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1. Molecular dynamics (MD) simulations 

Two parallel bias-exchange metadynamics (BE-META) simulations starting from two different initial structures were 
performed for each cyclic peptide. The two initial structures were prepared using the UCSF Chimera package,1 and the backbone 
RMSD between the two structures was ensured to be larger than 1.3 Å. The initial structure was solvated in a water box. The 
minimum distance between the atoms of the peptide and the walls of the box was 1.0 nm. Counter ions were added to neutralize 
the total charge of the system. Energy minimization was then performed on the solvated system using the steepest descent algorithm 
to remove bad contacts. The solvated system underwent two stages of equilibrations. In the first stage, the solvent molecules were 
equilibrated while restraining the heavy atoms of the cyclic peptide using a harmonic potential with a force constant of 1,000 
kJ×mol–1×nm–2. This stage of equilibration consisted of a 50-ps simulation at 300 K in an NVT ensemble and a following 50-ps 
simulation at 300 K and 1 bar in an NPT ensemble. The second stage of equilibration was performed without restraints and consisted 
of a 100-ps simulation at 300 K in an NVT ensemble, followed by a 100-ps simulation at 300 K and 1 bar in an NPT ensemble. 
The production simulations were performed at 300 K and 1 bar in an NPT ensemble. The equations of motion were integrated by 
the leapfrog algorithm with a time step of 2 fs. Bonds involving hydrogen were constrained with the LINCS algorithm. Electrostatic 
interactions, van der Waals interactions, and neighbor searching were truncated at 1.0 nm. Long-range electrostatics were treated 
using the particle mesh Ewald method with a Fourier grid spacing of 0.12 nm and an order of 4. A long-range dispersion correction 
for energy and pressure was applied to account for the 1.0 nm cut-off of the Lennard-Jones interactions. Five extra improper 
dihedrals related to the H, N, C, O atoms of the peptide bonds were applied to suppress the formation of cis bonds. It was ensured 
the data used in the analysis were free of cis peptide bonds. 

BE-META simulations were performed using GROMACS 2018.62 patched by PLUMED 2.5.1 plugin.3 In each BE-META 
simulation, there were 10 biased replicas, with five biasing the 2D collective variables (ϕi, ψi) and five biasing the 2D collective 
variables (ψi, ϕi+1). These collective variables were chosen according to the observation that cyclic peptides usually switch 
conformations through coupled changes of two dihedrals involving (ϕi, ψi) or (ψi, ϕi+1).4 In addition, five neutral replicas (i.e., 
replicas with no bias) were used to obtain the unbiased structural ensemble for later analysis. Dihedral principal component analysis 
was used to analyze the trajectories. Normalized integrated product (NIP)5 between the two parallel simulations of each cyclic 
peptide was calculated in the 3D space spanned by the top three principal components to monitor the convergence of the simulations. 
The lengths of the BE-META simulations were 100 ns for most of the cyclic peptides and were extended for some peptides until 
the NIPs were larger than 0.9 (an NIP value of 1.0 would suggest perfect similarity). Trajectories in the last 50 ns of the neutral 
replicas of both parallel simulations were combined for each cyclic peptide and used for further structural analysis. 

 
2. The StrEAMM models 

 2.1 StrEAMM (1,2)/sys: Optimizing (1,2) interaction weights to predict populations of cyclic peptide structures    

In this version of StrEAMM models, we considered how the interactions between the nearest neighbors, i.e., the (1,2) 
interactions, impact the structural preferences of a cyclic peptide, as the first-order approximation. The population of cyclo-
(X1X2X3X4X5) adopting a certain structure S1S2S3S4S5, 𝑝!!!"!#!$!%

"!"""#"$"%, was related to these (1,2) interactions as: 

𝑝!!!"!#!$!%
"!"""#"$"% ∝ exp &𝑤!!!"

"!"" +𝑤!"!#
"""# +𝑤!#!$
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where 𝑤!&!&'!
"&"&'!  was the weight assigned to a sequential 2-residue section of the cyclic peptides when residues XiXi+1 adopted 

structure SiSi+1, Xi was one of the 15 amino acids (G, A, V, F, N, S, D, R, a, v, f, n, s, d, and r; lowercase letters denote D-amino 
acids), and Si was one of the 10 structural digits (B, P, G, L, Z, b, p, g, l, and z). The expression is illustrated in Fig. 2b. The 
weights were presumed additive, sharing a similar property with energies. Since energies appear in the exponential of Boltzmann 
factors when related to populations, an exponential operation was also introduced here to relate the sum of the five weights to the 
predicted population. The operation also helped prevent the predicted populations from adopting values <0. 

