Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2021

Supplementary Materials for

Copper-Catalyzed Hydroformylation and Hydroxymethylation of Styrenes

Hui-Qing Geng,⁺¹ Tim Meyer,⁺¹ Robert Franke,³ Xiao-Feng Wu^{*1,2}

1. Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany, E-Mail: Xiao-Feng.Wu@catalysis.de

2. Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China

3. Evonik Operations GmbH, Germany and Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany

Table of Contents

1. GENERAL INFORMATION	2
2. EXPERIMENTAL SECTION	2
3. CHARACTERIZATION DATA	. 27
4. REFERENCES	. 50
5 NMR SPECTRA	52

1. General Information

All commercially available reagents were bought from ABCR, Acros, Aldrich, Alfa, Fluka, Fluorochem, TCI, and Strem. The commercial reagents were used without further purification. Reactions were performed under argon atmosphere in oven-dried glassware. The primary sodium alkoxides used as base were dried under vacuum using a heat gun prior to reaction to minimize residual water. In addition, the batches were regularly replaced to maintain reproducibility. ICP measurements of the solid catalyst and directly from the reaction solution were performed to test for possible traces of rhodium. All testing conducted showed a negative result. Analytical data of literature known compounds were in accordance with previously reported data. NMR spectra were recorded on Bruker Avance 300 (300 MHz) or 400 (400 MHz) NMR spectrometers. Chemical shifts δ (ppm) are given relative to solvent: references for CDCl₃ were 7.26 ppm (¹H NMR) and 77.16 ppm (¹³C NMR). ¹⁹F NMR spectra are not calibrated by an internal reference. Signals were assigned as s (singlet), d (doublet), t (triplet), dd (doublet of doublet), h (hextet), m (multiplet), and bs (broad singlet). Electron impact (EI) mass spectra were recorded on AMD 402 mass spectrometer (70 eV). All GC yields were calculated using hexadecane as internal standard. All measurements were carried out at room temperature unless otherwise noted. High resolution mass spectra (HRMS) were recorded on Agilent 6210 Time-of-Flight LC/MS (Agilent) with electrospray ionization (ESI). The data are given as mass units per charge (m/z) and intensities of signals are given in brackets. For GC analyses, HP 6890 chromatograph with a 29 m HP5 column was used. ICP measurements were conducted on a simultaneous measuring optical emission spetrometer: "Spectroblue SOP" from Spectro Analytical Instruments GmbH. The following measurement conditions were set: Plasma power: 1490 W; Pump rate: 20 rpm; Cooling gas: 14 L min⁻¹; Auxiliary gas: 1.4 Lmin⁻¹; Sputter gas: 0.45 L min⁻¹; Make-up gas O₂: 0.02 L min⁻¹.

2. Experimental Section

2.1. Optimization of Reaction Conditions of Alcohol *Table S1*. Screening of Base.

		CuCl (10 mol%) DPPP (15 mol%) Base (2.0 equiv) 0 (10 bar), H ₂ (10 bar) Cyclohexane (1 mL) 100 °C, 20 h	CHO + - + + - + - + - + - + - + - + - + - +	OH Ja
Entry	Base	Conv (%)	2a:3a	^b GC-Yield (%)
1	NaOMe	82	45:55	42
2	LiOMe	N.R.	_	_
3	NaOEt	57	_	_
4	KO ^t Bu	59	<1:99	17
5	LiO ^t Bu	65	_	_
6	NEt ₃	N.R.	_	_

7	_	N.R.	_	_
8	NaO ^t Bu	77	18:82	33

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (10 mol%), DPPP (15 mol%), Base (2.0 equiv), Cyclohexane (1 mL), CO (10 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S2. Screening of Solvent.

	CuCl (10 mol%) DPPP (15 mol%)	СНО	он Сон	
	NaO'Bu (2.0 equiv) CO (10 bar), H ₂ (10 bar) solvent (1 mL) 100 °C, 20 h	+	+ 3a	
Entry	Solvent	Conv. (%)	2a:3a	^b GC-Yield (%)
1	Et ₂ O	47	47:53	19
2	<i>n</i> -Pentane	N.R.	—	—
3	Cycloheptane	83	25:75	36
4	o-Xylene	99	100:0	21
5	<i>p</i> -Xylene	70	60:40	45
6	PhF	79	46:54	28
7	PhCl	59	71:29	35
8	$(n-\mathrm{Bu})_2\mathrm{O}$	80	54:46	39
9	DCE	N.R.	—	—
10	PhEt	90	10:90	42
11	PhCF ₃	84	44:56	29
12	1,3-Difluorobenzene	93	33:67	30
13	MTBE	94	1:99	26
14	Acetone	N.R.	_	_
15	<i>n</i> -PrPh	85	17:83	23
16	Benzene	78	<1:99	12
17	PhOMe	85	32:68	28
18	Toluene	95	10:90	22
19	Cyclohexane	77	18:82	33
20	THF	65	88:12	2
21	1,4-Dioxane	71	—	3
22	Cyclohexane : Toluene (1:1, 1 mL)	92	<1:99	33
23	Cyclohexane : Toluene (9:1, 1 mL)	87	<1:99	37

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (10 mol%), DPPP (15 mol%), NaO^{*t*}Bu (2 equiv), Solvent (1.0 mL), CO (10 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

In terms of chemoselectivity towards alcohol product **3a**, the cyclohexane/toluene mixture was superior.

Figure S1. Effects of reaction temperature. aReaction conditionss: **1a** (0.43 mmol), CuCl (8 mol%), DPPP (12 mol%), NaO'Bu (2.25 equiv) in Cyclohexane : Toluene (9:1, 1 mL), 100 °C, 20 h.

Table S3.	. Screening of	CO/H ₂	Partial	Pressures .
-----------	----------------	-------------------	---------	--------------------

	CuCl (10 mol%) DPPP (15 mol%) NaO'Bu (2.0 equiv) CO:H ₂ (x:y bar) PhEt (2 mL) 100 °C, 20 h	CHC + CHC 2a	OH + J 3a	
Entry	CO (bar):H ₂ (bar)	Conv. (%)	2a:3a	^b GC-Yield (%)
1	2:1, 15 bar	89	23:77	32
2	2:1, 30 bar	75	61:39	49
3	1:1, 20 bar	90	10:90	42
4	1:3, 40 bar	91	<1:99	36
5	1:2, 30 bar	88	<1:99	44

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (10 mol%), DPPP (15 mol%), NaO'Bu (2.0 equiv), Cyclohexane: Toluene (9:1, 1.0 mL), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S4. Optimization of the Amount of CuCl.

Ć	CuCl (x mol%) DPPP (y mol%) NaO'Bu (2.0 equiv CO (10 bar), H ₂ (20 I Cyhexane: Toluene (9:1 100 °C, 20 h	*) •) • 1 mL) +	CHO + 2a	OH 3a	
Entry	CuCl (mol%)	Conv. (%)	2a:3a	^b GC-Yield (%)	
1	10	88	<1:99	44	
2	8	90	<1:99	48	
3	5	89	<1:99	46	
4	3	86	47:53	38	
5	1	53	53:47	26	
^{<i>a</i>} Reaction conditions: $1a$ (0.43 mmol), CuCl: DPPP = 1:1.5, NaO'Bu					
(2.0 equi	(2.0 equiv), CO $(10 bar)$, H ₂ $(20 bar)$, Cyclohexane: Toluene $(9:1, 1)$				
1.0 mL),100 °C, 20 h. ^{<i>b</i>} GC-Yield of 2a and 3a .					

Table S5. Optimization of the Amount of NaO'Bu.

We screened the amounts of base under further optimized conditions.

Entry	NaO ^t Bu (equiv)	Conv. (%)	2a:3a	^b GC-Yield (%)
1	2.0	90	<1:99	48
2	2.25	89	11:89	56
3 ^{<i>c</i>}	2.25	94	<1:99	53
4	2.5	81	66:34	58
5	2.75	88	43:57	56
6	3.0	91	58:42	60

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu, CO (10 bar), H₂ (20 bar), Cyclohexane: Toluene (9:1, 1.0 mL), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**. ^{*c*}Cyclohexane: Toluene (9:1, 2.0 mL).

Table S6. Optimization of Cu Source.

We screened different copper salts under further optimized conditions. We find that when we use CuCN as catalyst, the ratio fof 2a/3a will be higher.

Entry	Cu	Conv. (%)	2a:3a	^b GC-Yield (%)
1	CuCl	94	<1:99	53
2	CuO	15	100:0	3
3	CuBr	92	9:91	60
4^c	[CuOTf] ₂ •Toluene	86	31:69	34
5	CuBr ₂	69	52:48	27
6	$Cu(NO_3)_2$	97	11:89	44
7	CuCN	88	85:15	60
8	CuSO ₄	67	73:27	41
9	$Cu(HCO_2)_2$	82	73:27	52

^{*a*}Reaction conditions: **1a** (0.43 mmol), [Cu] (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Cyclohexane: Toluene (9:1, 2.0 mL), CO (10 bar), H₂ (20 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**. ^{*c*}[CuOTf]₂•Toluene (4 mol%)

Table S7. Screening of the Ligand.

Ligand	Conv. (%)	2a:3a	^b GC-Yield (%)
Xantphos	100	25:75	16
BINAP	N.R.	_	_
DPPE	61	75:25	28
DPPB	85	58:42	51
DPPPE	61	81:19	26
DPPF	100	80:20	51
DCyPE	100	<1:99	3
BuPAd ₂	47	<1:99	3
DPPP	94	<1:99	53
	Ligand Xantphos BINAP DPPE DPPB DPPPE DPPF DCyPE BuPAd ₂ DPPP	Ligand Conv. (%) Xantphos 100 BINAP N.R. DPPE 61 DPPB 85 DPPFE 61 DPPF 61 DPPF 100 DCyPE 100 BuPAd2 47 DPPP 94	LigandConv. (%)2a:3aXantphos10025:75BINAPN.RDPPE6175:25DPPB8558:42DPPPE6181:19DPPF10080:20DCyPE100<1:99

12^{c}	DPPP	92	<1:99	58
13	L2	100	16:84	54
15	L3	71	91:9	18
16	L4	86	30:70	29
17	L5	49	81:19	19
18	L6	91	65:35	42
19	L7	70	_	n.d.
20	L8	57	_	5
21	L9	82	_	3

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Cyclohexane (1.8 mL), Toluene (0.2 mL), CO (10 bar), H₂ (20 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**. ^{*c*}24 h.

Table S8. Final Optimization of Cu-Promoted Hydroformylation Towards 3a.

	Condition B		
	CuCl (8 mol%)		
	DPPP (12 mol%)	СНО	_он
	NaO ^t Bu (2.25 equiv)	$\land \downarrow$	
	CO (10 bar), H ₂ (20 bar) Cyhexane: Toluene (9:1, 2 mL)		
1a	100 °C, 24 h	2a	3a

Entry	Varying from the condition B	Conv. (%)	2a:3a	^b GC-Yield (%)
1	Standard condition	92	<1:99	58
2	Cyclohexane: Toluene (9:1, 2.5 mL)	84	<1:99	61
3	Cyclohexane: Toluene (9:1, 3.0 mL)	84	<1:99	56
4	Toluene (2.5 mL)	86	<1:99	68
5	Xylene ^{c} (2.5 mL)	<i>d</i>	<1:99	66
6	Additive of H ₂ O (0.5 equiv)	44	82:18	34
7	Additive of H ₂ O (1.25 equiv)	65	n.d.	14
8	Additive of H ₂ O (2.5 equiv)	—	_	0
9	Additive of PHMS (8 mol%)	88	<1:99	37
10	Additive of DEMS (8 mol%)	92	50:50	42
11^c	Cu-H Source (8 mol%)	_	_	0
12	CuBr (8 mol%)	95	<1:99	54
13	CuBr·DMS (8 mol%),	91	<1:99	48
14	KCN (8 mol%) was added	71	72:28	61

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCl (mol%), DPPP (mol%), NaO^{*t*}Bu (2.25 equiv), solvents, CO (10 bar), H₂ (20 bar), 100°C, 26 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S9. Stereoselectivity

The use chiral ligand L2 gave no notable enantiomeric excess.

2.2. Optimization of Reaction Conditions of Aldehyde

Table S10. Optimization of Copper source.

This table is in accordance with Table S9 and was used as a starting point for the optimization towards aldehyde product **2a**.

Entry	Cu	Conv. (%)	2a:3a	^b GC-Yield (%)
2	CuCl	94	<1:99	53
3	CuO	15	100:0	3
4	CuBr	92	9:91	60
5^c	$[CuOTf]_2 \cdot Toluene$	86	31:69	34
6	CuBr ₂	69	52:48	27
7	$Cu(NO_3)_2$	97	11:89	44
8	CuCN	88	85:15	60
9	CuSO ₄	67	73:27	41
10	$Cu(HCO_2)_2$	82	73:27	52

	la la	CuCN (8 mol%) DPPP (12 mol%) NaO ^f Bu (2.25 equiv) Cyclohexane(1.8 mL) Toluene (0.2 mL) CO, H ₂ , 100 °C, 20 h	2a 3a	1
Entry	CO (bar): H ₂ (bar)	Conv. (%)	2a:3a	^b GC-Yield (%)
1	10:20	88	83/17	62
2	15:15	89	72/18	74
3	20:10	88	89/11	60
4	24:6	52	64/36	56

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCN (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Cyclohexane: Toluene (9:1, 2.0 mL), CO, H₂, 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S12. Optimization of addition.

NaO ^f Bu (2.25 equiv) CO:H₂ (2:1, 30 bar) Cyclohexane(1.8 mL) Toluene (0.2 mL)		*
NaO ^t Bu (2.25 equiv) CO:H ₂ (2:1, 30 bar)		*
CuCN (8 mol%) DPPP (12 mol%)	сно	_он

Entry	addition	Conv. (%)	2a:3a	^b GC-Yield (%)
1	w/o	88	89/11	60
2	KCN (1 equiv.)	84	84/16	57
3	PTSA 5 mol%	84	77/23	56
4	PTSA 10 mol%	91	91/9	56
5	PTSA 30 mol%	70	77/23	31

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCN (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Cyclohexane: Toluene (9:1, 2.0 mL), CO (20 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S13. Optimization of solvent.

