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Experimental Details 

Catalytic hydrogenation of 2-NPh by Au@CIAC-108-homo catalyst. A mixture of 

45 µL of 2-NPh (21.57 mmol L-1) and 2 mL of Au@CIAC-108-homo catalyst 

(0.00000251 mmol Au) in CH3OH and CH2Cl2 mixture (volume ratio = 1:2) was 

mixed in a quartz cell. 10 mg of NaBH4 (0.264 mmol) was subsequently introduced to 

the solution. The initial molar ratio of catalyst/2-NPh/NaBH4 was adjusted to 

1/387/105214. After introducing the NaBH4, the color of the 2-NPh solution gradually 

faded from bright yellow to colorless as the reaction continued. The conversion of 

2-NPh to 2-aminophenol was monitored by recording the UV-Vis spectra at short 

intervals in the range 250-500 nm. On the basis of the change in the intensity at λ = 

420 nm as a function of time, the rate constants of the catalytic hydrogenation of 

2-NPh were determined. 

Catalytic hydrogenation of 2-NPh by Au/CIAC-108-homo catalyst. The catalytic 

procedure was similar to that of Au@CIAC-108-homo except Au@CIAC-108-homo 

(0.00000251 mmol Au) was replaced by Au/CIAC-108-homo (0.00000375 mmol Au). 

The initial molar ratio of catalyst/2-NPh/NaBH4 was adjusted to 1/259/70343. 

Catalytic hydrogenation of 2-NAn by Au@CIAC-108-homo catalyst. Generally, 

the reaction was carried out under ambient conditions. First, 50 µL of 2-NAn (21.72 

mmol L-1) and 2 mL of Au@CIAC-108-homo catalyst (0.00000251 mmol Au) in 

CH3OH and CH2Cl2 mixture (volume ratio = 1:2) was mixed in a quartz cell. 10 mg 

of NaBH4 (0.264 mmol) was subsequently introduced to the solution. The initial 

molar ratio of catalyst/2-NAn/NaBH4 was adjusted to 1/433/105214. After introducing 

the catalyst, the color of the 2-NAn solution gradually faded from bright yellow to 

colorless as the reaction continued. The conversion of 2-NAn to 2-phenylenediamine 

was monitored by recording the UV-Vis spectra at short intervals in the range 250-500 

nm. The rate constants of the reduction process were determined through measuring 

the change in absorbance at λ = 400 nm as a function of time.  

Catalytic hydrogenation of 2-NAn by Au/CIAC-108-homo catalyst. The catalytic 

procedure was similar to that of Au@CIAC-108-homo except Au@CIAC-108-homo 

(0.00000251 mmol Au) was replaced by Au/CIAC-108-homo (0.00000375 mmol Au). 



 

S2 

The initial molar ratio of catalyst/2-NAn/NaBH4 was adjusted to 1/289/70343. 

Catalytic hydrogenation of 3-NAn by Au@CIAC-108-homo catalyst. A mixture of 

45 µL of 2-NPh (21.57 mmol L-1) and 2 mL of Au@CIAC-108-homo catalyst 

(0.00000251 mmol Au) in CH3OH and CH2Cl2 mixture (volume ratio = 1:2) was 

mixed in a quartz cell. 10 mg of NaBH4 (0.264 mmol) was subsequently introduced to 

the solution. The initial molar ratio of catalyst/3-NAn/NaBH4 was adjusted to 

1/387/105214. The color of the 3-NAn solution gradually faded from bright yellow to 

colorless as the reaction continued. The conversion of 3-NAn to 3-phenylenediamine 

was monitored by recording the UV-Vis spectra at short intervals in the range 250-500 

nm. On the basis of the change in the intensity at λ = 370 nm as a function of time, the 

rate constants of the catalytic hydrogenation of 3-NAn were determined. 

Catalytic hydrogenation of 3-NAn by Au/CIAC-108-homo catalyst. The catalytic 

procedure was similar to that of Au@CIAC-108-homo except Au@CIAC-108-homo 

(0.00000251 mmol Au) was replaced by Au/CIAC-108-homo (0.00000375 mmol Au). 

The initial molar ratio of catalyst/3-NAn/NaBH4 was adjusted to 1/259/70343. 