To obtain the exact population of cyclo-(X1X2X3X4X5) adopting a certain structure S1S2S3S4S5, the partition function (Q) 
needed to be considered: 

𝑄 = ∑ exp&𝑤!!!"
"!"" +𝑤!"!#
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which could also be written as: 
ln &𝑝!!!"!#!$!%

"!"""#"$"%) = 𝑤!!!"
"!"" +𝑤!"!#

"""# +𝑤!#!$
"#"$ +𝑤!$!%

"$"% +𝑤!%!!
"%"! − ln𝑄.     (4) 

However, Eq. (2) broke the linearity of Eq. (4), making it difficult to reach convergence when solving a set of Eq. (4)’s. Hence, we 
introduced another independent weight for each cyclic peptide in the training set: 

𝑤+ = − ln𝑄     (5) 
and 

ln &𝑝!!!"!#!$!%
"!"""#"$"%) = 𝑤!!!"

"!"" +𝑤!"!#
"""# +𝑤!#!$

"#"$ +𝑤!$!%
"$"% +𝑤!%!!

"%"! +𝑤+.     (6) 
Each structure of each cyclic peptide in the training set contributed an Eq. (6). Together, these equations formed a nonhomogeneous 
linear equation group, which could be rewritten in the matrix format: 

ln 𝒑 = 𝑨𝒘.     (7) 
The logarithms of populations were arranged into an N´1 column vector, where N was the summation of the number of structure 
types of each cyclic peptide in the training set. Different weights were arranged into an M´1 column vector, where M was the 
number of weights. The coefficient matrix 𝑨 controlled which weights were used to compute the population of a specific cyclic-
peptide sequence adopting a specific structure. See Fig. S1 for detailed illustration of the matrix. The weights were determined by 
weighted least square fitting, i.e., by minimizing the following loss function with respect to the weights w: 

𝐿(𝒘) = ∑ 𝑝,7∑ 𝐴,-𝑤- − ln𝑝,.
-/0 7

12
,/0      (8) 

To predict the populations of a new cyclic peptide, Eq. (3) was used, with partition function Q calculated by Eq. (2). In theory, 
Eq. (2) required exhaustively counting the contributions of all possible structures. In practice, we only accounted for structures that 
had a population larger than 0.1% (500 frames) in at least one of the cyclic peptides in the training set (Datasets 1–3; see “Datasets” 
in the Methods section). See List S1 for the resulting structure pool that included 550 structures. Due to the incompleteness of the 
structure pool, we introduced a compensation factor f when computing Q. To estimate f, we computed the sum of the populations 
of these 550 structures for each cyclic peptide in the training set. The mean value of these summations was 0.996 and was used as 
the compensation factor f. The partition function used was: 

𝑄 = ∑ exp &𝑤!!!"
"!"" +𝑤!"!#

"""# +𝑤!#!$
"#"$ +𝑤!$!%
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.     (9) 

The predicted population was then calculated using Eq. (3) with partition function calculated using Eq. (9). 
When calculating the populations using Eq. (3) for a new cyclic peptide, it was possible to encounter some weights that did 

not exist in the training set. The absence of these weights in the training set suggested the amino acid sequences had little tendency 
to adopt the corresponding structures, and these weights were thus assigned to a very negative number (–20 was used, which was 
small enough to bring the final predicted population to essentially zero). 

The dataset used in the training for StrEAMM (1,2)/sys was Dataset 1 (see “Datasets” in the Methods section). The matrix 
equation (7) contained 131,779 linear equations and 6,101 independent weights; weights that were mirror images of each other 
were treated as one independent weight because 𝑤!&!&'!

"&"&'! = 𝑤%&%&'!
9&9&'!with capital and lowercase letter pairs representing enantiomers 

of amino acids and structures. The distribution of the weights is shown in Fig. S3. 
 
 2.2 StrEAMM (1,2)+(1,3)/sys and StrEAMM (1,2)+(1,3)/random: Including both (1,2) and (1,3) interaction weights  
 

In StrEAMM (1,2)+(1,3)/sys and StrEAMM (1,2)+(1,3)/random, we considered interactions between the nearest neighbors 
and between next-nearest neighbors, i.e., both (1,2) interactions and (1,3) interactions. The population of cyclo-(X1X2X3X4X5) 
adopting a certain structure S1S2S3S4S5, 𝑝!!!"!#!$!%

"!"""#"$"%, was related to the (1,2) and (1,3) interactions as: 

𝑝!!!"!#!$!%
"!"""#"$"% ∝ exp &𝑤!!!"