	CuCN (8 mol%) DPPP (12 mol%) NaO ^f Bu (2.25 equiv)	сно	+ ~ (OH	
	CO:H ₂ (2:1, 30 bar) Solvent (2.0 mL) 100 °C: 20 h			
1a	100 0,2011	2a	3a	

Entry	Solvent	Conv. (%)	2a:3a	^b GC-Yield (%)
1	Cyclohexane :Toluene (9:1, 2.0 mL)	88	89/11	60
2	PhCl	73	79/21	70
3	Toluene	91	92/8	68
4	o-Xylene	88	76/24	73

5	Cyclohexane	87	76/24	42
6	Benzene	84	74/26	68
7	PhEt	69	74/26	65
8	PhOMe	75	80/20	69

^{*a*} Reaction condition: **1a** (0.43 mmol), CuCN (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Solvent (2.0 mL), CO (20 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S14. Optimization of ligand.

	la la	CuCN (8 mol%) Ligand (12 mol%) NaO'Bu (2.25 equiv) CO:H ₂ (2:1, 30 bar) ToiLence (2.0 mL) 100 °C, 20 h	CHO 2a 3a	ОН
Entry	Ligand	Conv. (%)	2a:3a	^b GC-Yield (%)
1	DPPP	91	92/8	68
2	DPPF	73	86/14	57
3	DPPE	59	88/12	33
4	DPPB	60	87/13	32
5	DPPPE	58	88/12	25
6	BiPhePhos	30	100:0	5

^{*a*}Reaction condition: **1a** (0.43 mmol), CuCN (8 mol%), Ligand (12 mol%), NaO^{*t*}Bu (2.25 equiv), Toluene (2.0 mL), CO (20 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S15. Optimization of the amount of ligand.

	la la	CuCN (8 mol%), DPPP NaO ^r Bu (2.25 equiv) CO:H ₂ (2:1, 30 bar) Toluene (2.0 mL) 100 °C, 20 h	CHO + (2a	OH 3a	
Entry	DPPP	Conv. (%)	2a:3a	^b GC-Yield (%)	
1	10%	87	72/28	64	
2	12%	91	92/8	68	
3	15%	83	70/30	64	
4	20%	88	75/25	57	

^{*a*}Reaction conditions: **1a** (0.43 mmol), CuCN (8 mol%), DPPP, NaO^{*t*}Bu (2.25 equiv), Toluene (2.0 mL), CO (20 bar), H₂ (10 bar), 100 °C, 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S16. Optimization of temperature.

	1a	CuCN (8 mol%) DPPP (12 mol%) <u>NaO'Bu (2.25 equiv)</u> CO:H ₂ (2:1, 30 bar) Toluene (2.0 mL), 20 h	CHO +	он
Entry	Temperature (°C)	Conv. (%)	2a:3a	GC-Yield $(\%)^b$
1	100	91	92/8	68
2	90	92	73/27	66
3	110	88	94/6	57

^{*a*}Reaction condition: **1a** (0.43 mmol), CuCN (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Toluene (2.0 mL), CO (20 bar), H₂ (10 bar), 20 h. ^{*b*}GC-Yield of **2a** and **3a**.

Table S17. Optimization of addition.

	CuCN (8 mol%) DPPP (12 mol%) NaO ^r Bu (2.25 equiv) CO:H ₂ (2:1, 30 bar) Toluene (2.0 mL), 20 h	СНО	*OH
1a		2a	3a

Entry	addition	Conv. (%)	2a:3a	GC-Yield $(\%)^b$
1	w/o	91	92/8	68
2	(EtO) ₃ SiH (8 mol%)	96	33/67	36
3	PMHS (8 mol%)	85	83/17	42
4	DEMS (8 mol%)	96	45/55	40
5	KCN (8 mol%)	89	84/16	55
6	MeCN (8 mol%)	93	87/13	55
7	o -Tolunitrile (8 mol%)	91	89/11	57

^{*a*}Reaction condition: **1a** (0.43 mmol), CuCN (8 mol%), DPPP (12 mol%), NaO^{*t*}Bu (2.25 equiv), Takaga (2.0 mL) CO (20 har) H₂ (10 har) 100 %C 20 h kCC Vial d s **2** and **2** a

Toluene (2.0 mL), CO (20 bar), H₂ (10 bar), 100 °C, 20 h. b GC-Yield of **2a** and **3a**.

2.3. Optimization of 4a

Table S18. Optimization of addition.

^{*a*} Reaction condition: styrene (0.2 mmol), 1-bromobutane (2.2 equiv.), CuCN (8.0 mol%), DPPP (12.0 mol%), Base (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 24 h.

Table S19. Optimization of solvent.

Table S20. Optimization of the amount of alkyl halides.

Table S21. Optimization of the amount of catalysis.

1a PPPP (* Nao ⁴ Cyclot CO/H	Br (3.5 equiv.) CN (x mol %) 1.5 equiv. of [Cu]) Bu (2.3 equiv.) hexane (1.0 mL) 1 ₂ (40 bar, 1:2) 00 °C, 48 h.	+ + 4a		
Fntry	The amount of	Yield of 4a		
Lifti y	catalysis	(%)		
1	5%	30		
2^{c}	5%	32		
3	1%	14		
4	2%	18		
5	8%	29		
6	12%	22		
7	15 %	22		
^{<i>a</i>} Reaction	condition: styrene ((0.2 mmol), 1-		
bromobutane (2.2 equiv.), CuCN, DPPP (1.5 equiv. of				
CuCN), NaO	^t Bu (2.3 equiv.), Toluen	$e(1.0 \text{ mL}), CO/H_2$		
(40 bar, 1:2)	, 100 °C, 48 h. ^b 72 h.			

Table S22. Optimization of catalysis.

1a	⁷ BuBr (3.5 equiv.) [Cu] (5 mol %) DPPP (7.5 mol%) Nao ^f Bu (2.3 equiv.) Cyclohexane (1.0 mL) CO/H₂ (40 bar, 1:2) 100 °C, 48 h.	R ³ 5a	°0 + °	4a
Entr	у	[Cu]	Yield (1 of 4a %)
1		CuCl		19
2		CuCl ₂	,	22
3	(Cu(OTf) ₂		19
4		CuBr	,	20
5		CuI		30
6	($Cu(acac)_2$	-	26
7	C	Cu(OAc) ₂	-	24
^a React	ion conditior	n: styrene	(0.2 mm	ol), 1-
bromobu	utane (2.2 equi	v.), CuCN (5	5 mol%), Dl	PPP (1.5
equiv. of	t CuCN), NaC)'Bu (2.3 eq	uıv.), Tolue	ene (1.0
mL), CC	M_2 (40 bar, 1)	:2), 100 °C, 4	48 h.	

Table S23. Optimization of ligand.

Entry	Ligand	Yield of 4a (%)		
1	CyJohnphos	-		
2	PPh ₃	-		
3	DPPB	11		
4	Xantphos	29		
5	DPEphos	19		
6	DPPF	28		
7	BINAP	-		
8	BuPAd ₂	2		
	4-OMe-Dppp	33		
^a Reaction	condition: styrene (0.	.2 mmol), 1-		
bromobutane (2.2 equiv.), CuCN (5 mol%), DPPP (1.5				
equiv. of CuCN), NaO'Bu (2.3 equiv.), Toluene (1.0				
mL), CO/H_2	(40 bar, 1:2), 100 °C, 48 l	1.		

Table S24. Optimization of the amount of base.

Entry	The amount of Base	Yield of 4a (%)		
1	2.0 equiv.	28		
2	2.3 equiv.	33		
3	2.5 equiv.	31		
4	3.0 equiv.	34		
5	3.5 equiv.	37		
6	4.0 equiv.	45		
7	4.5 equiv	35		
8	5.0 equiv	36		
^a Reaction	condition: styrene (0.2	2 mmol), 1-		
bromobutane (2.2 equiv.), CuCN (5 mol%), DPPP (1.5				
equiv. of CuCN), NaO'Bu (2.3 equiv.), Toluene (1.0				
mL), CO/H ₂	(40 bar, 1:2), 100 °C, 48 h.			

2.4. Optimization of 5a

Table S25. Optimization of ligand.

	"Bul (1.2 equiv.) CuCN (8 mol%) ≤ Ligand (12 mol%) NaO'Bu (2.3 equiv.) Toluene (1 mL) CO/H ₂ (40 bar, 1:2) 100 °C, 48 h.	R ³ 5a	+ + 4a	, R ²
Entry	Ligand		5a	4 a
$\overline{1^{b}}$	CyJohnpho	s	-	4
2^b	PPh ₃		-	-

3	DPPM	1	0
4	DPPB	-	3
5	BINAP	1	1
6	DPPE	7	2
7	DPPPe	1	1
8	DCyPE	5	2
9	DPPP	27	5
10	Xantphos	4	3
11	DPEphos	4	5
12	DPPF	6	5

^{*a*} Reaction condition: Styrene (0.2 mmol), 1-iodobutane (1.2 equiv.), CuCN (8.0 mol%), Ligand (12.0 mol%), NaO^{*t*}Bu (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 48 h. ^{*b*} Ligand (24 mol%).

Table S26. Optimization of Solvent.

Û	ⁿ Bul (1.2 equiv.) CuCN (8 mol%) DPPP (12 mol%) 1a NaO'Bu (2.3 equiv.) Solvent (1 mL) CO/H₂ (40 bar, 1.2) 100 °C, 48 h.	¹³ • • • • • • • • • • • • • • • • • • •	~~~ ^{R²}
Entry	Solvent	5a	4 a
1	Toluene	27	5
2	PhF	16	4
3	PhCl	7	5
4	PhCF ₃	-	4
5	PhEt	22	5
6	<i>p</i> -Xylene	17	4
7	Anisole	9	3
8	<i>n</i> -Heptane	-	7
9	DMF	-	-
10	THF	-	-
11	DCM	-	-
12	CH ₃ CN	-	8
4			

^{*a*} Reaction condition: styrene (0.2 mmol), 1-iodobutane (1.2 equiv.), CuCN (8.0 mol%), DPPP (12.0 mol%), NaO^{*t*}Bu (2.3 equiv.), Solvent (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 48 h.

Table S27. Optimization of [Cu] Source.

-

L 1a	ⁿ Bul (1.2 equiv.) [Cu] (8 mol%) DPPP (12 mol%) NaO'Bu (2.3 equiv.) Toluene (1 mL) CO/H₂ (40 bar, 1:2) 100 °C, 48 h.	R ³ 5a	+ + 4a	0′ ^{R²}
Entry	[Cu]		5a	4 a
1	CuCN		27	5
2	CuCl		13	5

3	$CuCl_2$	10	4
4	$Cu(OAc)_2$	11	2
5	CuI	15	4
6	CuBr	14	3
7	IPrCuCl	-	-

^{*a*} Reaction condition: styrene (0.2 mmol), 1-iodobutane (1.2 equiv.), [Cu] (8.0 mol%), DPPP (12.0 mol%), NaO'Bu (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 48 h.

Table S32. Optimization of Base.

Ċ	ⁿ Bul (1.2 equiv.) CuCN (8 mol%) DPPP (12 mol%) 1a Base (2.3 equiv.) Toluene (1 mL) CO/H ₂ (40 bar, 1:2) 100 °C, 48 h.	R^3 + R^2 5a 4a	~o ^{, R²}
Entry	Base	5a	4a
1	NaO ^t Bu	27	5
2	KO ^t Bu	-	-
3	LiO ^t Bu	-	-
4	NaOMe	-	-
5	NaOEt	-	-
6	KOMe	-	-
7	NaOPh	-	-
<i>d</i> D	1	1 1 1 1 1 .	(1.0 :)

^{*a*} Reaction condition: styrene (0.2 mmol), 1-iodobutane (1.2 equiv.), CuCN (8.0 mol%), DPPP (12.0 mol%), Base (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 48 h.

Table S28. Optimization of the amount of catalysis.

la 1a	⁷ Bul (1.2 equiv.) CuCN (X mol%) DPPP (1.5 equiv. of [Cu]) Nao ⁴ BU (2.3 equiv.) Toluene (1 mL) CO/H ₂ (40 bar, 1:2) 100 °C, 48 h.	3 0 0 + 5 5a	^{R²} − ^{C²}
Entry	The amount of catalysis	5a	4 a
	5%	26	7
1	8%	27	5
2	12%	28	4
3	15 %	27	3
4	17%	7	3

^{*a*} Reaction condition: styrene (0.2 mmol), 1-iodobutane (1.2 equiv.), CuCN (8.0 mol%), DPPP (1.5 equiv. of CuCN), Base (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 °C, 48 h.

Table S29. Optimization of the amount of ligand.

	⁷ Bul (1.2 equiv.) CuCN (15 mol%) DPPP (x mol%)) Nao'BU (2.3 equiv.) Toluene (1 mL) CO/H ₂ (40 bar, 1:2) 100 °C, 48 h.	5a + $4a$	∼o ^{−R²}
Entry	The amount of Ligand	5a	4 a
1	/	/	/
2	15%	30	5
3	20%	35	4
4	25%	25	4
5	30%	19	4
^a Reaction con	dition: styrene (0.2 mr	nol), 1-iodobutan	e (1.2 equiv.),
~ ~ ~ ~ ~ ~			/ -

CuCN (15 mol%), DPPP (1.5 equiv. of catalysis), Base (2.3 equiv.), Toluene (1.0 mL), CO/H₂ (40 bar, 1:2), 100 $^{\circ}$ C, 48 h.

Table S30. Optimization of the amount of Base

Entry	The amount of Base	5a	4 a
1	1.2 equiv.	5	2
2	1.5 equiv.	4	2
3	2.0 equiv.	17	3
4	2.5 equiv.	26	4
5	3.0 equiv.	19	4

^{*a*} Reaction condition: styrene (0.2 mmol), 1-iodobutane (1.2 equiv.),

CuCN (15 mol%), DPPP (20 mol%), NaO^tBu, Toluene (1.0 mL), CO/H₂

(40 bar, 1:2), 100 °C, 48 h.

