505.2135.

Diethyl(9-(*tert*-butyl)-7-(4-chlorophenyl)-5-oxo-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (14)

The general procedure (A) was followed using **11** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **14** (73 mg, 48%) as a white solid. **M.p.**: 65–67 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (d, *J* = 7.8 Hz, 1H), 7.66–7.63 (m, 1H), 7.62 (d, *J* = 8.4 Hz, 1H), 7.55–7.51 (m, 2H), 7.47 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.38 (m, 2H), 6.96 (d, *J* = 1.8 Hz, 1H), 4.17–4.05 (m, 2H), 3.85–3.81 (m, 1H), 3.72–3.70 (m, 1H), 1.27 (t, *J* = 6.6 Hz, 3H), 1.14 (s, 9H), 1.05 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.3 (d, *J* = 7.6 Hz), 152.9 (d, *J* = 6.0 Hz), 150.3, 144.2 (d, *J* = 4.5 Hz), 139.3 (d, *J* = 9.1 Hz), 135.9, 135.9, 135.7 (d, *J* = 1.5 Hz), 135.0, 134.3 (d, *J* = 179.7 Hz), 131.2, 130.8, 129.7, 128.4, 128.2, 127.0, 125.4, 63.2 (d, *J* = 4.5 Hz), 62.3 (d, *J* = 6.0 Hz), 34.7, 31.0, 16.4 (d, *J* = 6.0 Hz), 16.1 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 10.99. **HR–MS** (ESI) *m/z* calc. for C₂₉H₃₁³⁵ClO₄P [M+H]⁺: 509.1643, found: 509.1644.

Diethyl(9-(*tert*-butyl)-7-(4-cyanophenyl)-5-oxo-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (15)

The general procedure (A) was followed using **1m** (108.9 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **15** (82.3 mg, 55%) as a white solid. **M.p.**: 128–130 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, *J* = 8.4 Hz, 1H), 7.68–7.63 (m, 3H), 7.56–7.48 (m, 3H), 6.84 (d, *J* = 7.8 Hz, 1H), 4.18–4.06 (m, 2H), 3.86–3.71 (m, 2H), 1.21 (t, *J* = 7.2 Hz, 3H), 1.12 (s, 9H), 1.05 (t, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 196.6 (d, J = 7.6 Hz), 151.9 (d, J = 4.5 Hz), 150.5, 145.6 (d, J = 7.6 Hz), 143.9 (d, J = 4.5 Hz), 135.9, 135.6, 135.0 (d, J = 19.6 Hz), 134.4, 131.7, 131.4, 131.0, 129.3, 128.5, 128.4, 127.3, 125.2, 118.6, 112.5, 63.4 (d, J = 6.0 Hz), 62.4 (d, J = 4.5 Hz), 51.6, 34.6, 30.9, 16.4 (d, J = 6.0 Hz), 16.1 (d, J = 6.0 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 10.30. HR–MS (ESI) m/z calc. for C₃₀H₃₁NO₄P [M+H]⁺: 500.1985, found: 500.1963.

Diethyl(7-(2-bromophenyl)-9-(*tert*-butyl)-5-oxo-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (16)

The general procedure (A) was followed using **1n** (124.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **16** (89.4 mg, 54%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (d, J = 7.2 Hz, 2H), 7.66–7.61 (m, 2H), 7.55–7.50 (m, 4H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 7.29–7.26 (m, 1H), 6.96 (s, 1H), 4.12–4.04 (m, 2H), 3.84–3.80 (m, 1H), 3.63– 3.60 (m, 1H), 1.23 (t, J = 6.6 Hz, 3H), 1.13 (s, 9H), 1.04 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.0 (d, J = 9.1 Hz), 153.0 (d, J = 3.0 Hz), 150.3, 144.1 (d, J = 4.5 Hz), 140.6 (d, J = 9.1 Hz), 136.2 (d, J = 34.7 Hz), 135.1 (d, J = 178.2 Hz), 132.9, 132.2, 131.2, 130.8, 130.1, 128.3, 128.2, 127.2, 126.8, 128.6, 125.3, 123.4, 63.3 (d, J = 4.5 Hz), 62.2 (d, J = 4.5 Hz), 34.6, 30.1, 16.3 (d, J = 7.6 Hz), 16.1 (d, J = 7.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.1. **HR–MS** (ESI) *m*/*z* calc. for C₂₉H₃₁⁷⁹BrO₄P [M+H]⁺: 553.1138, found: 553.1111.

Diethyl(9-(*tert*-butyl)-5-oxo-7-(*o*-tolyl)-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (17)

The general procedure (A) was followed using **10** (105.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **17** (90.8 mg, 62%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 1H), 7.66–7.60 (m, 3H), 7.55–7.51 (m, 2H), 7.43 (dd, J = 8.4, 2.4 Hz, 1H), 7.34 (dd, J = 6.6, 6.6 Hz, 1H), 7.28 (dd, J = 7.2, 7.2 Hz, 1H), 7,10 (d, J = 6.6 Hz, 1H), 7.03 (d, J = 1.8 Hz, 1H), 4.04–3.97 (m, 2H), 3.80–3.76 (m, 1H), 3.66–3.59 (m, 1H), 1.59 (s, 3H), 1.21 (t, J = 6.6 Hz, 3H), 1.10 (s, 9H), 1.00 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.3 (d, J = 9.1 Hz), 154.4 (d, J = 4.5 Hz), 150.4, 144.4 (d, J = 4.5 Hz), 139.5 (d, J = 6.0 Hz), 136.2, 135.7, 135.5, 135.2 (d, J = 19.6 Hz), 134.3, 131.1, 130.7, 130.4, 130.2, 138.9, 128.3, 128.2, 127.9, 126.6, 125.4, 125.3, 62.9 (d, J = 7.6 Hz), 62.1 (d, J = 6.0 Hz), 34.6, 19.5, 16.3 (d, J = 6.0 Hz), 16.2 (d, J = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.43. **HR–MS** (ESI) m/z calc. for C₃₀H₃₄O₄P [M+H]⁺: 489.2189, found: 489.2183.

Diethyl(9-(*tert*-butyl)-5-oxo-7-(*m*-tolyl)-5*H*-dibenzo[a,c][7]annulen-6-

yl)phosphonate (18)

The general procedure (A) was followed using **1p** (105.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **18** (106.9 mg, 73%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (d, J = 7.8 Hz, 1H), 7.65–7.60 (m, 2H), 7.53–7.51 (m, 2H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 7.20 (d, J = 7.2 Hz, 1H), 7.00 (d, J = 1.8 Hz, 1H), 4.13–4.02 (m, 2H), 3.83– 3.79 (m, 1H), 3.61–3.57 (m, 1H), 2.34 (s br, 3H), 1.25 (t, J = 7.2 Hz, 3H), 1.12 (s, 9H), 1.02 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6 (d, J = 9.1 Hz), 154.5 (d, J = 6.1 Hz), 150.0, 144.3 (d, J = 5.1 Hz), 140.7 (d, J = 8.1 Hz), 137.5, 136.2 (d, J = 20.2 Hz), 135.8, 133.5 (d, J = 180.8 Hz), 131.0, 130.6, 130.1, 129.5, 128.3, 128.2, 127.8, 126.7, 125.4, 62.8 (d, J = 6.1 Hz), 62.2 (d, J = 6.1 Hz), 34.6, 31.0, 21.4, 16.4 (d, J = 7.1 Hz), 16.1 (d, J = 7.1 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.59. **HR–MS** (ESI) m/z calc. C₃₀H₃₄O₄P [M+H]⁺: 489.2189, found: 489.2183.

Diethyl(9-(*tert*-butyl)-7-(3,5-dimethylphenyl)-5-oxo-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (19)

The general procedure (A) was followed using **1q** (109.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **19** (60.2 mg, 40%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.80 (d, J = 1.8 Hz, 1H), 7.64–7.60 (m, 2H), 7.51 (d, J = 4.2 Hz, 2H), 7.45 (dd, J = 8.4, 1.8 Hz, 1H), 7.02 (dd, J = 1.8, 1.8 Hz, 2H), 4.13–4.03 (m, 2H), 3.84–3.81 (m, 1H), 3.63–3.57 (m, 1H), 2.31 (br s, 6H), 1.27 (t, J = 6.6 Hz, 3H), 1.13 (s, 9H), 1.03 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.7 (d, J = 9.1 Hz), 154.8 (d, J = 6.1 Hz), 149.9, 144.3 (d, J = 5.1 Hz), 144.6 (d, J = 8.1 Hz), 137.4, 136.2 (d, J = 20.2 Hz), 135.8, 133.3 (d, J = 181.8 Hz), 131.0, 130.6, 130.4, 130.2, 128.3, 128.2, 126.6, 125.4, 62.8 (d, J = 6.1 Hz), 62.2 (d, J = 5.1 Hz), 34.6, 31.0, 21.3, 16.4 (d, J = 8.1 Hz), 16.1 (d, J = 7.1 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.73. **HR–MS** (ESI) *m/z* calc. for C₃₁H₃₆O4P [M+H]⁺: 503.2346, found: 503.2347.