"!"" +𝑤!"!#
"""# +𝑤!#!$
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"%_"" ),     (10) 

where 𝑤!&!&'!!&'"
"&_"&'" was the weight assigned to the interactions between residues Xi and Xi+2 when residues XiXi+1Xi+2 adopted the 

structure SiSi+1Si+2. Note that while describing (1,3) interactions, we also included the structure of the middle residue, considering 
that the f and y dihedrals of residue Xi+1 would affect the relative distance and orientation of residues Xi and Xi+2. However, the 
middle residue Xi+1 can be any amino acid. The expression is illustrated in Fig. 2c. Similar to what was done in StrEAMM (1,2)/sys, 
exact populations could be obtained by introducing the partition function Q: 
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and 
𝑄 = ∑ exp&𝑤!!!"
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with f being the compensation factor to account for the incompleteness of the structure pool. Again, we applied Eq. (5) when fitting 
for the weights with the following linear equation: 
ln &𝑝!!!"!#!$!%

"!"""#"$"%) = 𝑤!!!"
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Each structure of each cyclic peptide in the training set contributed an Eq. (13). Together, these equations formed a matrix equation 
(7). The optimized weights were obtained by minimizing the loss function (8). The predicted population of a new cyclic peptide 
adopting a specific structure was calculated by Eq. (11) with Q calculated via Eq. (12).  
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We used the SciPy package of Python language to build the matrix and calculate the weights. The loss function in Eq. (8) was 
minimized by the scipy.sparse.linalg.lsqr function of the package. 
 
2.2.1 StrEAMM (1,2)+(1,3)/sys: Training with Dataset 2 (see “Datasets” in the Methods section) 

The matrix equation (7) contained 251,120 linear equations and 34,100 independent weights, including 6,123 (1,2) interaction 
weights and 27,977 (1,3) interaction weights. The distributions of the weights are shown in Fig. S5.  
 
2.2.2 StrEAMM (1,2)+(1,3)/random: Training with Dataset 3 (see “Datasets” in the Methods section) 

The matrix equation (7) contained 465,728 linear equations and 44,439 independent weights, including 7,626 (1,2) interaction 
weights and 36,813 (1,3) interaction weights. The distributions of weights related to (1,2) interactions and (1,3) interactions are 
shown in Fig. S7. To avoid large errors in the weight estimates, if a weight occurred fewer than 10 times in the training set, it was 
assigned a very negative number (–20 was used, which was small enough to bring the final predicted population to essentially zero) 
when calculating a population.  
 
2.2.3 StrEAMM (1,2)+(1,3)/sys37: Training with Dataset 5 

Dataset 5 was an extension of Dataset 2 by including the basic amino acids in L- or D-configurations except Pro (37 amino 
acids total). The reason we excluded Pro is that it increases the likelihood of observing a cis peptide bond, and we believe the 
current force fields are not trained to and are unable to predict cis/trans configurations correctly. The new training dataset (Dataset 
5) included 1,315 systematic sequences: Cyclo-(GGGGG), cyclo-(X0GGGG ), cyclo-(X0X1GGG ), cyclo-(X0x1GGG ), cyclo-
(X0GX1GG), and cyclo-(X0Gx1GG), with X, being one of the 18 L-amino acids and x, being one of the 18 D-amino acids. Each 
sequence contained one unique nearest-neighbor or next-nearest-neighbor pair with the rest of the sequence filled by Gly’s. Again, 
the enantiomers of these cyclic peptides were not simulated, and their structural ensembles were inferred from the 1,314 simulated 
cyclic peptides. 

A new test dataset of 75 sequences that contained the 37 types of amino acids was built (Dataset 6, List S4). The performance 
of the model is shown in Fig. S9.  
 
 2.3 Extendibility of StrEAMM: Graph neural networks (GNNs) and amino-acid fingerprints 

 
More advanced neural networks and amino-acid representations can be introduced to the StrEAMM model. Here, we provide 

such an example and show the extendibility of the model. In this example, we trained a GNN (message passing network) to predict 
structural ensembles of cyclic pentapeptides while encoding the peptides as a graph.6 GNNs have recently been applied to chemical 
systems due to their potential to handle inputs of diverse graph structures. In general, molecular systems naturally lend themselves 
to graph representations.7 

