Supporting Information for

Topological engineering of two-dimensional ionic liquid islands for high structural stability and CO_2 adsorption selectivity

Chenlu Wang,^{[a][b]} Yanlei Wang,^{*[a][b]} Zhongdong Gan,^[a] Yumiao Lu,^[a] Cheng Qian,^[d] Feng Huo,^[a] Hongyan He^{*[a][b][c]} and Suojiang Zhang^{*[a][b]}

^[a]Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.

^[b]University of Chinese Academy of Sciences, Beijing 100049, China.

^[c]Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China.

^[d]School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea.

Corresponding Authors: ylwang17@ipe.ac.cn; hybe@ipe.ac.cn; sizhang@ipe.ac.cn; sizhang@ipe.ac.cn</a

Section	Title	Page	
	Supplementary Movie M1		
Supplementary Movies	Supplementary Movie M2	S3	
	Supplementary Movie M3		
	Supplementary Movie M4		
	$N_{ m pairs}$		
	$E_{ m f}$		
	ΔE		
Supplementary Note	$E_{ m gas}$	S4	
	$p_{ m gas-QM}$		
	$p_{ m gas-MD}$		
	$S_{ m CO_2/gas2}$		
	Figure S1	S5	
	Figure S2	S6	
	Figure S3	S7	
	Figure S4	S 8	
	Figure S5	S9	
Supplementary Figures	Figure S6	S10	
and Captions	Figure S7	S11	
	Figure S8	S12	
	Figure S9	S13	
	Figure S10	S14	
	Figure S11	S15	
	Figure S12	S16	
	Table S1	<u>C17</u>	
Supplementary Tables	Table S2	S17	

Table of Contents

Supplementary Movies

Supplementary Movie M1

The formation process of two-dimensional ionic liquid islands (2DIIs).

Supplementary Movie M2

The 10-ns long MD simulation of N_2 molecules adsorb on the P_4 -based 2DII with (4,4), at T =

300 K and P = 0.88 bar.

Supplementary Movie M3

The 11.5-ns long MD simulation of CO₂ molecules adsorb on the P₄-based 2DII with (4,4), at T = 300 K and P = 0.88 bar.

Supplementary Movie M4

The 3-ns long MD simulation of CO₂ molecules adsorb on the P₃-based 2DII with (3,2), at T = 300 K and P = 0.88 bar.

Supplementary Note

Npairs

For $P_{1/2/4}$ -based 2DIIs, $N_{pairs} = m \cdot n$, where *m* and *n* are the numbers of cation-anion pairs along Z_4 and Z_5 sides, respectively. For P₃-based 2DIIs, $N_{pairs} = 3 \cdot m \cdot n$, where *m* and *n* are the number of P₃ along E₁ and E₂ edges, respectively.

$E_{\rm f}$

 $E_{\rm f} = [E_{\rm hyb} - (E_{\rm sub} + N_{\rm pairs}E_{\rm IL})]/N_{\rm pairs}$, where $E_{\rm hyb}$, $E_{\rm sub}$, and $E_{\rm IL}$ are total energies of the optimized hybrid IL-graphite system, the optimized graphite substrate, and the optimized isolate EmimPF₆ pair, respectively.

ΔΕ

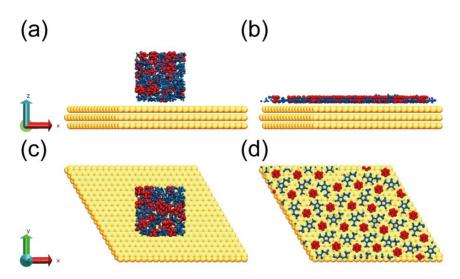
 $\Delta E = (E_{AIMD} - E_{hyb})/N_{pairs}$, where E_{AIMD} is the total energy of the hybrid IL-graphite system after the 5-ps long AIMD.

$E_{\rm gas}$

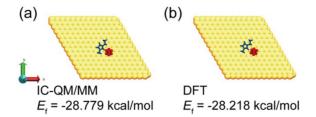
 $E_{\text{gas}} = E_{\text{hyb}\&\text{gas}} - (E_{\text{hyb}} + E_{\text{gas-only}})$, where $E_{\text{hyb}\&\text{gas}}$, and $E_{\text{gas-only}}$ are total energies of the optimized hybrid gas-IL-graphite system, and the optimized isolate gas molecule, respectively.

p_{gas-QM}

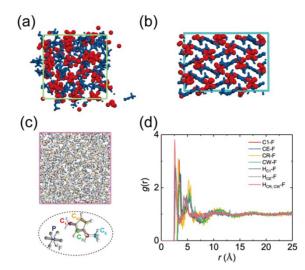
 $p_{\text{gas-QM}} = \exp(-E_{\text{gas, }R_{site}}/k_{\text{B}}T)/\Sigma_i \exp(-E_{\text{gas, }R_i}/k_{\text{B}}T)$, where k_{B} is the Boltzmann constant, and T is set as 300 K. For P_{1/2/4}-based 2DIIs, R_i is respectively R_{above}, R_{vertex}, R_{Z4}, and R_{Z5}, while R_{site} is the specific R_i. For P₃-based 2DIIs, R_i is respectively R_{above}, R_{vertex}, R_{E1}, R_{E2}, and R_{in}, while R_{site} is the specific R_i.