Catalytic hydrogenation of 4-NAn by Au@CIAC-108-homo catalyst. Generally, 

the reaction was carried out under ambient conditions. First, 80 µL of 4-NAn (21.72 

mmol L-1) and 2 mL of Au@CIAC-108-homo catalyst (0.00000251 mmol Au) in 

CH3OH and CH2Cl2 mixture (volume ratio = 1:2) was mixed in a quartz cell. 10 mg 

of NaBH4 (0.264 mmol) was subsequently introduced to the solution. The initial 

molar ratio of catalyst/4-NAn/NaBH4 was adjusted to 1/693/105214. After introducing 

the NaBH4, the color of the 4-NAn solution gradually faded from bright yellow to 

colorless as the reaction continued. The conversion of 4-NAn to 4-phenylenediamine 

was monitored by recording the UV-Vis spectra at short intervals in the range 250-500 

nm. The rate constants of the reduction process were determined through measuring 

the change in absorbance at λ = 370 nm as a function of time. 

To be noted, the catalytic reaction of 2-NAn and 4-NAn by Au@CIAC-108-homo 

with 5 mg of NaBH4 (0.132 mmol) was also performed. The initial molar ratio of 

catalyst/4-NAn/NaBH4 was adjusted to 1/387/52607. 

Catalytic hydrogenation of 4-NAn by Au/CIAC-108-homo catalyst. The catalytic 
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procedure was similar to that of Au@CIAC-108-homo except Au@CIAC-108-homo 

(0.00000251 mmol Au) was replaced by Au/CIAC-108-homo (0.00000375 mmol Au). 

The initial molar ratio of catalyst/3-NAn/NaBH4 was adjusted to 1/463/70343. 

Catalytic hydrogenation of 2-NPh, 2-NAn, 3-NAn, and 4-NAn by 

Au@CIAC-108-heter catalyst. The catalytic procedure was similar to that of 

Au@CIAC-108-homo (0.00000251 mmol Au) except the CH3OH and CH2Cl2 solvent 

mixture was replaced by sole CH3OH solvent.  

Catalytic reduction of nitrobenzenes to azobenzenes by Au@CIAC-108-homo 

catalyst. A mixture of Au@CIAC-108-homo (0.00000251 mmol Au), nitrobenzene 

(120 mL, 1.18 mmol), NaOH (120 mg, 3 mmol), CH3OH (2 mL) and CH2Cl2 (4 mL) 

was stirred at room temperature under visible light irradiation (λ = 435 nm, 300 W 

Xenon with a power density of 2.5 W/cm2) for 12 h in air (monitored by GC) to 

obtain the corresponding product. 

Durability test of Au@CIAC-108-homo catalyst  

The durability of Au@CIAC-108-homo is examined by successively adding fresh 

starting material (nitroarenes or organic dyes) into the reaction mixture after 

completion of the previous run. Such test was performed for 6 cycles at room 

temperature. 

Stability test of Au@CIAC-108-homo catalyst   

After the catalytic reaction, a solution of Au@CIAC-108-homo catalyst with dilution 

was drop-cast onto carbon-coated copper grids and dried for the TEM measurements. 

The Au@CIAC-108-homo catalyst after 6 cycles of catalytic reaction was washed by 

CH3OH and CH2Cl2 solvent and dried under vacuum for PXRD analysis.  
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Supporting Figures and Tables 

 

Fig. S1 FTIR spectra of CIAC-108, Au@CIAC-108 and Au/CIAC-108. 
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Fig. S2 PXRD patterns of simulated CIAC-108 (the crystal X-ray diffraction data 

collected in the range 5-50º) and as-synthesized CIAC-108. 

 

Fig. S3 PXRD patterns of as-synthesized CIAC-108, Au@CIAC-108, and 

Au/CIAC-108 (the data collected in the range 3-90º). 
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Fig. S4 TEM image of the Au/(H4TC4A-IPN-NaN3 mixture). 
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Fig. S5 (a) HAADF-STEM image of Au/CIAC-108 and (b-e) EDS mapping images 

corresponding to the image in (a).  
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Fig. S6 UV-vis spectra of reduction of 4-NPh by the Au/CIAC-108-homo catalyst in 

CH3OH/ CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4.  

 

Fig. S7 UV-vis spectra of hydrogenation of 4-NPh by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4.  
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Fig. S8 (a) UV-vis spectra of reduction of 2-NPh by the Au@CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 2-NPh over Au@CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 2-NPh at 420 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 2-NPh catalyzed by the Au@CIAC-108-homo. 

 

Fig. S9 (a) UV-vis spectra of reduction of 2-NPh by the Au/CIAC-108-homo catalyst 

in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 2-NPh over Au/CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 2-NPh at 420 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 2-NPh catalyzed by the Au/CIAC-108-homo. 