Neural network training and graph creation were done using Pytorch 1.9.08 and Pytorch Geometric 1.7.2.9 Amino acids were 
encoded using circular topological molecular fingerprints, specifically the Morgan Fingerprints10 generated with RDKit version 
2021.03.05,11 using a radius of three and a fingerprint length of 2,048 bits; amino acids were input with NH2 and COOH termini, 
and sidechain charges matched the charges used in the MD simulations. We chose this encoding because recent work has found 
that neural network models trained with amino acids as circular fingerprint encodings12 were able to predict the properties of 
miniproteins composed of amino acids not found in the training dataset.13 With this encoding, every amino acid in a cyclic-peptide 
sequence can be represented by a 2,048-bit fingerprint. To represent the structural ensemble of a cyclic peptide, we used an array 
of 2,742 populations where each population in the array corresponded to a structure or a cyclic permutation of a structure in the 
structure pool (List S1). We note that there are fewer than 2,750 (550´5) populations because “LLLLL” and “lllll” in the 
structure pool are cyclic invariant. 

In preparation for the use of a GNN, we represented a cyclic pentapeptide as a graph with one node for each amino acid in the 
sequence and the initial node representation given by an amino acid’s molecular fingerprint. Nodes were connected by four types 
of directed edges. Two types of edges (forward and backward with respect to peptide sequence) connected (1,2) neighbor nodes, 
and two types of edges connected (1,3) neighbor nodes. The edges must be directed to prevent a sequence and its retroisomer 
(reverse ordering sequence) from being encoded as identical graphs. Thus, a cyclic pentapeptide is represented by a graph with 5 
nodes and 20 edges. 

We constructed a GNN that converted a cyclic-pentapeptide graph into an array of structure populations. The network 
performed the following sequence of operations. From the input graph, we performed one message passing operation using the 
RGCNConv operator through Pytorch Geometric.14 This operator updated a node representation in the graph by summing up the 
node’s transformed initial representation and transformed representations of the node’s (1,2) and (1,3) neighbors. Each different 
edge type had a unique learned transformation. A rectified linear unit (ReLU) activation function was then applied to the node 
representations. Next, the node representations were concatenated and transformed by one densely connected layer with 2,048 
nodes using a ReLU activation function, and an output layer with 2,742 nodes to represent a structural ensemble as an array of 
2,742 populations. A SoftMax activation function was used for the second layer to ensure the output structural ensemble was 
normalized. 

The models were trained using the Adam optimizer15 and summation of the squared errors loss function ( 𝐿 =
∑ <𝑝,,$*#'5*< − 𝑝,=

12
,/0 , where N is the number of populations in the training dataset, pi,learned is the learned population by the network, 

and pi is the actual population observed in MD simulations) for 1,000 epochs with a learning rate of 0.000005 and a batch size of 
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50. To account for the non-cyclic permutation invariant operation of node concatenation, we trained on all cyclic permutations of 
a sequence, as well as the corresponding enantiomer sequences, whose data we constructed from the initial simulation results of a 
sequence by cyclically permuting structural digits or flipping them across the centro-symmetric structural map for the two different 
cases, respectively. By doing this, we aimed to train the model to be invariant to cyclic permutations of the input sequence. The 
first model, StrEAMM GNN/random, was trained on the semi-randomly generated Dataset 3 containing 15 types of representative 
amino acids, as well as their cyclically permuted sequences and enantiomer sequences (7,050 input graphs). The second model, 
StrEAMM GNN/random37, was trained on Dataset 3 and 50 additional random sequences containing 37 types of amino acids 
(Dataset 6.1, List S5), as well as their cyclically permuted sequences and enantiomers (7,550 input graphs).  

To evaluate the performance of the models, we tested StrEAMM GNN/random and StrEAMM GNN/random37 on the 50 
sequences of Dataset 4 that contain 15 types of representative amino acids (List S2) and on the 25 sequences of Dataset 6.2 that 
contain 37 types of amino acids (List S5). The results for StrEAMM GNN/random and StrEAMM GNN/random37 are shown in 
Figs. S10 and S11, respectively.  
 