Diethyl(7-(benzo[d][1,3]dioxol-5-yl)-9-(*tert*-butyl)-5-oxo-5*H*dibenzo[a,c][7]annulen-6-yl)phosphonate (20)

The general procedure (A) was followed using **1r** (114.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 1:1) yielded **20** (77.7 mg, 50%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.8 Hz, 1H), 7.64–7.61 (m, 1H), 7.59 (d, *J* = 7.8 Hz, 1H), 7.52–7.49 (m, 2H), 7.46 (dd, J = 8.4, 2.4 Hz, 1H), 7.08 (d, J = 2.4 Hz, 1H), 6.85 (s, 1H), 6.00 (s, 2H), 4.16–4.04 (m, 2H), 3.89–3.75 (m, 2H), 1.29 (t, J = 7.2 Hz, 3H), 1.16 (s, 9H), 1.10 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.6 (d, J = 9.1 Hz), 153.9 (d, J = 6.0 Hz), 150.1, 148.2, 147.4, 144.3 (d, J = 4.5 Hz), 135.8 (d, J = 1.5 Hz), 135.7, 134.4, 133.2 (d, J = 179.7 Hz), 131.0, 130.6, 129.9, 128.3, 128.2, 126.7, 125.3, 124.3, 107.8, 101.4, 90.9, 62.9 (d, J = 7.6 Hz), 62.6, 62.3 (d, J = 6.0 Hz), 34.6, 31.1, 16.4 (d, J = 6.0 Hz), 16.2 (d, J = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.38. **HR–MS** (ESI) *m/z* calc. for C₃₀H₃₂O₆P [M+H]⁺: 519.1931, found: 519.1930.

Diethyl (9- (tert-butyl)-5-oxo-7-(3,4,5-trimethoxyphenyl)-5H-

dibenzo[a,c][7]annulen-6-yl)phosphonate (21)

The general procedure (A) was followed using **1s** (128.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 1:1) yielded **21** (104.9 mg, 62%) as a white solid. **M.p.**: 126–128 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.82 (d, *J* = 7.8 Hz, 1H), 7.66–7.60 (m, 2H), 7.53–7.49 (m, 2H), 7.46 (dd, *J* = 8.4, 1.8 Hz, 1H), 7.07 (d, *J* = 1.8 Hz, 1H), 4.19–3.52 (m, 13H), 1.27 (t, *J* = 6.6 Hz, 3H), 1.14 (s, 9H), 0.94 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.5 (d, *J* = 7.6 Hz), 154.0 (d, *J* = 6.0 Hz), 152.8, 150.1, 144.1 (d, *J* = 4.5 Hz), 138.5, 136.2 (d, *J* = 7.6 Hz), 135.9, 135.8, 135.6, 133.6 (d, *J* = 181.2 Hz), 131.1, 130.7, 130.2, 128.4, 128.3, 126.9, 125.4, 63.2 (d, *J* = 6.0 Hz), 62.2 (d, *J* = 6.0 Hz), 61.1, 56.5, 51.6, 31.0, 16.5 (d, *J* = 6.0 Hz), 16.1 (d, *J* = 7.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 12.23. **HR–MS** (ESI) *m/z* calc. for C₃₂H₃₇O₇**P** [M+H]⁺: 565.2350, found: 565.2349.

Diethyl(9-(tert-butyl)-7-(naphthalen-2-yl)-5-oxo-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (22)

The general procedure (A) was followed using **1t** (116.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **22** (47.2 mg, 30%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.85–7.84 (m, 3H), 7.68–7.64 (m, 2H), 7.55–7.47 (m, 5H), 7.03 (d, *J* = 1.8 Hz, 1H), 4.10–4.00 (m, 2H), 3.71 (s, 1H), 3.47 (s, 1H), 1.22–1.16 (m, 3H), 1.06 (s, 9H). 0.86 (t, *J* = 5.4 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.6 (d, *J* = 9.1 Hz), 154.2 (d, *J* = 4.5 Hz), 150.2, 144.3 (d, *J* = 4.5 Hz), 136.0 (d, *J* = 3.0 Hz), 135.8, 134.2 (d, *J* = 179.7 Hz), 133.3, 132.8, 131.1, 130.8, 130.1, 130.0, 128.6, 128.4, 128.3, 127.8, 127.6, 126.9, 126.7, 125.8, 125.5, 63.0 (d, *J* = 4.5 Hz), 62.3 (d, *J* = 6.0 Hz), 34.6, 31.0, 16.4 (d, *J* = 4.5 Hz), 16.0 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.68. **HR–MS** (ESI) *m*/*z* calc. for C₃₃H₃₄O₄P [M+H]⁺: 525.2186, found: 525.2173.

Diethyl(9-(*tert*-butyl)-5-oxo-7-(thiophen-3-yl)-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (23)

The general procedure (A) was followed using **1u** (103.2 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **23** (49.0 mg, 34%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.81–7.179 (m, 2H), 7.65–7.60 (m, 2H), 7.53–7.50 (m, 2H), 7.47 (dd, J = 8.4, 2.4 Hz, 1H), 7.32–7.30 (m, 1H), 7.04 (d, J = 1.8 Hz, 1H), 6.87 (d, J = 4.7 Hz, 1H), 4.16 (d, J = 7.2 Hz, 1H), 4.08–4.03 (m, 1H), 3.81–3.78 (m, 1H), 3.67–3.63 (m, 1H), 1.28 (t, J = 6.5 Hz, 3H), 1.16 (s, 9H), 1.03 (t, J = 6.0 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.5 (d, J = 9.1 Hz), 150.2, 149.1 (d, J = 4.5 Hz), 144.2 (d, J = 4.5 Hz), 140.2 (d, J = 7.6 Hz), 135.7, 135.6, 135.5, 133.8 (d, J = 179.7 Hz), 131.1, 130.7, 129.6, 129.4, 128.3, 128.3, 127.7, 126.9, 125.3, 63.1 (d, J = 4.5 Hz), 62.3 (d, J = 4.5 Hz), 34.6, 31.0, 16.4 (d, J = 4.5 Hz), 16.1 (d, J = 6.0 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 11.76. **HR–MS** (ESI) *m/z* calc. for C₂₇H₃₀O₄PS [M+H]⁺: 481.1597, found: 481.1584.

Diethyl(7-(benzo[b]thiophen-2-yl)-9-(*tert*-butyl)-5-oxo-5*H*dibenzo[a,c][7]annulen-6-yl)phosphonate (24)

The general procedure (A) was followed using **1v** (118.2 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **24** (55.7 mg, 35%) as a white solid. **M.p.**: 78–80 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.96 (s, 1H), 7.90 (d, *J* = 3.0 Hz, 1H), 7.83 (d, *J* = 7.8 Hz, 1H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.68–7.65 (m, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.55–7.50 (m, 3H), 7.40 (dd, *J* = 1.2, 1.2 Hz, 1H) , 7.36–7.34 (m, 2H), 4.19–4.07 (m, 2H), 3.82–3.77 (m, 1H), 3.63–3.58 (m, 1H), 1.25 (t, *J* = 6.6 Hz, 3H), 1.15 (s, 9H), 0.89 (t, *J* = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.0 (d, *J* = 9.1 Hz), 150.9, 146.6 (d, *J* = 4.5 Hz), 144.1 (d, *J* = 4.5 Hz), 141.7, 141.3 (d, *J* = 9.1 Hz), 139.0, 135.8, 135.7 (*J* = 179.7 Hz), 135.7 (d, *J* = 1.5 Hz), 134.5 (d, *J* = 18.1 Hz), 131.1, 130.9, 129.8, 128.6, 128.5, 128.4, 127.3, 125.4, 125.2, 124.7, 124.6, 122.2, 63.4 (d, *J* = 6.0 Hz), 62.6 (d, *J* = 7.6 Hz), 34.7, 31.0, 16.4 (d, *J* = 6.0 Hz), 16.0 (d, *J* = 7.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.47. **HR–MS** (ESI) *m*/z calc. for C₃₁H₃₂O₄PS [M+H]⁺: 531.1754, found: 531.1740.

Diethyl(9-(*tert*-butyl)-5-oxo-7-(pyridin-4-yl)-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (25)

The general procedure (A) was followed using 1w (101.3 mg, 0.30 mmol) and 2 (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/

EtOAc = 3:1) yielded **25** (64.1 mg, 45%) as a yellow oil. ¹**H** NMR (600 MHz, CDCl₃) δ 8.66 (s, 2H), 7.80 (d, J = 7.8 Hz, 1H), 7.67–7.62 (m, 2H), 7.55–7.51 (m, 2H), 7.48 (dd, J = 8.4, 2.4 Hz, 2H), 6.88 (d, J = 1.8 Hz, 1H), 4.15–4.04 (m, 2H), 3.86–3.82 (m, 1H), 3.67–3.66 (m, 1H), 1.22 (t, J = 6.6 Hz, 3H), 1.11 (s, 9H), 1.02 (t, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 196.7 (d, J = 9.1 Hz), 150.9 (d, J = 4.5 Hz), 150.6, 149.5, 148.9 (d, J = 7.6 Hz), 143.9 (d, J = 4.5 Hz), 135.9 (d, J = 1.5 Hz), 135.7, 135.2 (d, J = 172.0 Hz), 134.8, 134.7, 131.4, 130.0, 129.2, 128.6, 128.5, 127.3, 125.5, 63.0 (d, J = 6.0 Hz), 62.2 (d, J = 6.0 Hz), 34.5, 30.9, 16.3 (d, J = 4.5 Hz), 16.0 (d, J = 6.0 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 10.38. HR–MS (ESI) m/z calc. for C₂₈H₃₁NO₄P [M+H]⁺: 476.1985, found: 476.1971.