 

Fig. S10 (a) UV-vis spectra of reduction of 2-NPh by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4. (b) Catalytic conversion of 

2-NPh over Au@CIAC-108-heter at 298 K. (c) Plot of ln(At/A0) of absorbance of 

2-NPh at 420 nm obtained from the spectra in (a) versus time for the hydrogenation of 

2-NPh catalyzed by the Au@CIAC-108-heter. 
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Fig. S11 (a) UV-vis spectra of reduction of 2-NAn by the Au@CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 2-NAn over Au@CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 2-NAn at 400 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 2-NAn catalyzed by the Au@CIAC-108-homo. 

 

Fig. S12 (a) UV-vis spectra of reduction of 2-NAn by the Au/CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 2-NAn over Au/CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 2-NAn at 400 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 2-NAn catalyzed by the Au/CIAC-108-homo. 

 

Fig. S13 (a) UV-vis spectra of reduction of 2-NAn by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4. (b) Catalytic conversion of 

2-NAn over Au@CIAC-108-heter at 298 K. (c) Plot of ln(At/A0) of absorbance of 

2-NAn at 400 nm obtained from the spectra in (a) versus time for the hydrogenation 

of 2-NAn catalyzed by the Au@CIAC-108-heter. 
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Fig. S14 (a) UV-vis spectra of reduction of 2-NAn by the Au@CIAC-108-homo 

catalysts in the presence of 5 mg NaBH4 at 298 K. (b) Plots of ln(At/A0) of 

absorbance of 2-NAn at 400 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 2-NAn catalyzed by the Au@CIAC-108-homo catalysts. 
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Fig. S15 (a) UV-vis spectra of reduction of 3-NAn by the Au@CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 3-NAn over Au@CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 3-NAn at 370 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 3-NAn catalyzed by the Au@CIAC-108-homo. 

 

Fig. S16 (a) UV-vis spectra of reduction of 3-NAn by the Au/CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 3-NAn over Au/CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 3-NAn at 370 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 3-NAn catalyzed by the Au/CIAC-108-homo. 

 

Fig. S17 (a) UV-vis spectra of reduction of 3-NAn by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4. (b) Catalytic conversion of 

3-NAn over Au@CIAC-108-heter at 298 K. (c) Plot of ln(At/A0) of absorbance of 

3-NAn at 370 nm obtained from the spectra in (a) versus time for the hydrogenation 

of 3-NAn catalyzed by the Au@CIAC-108-heter (in the initial 10 mins). 
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Fig. S18 (a) UV-vis spectra of reduction of 4-NAn by the Au@CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 4-NAn over Au@CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 4-NAn at 370 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 4-NAn catalyzed by the Au@CIAC-108-homo. 

 

Fig. S19 (a) UV-vis spectra of reduction of 4-NAn by the Au/CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of 4-NAn over Au/CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 4-NAn at 370 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 4-NAn catalyzed by the Au/CIAC-108-homo. 

 

Fig. S20 (a) UV-vis spectra of reduction of 4-NAn by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4. (b) Catalytic conversion of 

4-NAn over Au@CIAC-108-heter at 298 K. (c) Plot of ln(At/A0) of absorbance of 

4-NAn at 370 nm obtained from the spectra in (a) versus time for the hydrogenation 

of 4-NAn catalyzed by the Au@CIAC-108-heter. 
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Fig. S21 (a) UV-vis spectra of reduction of 4-NAn by the Au@CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 5 mg NaBH4. (b) Catalytic 

conversion of 4-NAn over Au@CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of 4-NAn at 370 nm obtained from the spectra in (a) versus time for the 

hydrogenation of 4-NAn catalyzed by the Au@CIAC-108-homo. 
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Fig. S22 UV-vis absorption spectra of (a)4-NPh, (d)2-NPh, (c)2-NAn, (d)3-NAn, and 

(e)4-NAn in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 without 

catalyst. The absorption spectra show no significant changes in 90 min (a,e) or 120 

min (b-d). 
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Fig. S23 UV-vis absorption spectra of (a)4-NPh, (d)2-NPh, (c)2-NAn, (d)3-NAn, and 

(e)4-NAn in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 with the 

Au/(H4TC4A-IPN-NaN3 mixture) catalyst. The absorption spectra show no significant 

changes in 90 min. 
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Fig. S24 UV-vis absorption spectra of (a)4-NPh, (d)2-NPh, (c)2-NAn, (d)3-NAn, and 

(e)4-NAn in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 with the 

CIAC-108 catalyst. The absorption spectra show no significant changes in 90 min. 
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Fig. S25 (a) Catalytic conversion of Congo red over Au@CIAC-108-homo in 

CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 at 298 K. (b) Plot of 

ln(At/A0) of absorbance of Congo red at 495 nm obtained from the spectra versus time 

for the hydrogenation of Congo red catalyzed by the Au@CIAC-108-homo catalyst. 