3. Binning the Ramachandran plot 

The Ramachandran plot of cyclo-(GGGGG) was first divided into 100´100 grids, and the probability density of each grid was 
calculated (Fig. S12a). Cluster analysis was only performed on the grids with a probability density larger than 0.00001 (Fig. S12b) 
using a grid-based and density peak-based method.16 Fig. S12c shows the resulting 10 clusters. The centroid of each cluster was 
determined as the grid point with the smallest average of distances weighted by probability density to the remaining grids of the 
cluster (Fig. S12c, black dots). All the other grid points in the Ramachandran plot were then assigned to their closest centroid (Fig. 
S12d) to obtain the final map. To verify the applicability of the binning map to non-Gly residues, Fig. S13 shows the Ramachandran 
plot of the first residue in cyclo-(GGGGG), cyclo-(AGGGG), cyclo-(VGGGG), cyclo-(FGGGG), cyclo-(NGGGG), cyclo-
(SGGGG), cyclo-(RGGGG), and cyclo-(DGGGG), with the boundaries of the map shown. We see that in general, the binning map 
is capable of separating the major peaks in these Ramachandran plots as well. 
 
List S1. The structure pool used in the analysis. The pool includes 550 structures (275 enantiomer pairs) whose populations 
(either one structure or its enantiomer, or both) were larger than 0.1% (500 frames) in at least one of the cyclic peptides in Datasets 
1–3.  
 