Diethyl(9-(*tert*-butyl)-4-methyl-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (26)

The general procedure (A) was followed using **1x** (105.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **26** (76.1 mg, 52%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.57–7.53 (m, 2H), 7.46 (dd, J = 7.8, 7.8 Hz, 1H), 7.40–7.34 (m, 6H), 6.94 (s, 1H), 4.03–3.94 (m, 2H), 3.90–3.80 (m, 2H), 2.60 (s, 3H), 1.17 (t, J = 7.2 Hz, 3H), 1.11 (s, 9H), 1.06 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.5 (d, J = 9.1 Hz), 153.2 (d, J = 4.5 Hz), 149.8, 142.8 (d, J = 3.0 Hz), 140.2 (d, J = 9.1 Hz), 136.5, 136.2, 136.1 (d, J = 19.6 Hz), 143.4, 134.3 (d, J = 176.7 Hz), 131.1, 130.6, 130.1, 129.7, 129.1, 128.4, 127.7, 126.6, 126.4, 62.4 (d, J = 6.0 Hz), 62.3 (d, J = 6.0 Hz), 34.5, 31.0, 19.2, 16.3 (d, J = 7.6 Hz), 16.0 (d, J = 7.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.84. **HR**–**MS** (ESI) m/z calc. for C₃₀H₃₄O₄P [M+H]⁺: 489.2189, found: 489.2173.

Diethyl(9-(*tert*-butyl)-4-fluoro-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6-yl)phosphonate (27)

The general procedure (A) was followed using **1y** (106.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **27** (85.6 mg, 58%) as a white solid. **M.p.**: 146–148 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.58–7.53 (m, 4H), 7.44–7.38 (m, 5H), 7.26–7.19 (m, 1H), 4.24–4.20 (m, 1H), 4.14–4.09 (m, 1H), 3.79–3.75 (m, 1H), 3.56–3.51 (m, 1H), 1.30 (t, *J* = 6.6 Hz, 3H), 1.00 (s, 9H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 192.0 (d, *J* = 9.1 Hz), 156.6 (d, *J* = 255.0 Hz), 153.9 (d, *J* = 5.6 Hz), 150.6, 140.3 (d, *J* = 9.1 Hz), 138.2, 136.3 (d, *J* = 19.6 Hz), 134.7, 134.6 (d, *J* = 182.2 Hz), 131.7 (d, *J* = 9.2 Hz), 130.7, 129.8, 128.8, 128.0, 126.7, 124.3 (d, *J* = 3.0 Hz), 115.3, 115.1, 63.3 (d, *J* = 6.0 Hz), 62.2 (d, *J* = 7.6 Hz), 34.6, 30.9, 16.3 (d, *J* = 6.0 Hz), 16.0 (d, *J* = 7.6 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 10.82. ¹⁹**F NMR** (565 MHz, CDCl₃) δ –118.20. **HR–MS** (ESI) *m*/*z* calc. for C₂₉H₃₁FO4P [M+H]⁺: 493.1939, found: 493.1939.

Diethyl(9-(*tert*-butyl)-4-chloro-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (28)

The general procedure (A) was followed using **1z** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **28** (62.5 mg, 41%) as a white solid. **M.p.**: 57–59 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.64 (d, *J* = 7.8 Hz, 1H), 7.54 (d, *J* = 7.2 Hz, 1H), 7.51–7.50 (m, 2H), 7.42–7.38 (m, 6H), 6.96 (d, *J* = 2.4 Hz, 1H), 4.24–4.19 (m, 1H), 4.09–4.05 (m, 1H), 3.88–3.83 (m, 1H), 3.67–3.62 (m, 1H), 1.27 (t, J = 13.8, 6.6 Hz, 3H), 1.11 (s, 9H), 1.03 (t, J = 13.8, 6.6 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 193.3 (d, J = 9.1 Hz), 154.0 (d, J = 6.0 Hz), 150.7, 140.8 (d, J = 4.5 Hz), 139.9 (d, J = 9.1 Hz), 138.4, 136.3 (d, J = 21.1 Hz), 134.8, 134.6 (d, J = 179.7 Hz), 131.0, 130.8, 129.9, 129.8, 129.3, 129.1, 128.7, 127.9, 127.7, 126.7, 62.9 (d, J = 6.0 Hz), 62.3 (d, J = 7.6 Hz), 34.6, 30.9, 16.5 (d, J = 4.5 Hz), 16.2 (d, J = 6.0 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 10.77. HR–MS (ESI) m/z calc. for C₂₉H₃₀³⁵ClO₄P [M+H]⁺: 509.1643, found: 509.1619.

Diethyl(9-(*tert*-butyl)-3-methoxy-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6-yl) phosphonate (29)

The general procedure (A) was followed using **1z** (110.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **29** (68.0 mg, 45%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.22 (d, J = 9.18 Hz, 1H), 7.60 (d, J = 8.4 Hz, 1H), 7.43–7.37 (m, 4H), 7.20 (dd, J = 8.4, 2.4 Hz, 1H), 7.03 (d, J = 2.4 Hz, 1H), 6.93 (d, J = 1.8 Hz, 1H), 4.11–4.00 (m, 2H), 3.88 (s, 3H), 3.82 (s, 1H), 3.64–3.60 (m, 1H), 1.25–1.20 (m, 3H), 1.10 (s, 9H), 1.02 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.4 (d, J = 9.1 Hz), 159.6, 154.5 (d, J = 6.0 Hz), 149.2, 145.2 (d, J = 4.5 Hz), 140.9 (d, J = 7.6 Hz), 135.8 (d, J = 19.6 Hz), 135.7, 135.6, 132.9 (d, J = 179.7 Hz), 130.1, 130.0, 129.9, 128.7, 128.7, 127.9, 126.7, 118.5, 108.8, 62.7, 62.2, 55.7, 34.5, 30.9, 16.3, 16.2. ³¹P NMR (243 MHz, CDCl₃) δ 11.17. **HR–MS** (ESI) m/z calc. for C₃₀H₃₄O₅P [M+H]⁺: 505.2139, found: 505.2119.

Diethyl(9-(tert-butyl)-4-fluoro-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (30)

The general procedure (A) was followed using **1b'** (106.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **30** (90.0 mg, 61%) as a white solid. **M.p.**: 167–169 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.78 (dd, J = 8.4, 4.8 Hz, 1H), 7.55 (d, J = 8.4 Hz, 1H), 7.45–7.31 (m, 5H), 7.21 (dd, J = 7.8, 2.4 Hz, 1H), 6.96 (d, J = 1.8 Hz, 1H), 4.11–4.01 (m, 2H), 3.82–3.81 (m, 1H), 3.60–3.59 (m, 1H), 1.23 (t, J = 6.6 Hz, 3H), 1.10 (s, 9H), 1.01 (t, J = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.2 (d, J = 9.1 Hz), 162.5 (d, J = 250.7 Hz), 154.6 (d, J = 4.5 Hz), 150.1, 145.5 (d, J = 12.1 Hz), 140.6 (d, J = 7.6 Hz), 136.0 (d, J = 25.7 Hz), 134.7, 133.2 (d, J = 179.7 Hz), 132.0 (d, J = 3.0 Hz), 130.5 (d, J = 7.6 Hz), 140.4, 130.1, 128.9, 128.0, 126.9, 118.3 (d, J = 22.7 Hz), 112.0 (d, J = 24.2 Hz), 62.9 (d, J = 4.5 Hz), 62.3 (d, J = 3.0 Hz), 34.6, 30.9, 16.3, 16.1 (d, J = 4.5 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.35. ¹⁹**F NMR** (565 MHz, CDCl₃) δ –113.16. **HR–MS** (ESI) m/z calc. for C₂₉H₃₁FO₄P [M+H]⁺: 493.1939, found: 493.1922.

Diethyl(9-(*tert*-butyl)-3-chloro-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (31)

The general procedure (A) was followed using **1c'** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **31** (85.3 mg, 56%) as a white solid. **M.p.**: 123–125 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.4 Hz, 1H), 7.60–7.56 (m, 2H), 7.49–7.56 (m, 5H), 6.96 (d, *J* = 2.4 Hz, 1H), 4.12–4.03 (m, 2H), 3.83–3.80 (m, 1H), 3.60–3.58 (m, 1H), 1.25 (t, *J* = 6.6 Hz, 3H), 1.11 (s, 9H), 1.01 (t, *J* = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.1 (d, *J* = 7.6 Hz), 154.5 (d, *J* = 6.0 Hz), 150.5, 145.0 (d, *J* = 4.5 Hz), 140.6 (d, *J* = 7.6 Hz), 136.2 (d, *J* = 19.6 Hz), 134.6, 134.5, 134.2, 132.9, 131.1, 130.4, 130.2, 129.8, 128.9, 128.0, 126.9, 125.2, 63.0 (d, *J* = 6.0 Hz), 62.4 (d, *J* = 6.0 Hz), 34.6, 30.9, 19.4, 16.3 (d, J = 6.0 Hz), 16.1 (d, J = 6.0 Hz). ³¹**P** NMR (243 MHz, CDCl₃) δ 11.45. **HR–MS** (ESI) m/z calc. for C₂₉H₃₁³⁵ClO₄P [M+H]⁺: 509.1643, found: 509.1627.