2.5. Control Experiments2.5.1 Control Experiments with Additional Rh Catalysts.

0.01/40.10()

Table S31.

	la la	Cyclohexane (1 mL) 100 °C, 20 h	CHO + CHO 2a 3a		
Entry	CuCl	[Rh]	2a	3a	
1	_	[RhCl(COD)] ₂	observed	Not detected	
2	10 mol%	[RhCl(COD)] ₂	observed	Not detected	

3	10 mol%	[Rh(CO) ₂ acac]	observed	Not detected
4	10 mol%	RhCl ₃	observed	Not detected

^{*a*} Reaction conditions: **1a** (0.43 mmol), DPPP (10 mol%), NaO^{*t*}Bu (2 equiv), Cyclohexane (1.0 mL), CO (10 bar), H₂ (10 bar), 100 °C, 20 h.

2.5.2 Deuterium-labeling experiments

7 6 f1 (ppm) -2 -3 ò -1

2.5.3 ICP of CuCl Salt

An ICP measurement was made of the solid CuCl and analyzed for traces of other metals. Special attention was paid to Rh, as it could be active in ppm traces. The detection limits were Pd 0.06w%, Rh 0.17w%, Ru 0.07w%, Ir 0.06w%, Co 0.02w%, Fe 0.01w%, and Pt 0.05w%. The ICP-MS experiment of the diluted sample was performed on a Thermo Fisher Scientific X Series. With the exception of Fe, no trace metals were detected. The possible concentration of metals in a standard reaction mixture according to General Procedure A (taking into account the detection limit) would consequently give:

Metal	Concentration in
	ppb
Pd	< 9
Rh	< 25
Ru	< 10
Ir	< 9
Со	< 3
Fe	> 1
Pt	< 7

ICP-LABOR

A. Simmula, Tel. 0381 1281 315 ANALYSENERGEBNIS / KURZBERICHT Catalysis S

18059 Rostock Albert-Einstein-Str. 29a

Datum:05.02.2021

WS-Auftragsnur Probenhezeich					
2mhenhezeich	mmer:	106	59		
Probenbezeichnung: Auftraggeber:		TM-HY-62 Meyer, Tim			
nstitution/Proje	kt:	LIK	AT	Tel: 143	
ANALYSE					
Methode:	ICP				
durchgeführt vo	on: as				
Ergebnis :					
Element	erwartet* 1	. Messung	2. Messung		
Pđ	-%	nn%	nn%		
Rh	-%	nn%	nn%		
Ru	-%	nn%	nn%		
Ir	-%	nn%	nn%		
Co	-%	nn%	nn%		
Fe	-%	nn%	n%		

nn = nicht nachweisbar (German) = not detectable

Unterschrift / Datum:

Anlagen (Erläuterungen / Abildungen

2.5.4 ICP of the Reaction Mixtures

To exclude the possibility of Rh impurities from other sources (stir bar, base, ligand, etc.), ICP measurements were taken directly after a reaction run from the reaction solution. For this purpose, an aliquot of the reaction solution was diluted with xylene and examined. First, a reference solution was prepared. For this purpose, Wilkinson's catalyst [RhCl(PPh₃)₃] (0.323 mg) was first dissolved in xylene (10.000 g) and stirred for 1 h. This was further diluted with xylene to create a 0.3 ppm reference solution (red line). According to General Procedure A, a dried 4 mL screw-cap vial equipped with a septum and a stirring bar was charged with CuCl (3.4 mg, 8 mol%), DPPP (21.3 mg, 12 mol%), and NaO'Bu (93.0 mg, 2.25 equiv). The vial was sealed, connected to atmosphere with a small cannula, evacuated, and backfilled with argon three times. Xylene (2.5 mL) was added via syringe. To this suspension, styrene 1a (0.43 mmol) was added via Hamilton® syringe. The vial was placed on an alloy plate and transferred into a 300 mL stovetop autoclave (4560 series from Parr instrument company®). The autoclave was flushed one time with nitrogen (<10 bar) and three times with CO (<10 bar). The autoclave was then charged with CO (10 bar) and subsequent with H₂ (20 bar) to reach the desired pressure of 30 bar. The autoclave was then placed into an aluminum block on a magnetic stirrer. The reaction mixture was stirred (600 rpm) for 26 h at 100 °C. Then it was cooled to room temperature and the pressure was released carefully. An aliquot of 1.038g of the reaction solution was diluted to 5.067g of xylene (mixture of isomers). As can be seen in the figures below, no Rh could be detected (Sample "Nr.6", dark green line).

2.6. General Procedures for Preparing Vinylarenes

Vinylarenes S1-S11¹, S12², S13³, S14⁴, S15⁴, S16-S20⁵, S21⁶, S22⁶, S23⁷ were prepared according to known literature procedures.

2.7. General Procedure A for Preparing Alcohols

A dried 4 mL screw-cap vial equipped with a septum and a stirring bar was charged with CuCl (3.4 mg, 8 mol%), DPPP (21.3 mg, 12 mol%), and NaO'Bu (93.0 mg, 2.25 equiv). The vial was sealed, connected to atmosphere with a small cannula, evacuated, and backfilled with argon three times. Toluene (2.5 mL) were added via syringe. To this suspension, substrate 1 (0.43 mmol) was added via Hamilton® syringe. The vial was placed on an alloy plate and transferred into a 300 mL stovetop autoclave (4560 series from Parr instrument company[®]). The autoclave was flushed one time with nitrogen (<10 bar) and three times with CO (<10 bar). The autoclave was then charged with CO (10 bar) and subsequent with H₂ (20 bar) to reach the desired pressure of 30 bar. Special attention needs to be paid while charging two gases: After the autoclave is charged with CO (10 bar), the tube needs to be purged with high pressure hydrogen. It is mandatory to have higher pressure inside the tube than in the autoclave! Therefore, the tab towards the main gas supply was left open. By that it was ensured, that no CO could come out while charging H₂, keeping the ratio 1:2. The autoclave was then placed into an aluminum block on a magnetic stirrer. The reaction mixture was stirred (600 rpm) for 24 h at 100 °C. Then it was cooled to room temperature and the pressure was released carefully. The reaction was quenched with saturated NH₄Cl solution (1.0 mL), extracted with Et₂O (3x), washed with water (3.0 mL), dried over Na₂SO₄. Combined organic layers were concentrated with the aid of a rotary evaporator. The residue was purified by gradient column chromatography (pentane: EtOAc = $9:1 \rightarrow 3:1$) to yield product 3. In the case of GC-Analysis:

After the gases were released, *n*-hexadecane was added as an internal standard to the reaction mixture, followed by a small amount of Et_2O (0.8 mL) (*to facilitate an extraction and to ensure that all the internal standard is in solution*). Hereto saturated NH₄Cl solution was added (1.0 mL). The two-phase vials were stirred rigorously (1200 rpm) for 5 min to quench the reaction. From the top organic phase, an aliquot (1.0 mL) of the mixture was filtered with a short pipette flash column (silica) and Na₂SO₄. (~3 cm). Samples prepared in this way were subjected to GC analysis.

2.8. General Procedure B for Preparing Aldehydes.

A dried 4 mL screw-cap vial equipped with a septum and a stirring bar was charged with CuCN (3.1 mg, 8 mol%), DPPP (21.3 mg, 12 mol%), and NaO'Bu (93.0 mg, 2.25 equiv). The vial was sealed, connected to atmosphere with a small cannula, evacuated, and backfilled with argon three times.

Toluene (2.0 mL) were added *via* syringe. To this suspension, substrate 1 (0.43 mmol) was added *via* Hamilton® syringe.

The vial was placed on an alloy plate and transferred into a 300 mL stovetop autoclave (4560 series from Parr instrument company®). The autoclave was flushed one time with nitrogen (< 10 bar) and three times with CO (<10 bar). The autoclave was then charged with CO (20 bar) and subsequent with H_2 (10 bar) to reach the desired pressure of 30 bar. The autoclave was then placed into an aluminum block on a magnetic stirrer. The reaction mixture was stirred (600 rpm) for 20 h at 100 °C. Then it was cooled to room temperature and the pressure was released carefully. The reaction was quenched with saturated NH₄Cl solution (1.0 mL), extracted with Et₂O (3x). The combined organic layers were washed with water (3.0 mL) and dried over Na₂SO₄, filtered, and concentrated in vacuum. The crude reaction mixture was purified by flash chromatograph on silica gel and evaporated to give the aldehyde product. *In the case of GC-Analysis:*

After the gases were released, *n*-hexadecane was added as an internal standard to the reaction mixture, followed by a small amount of Et_2O (0.8 mL) (*to facilitate an extraction and to ensure that all the internal standard is in solution*). Hereto saturated NH₄Cl solution was added (1.0 mL). The two-phase vials were stirred rigorously (1200 rpm) for 5 min to quench the reaction. From the top organic phase, an aliquot (1.0 mL) of the mixture was filtered with a short pipette flash column (silica) and Na₂SO₄. (~3 cm). Samples prepared in this way were subjected to GC analysis.

2.9. General Procedure C for Preparing Esters 4

A dried 4 mL screw-cap vial equipped with a septum and a stirring bar was charged with CuI (1.9 mg, 5 mol%), 4-OMe-DPPP (8.0 mg, 7.5 mol%), and NaO'Bu (96.9 mg, 4.0 equiv). The vial was sealed, connected to atmosphere with a small cannula, evacuated, and backfilled with argon three times. Cyclohexane (1.0 mL) were added *via* syringe. To this suspension, substrate **1** (0.2 mmol) was added *via* Hamilton® syringe.

The vial was placed on an alloy plate and transferred into a 300 mL stovetop autoclave (4560 series from Parr instrument company®). The autoclave was flushed one time with nitrogen (<10 bar) and three times with CO (<10 bar). The autoclave was then charged with CO (13 bar) and subsequent with H₂ (27 bar) to reach the desired pressure of 40 bar. *Special attention needs to be paid while charging two gases: After the autoclave is charged with CO (13 bar), the tube needs to be purged with high pressure hydrogen. It is mandatory to have higher pressure inside the tube than in the autoclave! Therefore, the tab towards the main gas supply was left open. By that it was ensured, that no CO could come out while charging H₂, keeping the ratio 1:2. The autoclave was then placed into an aluminum block on a magnetic stirrer. The reaction mixture was stirred (600 rpm) for 48 h at 100 °C. Then it was cooled to room*

temperature and the pressure was released carefully. The reaction purified by gradient column chromatography (Pentane:DCM = 20:1) to yield product **4**.

2.10. General Procedure D for formic acid esters 5.

A dried 4 mL screw-cap vial equipped with a septum and a stirring bar was charged with CuCN (2.7 mg, 15 mol%), DPPP (16.5 mg, 20 mol%), and NaO'Bu (44.2 mg, 2.3 equiv). The vial was sealed, connected to atmosphere with a small cannula, evacuated, and backfilled with argon three times. Toluene (1.0 mL) were added via syringe. To this suspension, substrate 1 (0.2 mmol) was added via Hamilton® syringe. The vial was placed on an alloy plate and transferred into a 300 mL stovetop autoclave (4560 series from Parr instrument company®). The autoclave was flushed one time with nitrogen (<10 bar) and three times with CO (<10 bar). The autoclave was then charged with CO (13 bar) and subsequent with H_2 (27 bar) to reach the desired pressure of 40 bar. Special attention needs to be paid while charging two gases: After the autoclave is charged with CO (13 bar), the tube needs to be purged with high pressure hydrogen. It is mandatory to have higher pressure inside the tube than in the autoclave! Therefore, the tab towards the main gas supply was left open. By that it was ensured, that no CO could come out while charging H_2 , keeping the ratio 1:2. The autoclave was then placed into an aluminum block on a magnetic stirrer. The reaction mixture was stirred (600 rpm) for 48 h at 100 °C. Then it was cooled to room temperature and the pressure was released carefully. The reaction was quenched with saturated NH₄Cl solution (1.0 mL), extracted with Et₂O (3x). The combined organic layers were washed with water (3.0 mL) and dried over Na₂SO₄, filtered, and concentrated in vacuum. The reaction purified by gradient column chromatography (Pentane:EtOAc = 100:1) to yield product 5.

3. Characterization Data 3.1 Characterization Data of Aldehydes

2-Phenylpropanal (2a)

The title compound was prepared from styrene (44.8 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.7) to give the product as a colorless oil (39 mg, 68%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.69 (d, *J* = 1.4 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.35 – 7.27 (m, 1H), 7.26 – 7.17 (m, 2H), 3.64 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.45 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.2, 137.8, 129.2, 128.4, 127.6, 53.1, 14.7. All data was consistent with that previously reported.^[8]

2-(p-Tolyl)propanal (2b)

The title compound was prepared from 1-methyl-4-vinylbenzene (50.1 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.7) to give the product as a colorless oil (44 mg, 69%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.57 (d, *J* = 1.5 Hz, 1H), 7.10 (d, *J* = 7.8 Hz, 2H), 7.00 (d, *J* = 8.2 Hz, 2H), 3.50 (qd, *J* = 7.1, 1.3 Hz, 1H), 2.25 (s, 3H), 1.33 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.4, 137.4, 134.8, 129.9, 128.4, 52.8, 21.2, 14.8. All data was consistent with that previously reported.^[9]

Me

2-(m-Tolyl)propanal (2c)

The title compound was prepared from 1-methyl-3-vinylbenzene (50.1 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.7) to give the product as a colorless oil (40.1 mg, 63%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.64 (d, *J* = 1.4 Hz, 1H), 7.24 – 7.21 (m, 1H), 7.08 (d, *J* = 7.3 Hz, 1H), 7.01 – 6.94 (m, 2H), 3.56 (qd, *J* = 7.0, 1.4 Hz, 1H), 2.32 (s, 3H), 1.39 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.2, 138.8, 137.6, 129.1, 129.0, 128.3, 125.4, 53.0, 21.4, 14.6. All data was consistent with that previously reported.^[9]

2-(4-(tert-Butyl)phenyl)propanal (2d)

The title compound was prepared from 1-(*tert*-butyl)-4-vinylbenzene (68.8 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.8) to give the product as a colorless oil (54.8 mg, 67%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.68 (d, *J* = 1.5 Hz, 1H), 7.41 (d, *J* = 8.5 Hz, 2H), 7.15 (d, *J* = 8.2 Hz, 2H), 3.61 (qd, *J* = 7.0, 1.4 Hz, 1H), 1.44 (d, *J* = 7.1 Hz, 3H), 1.33 (s, 9H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.3, 150.5, 134.6, 128.0, 126.0, 52.5, 34.5, 31.3, 14.6. **HRMS** (EI): calcd for [M] C₁₃H₁₈O 190.1352, found: 190.1350. All data was consistent with that previously reported.^[10]

2-([1,1'-Biphenyl]-4-yl)propanal (2e)

The title compound was prepared from 4-vinyl-1,1'-biphenyl(77.4 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a white solid (24.4 mg, 27%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.74 (d, *J* = 1.4 Hz, 1H), 7.65 – 7.58 (m, 4H), 7.49 – 7.42 (m, 2H), 7.39 – 7.28 (m, 3H), 3.70 (qd, *J* = 7.1, 1.2 Hz, 1H), 1.50 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.1, 140.7, 136.8, 129.0, 128.9, 127.9, 127.6, 127.2, 52.8, 14.8. All data was consistent with that previously reported.^[10]

2-(4-Methoxyphenyl)propanal (2f)

The title compound was prepared from 1-methoxy-4-vinylbenzene (57.6 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a colorless oil (34.6 mg, 49%).