 

Fig. S26 (a) UV-vis spectra of reduction of Congo red by the Au/CIAC-108-homo 

catalyst in CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4. (b) Catalytic 

conversion of Congo red over Au/CIAC-108-homo at 298 K. (c) Plot of ln(At/A0) of 

absorbance of Congo red at 495 nm obtained from the spectra in (a) versus time for 

the hydrogenation of Congo red catalyzed by the Au/CIAC-108-homo catalyst. 

 

Fig. S27 (a) UV-vis spectra of reduction of Congo red by the Au@CIAC-108-heter 

catalyst in CH3OH in the presence of 10 mg NaBH4. (b) Catalytic conversion of 

Congo red over Au@CIAC-108-heter at 298 K. (c) Plot of ln(At/A0) of absorbance of 

Congo red at 495 nm obtained from the spectra in (a) versus time for the 

hydrogenation of Congo red catalyzed by the Au@CIAC-108-heter (in the initial 2 

min). 
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Fig. S28 UV-vis spectra of reduction of Congo red in CH3OH/CH2Cl2 (v/v=1/2) in 

the presence of 10 mg NaBH4 without catalyst. The absorption spectra show no 

significant changes in 90 min. 
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Fig. S29 (a) Catalytic conversion of methyl orange over Au@CIAC-108-homo in 

CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 at 298 K. (b) Plot of 

ln(At/A0) of absorbance of methyl orange at 424 nm obtained from the spectra versus 

time for the hydrogenation of Congo red catalyzed by the Au@CIAC-108-homo 

catalyst. 

 

Fig. S30 (a) Catalytic conversion of methyl orange over Au/CIAC-108-homo in 

CH3OH/CH2Cl2 (v/v=1/2) in the presence of 10 mg NaBH4 at 298 K. (b) Plot of 

ln(At/A0) of absorbance of methyl orange at 424 nm obtained from the spectra in (a) 

versus time for the hydrogenation of methyl orange catalyzed by the 

Au/CIAC-108-homo catalyst (in the initial 5 min). 

 

Fig. S31 (a) UV-vis spectra of reduction of methyl orange by the 

Au@CIAC-108-heter catalyst in CH3OH in the presence of 10 mg NaBH4. (b) 

Catalytic conversion of methyl orange over Au@CIAC-108-heter at 298 K. (c) Plot of 

ln(At/A0) of absorbance of methyl orange at 424 nm obtained from the spectra in (a) 

versus time for the hydrogenation of methyl orange catalyzed by the 

Au@CIAC-108-heter (in the initial 2 min). 



 

S21 

 

Fig. S32 UV-vis spectra of reduction of methyl orange in CH3OH/CH2Cl2 (v/v=1/2) 

in the presence of 10 mg NaBH4 without catalyst. The absorption spectra show no 

significant changes in 90 min. 
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Table S1 Comparison of rate constants of 4-nitrophenol reduction catalyzed by Au NPs catalysts  

No. Catalyst Amount of 

Catalyst 

(mmol) 

Amount of 

4-NPh 

(mmol) 

Amount of 

NaBH4 

(mmol) 

Time 

(s) 

Rate Constant k 

(s-1) 