λΓλλ𝜁 Λ𝛾ΛΛΖ λ𝜋Γλλ ΛΠ𝛾ΛΛ Γ𝛾ΒλΖ 𝛾ΓβΛ𝜁 𝛾ΖΛΠΠ Γ𝜁λ𝜋𝜋 𝛾Β𝜁𝜋Β ΓβΖΠβ 𝛾ΖΠ𝛾Π Γ𝜁𝜋Γ𝜋 λλβΓ𝜋 ΛΛΒ𝛾Π Πλλ𝜁β 
𝜋ΛΛΖΒ λΓλΛΓ Λ𝛾Λλ𝛾 βΠβΓ𝜁 Β𝜋Β𝛾Ζ ΛΓλΛΛ λ𝛾Λλλ ΛΓ𝜁λλ λ𝛾ΖΛΛ ΒβΓ𝛾Λ βΒ𝛾Γλ ΒβΠλ𝛾 βΒ𝜋ΛΓ ΠλΒ𝜋Ζ 𝜋ΛβΠ𝜁 
Π𝜋ΒβΖ 𝜋ΠβΒ𝜁 𝜋ΛΒ𝛾Ζ ΠλβΓ𝜁 𝜋Π𝜁𝜋Β Π𝜋ΖΠβ 𝜋Β𝜁λ𝜁 ΠβΖΛΖ ΛΠ𝛾Ββ λ𝜋ΓβΒ ΠλΖΛΒ 𝜋Λ𝜁λβ βΓ𝛾Λλ Β𝛾ΓλΛ 𝜋ΛΒβΒ 
ΠλβΒβ 𝜋ΒβΠ𝜁 ΠβΒ𝜋Ζ ΖΓ𝛾Π𝜋 𝜁𝛾Γ𝜋Π 𝜁βΓ𝛾Γ ΖΒ𝛾Γ𝛾 𝜋ΓΒ𝜋Β Π𝛾βΠβ λλλΓ𝜁 ΛΛΛ𝛾Ζ 𝜋ΛΛβΓ ΠλλΒ𝛾 λΓ𝜁𝛾Λ Λ𝛾ΖΓλ 
λλβΛΠ ΛΛΒλ𝜋 ΛΓΖΓβ λ𝛾𝜁𝛾Β Β𝜁𝜋ΛΛ βΖΠλλ βΛ𝛾Γ𝜁 ΒλΓ𝛾Ζ βΒλλΓ ΒβΛΛ𝛾 𝜁λβΛ𝜁 ΖΛΒλΖ ΛΛΒ𝜁β λλβΖΒ 𝛾𝛾Βλ𝜁 
ΓΓβΛΖ 𝜁λ𝛾Λλ ΖΛΓλΛ ΖΓ𝛾Γβ 𝜁𝛾Γ𝛾Β 𝛾𝛾Β𝜋Π ΓΓβΠ𝜋 Γλλ𝜁β 𝛾ΛΛΖΒ Γ𝛾ΖΠβ 𝛾Γ𝜁𝜋Β ΖΓλΓλ 𝜁𝛾Λ𝛾Λ λΛΒ𝛾Λ ΛλβΓλ 
Γ𝛾Γβ𝜋 𝛾Γ𝛾ΒΠ ΠλΖΠβ 𝜋Λ𝜁𝜋Β Π𝛾Γ𝛾Λ 𝜋Γ𝛾Γλ Β𝛾𝜁λβ βΓΖΛΒ ΠλβΠ𝜁 𝜋ΛΒ𝜋Ζ ΓλΖΓβ 𝛾Λ𝜁𝛾Β βΠ𝜋Γ𝜁 Β𝜋Π𝛾Ζ 𝜁𝛾Γ𝛾Π 
ΖΓ𝛾Γ𝜋 Βλ𝜁λΖ βΛΖΛ𝜁 Πλ𝜁𝛾Β 𝜋ΛΖΓβ ΖΓ𝛾Π𝛾 𝜁𝛾Γ𝜋Γ λβΛλλ ΛΒλΛΛ 𝜋ΓβΓβ Π𝛾Β𝛾Β λ𝛾Λ𝛾Π ΛΓλΓ𝜋 Π𝜋ΖΒ𝜋 𝜋Π𝜁βΠ 
𝛾ΛβΠλ ΓλΒ𝜋Λ ΛΛΖΛβ λλ𝜁λΒ 𝜁λλΛλ ΖΛΛλΛ 𝜁λΖΛΒ ΖΛ𝜁λβ λΓ𝛾ΖΠ Λ𝛾Γ𝜁𝜋 βΠλ𝛾Π Β𝜋ΛΓ𝜋 λλ𝜋Γ𝜁 ΛΛΠ𝛾Ζ 𝜁𝛾Β𝜋Β 
ΖΓβΠβ 𝛾Λ𝛾ΖΓ ΓλΓ𝜁𝛾 Π𝜁𝜁λβ 𝜋ΖΖΛΒ Γ𝜋Πλ𝜋 𝛾Π𝜋ΛΠ 𝛾ΒλΓλ ΓβΛ𝛾Λ Γ𝛾Γ𝜋𝜋 𝛾Γ𝛾ΠΠ λ𝛾ΖΠ𝜁 ΛΓ𝜁𝜋Ζ ΛΠβΛΖ λ𝜋Βλ𝜁 
ΓβΖΛΛ 𝛾Β𝜁λλ λΛΓ𝛾Λ Λλ𝛾Γλ 𝛾𝜁λλλ ΓΖΛΛΛ λλΛ𝛾Β ΛΛλΓβ ΓβΒ𝛾Ζ 𝛾ΒβΓ𝜁 λλ𝜁βΒ ΛΛΖΒβ λΓλΓλ Λ𝛾Λ𝛾Λ ΖΠ𝜋Γ𝛾 