¹H NMR (300 MHz, Chloroform-*d*) δ 9.65 (d, *J* = 1.5 Hz, 1H), 7.13 (dd, *J* = 8.8, 0.4 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.81 (s, 3H), 3.59 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.42 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 201.2, 159.0, 129.6, 129.4, 114.5, 55.3, 52.2, 14.7. All data was consistent with that previously reported.^[8]

2-(4-Phenoxyphenyl)propanal (2g)

The title compound was prepared from 1-phenoxy-4-vinylbenzene (84.3 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a colorless oil (54.4 mg, 56%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.59 (d, J = 1.5 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.09 – 6.99 (m, 3H), 6.97 – 6.88 (m, 4H), 3.53 (qd, J = 7.1, 1.4 Hz, 1H), 1.35 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.1, 157.1, 156.9, 132.4, 129.9, 129.7, 123.6, 119.4, 119.2, 52.4, 14.8. **HRMS** (EI): calcd for [M] C₁₅H₁₄O₂ 226.0988, found: 219.0988.

СНО

Bn∩

2-(4-(Benzyloxy)phenyl)propanal (2h)

The title compound was prepared from 1-(benzyloxy)-4-vinylbenzene (90.3 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a colorless oil (67.1 mg, 65%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.52 (d, *J* = 1.5 Hz, 1H), 7.35 – 7.15 (m, 5H), 7.05 – 6.95 (m, 2H), 6.90 – 6.82 (m, 2H), 4.93 (s, 2H), 3.45 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.29 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.2, 158.3, 136.9, 129.9, 129.5, 128.7, 128.1, 127.5, 115.5, 70.1, 52.2, 14.7. All data was consistent with that previously reported.^[8]

BnO

2-(4-((Benzyloxy)methyl)phenyl)propanal (2i)

The title compound was prepared from 1-((benzyloxy)methyl)-4-vinylbenzene (96.3 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.2) to give the product as a white solid (65.6 mg, 60%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.69 (d, *J* = 1.4 Hz, 1H), 7.41 (dd, *J* = 2.5, 1.0 Hz, 1H), 7.40 – 7.34 (m, 5H), 7.34 – 7.28 (m, 1H), 7.24 – 7.19 (m, 2H), 4.59 (s, 2H), 4.57 (s, 2H), 3.65 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.46 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.1, 138.3, 137.8, 137.2, 128.6, 128.6, 128.5, 127.9, 127.8, 72.4, 71.8, 52.9, 14.8. All data was consistent with that previously reported.^[11]

CHO OBn

2-(2-(Benzyloxy)phenyl)propanal (2j)

The title compound was prepared from 1-(benzyloxy)-2-vinylbenzene (90.3 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (47.5 mg, 46%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.73 (d, J = 0.6 Hz, 1H), 7.42 – 7.25 (m, 6H), 7.18 – 7.12 (m, 1H), 7.05 – 6.97 (m, 2H), 5.12 (s, 2H), 3.98 (q, J = 7.1 Hz, 1H), 1.43 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 202.0, 156.4, 136.8, 129.3, 128.8, 128.7, 128.1, 127.4, 127.4, 121.4, 112.2, 70.3, 47.4, 13.6. All data was consistent with that previously reported.^[13]

2-(3,4-Dimethoxyphenyl)propanal (2k)

The title compound was prepared from 1,2-dimethoxy-4-vinylbenzene (70.5 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a colorless oil (30.0 mg, 36%).

¹**H NMR** (300 MHz, Chloroformkk-*d*) δ 9.65 (d, *J* = 1.5 Hz, 1H), 6.88 (d, *J* = 8.3 Hz, 1H), 6.77 (ddd, *J* = 8.3, 2.1, 0.5 Hz, 1H), 6.68 (d, *J* = 2.1 Hz, 1H), 3.88 (s, 6H), 3.58 (qd, *J* = 7.1, 1.5 Hz, 1H), 1.42 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.2, 149.6, 148.6, 130.1, 120.6, 111.8, 111.4, 56.1, 56.1, 52.7, 14.7. All data was consistent with that previously reported.^[9]

2-(3,4,5-Trimethoxyphenyl)propanal (2l)

The title compound was prepared from 1,2,3-trimethoxy-5-vinylbenzene (83.4 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/EA = 10:1, Rf = 0.2) to give the product as a colorless oil (45,3 mg, 47%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.66 (d, *J* = 1.4 Hz, 1H), 6.39 (s, 2H), 3.85 (s, 6H), 3.83 (s, 3H), 3.56 (qd, *J* = 7.0, 1.2 Hz, 1H), 1.42 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 200.9, 153.9, 137.6, 133.4, 105.5, 61.1, 56.4, 53.4, 14.8. All data was consistent with that previously reported.^[16]

2-(Benzo[d][1,3]dioxol-5-yl)propanal (2m)

The title compound was prepared from 5-vinylbenzo[d][1,3]dioxole (63.7 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (57.4 mg, 75%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.63 (d, *J* = 1.5 Hz, 1H), 6.81 (dd, *J* = 7.6, 0.7 Hz, 1H), 6.71 – 6.64 (m, 2H), 5.96 (s, 2H), 3.55 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.40 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 200.8, 148.3, 147.1, 131.3, 121.6, 108.8, 108.5, 101.2, 52.6, 14.7. All data was consistent with that previously reported.^[14]

2-(4-(Benzyloxy)-3-methoxyphenyl)propanal (2n)

The title compound was prepared from 1-(benzyloxy)-2-methoxy-4-vinylbenzene (103.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (37.2 mg, 32%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.64 (d, *J* = 1.5 Hz, 1H), 7.46 – 7.42 (m, 2H), 7.40 – 7.30 (m, 3H), 6.92 – 6.86 (m, 1H), 6.73 – 6.66 (m, 2H), 5.15 (s, 2H), 3.89 (s, 3H), 3.56 (qd, *J* = 7.0, 1.5 Hz, 1H), 1.42 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.1, 150.2, 147.8, 137.2, 130.7, 128.7, 128.0, 127.4, 120.6, 114.5, 112.0, 71.2, 56.2, 52.7, 14.7. **HRMS** (EI): calcd for [M] C₁₇H₁₈O₃ 270.1251, found: 270.1251.

2-(4-Fluorophenyl)propanal (20)

The title compound was prepared from 1-fluoro-4-vinylbenzene (52.5 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.5) to give the product as a colorless oil (53.0 mg, 81%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.66 (d, J = 1.4 Hz, 1H), 7.21 – 7.14 (m, 2H), 7.11 – 7.03 (m, 2H), 3.63 (qd, J = 7.1, 1.3 Hz, 1H), 1.44 (d, J = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 200.9, 162.4 (d, J = 246.0 Hz), 133.5 (d, J = 3.2 Hz), 130.0 (d, J = 8.1 Hz), 116.1 (d, J = 21.5 Hz), 52.3, 14.9. All data was consistent with that previously reported.^[8]

2-(3-Fluorophenyl)propanal (2p)

The title compound was prepared from 1-fluoro-3-vinylbenzene (52.5 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (44.5 mg, 68%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.58 (d, *J* = 1.4 Hz, 1H), 7.29 – 7.22 (m, 1H), 6.94 – 6.82 (m, 3H), 3.54 (qd, *J* = 7.4, 1.2 Hz, 1H), 1.35 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 200.5, 163.3 (d, *J* = 246.6 Hz), 140.3, 130.7 (d, *J* = 8.3 Hz), 124.1 (d, *J* = 3.0 Hz), 115.4 (d, *J* = 21.6 Hz), 114.7 (d, *J* = 21.0 Hz), 52.8, 14.6. All data was consistent with that previously reported.^[12]

2-(2-Fluorophenyl)propanal (2q)

The title compound was prepared from 1-fluoro-2-vinylbenzene (52.5 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (43.8 mg, 67%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.73 (dd, *J* = 1.7, 0.8 Hz, 1H), 7.33 – 7.23 (m, 1H), 7.22 – 7.05 (m, 3H), 3.91 (qd, *J* = 7.2, 0.6 Hz, 1H), 1.45 (dd, *J* = 7.2, 0.4 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 200.3, 161.0 (d, *J* = 246.0 Hz), 129.6 (d, *J* = 4.5 Hz), 129.4 (d, *J* = 8.5 Hz), 125.4 (d, *J* = 15.5 Hz), 124.8 (d, *J* = 3.5 Hz), 115.9 (d, *J* = 22.0 Hz), 46.6, 13.8. All data was consistent with that previously reported.^[12]

2-(2-Fluoro-[1,1'-biphenyl]-4-yl)propanal (2r)

The title compound was prepared from 2-fluoro-4-vinyl-1,1'-biphenyl (85.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.5) to give the product as a colorless oil (24.5 mg, 25%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.72 (d, J = 1.4 Hz, 1H), 7.57 – 7.52 (m, 2H), 7.49 – 7.37 (m, 4H), 7.10 – 7.01 (m, 2H), 3.68 (qd, J = 7.0, 1.0 Hz, 1H), 1.50 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 200.4, 160.3 (d, J = 248.0 Hz), 139.17 (d, J = 7.7 Hz), 135.42, 131.4 (d, J = 4.5 Hz), 129.1 (d, J = 2.9 Hz), 128.6, 128.0, 124.4 (d, J = 3.4 Hz), 116.1 (d, J = 23.5 Hz), 52.5, 14.6. All data was consistent with that previously reported.^[15]

F₃C CHO

сно

2-(4'-(Trifluoromethyl)-[1,1'-biphenyl]-3-yl)propanal (2s)

The title compound was prepared from 4'-(trifluoromethyl)-3-vinyl-1,1'-biphenyl (106.7 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (50.2 mg, 42%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.32 (d, *J* = 1.4 Hz, 1H), 7.30 – 7.19 (m, 4H), 7.14 – 7.02 (m, 2H), 7.01 – 6.94 (m, 1H), 6.85 – 6.81 (m, 1H), 3.30 (qd, *J* = 7.1, 1.3 Hz, 1H), 1.08 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 200.9, 144.4, 140.9, 138.7, 129.9, 129.6, 128.2, 127.7, 127.4, 126.7, 125.9 (q, *J* = 3.0 Hz), 124.4 (q, *J* = 271.8 Hz), 53.2, 14.9. **HRMS** (EI): calcd for [M] C₁₆H₁₃F₃O 278.0913, found: 278.0912.

СНО

2-(Naphthalen-2-yl)propanal (2t)

The title compound was prepared from 2-vinylnaphthalene (66.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.5) to give the product as a colorless oil (58.6 mg, 74%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.77 (d, *J* = 1.4 Hz, 1H), 7.90 – 7.81 (m, 3H), 7.70 – 7.67 (m, 1H), 7.54 – 7.46 (m, 2H), 7.33 (dd, *J* = 8.5, 1.9 Hz, 1H), 3.81 (qd, *J* = 7.0, 1.3 Hz, 1H), 1.55 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.2, 135.3, 133.8, 132.8, 129.0, 127.9, 127.3, 126.6, 126.3, 126.3, 53.3, 14.8. All data was consistent with that previously reported.^[8]

MeC

2-(6-Methoxynaphthalen-2-yl)propanal (2u)

The title compound was prepared from 2-methoxy-6-vinylnaphthalene (79.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a white solid (80.1 mg, 87%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.75 (d, *J* = 1.5 Hz, 1H), 7.78 – 7.70 (m, 2H), 7.61 (d, *J* = 1.3 Hz, 1H), 7.28 (dd, *J* = 8.4, 1.9 Hz, 1H), 7.20 – 7.13 (m, 2H), 3.93 (s, 3H), 3.77 (qd, *J* = 7.0, 1.3 Hz, 1H), 1.53 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 201.2, 157.9, 133.9, 132.7, 129.2, 129.1, 127.7, 127.0, 126.7, 119.3, 105.6, 55.3, 53.0, 14.7. All data was consistent with that previously reported.^[15]

2-(6-Methoxynaphthalen-2-yl)propanoic acid (2u')

The title compound was prepared from **2u** (80.1 mg, 0.37 mmol), according to known literature procedures¹⁷. The crude residue was purified by flash chromatography (pentane/EA = 3:1, Rf = 0.3) to give the product as a white solid (76.6 mg, 90%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.74 – 7.66 (m, 3H), 7.42 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.18 – 7.09 (m, 2H), 3.91 (s, 3H), 3.87 (q, *J* = 6.0 Hz, 1H), 1.59 (d, *J* = 7.2 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 180.8, 157.9, 135.0, 134.0, 129.4, 129.0, 127.4, 126.3, 126.3, 119.2, 105.7, 55.4, 45.4, 18.3. All data was consistent with that previously reported.^[17]

2-(4-((But-3-en-1-yloxy)methyl)phenyl)propanal (2v)

The title compound was prepared from 1-((but-3-en-1-yloxy)methyl)-4-vinylbenzene (80.8 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.3) to give the product as a colorless oil (54.4 mg, 58%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.67 (d, J = 1.4 Hz, 1H), 7.36 (d, J = 8.4 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 5.85 (ddt, J = 17.0, 10.2, 6.7 Hz, 1H), 5.15 – 5.02 (m, 2H), 4.51 (s, 2H), 3.63 (qd, J = 7.1, 1.3 Hz, 1H), 3.54 (t, J = 6.8 Hz, 2H), 2.39 (qt, J = 6.8, 1.4 Hz, 2H), 1.44 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.2, 138.0, 137.1, 135.3, 128.5, 116.6, 72.6, 69.9, 52.9, 34.4, 14.8.