Diethyl(9-(*tert*-butyl)-5-oxo-7-phenyl-3-(trifluoromethyl)-5*H*dibenzo[a,c][7]annulen-6-yl)phosphonate (32)

The general procedure (A) was followed using **1d'** (121.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **32** (178.9 mg, 55%) as a white solid. **M.p.**: 153–155 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.4 Hz, 1H), 7.90 (dd, *J* = 2.4, 1.8 Hz, 1H), 7.80 (s, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.52–7.43 (m, 4H), 7.02 (d, *J* = 1,8 Hz, 1H), 4.14–4.10 (m, 2H), 3.84–3.80 (m, 1H), 3.58–3.55 (m, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.14 (s, 9H), 1.02 (t, *J* = 6.6 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.3 (d, *J* = 9.0 Hz), 154.5 (d, *J* = 6.0 Hz), 151.2, 144.1 (d, *J* = 6.0 Hz), 140.4 (d, *J* = 7.6 Hz), 138.9, 136.5 (d, *J* = 19.6 Hz), 134.3, 133.2, 130.7, 130.3, 129.1, 129.0, 128.1, 127.5 (d, *J* = 2.0 Hz, 127.1, 123.9 (d, *J* = 271.8 Hz), 122.8 (d, *J* = 4.5 Hz), 62.9 (d, *J* = 6.0 Hz), 62.4 (d, *J* = 6.0 Hz), 34.7, 30.9, 16.2 (d, *J* = 7.6 Hz), 16.0 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 10.76. ¹⁹**F NMR** (565 MHz, CDCl₃) δ –62.59. **HR–MS** (ESI) *m/z* calc. for C₃₀H₃₁F₃O₄P [M+H]⁺: 543.1907, found: 543.1890.

Diethyl(9-(tert-butyl)-3-nitro-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (33)

The general procedure (A) was followed using **1e'** (114.9 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/

EtOAc = 3:1) yielded **33** (46.7 mg, 30%) as a white solid. **M.p.**: 103–105 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.46 (d, *J* = 7.8 Hz, 1H), 8.36 (s, 1H), 7.97 (d, *J* = 9 Hz, 1H), 7.64 (d, *J* = 7.8 Hz, 1H), 7.52–7.42 (m, 6H), 7.01 (s, 1H), 4.13–4.09 (m, 2H), 3.82–3.79 (m, 1H), 3.56–3.54 (m, 1H), 1.30 (t, *J* = 7.2 Hz, 3H), 1.12 (s, 9H), 1.00 (t, *J* = 6.6 Hz, 3H). ¹³C **NMR** (151 MHz, CDCl₃) δ 195.4 (d, *J* = 9.1 Hz), 154.6 (d, *J* = 6.0 Hz), 152.1, 147.3, 144.4 (d, *J* = 4.5 Hz), 141.5, 140.2 (d, *J* = 7.6 Hz), 136.8 (d, *J* = 19.6 Hz), 133.7 (d, *J* = 178.2 Hz), 133.6, 130.8, 130.4, 129.7, 129.4, 129.2, 128.2, 127.2, 125.3, 121.1, 63.2 (d, *J* = 6.0 Hz), 62.6 (d, *J* = 6.0 Hz), 34.8, 30.9, 16.3 (d, *J* = 6.0 Hz), 16.1 (d, *J* = 6.0 Hz). ³¹P **NMR** (243 MHz, CDCl₃) δ 10.45 (s). **HR–MS** (ESI) *m/z* calc. for C₂₉H₃₁NO₆P [M+H]⁺: 520.1884, found: 520.1871.

Ethyl-9-(*tert*-butyl)-6-(diethoxyphosphoryl)-5-oxo-7-phenyl-5*H*dibenzo[a,c][7]annulene-3-carboxylate (34)

The general procedure (A) was followed using **1f**' (123.0 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **34** (68.8 mg, 42%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 8.29 (dd, J = 8.4, 1.8 Hz, 1H), 8.20 (d, J = 1.8 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.48–7.39 (m, 4H), 6.98 (d, J = 1.8 Hz, 1H), 4.43–4.39 (m, 2H), 4.11 (q, J = 7.2 Hz, 2H), 3.79–3.75 (m, 1H), 3.55–3.51 (m, 1H), 1.40 (t, J = 7.2 Hz, 3H), 1.30 (t, J = 6.6 Hz, 3H), 1.11 (s, 9H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 196.9 (d, J = 9.1 Hz), 165.7, 154.3 (d, J = 6.0 Hz), 151.0, 144.0 (d, J = 7.6 Hz), 140.5 (d, J = 7.5 Hz), 139.7, 136.5 (d, J = 21.1 Hz), 134.8, 133.8 (d, J = 179.7 Hz), 131.7, 130.7, 130.2, 130.1, 129.0, 128.5, 128.1, 127.0, 126.9, 63.0 (d, J = 6.0 Hz), 62.4 (d, J = 6.0 Hz), 61.5, 34.7, 30.9, 16.3 (d, J = 7.6 Hz), 16.1 (d, J = 6.0 Hz). ³¹P NMR (243 MHz, CDCl₃) δ 11.08. HR–MS (ESI) m/z calc. for C₃₂H₃₅O₆P [M+H]⁺: 547.2244, found: 547.2234.

Diethyl(9-(*tert*-butyl)-2-methyl-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (35)

The general procedure (A) was followed using **1g'** (105.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **35** (106.9 mg, 73%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.61–7.60 (m, 2H), 7.44–7.33 (m, 6H), 6.94 (d, *J* = 1.2 Hz, 1H), 4.13–4.00 (m, 2H), 3.80–3.76 (m, 1H), 3.59–3.55 (m, 1H), 2.52 (s, 3H), 1.27–1.24 (m, 3H), 1.11 (s. 9H), 0.98 (t, *J* = 9.0 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 197.4 (d, *J* = 9.1 Hz), 154.0 (d, *J* = 6.0 Hz), 149.9, 142.0 (d, *J* = 4.5 Hz), 141.4, 141.0 (d, *J* = 9.1 Hz), 136.3 (d, *J* = 19.6 Hz), 135.9, 135.9, 133.9 (d, *J* = 179.7 Hz), 130.6, 130.0, 129.1, 128.9, 128.7, 127.9, 126.7, 125.6, 62.9 (d, *J* = 6.0 Hz), 62.1 (d, *J* = 6.0 Hz), 34.6, 31.0, 21.9, 16.4 (d, *J* = 3.0 Hz), 16.1 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.70. **HR–MS** (ESI) *m/z* calc. for C₃₀H₃₄O4P [M+H]⁺: 489.2189, found: 489.2172.

Diethyl(9-(*tert*-butyl)-2-methoxy-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (36)

The general procedure (A) was followed using **1h'** (110.4 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **36** (98.3 mg, 65%) as a white solid. **M.p.**: 159–161 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.62 (d, *J* = 8.4 Hz, 1H), 7.52–7.39 (m, 5H), 7.30 (d, *J* = 4.5 Hz, 1H), 7.06 (dd, *J* = 8.4, 6.0 Hz, 1H), 6.97 (d, *J* = 6.0 Hz, 1H), 4.14–4.04 (m, 2H), 3.96 (s, 3H), 3.83–3.80 (m, 1H), 3.59–3.58 (m, 1H), 1.28–1.25 (m, 3H), 1.13 (s, 9H), 1.02– 1.00 (m, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.5 (d, *J* = 9.1 Hz), 161.8, 153.7 (d, *J* = 4.5 Hz), 150.1, 141.0 (d, *J* = 9.1 Hz), 138.0 (d, *J* = 4.5 Hz), 137.9, 136.3 (d, *J* = 21.2 Hz), 135.7, 134.1 (d, *J* = 178.2 Hz), 130.5, 130.1, 128.7, 127.9, 127.7, 126.7, 114.1, 113.3, 62.9, 62.1, 55.7, 34.6, 30.9, 16.4 (d, *J* = 4.5 Hz), 16.1 (d, *J* = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.60. **HR–MS** (ESI) *m/z* calc. for C₃₀H₃₃O₅P [M+H]⁺: 505.2139, found: 505.2139.

Diethyl(9-(*tert*-butyl)-2-chloro-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (37)

The general procedure (A) was followed using **1i'** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **37** (91.4 mg, 60%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, J = 7.8 Hz, 1H), 7.65–7.46 (m, 6H), 7.38 (s, 2H), 6.95 (s, 1H), 4.16–4.03 (m, 2H), 3.84–3.81 (m, 1H), 3.72–3.68 (m, 1H), 1.26 (t, J = 6.6 Hz, 3H), 1.14 (s, 9H), 1.05 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.2 (d, J = 9.1 Hz), 152.8 (d, J = 4.5 Hz), 150.2, 144.2 (d, J = 4.5 Hz), 139.2 (d, J = 9.1 Hz), 135.8, 135.8, 135.8, 135.7, 135.7, 134.9, 134.2 (d, J = 178.2 Hz), 131.2, 130.8, 129.7, 128.3, 128.2, 127.0, 125.4, 63.1 (d, J = 6.0 Hz), 62.3 (d, J = 6.0 Hz), 34.6, 31.0, 16.4 (d, J = 4.5 Hz), 16.0 (d, J = 6.0 Hz). ³¹**P NMR** (243 MHz, CDCl₃) δ 11.00. **HR–MS** (ESI) *m*/*z* calc. for C₂₉H₃₁³⁵ClO₄P [M+H]⁺: 509.1643, found: 509.1625.