𝜁𝜋Π𝛾Γ Γ𝜋Γ𝛾Λ 𝛾Π𝛾Γλ ΖΛΓ𝛾Ζ 𝜁λ𝛾Γ𝜁 Γλλ𝜁𝜋 𝛾ΛΛΖΠ 𝜋ΛβΓ𝜁 ΠλΒ𝛾Ζ 𝛾ΓβΓΓ Γ𝛾Β𝛾𝛾 ΛΛΛΠ𝜋 λλλ𝜋Π Γλ𝜁𝛾Ζ 𝛾ΛΖΓ𝜁 
Π𝛾𝜁𝜋Ζ 𝜋ΓΖΠ𝜁 𝛾Β𝜁λ𝜁 ΓβΖΛΖ λ𝛾Γ𝛾Λ ΛΓ𝛾Γλ λλ𝜁𝛾Π ΛΛΖΓ𝜋 ΓλΖΓ𝛾 𝛾Λ𝜁𝛾Γ 𝜋Π𝜁λ𝜁 Π𝜋ΖΛΖ 𝛾ΛΛ𝜁λ ΓλλΖΛ λ𝜋Π𝜋Γ 
ΛΠ𝜋Π𝛾 ΖΓΓ𝛾Λ 𝜁𝛾𝛾Γλ λ𝜁βΛ𝜁 ΛΖΒλΖ ΛΓ𝜁λΖ λ𝛾ΖΛ𝜁 𝜋Π𝜋Β𝜁 Π𝜋ΠβΖ ΛΛ𝛾Β𝜋 λλΓβΠ 𝜋ΒβΓ𝜁 ΠβΒ𝛾Ζ λ𝛾ΒλΒ ΛΓβΛβ 
λλΒ𝜋Β ΛΛβΠβ λ𝜋𝜋ΛΒ ΛΠΠλβ 𝜋Π𝛾Β𝜁 Π𝜋ΓβΖ 𝛾ΛΒ𝜋Β ΓλβΠβ 𝛾ΓΖΛΒ Γ𝛾𝜁λβ Β𝛾Β𝜋Ζ βΓβΠ𝜁 𝜋Λ𝜁𝜋Π ΠλΖΠ𝜋 ΛΛΒ𝜋Ζ 
λλβΠ𝜁 λΓβΛΒ Λ𝛾Βλβ 𝜋ΠβΠ𝜁 Π𝜋Β𝜋Ζ ΠλβΛβ 𝜋ΛΒλΒ ΖΛΒ𝛾Ζ 𝜁λβΓ𝜁 𝛾Λ𝜁λ𝜁 ΓλΖΛΖ Π𝛾βΓ𝜋 𝜋ΓΒ𝛾Π λλλλΒ ΛΛΛΛβ 
λ𝛾Β𝛾𝜁 ΛΓβΓΖ Π𝛾ΖΓ𝜋 𝜋Γ𝜁𝛾Π λ𝜋ΓβΓ ΛΠ𝛾Β𝛾 Π𝜋ΖΓβ 𝜋Π𝜁𝛾Β Γ𝛾ΛΛ𝛾 𝛾ΓλλΓ 𝜋Γ𝜁𝜋Β Π𝛾ΖΠβ 𝜁𝜋Γ𝛾Γ ΖΠ𝛾Γ𝛾 ΓβΖΓβ 
𝛾Β𝜁𝛾Β λ𝜋ΛΓ𝜁 ΛΠλ𝛾Ζ Π𝜁βΛΖ 𝜋ΖΒλ𝜁 ΠλλΒ𝜋 𝜋ΛΛβΠ λ𝛾Β𝛾Π ΛΓβΓ𝜋 λ𝜋Γλ𝜁 ΛΠ𝛾ΛΖ Γ𝜁𝛾Λ𝛾 𝛾ΖΓλΓ Γλ𝜁𝜋Γ 𝛾ΛΖΠ𝛾 
ΛΒ𝜁λ𝛾 λβΖΛΓ 𝛾ΓβΓ𝜁 Γ𝛾Β𝛾Ζ Π𝛾ΛΒ𝛾 𝜋ΓλβΓ ΛΠ𝛾Γβ λ𝜋Γ𝛾Β 𝛾Πλλλ Γ𝜋ΛΛΛ 𝛾ΖΒλ𝜁 Γ𝜁βΛΖ ΓβΠ𝛾Λ 𝛾Β𝜋Γλ ΖΓλλ𝛾 
𝜁𝛾ΛΛΓ 𝛾ΠβΛΒ Γ𝜋Βλβ Π𝛾𝜁𝛾Ζ 𝜋ΓΖΓ𝜁 λ𝜁𝜁𝛾Β ΛΖΖΓβ λβΛΛΠ ΛΒλλ𝜋 Π𝛾βΛΖ 𝜋ΓΒλ𝜁 ΒλλΓ𝜋 βΛΛ𝛾Π 𝛾ΖΠλλ Γ𝜁𝜋ΛΛ 
βΠ𝜋Π𝛾 Β𝜋Π𝜋Γ 𝛾ΖΒλλ Γ𝜁βΛΛ ΛΒ𝜁𝛾Ζ λβΖΓ𝜁 ΛΛΖΓΖ λλ𝜁𝛾𝜁 𝜋Γλ𝛾Π Π𝛾ΛΓ𝜋 βΓβΓ𝜁 Β𝛾Β𝛾Ζ ΛΖΖΛΖ λ𝜁𝜁λ𝜁 λ𝛾𝜁λ𝜁 
ΛΓΖΛΖ 𝜋ΓΖΛΠ Π𝛾𝜁λ𝜋 λλλΓλ ΛΛΛ𝛾Λ 𝛾ΛΒλΛ ΓλβΛλ λβΠ𝛾Π ΛΒ𝜋Γ𝜋 ΓλβΠ𝛾 𝛾ΛΒ𝜋Γ ΛΓλ𝜁β λ𝛾ΛΖΒ 𝜋Π𝜋Π𝜁 Π𝜋Π𝜋Ζ 