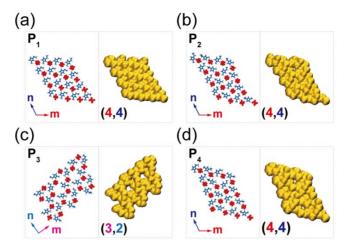

p_{gas-MD}

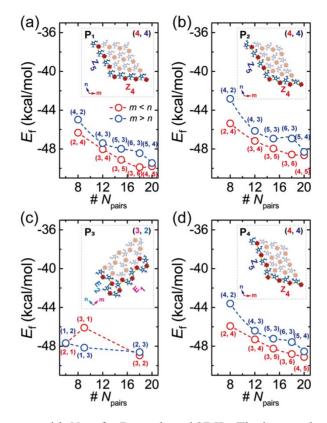
 $p_{\text{gas-MD}} = N_{\text{gas, R}_{site}}/N_{\text{gas}}$, where $N_{\text{gas, R}_{site}}$ is the number of gas molecules adsorbed on the R_{site} and N_{gas} is the total number of gas molecules in the hybrid gas-IL-graphite system.

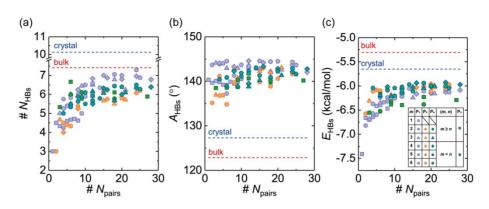

S_{CO2/gas2}

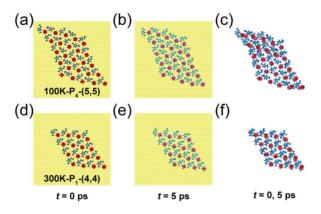
 $S_{\text{CO}_2/\text{gas}_2} = \exp(-E_{\text{gas}, \text{CO}_2}/k_{\text{B}}T)/(\exp(-E_{\text{gas}, \text{CO}_2}/k_{\text{B}}T) + \exp(-E_{\text{gas}, \text{gas}_2}/k_{\text{B}}T)))$, where gas₂ is one of the three gases: CO, N₂, and CH₄.

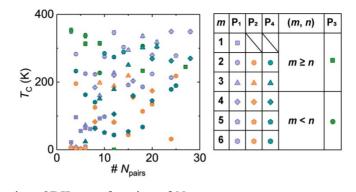

Supplementary Figures and Captions

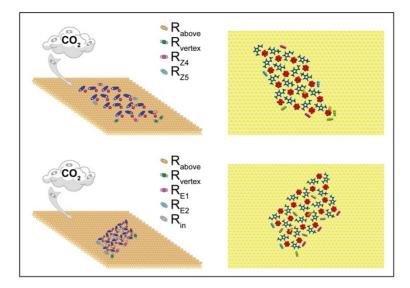

Figure S1. (a) The initial atomic structure of the hybrid IL-graphite system for MD simulations, from the main view, where red, blue, and yellow colors represent $[PF_6]^-$, $[Emim]^+$, C atoms in graphite, respectively. The PBC box has 28 pairs of EmimPF₆ and 2376 atoms in graphite. We performed the 20-ns NVT dynamics at 300 K, using temperature and barostat coupling constants of 0.1 ps and 0.1 ps, respectively. (b) The equilibrated atomic structure of the hybrid IL-graphite system, from the main view, with the monolayer EmimPF₆. (c) The initial atomic structure of the hybrid IL-graphite system for MD simulations, from the top view. (d) The equilibrated atomic structure of the hybrid IL-graphite system, from the top view.

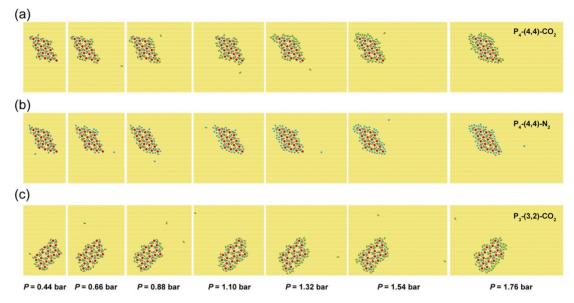

Figure S2. (a) The atomic structure of the hybrid IL-graphite system after geometry optimization by the IC-QM/MM approach, where $E_{\rm f}$ = -28.779 kcal/mol. (b) The atomic structure of the hybrid IL-graphite system after geometry optimization by the DFT method, where $E_{\rm f}$ = -28.218 kcal/mol.