2-(4-(But-3-en-1-yl)phenyl)propanal(2w)

The title compound was prepared from 1-(but-3-en-1-yl)-4-vinylbenzene (68.0 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.7) to give the product as a colorless oil (51.0 mg, 63%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.67 (d, *J* = 1.5 Hz, 1H), 7.23 – 7.11 (m, 4H), 5.86 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H), 5.11 – 4.96 (m, 2H), 3.61 (qd, *J* = 7.0, 1.3 Hz, 1H), 2.71 (dd, *J* = 8.9, 6.7 Hz, 2H), 2.42 – 2.33 (m, 2H), 1.43 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.4, 141.4, 138.1, 135.2, 129.3, 128.4, 115.2, 52.8, 35.5, 35.1, 14.7. **HRMS** (EI): calcd for [M] C₁₃H₁₆O 188.1196, found: 188.1193.

2-(4-Morpholinophenyl)propanal (2x)

The title compound was prepared from 4-(4-vinylphenyl)morpholine (81.3 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.2) to give the product as a colorless oil (38.6 mg, 41%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.64 (d, *J* = 1.5 Hz, 1H), 7.12 (d, *J* = 8.6 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 3.86 (t, *J* = 4.0 Hz, 4H), 3.56 (qd, *J* = 7.0, 1.4 Hz, 1H), 3.16 (t, *J* = 4.0 Hz, 4H), 1.41 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 201.4, 150.8, 129.3, 128.8, 116.2, 67.0, 52.3, 49.3, 14.7. HRMS (EI): calcd for [M] C₁₃H₁₇NO₂ 219.1254, found: 219.1260.

2-(4-((1*H*-Pyrrol-1-yl)methyl)phenyl)propanal (2y)

The title compound was prepared from 1-(4-vinylbenzyl)-1*H*-pyrrole (78.7 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.5) to give the product as a colorless oil (42.2 mg, 46%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 9.67 (d, *J* = 1.4 Hz, 1H), 7.19 – 7.12 (m, 4H), 6.70 (t, *J* = 2.1 Hz, 2H), 6.21 (t, *J* = 2.1 Hz, 2H), 5.08 (s, 2H), 3.63 (qd, *J* = 7.1, 1.3 Hz, 1H), 1.44 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 201.0, 137.8, 137.3, 128.8, 127.8, 121.2, 108.8, 53.0, 52.7, 14.7.

HRMS (EI): calcd for [M] $C_{14}H_{15}NO 213.1148$, found: 213.1146.

2-(4-((1*H*-Indol-1-yl)methyl)phenyl)propanal (2z)

The title compound was prepared from 1-(4-vinylbenzyl)-1*H*-indole (100.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.5) to give the product as a colorless oil (75.8 mg, 67%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.77 (d, *J* = 1.4 Hz, 1H), 7.87 – 7.76 (m, 1H), 7.45 – 7.40 (m, 1H), 7.36 – 7.23 (m, 7H), 6.72 (d, *J* = 3.2 Hz, 1H), 5.45 (s, 2H), 3.72 (qd, *J* = 7.1, 1.4 Hz, 1H), 1.55 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 200.9, 137.2, 137.1, 136.3, 128.8, 128.8, 128.3, 127.5, 121.9, 121.1, 119.7, 109.7, 101.9, 52.7, 49.8, 14.7. **HRMS** (ESI-TOF) m/z: Calcd. for C₁₈H₁₇NO [M+H]⁺ : 264.1388, found: 264.1392.

2-(4-((Furan-2-ylmethoxy)methyl)phenyl)propanal (2aa)

сно

The title compound was prepared from 2-(((4-vinylbenzyl)oxy)methyl)furan (92. mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.5) to give the product as a colorless oil (49.3 mg, 47%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.67 (d, *J* = 1.4 Hz, 1H), 7.43 (dd, *J* = 1.8, 0.9 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.1 Hz, 2H), 6.37 – 6.32 (m, 2H), 4.54 (s, 2H), 4.50 (s, 2H), 3.63 (qd, *J* = 7.0, 1.3 Hz, 1H), 1.44 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 201.1, 151.7, 143.0, 137.4,

137.3, 128.7, 128.5, 110.4, 109.6, 71.5, 64.1, 52.8, 14.7. **HRMS** (EI): calcd for [M] C₁₅H₁₆O₃ 244.1094, found: 244.1092.

2-(4-((2-(Phenylthio)ethoxy)methyl)phenyl)propanal (2bb)

The title compound was prepared from phenyl(2-((4-vinylbenzyl)oxy)ethyl)sulfane (116.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.5) to give the product as a colorless oil (67.1 mg, 52%).

¹**H NMR** (400 MHz, Chloroform-*d*) δ 9.70 (d, *J* = 1.4 Hz, 1H), 7.41 – 7.34 (m, 4H), 7.33 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 4.55 (s, 2H), 3.71 (t, *J* = 6.9 Hz, 2H), 3.66 (qd, *J* = 7.0, 6.5, 0.7 Hz, 1H), 3.18 (t, *J* = 6.9 Hz, 2H), 1.47 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (101 MHz, CDCl₃) δ 201.1, 137.5, 137.3, 136.1, 129.5, 129.1, 128.5, 128.5, 126.3, 72.7, 69.0, 52.8, 33.4, 14.8. **HRMS** (EI): calcd for [M] C₁₈H₂₀O₂S 300.1179, found: 300.1175.

2-(4-((((1S,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)methyl)phenyl)propanal (2cc)

The title compound was prepared from 1-((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-4-vinylbenzene (117.1 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (54.6 mg, 42%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.66 (d, *J* = 1.4 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 4.52 (dd, *J* = 79.8, 11.4 Hz, 2H), 3.62 (qd, *J* = 7.0, 1.3 Hz, 1H), 3.18 (td, *J* = 10.6, 4.2 Hz, 1H), 2.34 – 2.16 (m, 2H), 1.64 (ddd, *J* = 9.5, 7.9, 5.6 Hz, 2H), 1.43 (d, *J* = 7.1 Hz, 3H), 1.38 – 1.22 (m, 2H), 1.07 – 0.87 (m, 9H), 0.72 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.1, 138.7, 136.9, 128.7, 128.4, 79.0, 70.1, 52.9, 48.4, 40.4, 34.7, 31.7, 25.7, 23.4, 22.5, 21.1, 16.2, 14.8. **HRMS** (EI): calcd for [M] C₂₀H₃₀O₂ 302.2240, found: 302.2239.

2-(4-((((1S,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)oxy)methyl)phenyl)propanal (2dd)

The title compound was prepared from (1S,2R,4S)-1,7,7-trimethyl-2-((4-vinylbenzyl)oxy)bicyclo[2.2.1]heptane (116.2 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 50:1, Rf = 0.4) to give the product as a colorless oil (58.1 mg, 45%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 9.68 (d, *J* = 1.4 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 4.59 – 4.41 (m, 2H), 3.70 (ddd, *J* = 9.3, 3.3, 1.7 Hz, 1H), 3.63 (qd, *J* = 7.2, 1.3 Hz, 1H), 2.19 – 2.04 (m, 2H), 1.71 (ddd, *J* = 18.4, 9.5, 4.2 Hz, 2H), 1.44 (d, *J* = 7.1 Hz, 3H), 1.25 (td, *J* = 10.5, 9.6,

3.3 Hz, 2H), 1.10 (dd, *J* = 13.0, 3.3 Hz, 1H), 0.93 – 0.83 (m, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 201.3, 139.2, 136.6, 128.3, 128.0, 84.7, 71.3, 52.9, 49.5, 48.0, 45.2, 36.3, 28.4, 26.9, 19.9, 19.0, 14.8, 14.2. HRMS (EI): calcd for [M] C₂₀H₂₈O₂ 300.2084, found: 300.2076.

$\label{eq:2-(4-((((3aR,5aS,8aS,8bR)-2,2,7,7-Tetramethyltetrahydro-3aH-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran-3a-yl)methoxy) methyl) propanal (2ee)$

The title compound was prepared from (3aR,5aS,8aS,8bR)-2,2,7,7-tetramethyl-3a-(((4-vinylbenzyl)oxy)methyl)tetrahydro-5H-bis([1,3]dioxolo)[4,5-b:4',5'-d]pyran (161.76 mg, 0.43 mmol), according to general procedure B. The crude residue was purified by flash chromatography (pentane/Et₂O = 20:1, Rf = 0.2) to give the product as a colorless oil (71.6 mg, 41%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 9.65 (d, *J* = 1.4 Hz, 1H), 7.34 (d, *J* = 8.3 Hz, 2H), 7.16 (d, *J* = 8.1 Hz, 2H), 4.69 – 4.54 (m, 3H), 4.41 (d, *J* = 2.6 Hz, 1H), 4.21 (dd, *J* = 7.9, 1.1 Hz, 1H), 3.90 (dd, *J* = 13.0, 1.9 Hz, 1H), 3.71 (dd, *J* = 13.0, 0.7 Hz, 1H), 3.65 – 3.55 (m, 3H), 1.53 (s, 3H), 1.41 (dd, *J* = 6.8, 4.3 Hz, 9H), 1.31 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 201.0, 137.6, 137.0, 128.3, 109.0, 108.6, 102.7, 73.3, 71.7, 71.1, 70.3, 70.2, 61.1, 52.8, 26.7, 25.9, 25.5, 24.1, 14.7. **HRMS** (ESI-TOF) m/z: Calcd. for C₂₂H₃₀O₇ [M+Na]⁺: 429.1888, found: 429.1887.

3.2 Characterization Data of Alcohols

.OH

2-Phenylpropan-1-ol (3a)

The title compound was prepared from styrene (45 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a colorless oil (41.0 mg, 70%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.38 – 7.30 (m, 2H), 7.28 – 7.20 (m, 3H), 3.69 – 3.67 (m, 2H), 2.94 (h, *J* = 6.9 Hz, 1H), 1.81 (bs, 1H), 1.28 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 143.8, 128.7, 127.6, 126.7, 68.7, 42.5, 17.7. All data was consistent with that previously reported.^[18] HR-MS (EI): m/z calc. for [C₉H₁₂O]⁺ ([M]⁺): 136.0883, measured: 136.0880.

2-(p-Tolyl)propan-1-ol (3b)

The title compound was prepared from 1-methyl-4-vinylbenzene (56 μ L, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (41.4 mg, 64%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.20 – 7.10 (m, 4H), 3.68 (d, *J* = 7.0 Hz, 2H), 2.92 (h, *J* = 6.9 Hz, 1H), 2.34 (s, 3H), 1.38 (bs, 1H), 1.26 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl3) δ 140.7, 136.4,
129.5, 127.5, 68.9, 42.2, 21.1, 17.8. All data was consistent with that previously reported.^[18]**HR-MS** (**EI**): m/z calc. for $[C_{10}H_{14}O]^+$ ([M]⁺): 150.1039, measured: 150.1037.

2-(*m*-Tolyl)propan-1-ol (3c)

The title compound was prepared from 1-methyl-3-vinylbenzene (56 μ L, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (52.8 mg, 82%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.26 – 7.20 (m, 1H), 7.12 – 6.98 (m, 3H), 3.70 (d, *J* = 6.9 Hz, 2H), 2.92 (h, *J* = 7.0 Hz, 1H), 2.36 (s, 3H), 1.40 (bs, 1H), 1.27 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl3) δ 143.7, 138.4, 128.7, 128.4, 127.6, 124.6, 68.8, 42.5, 21.6, 17.8. All data was consistent with that previously reported.^[19] **HR-MS (EI)**: m/z calc. for [C₁₀H₁₄O]⁺ ([M]⁺): 150.1039, measured: 150.1037.

2-(4-(tert-Butyl)phenyl)propan-1-ol (3d)

The title compound was prepared from 1-(tert-butyl)-4-vinylbenzene (68.9 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 80:20, Rf = 0.5) to give the product as a slightly yellow oil (67.5 mg, 82%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.40 – 7.33 (m, 2H), 7.22 – 7.14 (m, 2H), 3.70 (d, *J* = 6.8 Hz, 2H), 2.94 (h, *J* = 6.9 Hz, 1H), 1.42 (bs, 1H), 1.33 (s, 9H), 1.28 (d, *J* = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 149.6, 140.6, 127.3, 125.7, 68.9, 42.0, 34.5, 31.5, 31.5, 31.4, 17.7. All data was consistent with that previously reported. ^[20] **HR-MS (EI)**: m/z calc. for [C₁₃H₂₀O]⁺ ([M]⁺): 192.1509, measured: 192.1506.

2-([1,1'-Biphenyl]-4-yl)propan-1-ol(3e)

The title compound was prepared from 4-vinyl-1,1'-biphenyl(83.4 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a colorless viscous oil (34.1 mg, 41%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.63 – 7.54 (m, 4H), 7.49 – 7.40 (m, 2H), 7.39 – 7.29 (m, 3H), 3.76 (d, *J* = 6.8 Hz, 2H), 3.02 (h, *J* = 6.9 Hz, 1H), 1.44 (s, 1H), 1.33 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 142.9, 141.0, 139.8, 128.9, 128.0, 127.5, 127.3, 127.2, 68.8, 42.2, 17.7. All data was consistent with that previously reported.^[20] **HR-MS** (**EI**): m/z calc. for [C₁₅H₁₆O]⁺ ([M]⁺): 212.1196, measured: 212.1192.