Diethyl(R)-(9-(*tert*-butyl)-1-fluoro-5-oxo-7-phenyl-5*H*-dibenzo[a,c][7]annulen-6yl)phosphonate (38)

The general procedure (A) was followed using **1j**' (106.8 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **38** (85.6 mg, 58%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.75–7.72 (m, 1H), 7.47–7.37 (m, 7H), 7.30 (dd, *J* = 7.2, 1.2 Hz, 1H), 6.97 (d, *J* = 1.8 Hz, 1H), 4.09–4.03 (m, 1H), 4.01–3.96 (m, 1H), 3.86–3.79 (m, 1H), 3.67–3.61 (m, 1H), 1.20 (t, *J* = 7.2 Hz, 3H), 1.12 (s, 9H), 1.02 (t, *J* = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 196.4 (d, *J* = 6.0 Hz), 159.5 (d, *J* = 250.7 Hz), 154.3 (d, *J* = 4.5 Hz), 150.7, 147.0 (d, *J* = 4.5 Hz), 140.3 (d, *J* = 7.6 Hz), 136.7 (d, *J* = 19.6 Hz), 134.0 (d, *J* = 179.7 Hz), 131.6 (d, *J* = 7.6 Hz), 129.9, 129.7 (d, *J* = 9.1 Hz), 129.6, 129.3, 129.0, 128.0, 126.0, 123.5 (d, *J* = 6.0 Hz), 34.7, 30.9, 16.3 (d, *J* = 6.0 Hz), 16.1 (d, *J* = 6.0 Hz). ^{**3**1}**P NMR** (243 MHz, CDCl₃) δ 10.83. ^{**19**}**F NMR** (565 MHz, CDCl₃) δ –115.20. **HR–MS** (ESI) *m*/*z* calc. for C₂₉H₃₁FO₄P [M+H]⁺: 493.1939, found: 493.1919.

Diethyl(8-(*tert*-butyl)-4-oxo-6-phenyl-4*H*-benzo[3,4]cyclohepta[1,2-b]thiophen-5yl)phosphonate (39)

The general procedure (A) was followed using **1k'** (103.2 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded **39** (109.4 mg, 76%) as a white solid. **M.p.**: 145–147 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, *J* = 12.6 Hz, 1H), 7.68–7.64 (m, 2H), 7.59 (dd, *J* = 12.6, 3.0 Hz, 1H), 7.43–7.34 (m, 5H), 7.01 (d, *J* = 3.0 Hz, 1H), 4.00–3.90 (m, 2H), 3.81–3.71 (m, 2H), 1.10–1.06 (m, 15H). ¹³**C NMR** (101 MHz, CDCl₃) δ 186.5 (d, *J* = 9.1 Hz), 155.4 (d, *J* = 4.0 Hz), 149.5, 143.6 (d, *J* = 9.1 Hz), 142.5 (d, *J* = 8.1 Hz), 140.9, 135.9 (d, *J* = 19.2 Hz), 132.1, 132.1 (d, *J* = 182.8 Hz), 131.7, 130.8, 130.4, 128.7, 128.6, 127.9, 127.5, 127.3, 62.8, 62.7, 34.6, 30.8, 16.2, 16.1. ³¹**P NMR** (162 MHz, CDCl₃) δ 13.19. **HR–MS** (ESI) *m/z* calc. for C₂₇H₃₀O₄PS [M+H]⁺: 481.1597, found: 481.1576.

Diethyl(9-(tert-butyl)-5-oxo-7-pentyl-5H-dibenzo[a,c][7]annulen-6-

vl)phosphonate (40)

The general procedure (A) was followed using 11' (99.6 mg, 0.30 mmol) and 2 (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded 40 (25.3 mg, 18%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.69 (m, 2H), 7.57 (td, J = 7.8, 1.8 Hz, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.47–7.45 (m, 2H), 7.39 (dd, J = 7.8, 1.8 Hz, 1H), 4.31–4.26 (m, 1H), 4.24–4.20 (m, 1H), 4.07 (t, J = 7.2 Hz, 2H), 3.45–3.40 (m, 1H), 2.97–2.93 (m, 1H), 1.39 (t, J = 7.2 Hz, 3H), 1.36 (s, 9H), 1.31 (t, J = 6.6 Hz, 3H), 1.25–1.18 (m, 6H), 0.75 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.9 (d, J = 9.1 Hz), 156.8 (d, J = 7.6 Hz), 150.5, 145.1 (d, J =4.5 Hz), 135.6, 135.4 (d, J = 1.5 Hz), 135.1, 134.9, 132.8 (d, J = 173.7 Hz), 131.1, 130.7, 127.9, 126.4, 124.8, 124.3, 63.2 (d, J = 4.5 Hz), 62.2 (d, J = 6.0 Hz), 34.9, 34.6 (d, J =6.0 Hz), 31.8, 31.3, 28.7, 22.3, 16.5 (d, J = 7.6 Hz), 16.4 (d, J = 7.6 Hz), 14.0. ³¹P NMR $(162 \text{ MHz}, \text{CDCl}_3) \delta 11.74$. **HR–MS** (ESI) *m/z* calc. for C₂₈H₃₈O₄P [M+H]⁺: 469.2502, found: 469.2482.

Diethyl(9-(tert-butyl)-7-(5-hydroxypentyl)-5-oxo-5H-dibenzo[a,c][7]annulen-6yl)phosphonate (41)

The general procedure (A) was followed using 1m' (104.4 mg, 0.30 mmol) and 2 (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 3:1) yielded 41 (33.4 mg, 23%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.71–7.68 (m, 2H), 7.58 (td, J = 7.2, 1.2 Hz, 1H), 7.53 (d, J = 8.4 Hz, 1H), 7.48–7.45 (m, 2H), 7.38 (dd, J = 7.2, 0.6 Hz, 1H), 4.32–4.22 (m, 2H), 4.10–4.05 (m, 2H), 3.52– 3.45 (m, 3H), 1.80 (s, 4H), 1.40 (t, J = 6.6 Hz, 4H), 1.36 (s, 9H), 1.31 (t, J = 7.2 Hz, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 197.8 (d, J = 10.6 Hz), 156.7 (d, J = 7.6 Hz), 150.6, 145.0 (d, J = 4.5 Hz), 135.6, 135.4, 134.9 (d, J = 21.1 Hz), 132.3 (d, J = 175.2 Hz), 131.1, 130.8, 128.0 (d, J = 9.1 Hz), 128.5, 124.8, 124.4, 63.2 (d, J = 6.0 Hz), 62.7, 62.3 (d, J = 6.0 Hz), 34.9, 34.4 (d, J = 7.6 Hz), 32.1, 31.3, 28.7, 25.6, 16.5 (d, J = 7.6 Hz), 16.4 (d, J = 6.0 Hz). ³¹P NMR (162 MHz, CDCl₃) δ 11.74. HR–MS (ESI) *m/z* calc. for C₂₈H₃₈O₅P [M+H]⁺: 485.2452, found: 485.2429.

9-(*tert*-Butyl)-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (43)

The general procedure (B) was followed using **11** (71.1 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **43** (43.1 mg, 85%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.91 (d, J = 7.9 Hz, 1H), 7.82 (dd, J = 7.7, 1.1 Hz, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.68 (td, J = 7.8, 1.2 Hz, 1H), 7.55 (d, J = 7.6 Hz, 1H), 7.52 (dd, J = 8.4, 2.1 Hz, 1H), 7.46–7.42 (m, 5H), 6.77 (s, 1H), 1.21 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 195.0, 150.4, 150.3, 142.5, 142.4, 137.6, 136.0, 135.1, 132.6, 131.6, 131.5, 129.8, 129.1, 128.7, 128.5, 128.5, 128.2, 127.7, 126.2, 34.7, 31.1. **HR–MS** (ESI) *m/z* calc. for C₂₅H₂₃O [M+H]⁺: 339.1744, found: 339.1730.

9-(tert-Butyl)-7-(4-methoxyphenyl)-5H-dibenzo[a,c][7]annulen-5-one (44)

The general procedure (B) was followed using **13** (75.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **44** (44.7 mg, 81%) as a yellow oil. ¹H NMR (400 MHz,

CDCl₃) δ 7.89 (d, J = 7.7 Hz, 1H), 7.81 (dd, J = 7.8, 1.4 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.67 (td, J = 7.7, 1.5 Hz, 1H), 7.55–7.50 (m, 2H), 7.38–7.34 (m, 3H), 6.93 (d, J = 8.8 Hz, 2H), 6.75 (s, 1H), 3.86 (s, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 195.1, 160.1, 150.3, 149.9, 142.6, 137.5, 136.0, 135.2, 134.7, 131.8, 131.5, 130.4, 129.8, 128.6, 128.1, 127.6, 126.1, 113.9, 55.5, 34.7, 31.2. HR–MS (ESI) m/z calc. for C₂₆H₂₅O₂ [M+H]⁺: 369.1849, found: 369.1835.