Reference 

1 Au@SiO2 1.60×10-3 3.4×10-3 1.20 1800 14×10-3 S1 

2 Au/Polyaniline 6.00×10-5 3.4×10-4 0.015 300 11.7×10-3 S2 

3 Au/Dendrimer  3.0×10-4 0.03 1080 9.23×10-3 S3 

4 NAP-Mg-Au(0) 5.10×10-3 1.08×10-3 50.00 420 7.6×10-3 S4 

5 Au@TpPa-1 1.22×10-3 2.7×10-3 4.27 780 5.35×10-3 S5 

6 Au@Ag/ZIF-8 3.45×10-4 2.7×10-3 4.27 900 4.97×10-3 S6 

7 Au/GO 1.83×10-4 7×10-3 0.16 1080 3.13×10-3 S7 

8 Au/GO 3.73×10-6 7.5×10-3 2.22 1800 2.07×10-3 S8 

9 Au@CIAC-108 2.51×10-6 5.86×10-4 0.26 300 11.9×10-3 This work 

10 Au@PCC-1 1.65×10-4 2.12×10-2 0.85 96 33.7×10-3 S9 

11 ZIF-8 NC@Au 2.03×10-5 3.85×10-4 0.61 1680  S10 

12 Au@MIL-100 (Fe) 4.08×10-2 2.7×10-3 4.27 1020 5.5×10-3 S11 

13 Au@TA–Fe 1.0×10-4 5×10-4 0.20 480 6.17×10-3 S12 

14 Au-HPEI10K-IBAm0.80 2.85×10-5 2.97×10-4 0.03 1020  S13 

15 Au-DA-polyHIPE 8.9×10-6 1.2×10-3 13.16 1500 6.3×10-3 S14 

16 Fe3O4@TiO2@Au MSs  7.5×10-4 0.06 180 19.67×10-3 S15 

17 Au@PZS@CNTs 6.40×10-5 3.4×10-4 0.015 960 1.78×10-3 S16 

18 AuNPs/SNTs 1.0×10-3 3.6×10-3 0.15 280 10.64×10-3 S17 

19 PDEAEMA–AuNPs 2.89×10-4 5.0×10-4 0.02 220 19.0×10-3 S18 

20 Au/chitosan 1.59×10-3 10.0×10-3 0.20 150 21.5×10-3 S19 

21 ICC@Au 3.0×10-5 1.0×10-3 13.16 300 9.33×10-3 S20 

22 Ni/SiO2@Au  2.5×10-4 0.20 300 10.0×10-3 S21 

23 KCC-1-IL/Au 2.17×10-6 1.87×10-4 0.25 270 12.0×10-3 S22 

24 Au/uTiO2 2.52×10-4 1.00×10-3 0.60 360 10.5×10-3 S23 

25 Au/graphene hydrogel 1.22×10-4 2.80×10-4 0.02 720 3.17×10-3 S24 

26 Au/ZnO 5.00×10-3 0.05 1.50 240 24×10-3 S25 
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Table S2 Au@CIAC-108-homo catalyzed selective reduction of various nitroarenesa 

 

aReaction conditions: different substituted nitrobenzenes (1.18 mmol), 

Au@CIAC-108-homo catalyst (0.00000753 mmol Au), NaOH (3 mmol), CH3OH (2 

mL) and CH2Cl2 (4 mL), room temperature, visible light irradiation (435 nm), in air. 
bYield was determined by GC analysis (Fig. S33-35).  
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Fig. S33 1H NMR and HRMS of azobenzene: 1H NMR (400 MHz, CDCl3) δ 

8.23–8.16 (m, 2H), 7.71–7.62 (m, 1H), 7.51 (t, J = 7.9 Hz, 2H). HRMS (ESI) m/z: 

[M+H]+ calcd for C12H10N2H
+ 183.0922; found 183.0991. 
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Fig. S34 1H NMR and HRMS of 4,4’-dimethylazobenzene: 1H NMR (400 MHz, 

CDCl3) δ 8.14–8.06 (m, 1H), 7.31 (dd, J = 8.7, 0.5 Hz, 1H), 2.46 (s, 3H). HRMS (ESI) 

m/z: [M+H]+ calcd for C14H14N2H
+ 211.2865; found 211.2842. 
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Fig. S35 1H NMR and HRMS of 4,4’-dichloroazobenzene: 1H NMR (400 MHz, 

CDCl3) δ 8.18 (d, J = 9.1 Hz, 2H), 7.51 (d, J = 9.1 Hz, 2H). HRMS (ESI) m/z: 

[M+H]+ calcd for C12H8Cl2N2H
+ 251.1152; found 251.1147. 
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Fig. S36 Durability test for the catalytic hydrogenation of nitroarenes: (a) 2-NPh, (b) 

2-NAn, (c) 3-NAn, and (d) 4-NAn over the Au@CIAC-108-homo catalyst. 
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Fig. S37 Durability test for the catalytic decomposition of organic dyes: (a) Congo red 

and (b) methyl orange over the Au@CIAC-108-homo catalyst. 
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Fig. S38 TEM image of the Au@CIAC-108-homo catalyst after 6 cycles of the 

catalytic hydrogenation of 4-NPh. 
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Fig. S39 PXRD pattern of Au@CIAC-108-homo catalyst after 6 cycles of the 

catalytic hydrogenation of 4-NPh.  
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