2-(4-Methoxyphenyl)propan-1-ol (3f)

The title compound was prepared from 1-methoxy-4-vinylbenzene (57 μ L, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a colorless oil (36 mg, 50%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.22 – 7.11 (m, 2H), 6.93 – 6.82 (m, 2H), 3.80 (s, 3H), 3.66 (dd, J = 6.9, 2.1 Hz, 2H), 2.91 (h, J = 7.0 Hz, 1H), 1.38 (bs, 1H), 1.25 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 135.7, 128.5, 114.2, 68.9, 55.4, 41.7, 17.9. All data was consistent with that previously reported.^[18] HR-MS (EI): m/z calc. for [C₁₀H₁₄O₂]⁺ ([M]⁺): 166.0988, measured: 166.0987.

2-(4-Phenoxyphenyl)propan-1-ol (3g)

The title compound was prepared from 1-phenoxy-4-vinylbenzene (80 μ L, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a colorless oil (58 mg, 59%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.38 – 7.29 (m, 2H), 7.25 – 7.17 (m, 2H), 7.15 – 7.06 (m, 1H), 7.05 – 6.94 (m, 4H), 3.70 (d, *J* = 7.0 Hz, 2H), 2.95 (h, *J* = 6.9 Hz, 1H), 1.50 (bs, 1H), 1.28 (d, *J* = 7.0 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 157.4, 156.0, 138.6, 129.8, 128.8, 123.3, 119.1, 118.9, 68.8, 41.9, 17.8. All data was consistent with that previously reported.^[19] **HR-MS (EI)**: m/z calc. for [C₁₅H₁₆O₂]⁺ ([M]⁺): 228.1145, measured: 228.1143.

2-(4-((Benzyloxy)methyl)phenyl)propan-1-ol(3h)

The title compound was prepared from 1-((benzyloxy)methyl)-4-vinylbenzene (96.5 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (64.3 mg, 58%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.41 – 7.20 (m, 9H), 4.57 (s, 2H), 4.54 (s, 2H), 3.75 – 3.66 (m, 2H), 2.96 (h, *J* = 6.9 Hz, 1H), 1.33 (bs, 1H), 1.28 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 143.3, 138.4, 136.8, 128.5, 128.4, 127.9, 127.8, 127.7, 72.3, 72.0, 68.8, 42.3, 17.7. **HR-MS (EI)**: m/z calc. for [C₁₇H₂₀O₂]⁺([M]⁺): 256.1458, measured: 256.1458.

2-(2-(Benzyloxy)phenyl)propan-1-ol (3i)

The title compound was prepared from 1-(benzyloxy)-2-vinylbenzene (90.4 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (38.1 mg, 40%).

¹**H** NMR (400 MHz, Chloroform-*d*) δ 7.49 – 7.39 (m, 4H), 7.39 – 7.32 (m, 1H), 7.29 – 7.19 (m, 2H), 7.04 – 6.95 (m, 2H), 5.11 (s, 2H), 3.86 – 3.67 (m, 2H), 3.53 (h, *J* = 6.8 Hz, 1H), 1.64 (s, 1H), 1.30 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (101 MHz, CDCl₃) δ 156.6, 137.2, 132.3, 128.7, 128.0, 127.6, 127.5, 127.4, 121.2, 112.1, 70.3, 67.8, 35.5, 16.8. HR-MS (EI): m/z calc. for [C₁₆H₁₈O₂]⁺ ([M]⁺): 242.1301, measured: 242.1300.

2-(3,4,5-Trimethoxyphenyl)propan-1-ol (3j)

The title compound was prepared from 1,2,3-trimethoxy-5-vinylbenzene (83.4 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 3:2, Rf = 0.3) to give the product as a colorless oil (40.0 mg, 41%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 6.44 (s, 2H), 3.85 (s, 6H), 3.82 (s, 3H), 3.71 – 3.63 (m, 2H), 2.88 (h, *J* = 7.0 Hz, 1H), 1.51 (bs, 1H), 1.25 (d, *J* = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 161.1, 153.4, 138.6, 104.3, 68.8, 61.0, 56.3, 39.4, 18.4. All data was consistent with that previously reported. ^[20] HR-MS (EI): m/z calc. for [C₁₂H₁₈O₄]⁺ ([M]⁺): 226.1200, measured: 226.1199.

2-(Benzo[d][1,3]dioxol-5-yl)propan-1-ol (3k)

The title compound was prepared from 5-vinylbenzo[d][1,3]dioxole (56 µL, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc =5:1, Rf = 0.3) to give the product as a colorless oil (24 mg, 31%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 6.80 – 6.64 (m, 3H), 5.93 (s, 2H), 3.73 – 3.57 (m, 2H), 2.87 (h, *J* = 7.0 Hz, 1H), 1.47 (bs, 1H), 1.23 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 148.0, 146.4, 137.7, 120.7, 108.5, 107.7, 101.0, 68.8, 42.3, 17.9. All data was consistent with that previously reported.^[21] HR-MS (EI): m/z calc. for [C₁₀H₁₂O₃]⁺ ([M]⁺): 180.0781, measured: 180.0781.

2-(4-(Benzyloxy)-3-methoxyphenyl)propan-1-ol (3l)

The title compound was prepared from 1-(benzyloxy)-2-methoxy-4-vinylbenzene (103.3 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.2) to give the product as a yellow oil (36.0 mg, 31%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.49 – 7.41 (m, 2H), 7.40 – 7.27 (m, 3H), 6.85 (d, *J* = 8.2 Hz, 1H), 6.78 (d, *J* = 2.0 Hz, 1H), 6.72 (dd, *J* = 8.2, 2.1 Hz, 1H), 5.14 (s, 2H), 3.90 (s, 3H), 3.73 – 3.60 (m, 2H), 2.89 (h, *J* = 7.0 Hz, 1H), 1.34 (bs, 1H), 1.25 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 149.9, 147.1, 137.5, 136.9, 128.7, 127.9, 127.4, 119.4, 114.4, 111.5, 71.3, 68.9, 56.2, 42.2, 17.8. **HR-MS (EI)**: m/z calc. for [C₁₇H₂₀O₃]⁺ ([M]⁺): 272.1407, measured: 272.1406.

2-(4-Fluorophenyl)propan-1-ol (3m)

The title compound was prepared from 1-fluoro-4-vinylbenzene (51 μ L, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.2) to give the product as a colorless oil (42 mg, 63%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.26 – 7.14 (m, 2H), 7.06 – 6.97 (m, 2H), 3.68 (d, J = 7.1 Hz, 2H), 2.94 (h, J = 6.9 Hz, 1H), 1.46 (bs, 1H), 1.26 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (75 MHz, Chloroform-*d*) δ 161.8 (d, J = 244.4 Hz), 139.5 (d, J = 3.0 Hz), 129.0 (d, J = 8.0 Hz), 115.5 (d, J = 21.2 Hz), 68.8, 41.8, 17.8; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -116.59.^[20] **HR-MS** (**EI**): m/z calc. for [C₉H₁₁OF]⁺ ([M]⁺): 154.0788, measured: 154.0779.

2-(2-Fluorophenyl)propan-1-ol (3n)

The title compound was prepared from 1-fluoro-2-vinylbenzene (52.5 mg, 0.43 mmoL), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.2) to give the product as a colorless oil (40 mg, 60%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.30 – 7.16 (m, 2H), 7.16 – 7.11 (m, 1H), 7.10 – 6.99 (m, 1H), 3.87 – 3.67 (m, 2H), 3.32 (h, *J* = 7.0 Hz, 1H), 1.35 (bs, 1H), 1.30 (dd, *J* = 7.1, 0.6 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 161.2 (d, *J* = 244.9 Hz), 130.5 (d, *J* = 14.4 Hz), 128.5 (d, *J* = 5.0 Hz), 128.1 (d, *J* = 8.3 Hz), 124.3 (d, *J* = 3.3 Hz), 115.6 (d, *J* = 22.9 Hz), 67.5, 35.8, 16.7. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -118.40. All data was consistent with that previously reported.^[22] **HR-MS (EI)**: m/z calc. for [C₉H₁₁OF]⁺ ([M]⁺): 154.0788, measured: 154.0777.

2-(2-Fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (30)

The title compound was prepared from 2-fluoro-4-vinyl-1,1'-biphenyl (85.2 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a slightly yellow solid (48.5 mg, 42%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.57 – 7.50 (m, 2H), 7.48 – 7.32 (m, 4H), 7.13 – 7.08 (m, 1H), 7.08 – 7.01 (m, 1H), 3.81 – 3.71 (m, 2H), 3.00 (h, J = 6.9 Hz, 1H), 1.37 (bs, 1H), 1.31 (d, J = 7.0 Hz, 3H). ¹³**C NMR** (75 MHz, Chloroform-*d*) δ 130.9 (d, J = 4.1 Hz), 129.1 (d, J = 2.8 Hz), 128.6, 127.7, 123.7 (d, J = 3.3 Hz), 115.3, 115.0, 68.6, 42.2, 17.6. ¹⁹**F NMR** (282 MHz, CDCl₃) δ -117.90. All data was consistent with that previously reported.^[23] **HR-MS** (**EI**): m/z calc. for $[C_{15}H_{15}OF]^+$ ([M]⁺): 230.1101, measured: 230.1101.

2-(4'-(Trifluoromethyl)-[1,1'-biphenyl]-3-yl)propan-1-ol (3p)

The title compound was prepared from 4'-(trifluoromethyl)-3-vinyl-1,1'-biphenyl (106.8 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a colorless viscous oil (97.6 mg, 81%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.69 (s, 4H), 7.50 – 7.41 (m, 3H), 7.32 – 7.27 (m, 1H), 3.77 (d, J = 6.8 Hz, 2H), 3.05 (h, J = 6.9 Hz, 1H), 1.42 (s, 1H), 1.34 (d, J = 7.1 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 144.9, 144.8, 140.3, 130.2, 129.53 (q, J = 32.3 Hz), 129.4, 127.6, 127.4, 126.7, 125.8 (q, J = 3.6 Hz), 124.5 (q, J = 271.7 Hz), 68.8, 42.7, 17.8; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.39. **HR-MS (EI)**: m/z calc. for [C₁₆H₁₅OF₃]⁺ ([M]⁺): 280.1070, measured: 280.1072.

2-(2-Fluoro-[1,1'-biphenyl]-4-yl)propan-1-ol (3q)

The title compound was prepared from 2-vinylnaphthalene (66.3 mg, 0.43 mmol), CuCl (3.4 mg, 8 mol%), dppp (21.3 mg, 12 mol%), and NaO*t*Bu (93.0 mg, 2.25 equiv) in toluene (2.5 mL, 0.17 M). following General Procedure A. It was isolated as a slightly yellow solid (52.8 mg, 66%).

¹H NMR (300 MHz, Chloroform-*d*) δ 7.85 – 7.80 (m, 3H), 7.71 – 7.68 (m, 1H), 7.51 – 7.45 (m, 2H), 7.39 (dd, *J* = 8.4, 1.8 Hz, 1H), 3.87 – 3.76 (m, 2H), 3.14 (h, *J* = 6.8 Hz, 1H), 1.38 (d, *J* = 7.1 Hz, 4H);
¹³C NMR (75 MHz, CDCl₃) δ 141.2, 133.7, 132.6, 128.5, 127.8, 126.2, 126.2, 125.9, 125.7, 68.7, 42.7, 17.7.

All data was consistent with that previously reported.^[23] **HR-MS** (EI): m/z calc. for $[C_{13}H_{14}O]^+$ ([M]⁺): 186.1039, measured: 186.1040.

2-(6-Methoxynaphthalen-2-yl)propan-1-ol (3r)

The title compound was prepared from 2-methoxy-6-vinylnaphthalene (79.2 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a white solid (69.8 mg, 75%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.71 (dd, J = 8.6, 4.6 Hz, 2H), 7.64 – 7.60 (m, 1H), 7.35 (dd, J = 8.4, 1.8 Hz, 1H), 7.19 – 7.11 (m, 2H), 3.92 (s, 3H), 3.77 (d, J = 6.8 Hz, 2H), 3.09 (h, J = 6.9 Hz, 1H), 1.44 (s, 1H), 1.36 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 157.6, 138.8, 133.7, 129.2, 129.2, 127.3, 126.4, 126.0, 119.0, 105.7, 68.8, 55.4, 42.5, 17.8. All data was consistent with that previously reported.^[23] HR-MS (EI): m/z calc. for [C₁₄H₁₆O₂]⁺ ([M]⁺): 216.1145, measured: 216.1142.

2-(4-((Benzyloxy)methyl)phenyl)propan-1-ol (3s)

The title compound was prepared from 1-((but-3-en-1-yloxy)methyl)-4-vinylbenzene (81.0 mg, 0.43 mmol), , according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a slightly yellow oil (46.1 mg, 49%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.36 – 7.28 (m, 2H), 7.25 – 7.18 (m, 2H), 5.93 – 5.77 (m, 1H), 5.15 – 5.11 (m, 1H), 5.11 – 5.00 (m, 1H), 4.50 (s, 2H), 3.69 (d, *J* = 6.9 Hz, 2H), 3.54 (t, *J* = 6.8 Hz, 2H), 2.95 (h, *J* = 7.0 Hz, 1H), 2.38 (qt, *J* = 6.7, 1.4 Hz, 2H), 1.34 (bs, 1H), 1.27 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 143.2, 137.0, 135.4, 128.2, 127.7, 116.5, 72.8, 69.8, 68.8, 42.3, 34.4, 17.7. HR-MS (EI): m/z calc. for [C₁₄H₁₉O₂]⁺([M]⁺): 219.1380, measured: 219.1381.

2-(4-(But-3-en-1-yl)phenyl)propan-1-ol(3t)

The title compound was prepared from 1-(but-3-en-1-yl)-4-vinylbenzene (68.0 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.4) to give the product as a yellow oil (49.0 mg, 60%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.16 (s, 4H), 5.98 – 5.77 (m, 1H), 5.12 – 4.95 (m, 2H), 3.69 (d, *J* = 6.8 Hz, 2H), 2.93 (h, *J* = 6.9 Hz, 1H), 2.74 – 2.65 (m, 2H), 2.45 – 2.29 (m, 2H), 1.35 (s, 1H), 1.27 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 141.1, 140.4, 138.3, 128.8, 127.5, 115.0, 68.9, 42.2, 35.6, 35.1, 17.7. **HR-MS (EI)**: m/z calc. for [C₁₃H₁₈O]⁺ ([M]⁺): 190.1352, measured: 190.1347.