9-(*tert*-Butyl)-7-(*p*-tolyl)-5*H*-dibenzo[a,c][7]annulen-5-one (45)

The general procedure (B) was followed using **12** (73.2 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **45** (44.4 mg, 84%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 1H), 7.81 (m, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.69–7.65 (m, 1H), 7.55–7.50 (m, 2H), 7.33–7.31 (m, 3H), 7.21 (d, J = 8.0 Hz, 2H), 6.76 (s, 1H), 2.41 (s, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 190.1, 150.3, 150.3, 142.6, 139.4, 138.7, 137.6, 136.0, 135.2, 132.2, 131.6, 131.5, 129.8, 129.0, 128.6, 128.1, 127.7, 126.1, 34.7, 31.2, 21.4. HR–MS (ESI) *m/z* calc. for C₂₆H₂₅O [M+H]⁺: 353.1900, found: 353.1889.

4-(9-(tert-Butyl)-5-oxo-5H-dibenzo[a,c][7]annulen-7-yl)benzonitrile (46)

The general procedure (B) was followed using **15** (74.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **46** (43.6 mg, 80%) as a white solid. **M.p.**: 164–166 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.90 (d, *J* = 7.6 Hz, 1H), 7.80–7.68 (m, 5H), 7.58–7.54 (m, 4H), 7.11 (d, *J* = 2.4 Hz, 1H), 6.73 (s, 1H), 1.21 (s, 9H). ¹³**C NMR** (101 MHz,

CDCl₃) δ 194.5, 150.9, 148.1, 147.2, 142.4, 137.5, 136.2, 134.1, 133.7, 132.5, 132.1, 132.0, 130.0, 129.9, 128.5, 128.0, 127.8, 126.9, 118.7, 112.6, 34.9, 31.2. **HR–MS** (ESI) m/z calc. for C₂₆H₂₂NO [M+H]⁺: 364.1696, found: 364.1696.

9-(*tert*-Butyl)-7-(*m*-tolyl)-5*H*-dibenzo[a,c][7]annulen-5-one (47)

The general procedure (B) was followed using **18** (73.2 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **47** (43.3 mg, 82%) as a white solid. **M.p.**: 106–108 °C. ¹**H NMR** (400 MHz, CDCl3) δ 7.93 (d, *J* = 8.0 Hz, 1H), 7.86–7.84 (m, 1H), 7.76 (d, *J* = 8.4 Hz, 1H), 7.72–7.68 (m, 1H), 7.59–7.53 (m, 2H), 7.33–7.29 (m, 3H), 7.24 (d, *J* = 8.0 Hz, 2H), 6.80 (s, 1H), 2.40 (s, 3H), 1.25 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.0, 150.4, 150.3, 142.5, 142.3, 138.2, 137.6, 136.0, 135.2, 132.4, 131.6, 131.5, 129.8, 129.8, 129.4, 128.7, 128.3, 128.1, 127.7, 126.3, 126.1, 34.7, 31.1, 21.5. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₅O [M+H]⁺: 353.1900, found: 353.1903.

7-(2-Bromophenyl)-9-(*tert*-butyl)-5*H*-dibenzo[a,c][7]annulen-5-one (48)

The general procedure (B) was followed using **16** (82.8 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 10:1) yielded **48** (54.9 mg, 88%) as a white solid. **M.p.**: 135–137 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.92 (d, J = 7.8 Hz, 1H), 7.86 (d, J = 7.8 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.71–7.68 (m, 1H), 7.61 (d, J = 7.8 Hz, 1H), 7.56 (dd, J = 7.2, 7.2 Hz, 1H), 7.53–7.50 (m, 2H), 7.45 (dd, J = 7.8, 7.8 Hz, 1H), 7.30–7.26 (m, 1H), 7.07 (d, J = 1.8 Hz, 1H), 6.66 (s, 1H), 1.20 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 194.0, 150.8, 149.7, 142.8, 142.0, 137.7, 135.6, 134.5, 134.3, 133.2, 131.8, 131.7, 131.2, 130.0, 129.8, 128.2, 128.0, 127.7, 126.6, 126.2, 123.0, 34.6, 31.1. **HR–MS** (ESI) *m/z* calc. for C₂₅H₂₂⁷⁹BrO [M+H]⁺: 417.0849, found: 417.0851.

9-(*tert*-Butyl)-7-(3,5-dimethylphenyl)-5*H*-dibenzo[a,c][7]annulen-5-one (49)

The general procedure (B) was followed using **19** (75.3 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **49** (47.2 mg, 86%) as a white solid. **M.p.**: 157–159 °C. ¹H NMR (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.8 Hz, 1H), 7.67 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.55–7.51 (m, 2H), 7.33 (d, *J* = 1.8 Hz, 1H), 7.04 (d, *J* = 9.6 Hz, 3H), 6.77 (s, 1H), 2.33 (s, 6H), 1.23 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 195.2, 150.5, 150.2, 142.5, 142.3, 138.0, 137.6, 136.0, 135.2, 132.2, 131.6, 131.5, 130.3, 129.8, 128.8, 128.1, 127.6, 127.0, 126.0, 34.7, 31.2, 21.4. **HR–MS** (ESI) *m/z* calc. for C₂₇H₂₇O [M+H]⁺: 367.2057, found: 367.2057.

7-(Benzo[d][1,3]dioxol-5-yl)-9-(*tert***-butyl)-5***H***-dibenzo[a,c][7]annulen-5-one (50)** The general procedure (B) was followed using **20** (77.7 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **50** (45.8 mg, 80%) as a white solid. **M.p.**: 153–155 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, *J* = 4.8 Hz, 1H), 7.80 (dd, *J* = 6.0, 2.4 Hz, 1H), 7.72–7.65 (m, 2H), 7.55–7.50 (m, 2H), 7.35 (d, *J* = 3.0 Hz, 1H), 6.93–6.90 (m, 2H), 6.83 (d, *J* = 8.4 Hz, 1H), 6.71 (s, 1H), 6.02 (s, 2H), 1.25 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.0, 150.3, 149.8, 148.2, 147.9, 142.6, 137.5, 136.4, 136.0, 135.1, 132.0, 131.6, 129.8, 128.5, 128.1, 127.6, 126.2, 123.2, 109.5, 108.3, 101.5, 34.8, 31.2, 29.6. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₃O₃ [M+H]⁺: 383.1642, found: 383.1638.

9-(*tert*-Butyl)-7-(3,4,5-trimethoxyphenyl)-5*H*-dibenzo[a,c][7]annulen-5-one (51) The general procedure (B) was followed using **21** (84.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **51** (52.6 mg, 82%) as a white solid. **M.p.**: 181–183 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.68 (dd, *J* = 7.8, 7.8 Hz, 1H), 7.56–7.52 (m, 2H), 7.36 (d, *J* = 1.8 Hz, 1H), 6.78 (s, 1H), 6.64 (s, 2H), 3.91 (s, 3H), 3.83 (s, 6H), 1.21 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 195.0, 153.2, 150.4, 150.1, 142.5, 138.5, 137.9, 137.5, 136.1, 134.8, 132.1, 131.7, 131.6, 129.9, 128.7, 128.2, 127.6, 126.2, 106.5, 61.2, 56.4, 34.8, 31.2. **HR–MS** (ESI) *m/z* calc. for C₂₈H₂₉O₄ [M+H]⁺: 429.2061, found: 429.2060.

9-(*tert*-Butyl)-4-chloro-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (52)

The general procedure (B) was followed using **28** (76.2 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **52** (48.5 mg, 87%) as a white solid. **M.p.**: 183–185 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.71–7.67 (m, 2H), 7.56–7.46 (m, 3H), 7.39 (m, 5H), 7.25 (d, *J* = 2.0 Hz, 1H), 6.79 (s, 1H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 194.9, 150.9, 147.1, 141.1, 140.4, 138.8, 135.3, 134.8, 131.5, 131.1, 130.6, 129.7, 129.2, 128.9, 128.8, 128.6, 128.5, 127.8, 125.8, 34.8, 31.1. **HR–MS** (ESI) *m/z* calc. for C₂₅H₂₂³⁵ClO [M+H]⁺: 373.1354, found: 373.1349.

9-(tert-Butyl)-3-methoxy-7-phenyl-5H-dibenzo[a,c][7]annulen-5-one (53)

The general procedure (B) was followed using **29** (75.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **53** (44.2 mg, 80%) as a white solid. **M.p.**: 129–131 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.87 (d, *J* = 9.0 Hz, 1H), 7.73 (d, *J* = 8.4 Hz, 1H), 7.54–7.52 (m, 1H), 7.46–7.42 (m, 5H), 7.37 (d, *J* = 3.0 Hz, 1H), 7.29–7.27 (m, 2H), 6.79 (s, 1H), 3.95 (s, 3H), 1.23 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 194.4, 159.6, 150.7, 149.6, 143.4, 142.6, 135.8, 134.6, 132.1, 131.5, 131.1, 130.7, 129.1, 128.7, 128.6, 128.5, 126.2, 119.7, 110.1, 55.8, 34.6, 31.1. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₅O₂ [M+H]⁺: 369.1849, found: 369.1841.