Figure S3. (a-b) Atomic structures of the three-dimensional (3D) ILs after the 5-ps AIMD simulation by the IC-QM/MM approach, consisting of 32 pairs of EmimPF₆, where lime, red, blue, and cyan colors represent the PBC box of 3D bulk IL, $[PF_6]^-$, $[Emim]^+$, the PBC box of 3D crystal IL, respectively. (c) Atomic structures of the 3D bulk IL after 10-ns MD simulation with T = 300 K, consisted of 200 pairs of EmimPF₆, where mauve, red, yellow, lime, cyan, silver, and blue colors represent the PBC box, C₁ atom, C_w atom, C_R atom, C_E atom, F atom, and P atom, respectively. It should be noted that the C_R atom is a C₂ atom, and C_w atoms include C₄ and C₅ atoms. (d) The radial distribution function (RDF) between C atom and F atom or H atom and F atom.


Figure S4. (a-d) Atomic structures and simulated STM images of the $P_{1/2/3/4}$ -based 2DIIs with (4,4) or (3,2), respectively. Bias energy for the generation of all STM images is 20 eV, and the iso-contour value of all STM images is 5.0×10^{-5} Hartree.


Figure S5. (a-d) $E_{\rm f}$ changes with $N_{\rm pairs}$ for P_{1/2/3/4}-based 2DIIs. The inserts show schematic diagrams of different edge structures, where blue, green, and orange colors represent HB₂, HB₄, and HB₅, respectively.


Figure S6. (a-c) The number (N_{HBs}), angle (A_{HBs}), and energy (E_{HBs}) of HBs in 2DIIs and 3D ILs, respectively.


Figure S7. (a-f) Atomic structures of representative 2DIIs at different AIMD simulation time (*t*) with T = 300 and 100 K, where red, blue, mauve, cyan and yellow colors represent [PF₆]⁻ at t = 0 ps, [Emim]⁺ at t = 0 ps, [PF₆]⁻ at t = 5 ps, [Emim]⁺ at t = 5 ps, C atoms in graphite, respectively.

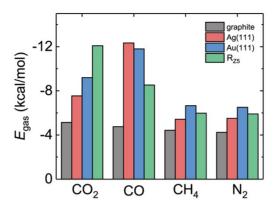

Figure S8. $T_{\rm c}$ for various 2DIIs as a function of $N_{\rm pairs}$.

Figure S9. Schematic diagrams and atomic structures of CO_2 molecules adsorbed on different sites of P₄-based and P₃-based 2DIIs. Considering the unique structure of 2DIIs, different adsorbed sites are proposed: the region above the 2DII (R_{above}), the vertex position (R_{vertex}), the edge regions (R_{edge}: R_{Z4}/R_{Z5}, R_{E1}/R_{E2}), inside the 2DII (R_{in}), and the other (R_{other}). In schematic diagrams and atomic structures, orange, olive, magenta, blue, and silver colors represent R_{above}, R_{vertex}, R_{Z4/E1}, R_{Z5/E2}, and R_{in}, respectively.

Figure S10. (a-c) Atomic structures of CO_2 and N_2 molecules adsorbed on the representative 2DIIs, as *P* ranges from 0.44 to 1.76 bar, where lime and cyan colors represent CO_2 and N_2 , respectively.

Figure S11. E_{gas} of CO₂, CO, CH₄ and N₂ molecules adsorbed on the P₄-based 2DII with (4,4), Au(111), Ag(111), and graphene.

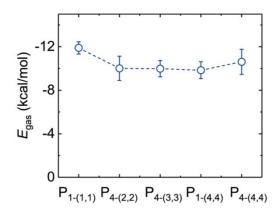


Figure S12. E_{gas} of CO₂ adsorbed on the phase boundaries of various 2DIIs.

Supplementary Tables

Table S1.	The	$E_{\rm f}$ of four	subunits	(\mathbf{P}_N, N)	f = 1.2	. 3. 4).
				(- 1/2	-, -	$, \epsilon, \cdot, \cdot$

Туре	P _{1-(1,1)}	P _{2-(2,1)}	P _{3-(1,1)}	P _{4-(2,2)}	
$E_{\rm f}$ (kcal/mol)	-30.97197	-32.01704	-44.63873	-41.31702	

Table S2. The density (ρ) of four 2DIIs and 3D ILs.

Туре	P _{1-(2,2)}	P _{2-(2,2)}	P _{3-(1,1)}	P _{4-(2,2)}	bulk	bulk	crystal
<i>T</i> (K)					500	300	100
ρ (g/cm ³)	1.47	1.53	1.41	1.47	1.22	1.42	1.49
	± 0.41	± 0.46	± 0.31	± 0.41			