2-(4-((1*H*-Pyrrol-1-yl)methyl)phenyl)propan-1-ol (3u)

The title compound was prepared from 1-(4-vinylbenzyl)-1*H*-pyrrole (78.8 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (43.7 mg, 47%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.24 – 7.17 (m, 2H), 7.13 – 7.04 (m, 2H), 6.70 (t, *J* = 2.2 Hz, 2H), 6.25 – 6.15 (m, 2H), 5.06 (s, 2H), 3.69 (d, *J* = 6.4 Hz, 2H), 2.94 (h, *J* = 6.9 Hz, 1H), 1.37 (s, 1H), 1.26 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 143.3, 136.7, 127.9, 127.4, 121.2, 108.6, 68.7, 53.2, 42.2, 17.7. HR-MS (EI): m/z calc. for [C₁₄H₁₇ON]⁺ ([M]⁺): 215.1305, measured: 215.1302.

CO_O_COH

2-(4-((Furan-2-ylmethoxy)methyl)phenyl)propan-1-ol (3v)

The title compound was prepared from 2-(((4-vinylbenzyl)oxy)methyl)furan (92.1 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 3:1, Rf = 0.3) to give the product as a colorless oil (49.0 mg, 46%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.42 (dd, J = 1.8, 0.9 Hz, 1H), 7.35 – 7.29 (m, 2H), 7.25 – 7.20 (m, 2H), 6.37 – 6.32 (m, 2H), 4.51 (d, J = 9.7 Hz, 4H), 3.69 (d, J = 6.8 Hz, 2H), 2.95 (h, J = 6.9 Hz, 1H), 1.40 (s, 1H), 1.27 (d, J = 7.0 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 151.9, 143.4, 142.9, 136.4, 128.5, 127.7, 110.4, 109.5, 71.8, 68.8, 64.0, 42.3, 17.7. HR-MS (EI): m/z calc. for [C₁₅H₁₈O₃]⁺ ([M]⁺): 246.1251, measured: 246.1247.

2-(4-((2-(Phenylthio)ethoxy)methyl)phenyl)propan-1-ol (3w)

The title compound was prepared from phenyl(2-((4-vinylbenzyl)oxy)-ethyl)sulfane (116.3 mg, 0.43 mmoL), , according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 4:1, Rf = 0.3) to give the product as a yellow oil (89.4 mg, 81%).

¹**H** NMR (300 MHz, Chloroform-*d*) δ 7.34 – 7.03 (m, 9H), 4.42 (s, 2H), 3.66 – 3.52 (m, 4H), 3.07 (t, *J* = 6.9 Hz, 2H), 2.87 (h, *J* = 6.9 Hz, 1H), 1.55 (s, 1H), 1.19 (d, *J* = 7.1 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 143.4, 136.5, 136.1, 129.5, 129.0, 128.3, 127.7, 126.3, 73.0, 68.9, 68.8, 42.3, 33.4, 17.7. **HR-MS (EI)**: m/z calc. for [C₁₈H₂₂O₂S]⁺ ([M]⁺): 302.1335, measured: 302.1337.

2-(4-(((((*R*)-2,5,7,8-Tetramethyl-2-((4*R*,8*R*)-4,8,12-trimethyltridecyl)chroman-6yl)oxy)methyl)phenyl)pro-pan-1-ol (3x)

The title compound was prepared from (R)-2,5,7,8-tetramethyl-2-((4R,8R)-4,8,12-trimethyltridecyl)-6-((4-vinylbenzyl)oxy)-chromane (235.2 mg, 0.43 mmol), according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a colorless viscous oil (109 mg, 44%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.49 (d, J = 8.2 Hz, 2H), 7.29 (d, J = 8.0 Hz, 2H), 4.68 (s, 2H), 3.73 (d, J = 6.8 Hz, 2H), 2.99 (h, J = 7.0 Hz, 1H), 2.60 (t, J = 6.7 Hz, 2H), 2.23 (s, 3H), 2.18 (s, 3H), 2.11 (s, 3H), 1.90 – 1.70 (m, 2H), 1.59 – 1.04 (m, 28H), 0.94 – 0.78 (m, 12H). ¹³**C NMR** (75 MHz, CDCl₃) δ 148.2, 148.1, 143.4, 136.6, 128.3, 128.0, 127.8, 126.1, 123.1, 117.7, 75.0, 74.6, 68.9, 42.4, 40.2, 40.2, 39.5, 37.7, 37.6, 37.5, 37.4, 32.9, 32.9, 32.8, 32.8, 31.4, 31.4, 28.1, 24.9, 24.6, 24.0, 22.9, 22.8, 21.2, 20.8, 19.9, 19.8, 17.8, 13.0, 12.1, 12.0. **HR-MS** (**ESI**): m/z calc. for [C₃₉H₆₂NaO₃]⁺ ([M+Na]⁺): 601.4591, measured: 601.4589.

2-(4-((((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)methyl)phenyl)propan-1-ol (3y)

The title compound was prepared from (1S,2R,4S)-1,7,7-trimethyl-2-((4-vinylbenzyl)oxy)bicyclo[2.2.1]heptane (116.3 mg, 0.43 mmol, according to general procedure A. The crude residue was purified by flash chromatography (pentane/EtOAc = 5:1, Rf = 0.3) to give the product as a slightly yellow oil (55.1 mg, 42%).

¹**H NMR** (300 MHz, Chloroform-*d*) δ 7.40 – 7.09 (m, 4H), 4.68 – 4.28 (m, 2H), 3.83 – 3.52 (m, 3H), 2.95 (h, *J* = 6.8 Hz, 1H), 2.24 – 1.95 (m, 2H), 1.84 – 1.56 (m, 2H), 1.36 (bs, 1H), 1.31 – 1.24 (m, 5H), 1.10 (dd, *J* = 13.0, 3.3 Hz, 1H), 0.91 (s, 3H), 0.86 (s, 3H), 0.84 (s, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 142.6, 138.1, 127.7, 127.5, 84.6, 71.5, 68.9, 49.5, 48.0, 45.2, 42.3, 36.3, 28.4, 26.9, 19.9, 19.0, 17.8, 14.2. **HR-MS (EI)**: m/z calc. for [C₂₀H₃₀O₂]⁺ ([M]⁺): 302.2240, measured: 302.2240.

3.3 Characterization Data of ethers and formates

"Bu

(1-Butoxy-2-methylhexan-2-yl)benzene (4a)

The title compound was prepared from styrene (23 μ L, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a colorless oil (21 mg, 42%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.37 – 7.30 (m, 4H), 7.21 – 7.17 (m, 1H), 3.44 (s, 2H), 3.37 (td, *J* = 6.5, 1.3 Hz, 2H), 1.76 – 1.51 (m, 4H), 1.34 (s, 3H), 1.32 – 1.19 (m, 4H), 1.14 – 0.99 (m, 2H), 0.92 – 0.81 (m, 6H). ¹³**C** NMR (75 MHz, CDCl₃) δ 146.6, 127.9, 126.5, 125.6, 79.8, 71.3, 42.3, 38.8, 31.7, 26.2, 23.4, 22.9, 19.3, 14.0, 13.9.

1-(1-Butoxy-2-methylhexan-2-yl)-4-methylbenzene (4b)

The title compound was prepared from 1-methyl-4-vinylbenzene (23.6 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a colorless oil (21 mg, 41%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.24 – 7.19 (m, 2H), 7.13 – 7.08 (m, 2H), 3.41 – 3.34 (m, 4H), 2.32 (s, 3H), 1.69 – 1.51 (m, 4H), 1.34 – 1.24 (m, 7H), 1.10 – 0.95 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H), 0.82 (t, *J* = 7.3 Hz, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 143.6, 135.0, 128.7, 126.4, 79.9, 71.3, 41.9, 38.8, 31.7, 26.3, 23.5, 22.9, 20.9, 19.4, 14.1, 13.9.

1-(1-Butoxy-2-methylhexan-2-yl)-3-methylbenzene (4c)

The title compound was prepared from 1-methyl-3-vinylbenzene (23.6 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a colorless oil (23 mg, 44%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.21 – 7.11 (m, 3H), 7.00 (dtd, J = 7.2, 1.6, 0.8 Hz, 1H), 3.42 (s, 2H), 3.37 (td, J = 6.5, 0.9 Hz, 2H), 2.36 – 2.33 (m, 3H), 1.82 – 1.61 (m, 2H), 1.55 – 1.49 (m, 2H), 1.36 – 1.23 (m, 7H), 1.14 – 0.97 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H), 0.83 (t, J = 7.3 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 146.5, 137.2, 127.7, 127.3, 126.3, 123.5, 79.7, 71.3, 42.1, 38.8, 31.7, 26.2, 23.4, 22.9, 21.7, 19.3, 14.0, 13.9.

1-(1-Butoxy-2-methylhexan-2-yl)-4-isobutylbenzene (4d)

The title compound was prepared from 1-isobutyl-4-vinylbenzene (32 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a colorless oil (21 mg, 34%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.22 (d, J = 8.4 Hz, 2H), 7.06 (d, J = 8.5 Hz, 2H), 3.41 (d, J = 0.7 Hz, 2H), 3.36 (td, J = 6.5, 2.1 Hz, 2H), 2.44 (d, J = 7.2 Hz, 2H), 1.89 – 1.81 (m, 1H), 1.73 – 1.60 (m, 2H), 1.55 – 1.41 (m, 4H), 1.34 – 1.25 (m, 7H), 0.92 – 0.83 (m, 12H). ¹³**C NMR** (75 MHz, CDCl₃) δ 143.7, 138.7, 128.6, 126.1, 79.9, 71.3, 45.0, 41.9, 38.8, 31.6, 30.2, 26.2, 23.4, 22.8, 22.4, 19.3, 14.1, 13.9.

1-(1-Butoxy-2-methylhexan-2-yl)-4-(*tert*-butyl)benzene (4e)

The title compound was prepared from 1-(*tert*-butyl)-4-vinylbenzene (32 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a colorless oil (23 mg, 37%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.34 – 7.26 (m, 4H), 3.44 (d, *J* = 1.6 Hz, 2H), 3.39 (td, *J* = 6.5, 1.7 Hz, 2H), 1.76 – 1.63 (m, 2H), 1.59 – 1.46 (m, 4H), 1.33 (s, 9H), 1.33 (s, 3H), 1.31 – 1.23 (m, 4H), 0.93 – 0.85 (m, 6H). ¹³**C** NMR (75 MHz, CDCl₃) δ 148.1, 143.5, 126.0, 124.7, 79.7, 71.3, 41.8, 38.7, 34.2, 31.7, 31.4, 26.3, 23.5, 22.9, 19.3, 14.1, 13.9.

4-(1-Butoxy-2-methylhexan-2-yl)-1,1'-biphenyl (4f)

The title compound was prepared from 4-vinyl-1,1'-biphenyl (36 mg, 0.2 mmol) and 1-bromobutane (76μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a yellow oil (28 mg, 43%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.61 – 7.52 (m, 4H), 7.45 – 7.39 (m, 4H), 7.34 – 7.30 (m, 1H), 3.47 (d, *J* = 1.8 Hz, 2H), 3.39 (td, *J* = 6.5, 0.9 Hz, 2H), 1.62 – 1.45 (m, 6H), 1.36 – 1.27 (m, 7H), 0.91 – 0.82 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 145.8, 141.1, 138.3, 138.1, 128.7, 127.0, 127.0, 126.6, 79.7, 71.4, 42.2, 38.9, 31.7, 26.3, 23.5, 23.0, 19.4, 14.1, 13.9.

1-(But-3-en-1-yl)-4-(1-butoxy-2-methylhexan-2-yl)benzene (4g)

The title compound was prepared from 1-(but-3-en-1-yl)-4-vinylbenzene (32 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a yellow oil (20 mg, 33%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.17 (d, J = 9.4 Hz, 2H), 7.04 (d, J = 8.5 Hz, 2H), 5.80 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.01 – 4.87 (m, 2H), 3.34 (s, 2H), 3.29 (td, J = 6.5, 1.4 Hz, 2H), 2.65 – 2.56 (m, 2H), 2.34 – 2.25 (m, 2H), 1.67 – 1.54 (m, 2H), 1.46 – 1.37 (m, 2H), 1.26 – 1.18 (m, 7H), 1.01 – 0.88 (m, 2H), 0.84 – 0.73 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 144.0, 138.9, 138.4, 127.9, 126.4, 114.7, 79.8, 71.3, 41.9, 38.8, 35.4, 34.8, 31.6, 26.2, 23.4, 22.9, 19.3, 14.0, 13.9.

1-(1-Butoxy-2-methylhexan-2-yl)-4-fluorobenzene (4h)

The title compound was prepared from 1-fluoro-4-vinylbenzene (24 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as yellow oil (30 mg, 57%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.24 – 7.19 (m, 2H), 6.90 (t, *J* = 8.9 Hz, 2H), 3.36 – 3.25 (m, 4H), 1.63 – 1.42 (m, 4H), 1.26 – 1.13 (m, 7H), 1.05 – 0.86 (m, 2H), 0.78 (dt, *J* = 15.6, 7.4 Hz, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ 161.0 (d, *J* = 249.1 Hz), 142.2 (d, *J* = 3.2 Hz), 128.0 (d, *J* = 7.6 Hz), 114.5 (d, *J* = 20.7 Hz), 79.8, 71.3, 41.9, 39.0, 31.6, 26.1, 23.4, 22.9, 19.3, 14.0, 13.9.

1-(4-(1-Butoxy-2-methylhexan-2-yl)benzyl)-1*H*-indole (4i)

The title compound was prepared from 1-(4-vinylbenzyl)-1*H*-indole (46.6 mg, 0.2 mmol) and 1-bromobutane (76 μ L, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a yellow oil (23 mg, 31%).