9-(tert-Butyl)-3-nitro-7-phenyl-5H-dibenzo[a,c][7]annulen-5-one (54)

The general procedure (B) was followed using **33** (77.9 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **54** (48.8 mg, 85%) as a white solid. **M.p.**: 189–191 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 8.68 (d, J = 2.5 Hz, 1H), 8.47 (dd, J = 8.7, 2.5 Hz, 1H), 8.06 (d, J = 8.4 Hz, 1H), 7.75 (d, J = 8.4 Hz, 1H), 7.58 (dd, J = 8.4, 2.1 Hz, 1H), 7.44–7.41 (m, 5H), 7.32 (d, J = 2.0 Hz, 1H), 6.79 (s, 1H), 1.22 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 192.6, 152.3, 151.4, 147.3, 143.0, 142.9, 141.7, 135.7, 134.0, 132.1, 131.8, 131.2, 129.2, 129.1, 129.0, 128.7, 126.8, 125.6, 123.4, 34.9, 31.0. **HR–MS** (ESI) *m/z* calc. for C₂₅H₂₂NO₃ [M+H]⁺: 384.1594, found: 384.1584.

9-(*tert*-Butyl)-2-methyl-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (55)

The general procedure (B) was followed using **35** (73.2 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **55** (44.9 mg, 85%) as a white solid. **M.p.**: 143–145 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.77 (d, *J* = 7.8 Hz, 2H), 7.73 (s, 1H), 7.54 (dd, *J* = 8.4 Hz, 2.4 Hz 1H), 7.46–7.42 (m, 5H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.29–7.28 (m, 1H), 6.79 (s, 1H), 2.56 (s, 3H), 1.20 (s, 9H). ¹³**C NMR** (151 MHz, CDCl₃) δ 194.6, 150.2, 150.0, 142.5, 142.1, 140.2, 137.6, 136.1, 135.2, 132.8, 131.5, 130.4, 129.2, 129.1, 128.6, 128.5, 128.5, 127.9, 126.1, 34.7, 31.1, 21.9. **HR–MS** (ESI) *m/z* calc. for C₂₆H₂₅O [M+H]⁺: 353.1900, found: 353.1890.

9-(tert-Butyl)-2-methoxy-7-phenyl-5H-dibenzo[a,c][7]annulen-5-one (56)

The general procedure (B) was followed using **36** (75.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **56** (45.3 mg, 82%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 8.7 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H), 7.54 (dd, J = 8.4, 2.2 Hz, 1H), 7.46–7.41 (m, 5H), 7.39 (d, J = 2.5 Hz, 1H), 7.29 (d, J = 3.3 Hz, 1H), 7.11 (dd, J = 8.7, 2.5 Hz, 1H), 6.78 (s, 1H), 3.98 (s, 3H), 1.23 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 193.5, 162.2, 150.5, 149.6, 142.5, 139.8, 136.2, 135.9, 135.2, 133.1, 131.5, 130.2, 129.1, 128.6, 128.6, 128.5, 126.2, 114.6, 114.2, 55.7, 34.7, 31.1. HR–MS (ESI) m/z calc. for C₂₆H₂₅O₂ [M+H]⁺: 369.1849, found: 369.1841.

8-(*tert*-Butyl)-6-phenyl-4*H*-benzo[3,4]cyclohepta[1,2-b]thiophen-4-one (57)

The general procedure (B) was followed using **39** (72.0 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **57** (40.2 mg, 78%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.14 (d, J = 8.6 Hz, 1H), 7.91 (d, J = 5.5 Hz, 1H), 7.78 (d, J = 5.4 Hz, 1H), 7.62 (dd, J = 8.5, 2.2 Hz, 1H), 7.46–7.37 (m, 6H), 6.99 (s, 1H), 1.18 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 182.4, 152.7, 150.6, 145.6, 144.4, 141.3, 134.4, 132.8, 132.3, 131.8, 131.3, 129.6, 129.2, 128.9, 128.4, 128.3, 127.5, 34.8, 31.0. HR–MS (ESI) m/z calc. for C₂₃H₂₁OS [M+H]⁺: 345.1308, found: 345.1301.

8,10-Dimethyl-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (58)

The general procedure (B) was followed using **4** (66.9 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **58** (40.2 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.92 (d, *J* = 8.4 Hz, 1H), 7.64–7.61 (m, 2H), 7.48–7.46 (m, 1H), 7.35 (s, 1H), 7.32–7.26 (m, 5H), 7.00 (s, 1H), 6.77 (s, 1H), 2.41 (s, 3H), 1.83 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 197.1, 146.8, 144.2, 142.8, 138.8, 138.5, 138.0, 147.9, 133.0, 132.2, 131.6, 131.4, 129.8, 129.3, 128.8, 128.3, 127.9, 126.8, 126.3, 23.5, 21.4. **HR–MS** (ESI) *m/z* calc. for C₂₃H₁₉O [M+H]⁺: 311.1431, found: 311.1413.

8,10-Dimethoxy-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (59)

The general procedure (B) was followed using **3** (71.7 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yielded **59** (45.1 mg, 88%) as a white solid. **M.p.**: 156–158 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 1H), 7.70 (dd, *J* = 7.7, 1.3 Hz, 1H), 7.66 (td, *J* = 7.7, 1.4 Hz, 1H), 7.53 (td, *J* = 7.5, 0.9 Hz, 1H), 7.31–7.26 (m, 5H), 6.85 (d, *J* = 2.4 Hz, 1H), 6.66 (s, 1H), 6.51 (d, *J* = 2.4 Hz, 1H), 3.92 (s, 3H), 3.37 (s, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 196.3, 160.2, 159.5, 145.5, 144.0, 143.8, 140.6, 137.7, 132.2, 131.3, 129.3, 128.5, 128.1, 127.5, 126.8, 125.8, 118.5, 107.5, 99.6, 55.8, 55.6. **HR–MS** (ESI) *m/z* calc. for C₂₃H₁₉O₃ [M+H]⁺: 343.1329, found: 343.1327.

9-(tert-Butyl)-7-(thiophen-3-yl)-5H-dibenzo[a,c][7]annulen-5-one (60)

The general procedure (B) was followed using **23** (72.0 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **60** (40.2 mg, 78%) as a yellow oil. ¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, *J* = 7.7 Hz, 1H), 7.79 (dd, *J* = 7.8, 1.3 Hz, 1H), 7.72 (d, *J* = 8.4 Hz, 1H), 7.67 (td, *J* = 7.7, 1.5 Hz, 1H), 7.55–7.51 (m, 2H), 7.48 (d, *J* = 2.1 Hz, 1H), 7.45 (dd, *J* = 3.0, 1.3 Hz, 1H), 7.37 (dd, *J* = 5.0, 3.0 Hz, 1H), 7.13 (dd, *J* = 5.0, 1.3 Hz, 1H), 6.86 (s, 1H), 1.27 (s, 9H). ¹³**C NMR** (101 MHz, CDCl₃) δ 195.2, 150.4, 144.7, 143.0, 142.6, 137.5, 135.7, 134.6, 131.6, 131.6, 129.7, 128.4, 128.2, 128.0, 127.6, 126.3, 126.1, 125.2, 34.8, 31.2. **HR–MS** (ESI) *m*/*z* calc. for C₂₃H₂₁OS [M+H]⁺: 345.1308, found: 345.1292.

9-(tert-Butyl)-7-pentyl-5H-dibenzo[a,c][7]annulen-5-one (61)

The general procedure (B) was followed using **41** (72.6 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 10:1) yielded **61** (39.8 mg, 80%) as a yellow oil. ¹**H NMR** (600 MHz, CDCl₃) δ 7.81 (d, J = 7.8 Hz, 1H), 7.77 (dd, J = 7.8, 1.2 Hz, 1H), 7.72 (d, J = 1.8 Hz, 1H), 7.68 (d, J = 8.4 Hz, 1H), 7.63 (td, J = 7.8, 1.2 Hz, 1H), 7.52–7.50 (m, 2H), 6.58 (s, 1H), 2.82 (t, J = 7.8 Hz, 2H), 1.55–1.53 (m, 2H), 1.40 (s, 9H), 1.30–1.28 (m, 4H), 0.83 (t, J = 7.0 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 194.9, 150.7, 149.8, 142.3, 137.5, 135.4, 134.7, 132.2, 132.0, 131.3, 129.8, 127.9, 127.4, 125.8, 123.9, 37.6, 34.9, 31.8, 31.4, 28.8, 22.5, 14.1. **HR–MS** (ESI) m/z calc. for C₂₄H₂₉O [M+H]⁺: 333.2213, found: 333.2203.