¹**H** NMR (300 MHz, CDCl₃) δ 7.71 – 7.64 (m, 1H), 7.37 – 7.31 (m, 1H), 7.29 (d, J = 2.1 Hz, 1H), 7.27 (d, J = 2.0 Hz, 1H), 7.22 – 7.17 (m, 1H), 7.17 – 7.12 (m, 2H), 7.07 (d, J = 8.6 Hz, 2H), 6.57 (dd, J = 3.2, 0.8 Hz, 1H), 5.32 (s, 2H), 3.40 (d, J = 2.0 Hz, 2H), 3.36 (td, J = 6.5, 1.6 Hz, 2H), 1.76 – 1.60 (m, 2H), 1.57 – 1.47 (m, 4H), 1.33 (d, J = 11.3 Hz, 2H), 1.30 (s, 3H), 1.25 – 1.16 (m, 2H), 0.92 – 0.78 (m, 6H). ¹³**C** NMR (75 MHz, CDCl₃) δ 146.1, 136.4, 134.6, 128.3, 127.5, 126.9, 126.5, 121.6, 120.9, 119.4, 109.7, 101.5, 79.6, 71.3, 49.8, 42.1, 38.8, 31.6, 26.2, 23.4, 22.9, 19.3, 14.1, 13.9.

(2-Methyl-1-(octyloxy)decan-2-yl)benzene (4j)

The title compound was prepared from styrene (23 μ L, 0.2 mmol) and 1-bromooctane (134 mg, 3.5 equiv.), according to general procedure C. The crude residue was purified by flash chromatography (pentane/DCM = 20:1, Rf = 0.25) to give the product as a yellow oil (25 mg, 35%).

¹**H NMR** (300 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.22 – 7.14 (m, 1H), 3.44 (s, 2H), 3.36 (td, *J* = 6.5, 1.2 Hz, 2H), 1.82 – 1.61 (m, 2H), 1.52 (ddd, *J* = 21.8, 15.7, 5.7 Hz, 4H), 1.33 (s, 3H), 1.28 (dd, *J* = 8.5, 2.1 Hz, 12H), 1.21 (s, 8H), 0.88 (q, *J* = 6.8 Hz, 6H). ¹³**C NMR** (75 MHz, CDCl₃) δ 146.6, 127.9, 126.5, 125.5, 79.7, 71.6, 42.3, 39.0, 31.9, 31.8, 30.4, 29.5, 29.5, 29.4, 29.3, 26.2, 24.0, 22.9, 22.7, 22.6, 14.1.

2-Methyl-2-phenylhexyl formate (5a)

The title compound was prepared from styrene (23 μ L, 0.2 mmol) and 1-iodobutane (27 μ L, 1.2 equiv.), according to general procedure D. The crude residue was purified by flash chromatography (pentane/EtOAc = 100:1, Rf = 0.25) to give the product as a colorless oil (15 mg, 33%).

¹**H NMR** (300 MHz, CDCl₃) δ 8.02 (t, *J* = 0.9 Hz, 1H), 7.36 – 7.30 (m, 4H), 7.25 – 7.21 (m, 1H), 4.37 – 4.19 (m, 2H), 1.84 – 1.60 (m, 2H), 1.39 (s, 3H), 1.29 – 1.22 (m, 2H), 1.13 – 0.97 (m, 2H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 161.1, 144.4, 128.3, 126.3, 126.2, 71.8, 41.2, 38.7, 25.9, 23.3, 22.3, 13.9.

2-Methyl-2-(*m*-tolyl)hexyl formate (5b)

The title compound was prepared from 1-methyl-3-vinylbenzene (23.6 mg, 0.2 mmol) and 1-iodobutane (27 μ L, 1.2 equiv.), according to general procedure D. The crude residue was purified by flash chromatography (pentane/EtOAc = 100:1, Rf = 0.25) to give the product as a colorless oil (14 mg, 30%).

¹**H** NMR (300 MHz, CDCl₃) δ 8.03 (t, J = 0.9 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.12 (dd, J = 1.8, 1.1 Hz, 1H), 7.04 – 7.02 (m, 1H), 6.94 (d, J = 7.5 Hz, 1H), 4.33 – 4.17 (m, 2H), 2.36 (s, 3H), 1.37 (s, 3H), 1.26 (s, 2H), 1.10 – 0.98 (m, 4H), 0.83 (s, 3H). ¹³**C** NMR (75 MHz, CDCl₃) δ 161.2, 144.4, 137.7, 128.1, 127.1, 127.0, 123.4, 71.9, 41.1, 38.8, 26.0, 23.3, 22.4, 21.7, 14.0.

2-(4-(*tert*-Butyl)phenyl)-2-methylhexyl formate (5c)

The title compound was prepared from 1-(tert-butyl)-4-vinylbenzene (32 mg, 0.2 mmol) and 1-iodobutane (27 µL, 1.2 equiv.), according to general procedure D. The crude residue was purified by

flash chromatography (pentane/EtOAc = 100:1, Rf = 0.25) to give the product as a colorless oil (17 mg, 37%).

¹**H NMR** (300 MHz, CDCl₃) δ 8.04 (t, J = 0.8 Hz, 1H), 7.33 (d, J = 8.7 Hz, 2H), 7.23 (d, J = 8.8 Hz, 2H), 4.24 (qd, J = 10.9, 0.8 Hz, 2H), 1.73 – 1.59 (m, 2H), 1.36 (s, 3H), 1.31 (s, 9H), 1.30 (d, J = 1.4 Hz, 4H), 0.83 (d, J = 7.4 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 161.2, 148.8, 141.3, 125.9, 125.1, 71.8, 40.7, 38.7, 31.3, 26.9, 26.0, 23.3, 22.5, 14.0.

2-(4-(But-3-en-1-yl)phenyl)-2-methylhexyl formate (5d)

The title compound was prepared from 1-(but-3-en-1-yl)-4-vinylbenzene (32 mg, 0.2 mmol) and 1-iodobutane (27 μ L, 1.2 equiv.), according to general procedure D. The crude residue was purified by flash chromatography (pentane/EtOAc = 100:1, Rf = 0.25) to give the product as a yellow oil (16 mg, 29%).

¹**H NMR** (300 MHz, CDCl₃) δ 8.02 (t, J = 0.9 Hz, 1H), 7.22 (d, J = 8.5 Hz, 2H), 7.15 (d, J = 8.6 Hz, 2H), 5.92 – 5.82 (m, 1H), 5.08 – 5.02 (m, 1H), 5.00 – 4.96 (m, 1H), 4.24 (qd, J = 10.9, 0.8 Hz, 2H), 2.72 – 2.66 (m, 2H), 2.40 – 2.34 (m, 2H), 1.56 (s, 2H), 1.36 (s, 3H), 1.24 (dd, J = 15.9, 8.1 Hz, 4H), 0.83 (t, J = 7.2 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 161.2, 139.7, 138.2, 128.3, 126.2, 114.9, 71.9, 40.9, 38.7, 35.3, 34.8, 26.0, 23.3, 22.4, 14.0.

4. References

1. Lu, L.; Siu, J. C.; Lai, Y.; Lin, S. An Electroreductive Approach to Radical Silylation via the Activation of Strong Si–Cl Bond. *J. Am. Chem. Soc.* **2020**, *142*, 21272–21278.

2. Langston, J. A.; Colby, R. H.; Chung, T. M.; Shimizu, F.; Suzuki, T.; Aoki, M. Synthesis and Characterization of Long Chain Branched Isotactic Polypropylene via Metallocene Catalyst and T-Reagent. *Macromolecules* **2007**, 40, 2712–2720.

3. Molander, G. A.; Brown, A. R. Suzuki–Miyaura Cross-Coupling Reactions of Potassium Vinyltrifluoroborate with Aryl and Heteroaryl Electrophiles. *J. Org. Chem.* **2006**, *71*, 9681–9686.

4. Bae, W. J.; Kim, K. H.; Jo, W. H.; Park, Y. H. A Water-Soluble and Self-Doped Conducting Polypyrrole Graft Copolymer. *Macromolecules* **2005**, *38*, 1044–1047.

5. Miyamura, H.; Min, H.; Soulé, J. F.; Kobayashi, S. Size of Gold Nanoparticles Driving Selective Amide Synthesis through Aerobic Condensation of Aldehydes and Amines. *Angew. Chem. Int. Ed.* **2015**, *54*, 7564–7567.

6. Gruttadauria, M.; Giacalone, F.; Mossuto Marculescu, A.; Lo Meo, P.; Riela, S.; Noto, R. Hydrophobically Directed Aldol Reactions: Polystyrene-Supported L-Proline as a Recyclable Catalyst for Direct Asymmetric Aldol Reactions in the Presence of Water. *Eur. J. Org. Chem.* **2007**, 4688–4698.

7 Erapalapati, V., Madhavan, N. Versatile Soluble Oligomeric Styrene Supports for Peptide Synthesis. *Journal of Polymer Science Part A: Polymer Chemistry*, **2015**, *53*, 2501-2509.

8. Vyas, D. J.; Larionov, E.; Besnard, C.; Guenee, L.; Mazet, C. Isomerization of Terminal Epoxides by a [Pd–H] Catalyst: A Combined Experimental and Theoretical Mechanistic Study. *J. Am. Chem. Soc.* **2013**, *135*, 6177–6183.

9. Li, X.; Carter, R. G. Pummerer Cyclization Revisited: Unraveling of Acyl Oxonium Ion and Vinyl Sulfide Pathways. *Org. Lett.* **2018**, *20*, 5541–5545.

10. Baumann, T.; Vogt, H.; Bräse, S. The Proline-Catalyzed Asymmetric Amination of Branched Aldehydes. *Eur. J. Org. Chem.* **2007**, 266–282.

11. Christensen, S. H.; Olsen, E. P.; Rosenbaum, J.; Madsen, R. Hydroformylation of olefins and reductive carbonylation of aryl halides with syngas formed *ex situ* from dehydrogenative decarbonylation of hexane-1,6-diol. *Org. Biomol. Chem.*, **2015**, 13, 938-945.

12. Hoffmann, S.; Nicoletti, M.; List, B. Catalytic Asymmetric Reductive Amination of Aldehydes via Dynamic Kinetic Resolution. *J. Am. Chem. Soc.* **2006**, *128*, 13074–13075.

13. Gong, W.; Liu, Y.; Xue, J.; Xie, Z.; Li, Y. Unexpected Extension of Usage of PPh₃/CBr₄, a Versatile Reagent: Isomerization of Aromatic Allylic Alcohols. *Chem. Lett.* **2012**, *41*, 1597-1599.

14. Cruz, F. A.; Dong, V. M.; Stereodivergent Coupling of Aldehydes and Alkynes via Synergistic Catalysis Using Rh and Jacobsen's Amine. *J. Am. Chem. Soc.* **2017**, *139*, 1029–1032.

15. Friest, J. A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D. B. Use of a Robust Dehydrogenase from an Archael Hyperthermophile in Asymmetric Catalysis–Dynamic Reductive Kinetic Resolution Entry into (*S*)-Profens. *J. Am. Chem. Soc.* **2010**, *132*, 5930–5931.

16. Danishefsky, S.; Harvey, D. F. A New Approach to Polypropionates: Routes to Subunits of Monensin and Tirandamycin. *J. Am. Chem. Soc.* **1985**, *107*, 6647–6652.

17. Zhang, L.; Zuo, Z.; Wan, X.; Huang, Z. Cobalt-Catalyzed Enantioselective Hydroboration of 1,1-Disubstituted Aryl Alkenes. *J. Am. Chem. Soc.* **2014**, *136*, 44, 15501–15504.

Bettoni, L. o.; Gaillard, S.; Renaud, J.-L. Iron-Catalyzed β-Alkylation of Alcohols. Org. Lett. 2019, 21, 8404–8408.

19. Polidano, K.; Williams, J. M.; Morrill, L. C. Iron-Catalyzed Borrowing Hydrogen β -C(sp³)-Methylation of Alcohols. *ACS catalysis* **2019**, *9*, 8575–8580.

20. Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L. L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. Highly Regio- and Enantioselective Copper-Catalyzed Reductive Hydroxymethylation of Styrenes and 1,3-Dienes with CO₂. *J. Am. Chem. Soc.* **2017**, *139*, 17011–17014.

21. Guo, S.; Wang, X.; Zhou, J. S. Asymmetric Umpolung Hydrogenation and Deuteration of Alkenes Catalyzed by Nickel. *Org. Lett.* **2020**, *22*, 1204–1207.

22. Qu, B.; Tan, R.; Herling, M. R.; Haddad, N.; Grinberg, N.; Kozlowski, M. C.; Zhang, X.; Senanayake, C. H. Enantioselective Synthesis of 4-Methyl-3,4-dihydroisocoumarin via Asymmetric Hydroformylation of Styrene Derivatives. *J. Org. Chem.* **2019**, *84*, 4915–4920.

23. Friest, J. A.; Maezato, Y.; Broussy, S.; Blum, P.; Berkowitz, D. B. Use of a Robust Dehydrogenase from an Archael Hyperthermophile in Asymmetric Catalysis-Dynamic Reductive Kinetic Resolution Entry into (*S*)-Profens. *J. Am. Chem. Soc.* **2010**, *132*, 5930–5931.

5. NMR Spectra

f1 (ppm)

Tim Meyer TM-HY-128 — CDCl3 — 282.44MHz

,OH

-116.50 -116.54 -116.58 -116.62 -116.66 -116.70 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

-118.48 -118.36 -118.40 f1 (ppm) -118.44

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

S104

Internal Alkenes

2-Phenylbutan-1-ol (3z)

The title compound was prepared from (*Z*)-prop-1-en-1-ylbenzene (56 μ L, 0.43 mmol), CuCl (3.5 mg, 8 mol%), DPPP (20.5 mg, 12 mol%), and NaO*t*Bu (93.5 mg, 2.25 equiv) in toluene (2.5 mL, 0.17 M). following General Procedure A.

*** Yield was determined by ¹H NMR spectroscopy due to the low conversion (obviously a polymerization took place, see Figure #1).***

TMB (8.4 mg, 0.05 mmol) was added as an internal standard. From this the NMR-yield was calculated to be around 12%.

¹**H NMR** (300 MHz, Chloroform-*d*) δ 0.93 – 0.83 (m, 3H). ¹³**C NMR** (75 MHz, CDCl₃) δ 142.4, 128.8, 128.2, 126.9, 67.5, 50.7, 25.1, 12.1.

For ¹³C NMR the data were in agreement with published values.*

^{*}M. Magre, E. Paffenholz, B. Maity, L. Cavallo, and M. Rueping, J. Am. Chem. Soc. 2020, 142, 14286.