Diethyl(3,8,10-trimethoxy-5-oxo-7-phenyl-5H-dibenzo[a,c][7]annulen-6-

yl)phosphonate (62)

The general procedure (A) was followed using **1n'** (111.6 mg, 0.30 mmol) and **2** (103.4 mg, 0.75 mmol). Purification by column chromatography on silica gel (petroleum ether/ EtOAc = 1:1) yielded **62** (91.4 mg, 60%) as a white solid. **M.p.**: 148–150 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 1H), 7.29–7.25 (m, 5H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.00 (s, 1H), 6.69 (s, 1H), 6.31 (s, 1H), 4.03–3.99 (m, 2H), 3.88–3.84 (m, 6H), 3.81–3.77 (m, 1H), 3.75–3.71 (m, 1H), 3.21 (s, 3H), 1.45 (t, *J* = 6.6 Hz, 3H), 1.04 (t, *J* = 6.6 Hz, 3H). ¹³**C NMR** (151 MHz, CDCl₃) δ 197.7 (d, *J* = 10.6 Hz), 160.8, 160.4, 159.7, 151.1 (d, *J* = 6.0 Hz), 145.9 (d, *J* = 4.5 Hz), 141.8 (d, *J* = 7.6 Hz), 140.0, 132.2 (d, J = 175.2 Hz), 129.4, 128.7, 127.7, 126.9, 119.8, 119.7, 117.7, 109.0, 106.1, 99.1, 62.3 (d, J = 4.5 Hz), 62.1 (d, J = 6.0 Hz), 55.6, 55.5, 55.4, 16.1 (d, J = 1.5 Hz), 16.0 (d, J = 3.0 Hz). ³¹**P** NMR (243 MHz, CDCl₃) δ 10.64. HR–MS (ESI) *m/z* calc. for C₂₈H₃₀O₇P [M+H]⁺: 509.1724, found: 509.1718.

3,8,10-Trimethoxy-7-phenyl-5*H*-dibenzo[a,c][7]annulen-5-one (63)

The general procedure (B) was followed using **62** (76.2 mg, 0.15 mmol) and KOMe (42 mg, 0.6 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc = 5:1) yielded **43** (47.5 mg, 85%) as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 1H), 7.30–7.25 (m, 5H), 7.22–7.20 (m, 2H), 7.81 (d, J = 2.4 Hz, 1H), 6.64 (s, 1H), 6.47 (d, J = 2.4 Hz, 1H), 3.91 (d, J = 1.8 Hz, 6H), 3.35 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 195.9, 160.2, 159.8, 159.5, 146.0, 144.8, 144.2, 140.3, 131.7, 131.0, 130.7, 128.0, 127.4, 125.8, 118.8, 118.2, 109.8, 107.0, 99.0, 55.8, 55.7, 55.5. HR–MS (ESI) m/z calc. for C₂₄H₂₁O₄ [M+H]⁺: 373.1435, found: 373.1427.

4. Synthesis of NSC 51046 analogue 66

63 (0.3 mmol, 101.1 mg) was placed into a flask, MeOH (5 mL) was added and the solution was stirred until the solid was completely dissolved. 10% Pd/C (20 mg, 0.02 mmol) was added and the solution purged with H_2 three times. The solution was kept stirring at room temperature for 10 h. Then the solution was diluted with CH_2Cl_2 and transferred to a round bottom flask. Silica was added to the flask and volatiles were

evaporated under vacuum. The purification was performed by flash column chromatography on silica gel (petroleum ether/ ethyl acetate = 5:1) to obtain product **64** (71.2 mg, 70% yield) as a white solid (Pay attention! TLC shows that the polarities of the two compounds **63** and **64** are very similar). **M.p.**: 136–138 °C. ¹**H NMR** (400 MHz, CDCl₃) δ 7.14 (d, *J* = 8.6 Hz, 1H), 7.06 (d, *J* = 2.8 Hz, 1H), 6.98 (dd, *J* = 8.0, 8.0 Hz, 2H), 6.91–6.85 (m, 4H), 6.56 (dd, *J* = 10.8, 2.4 Hz, 2H), 5.16 (t, *J* = 3.7 Hz, 1H), 3.87 (s, 6H), 3.80 (dd, *J* = 20.0, 4.8 Hz, 1H), 3.74 (s, 3H), 3.23 (dd, *J* = 19.8, 3.7 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 204.2, 159.7, 158.8, 157.5, 141.4, 141.2, 139.3, 132.7, 131.6, 127.7, 126.8, 125.3, 123.4, 119.4, 111.9, 107.8, 97.8, 56.2, 55.5, 55.5, 49.7, 33.1. **HR–MS** (ESI) *m/z* calc. for C₂₄H₂₃O₄ [M+H]⁺: 375.1591; found: 375.1581.

To a Schlenk tube containing **64** (64.8 mg, 0.2 mmol) and NaBH₄ (15.2 mg, 0.4 mmol) were added. 2.0 mL MeOH was added via syringe. The solution was stirred for 8 hours at 60 °C. Afterwards, the reaction mixture was quenched by addition of H₂O (5 mL), and then the aqueous solution was extracted with ethyl acetate (3 × 10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent removed in vacuo. The crude compound was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1) to give the corresponding amine **65** (60.2 mg, 80 %) as a colorless oil. ¹H NMR (600 MHz, CDCl₃) δ 7.24 (d, *J* = 2.4 Hz, 1H), 6.93–6.86 (m, 4H), 6.68–6.63 (m, 3H), 6.56 (d, *J* = 2.4 Hz, 1H), 6.42 (d, *J* = 2.4 Hz, 1H), 5.06 (d, *J* = 8.4 Hz, 1H), 4.87–4.84 (m, 1H), 3.93 (s, 3H), 3.85 (s, 6H), 3.00–2.95 (m, 1H), 2.75 (m, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 159.5, 159.1, 157.6, 145.0, 143.3, 141.9, 130.9, 129.5, 126.9, 124.4, 123.8, 112.6, 106.4, 97.4, 69.8, 56.1, 55.5, 55.4, 43.1. HR-MS (ESI) *m*/*z* calc. for C₂₄H₂₅O₄ [M+H]⁺: 377.1748, found: 377.1736.

To a solution of amine **65** (56.4 mg, 0.15 mmol) in CH₂Cl₂ (5 mL) was added acetic anhydride (33 µL, 0.37 mmol) at 0 °C. The reaction was allowed to warm to room temperature and was then stirred for 6 h before concentration in vacuo.^[3] The crude compound was purified by silica gel chromatography (petroleum ether/ethyl acetate = 5:1) and the corresponding amide **66** (60.0 mg, 95% yield) was obtained as a yellow oil (Pay attention! TLC shows that the polarities of the two compounds **65** and **66** are very similar). ¹**H NMR** (400 MHz, CDCl₃) δ 6.97 (d, *J* = 2.6 Hz, 1H), 6.90–6.83 (m, 3H), 6.68 (d, *J* = 12.0 Hz, 2H), 6.61 (dd, *J* = 8.4, 2.7 Hz, 1H), 6.54 (d, *J* = 2.5 Hz, 1H), 6.42 (d, *J* = 2.5 Hz, 1H), 5.87–5.82 (m, 1H), 5.06 (d, *J* = 9.0 Hz, 1H), 3.89 (s, 3H), 3.84 (s, 3H), 3.81 (s, 3H), 3.00–2.92 (m, 1H), 2.83–2.76 (m, 1H), 2.20 (s, 3H). ¹³C **NMR** (101 MHz, CDCl₃) δ 169.8, 159.3, 159.3, 157.7, 144.8, 141.5, 139.4, 131.1, 129.9, 127.2, 126.8, 124.5, 123.2, 111.9, 108.9, 106.6, 97.7, 71.6, 56.1, 55.5, 55.5, 40.1, 29.8, 21.4. **HR-MS** (ESI) *m/z* calc. for C₂₆H₂₇O₅ [M+H]⁺: 419.1853, found: 419.1822.

5. Mechanistic Studies

5.1 Radical Trapping Experiment

To a 25 mL Schlenk tube containing **1i** (0.2 mmol, 1.0 equiv.), **2** (0.4 mmol, 2.0 equiv.), AgNO₃ (0.04 mmol, 0.2 equiv.), $K_2S_2O_8$ (0.5 mmol, 2.5 equiv.) and 2,2,6,6-tetramethyl-1-piperidinyloxy (62mg, TEMPO, 0.4 mmol, 2.0 equiv) were added 1,4-dioxane/H₂O (v/v = 1:1, 2 mL) under a N₂ atmosphere. The sealed tube was stirred at 70 °C for 2 h, then cooled to room temperature. HRMS analysis of this reaction mixture showed that TEMPO-adduct **67** was formed. Purification by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) delivered product **11** with only 20% yield.

Chemical Formula: C₃₈H₅₀NO₅P Exact Mass: 631.3427

The HRMS analysis for 67.

5.2 Trapping Experiment for By Product 42 Using ³¹P NMR and HRMS

This compound is known and the ³¹P NMR data (δ 0.3) match previous reported.^[4]

6. References

- [1] Y. Zhang, D. Guo, S. Ye, Z. Liu, G. Zhu, Org. Lett. 2017, 19, 1302–1305.
- [2] Y. Yang, J. Zhang, B. Hu, M. Ji, S. Ye, G. Zhu, Org. Lett. 2018, 20, 2988–2992.
- [3] K. D. Collins, A. Rühling, F. Lied, F. Glorius, Chem. Eur. J. 2014, 20, 3800–3805.
- [4] J. Dhineshkumar, K. R. Prabhu, Org. Lett. 2013, 15, 6062–6065.

S55

4.105 4.105 3.929 3.875 3.784 1.191 1.179 1.179 1.179 1.163

-1.149

S65

S73

S79

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

S93

130 110 90 80 70 60 50 40 30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 fl (ppm)

S97

S98

S105

S108

S116

S121

6.14 1.13 1.13 1.13 1.13 1.13 7.0 0.98-5.0 4.5 fl (ppm) 9.0 8.5 8.0 7.5 6.5 6. 0 5.5 2. 0 1.5 1.0 0.5 0.0 3.5 3. 0 2.5

S135