Γ𝛾ΛΛΖ 𝛾Γλλ𝜁 Γ𝛾ΖΓβ 𝛾Γ𝜁𝛾Β Π𝛾ΖΛΒ 𝜋Γ𝜁λβ Γλ𝛾Λλ 𝛾ΛΓλΛ ΛΓλΓβ λ𝛾Λ𝛾Β ΒβΛΛΛ βΒλλλ 𝜋ΠβΓ𝜁 Π𝜋Β𝛾Ζ βΛΓ𝛾Β 
Βλ𝛾Γβ ΛΓλ𝜁𝛾 λ𝛾ΛΖΓ 𝛾ΛβΛΒ ΓλΒλβ ΛΖΒ𝛾Ζ λ𝜁βΓ𝜁 Γ𝛾Π𝛾Λ 𝛾Γ𝜋Γλ λλΖΓ𝜁 ΛΛ𝜁𝛾Ζ ΠλΖΓβ 𝜋Λ𝜁𝛾Β βΠλ𝜋Γ Β𝜋ΛΠ𝛾 
𝜋Πλλ𝜁 Π𝜋ΛΛΖ 𝛾Π𝜋Π𝛾 Γ𝜋Π𝜋Γ Πλ𝜁𝜋Ζ 𝜋ΛΖΠ𝜁 𝜋ΓλβΠ Π𝛾ΛΒ𝜋 βΒ𝜋Πλ ΒβΠ𝜋Λ Β𝜋ΛΛΛ βΠλλλ Γ𝛾Γ𝛾Ζ 𝛾Γ𝛾Γ𝜁 λ𝛾Γ𝜋Β 
ΛΓ𝛾Πβ λβΒ𝜋Β ΛΒβΠβ 𝜋ΛβΛΒ ΠλΒλβ ΛΓ𝛾Λβ λ𝛾ΓλΒ ΓβΓ𝛾Λ 𝛾Β𝛾Γλ 𝛾ΛΒλΓ ΓλβΛ𝛾 Π𝛾βΓβ 𝜋ΓΒ𝛾Β 𝜋Π𝜋Γ𝜁 Π𝜋Π𝛾Ζ 
Π𝛾ΖΓβ 𝜋Γ𝜁𝛾Β 𝜋ΓβΠ𝜁 Π𝛾Β𝜋Ζ Γ𝛾ΖΛΖ 𝛾Γ𝜁λ𝜁 ΓλΖΛΛ 𝛾Λ𝜁λλ 𝜋Π𝜋Πλ Π𝜋Π𝜋Λ λλ𝜁𝜋Β ΛΛΖΠβ 𝛾ΓβΓλ Γ𝛾Β𝛾Λ 𝜋Π𝜋Βλ 
Π𝜋ΠβΛ 𝛾Π𝜋Βλ Γ𝜋ΠβΛ Β𝛾Λ𝛾Λ βΓλΓλ λ𝛾ΖΓ𝜁 ΛΓ𝜁𝛾Ζ ΛΖΛΓ𝜋 λ𝜁λ𝛾Π λλλλλ ΛΛΛΛΛ λ𝜁𝜋ΛΓ ΛΖΠλ𝛾 Π𝛾ΖΛΖ 𝜋Γ𝜁λ𝜁 
Γλ𝛾Λ𝛾 𝛾ΛΓλΓ 𝜋ΛΒλβ ΠλβΛΒ Γ𝜋ΛΒ𝛾 𝛾ΠλβΓ βΓλλλ Β𝛾ΛΛΛ Γ𝛾Λ𝛾Λ 𝛾ΓλΓλ 𝛾ΛΓ𝜁λ Γλ𝛾ΖΛ Γ𝛾Π𝜋Γ 𝛾Γ𝜋Π𝛾 λλβΛ𝜁 
ΛΛΒλΖ Γ𝛾Β𝜋Γ 𝛾ΓβΠ𝛾 λλ𝛾ΛΓ ΛΛΓλ𝛾 Πλ𝜁𝛾Ζ 𝜋ΛΖΓ𝜁 ΛΛ𝛾Γ𝜋 λλΓ𝛾Π ΛΓβΠβ λ𝛾Β𝜋Β 𝜋ΛΛ𝛾Π ΠλλΓ𝜋 ΠβΒλβ 𝜋ΒβΛΒ 
ΠλΖΛΖ 𝜋Λ𝜁λ𝜁 ΓβΠ𝜋Λ 𝛾Β𝜋Πλ 𝜋ΓβΓ𝜁 Π𝛾Β𝛾Ζ 𝛾ΛΒλ𝜁 ΓλβΛΖ λλΒλ𝜁 ΛΛβΛΖ Βλ𝛾ΛΛ βΛΓλλ ΠλβΠβ 𝜋ΛΒ𝜋Β 𝜁λλ𝛾Γ 
ΖΛΛΓ𝛾 λβΒ𝛾Β ΛΒβΓβ ΓλβΓβ 𝛾ΛΒ𝛾Β ΛΛβΓβ λλΒ𝛾Β ΛΒβΛΖ λβΒλ𝜁 𝜋ΓβΛΠ Π𝛾Βλ𝜋 ΛΒ𝛾Γ𝛾 λβΓ𝛾Γ ΛΛΖΛΛ λλ𝜁λλ 
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𝜋ΓβΛΓ Π𝛾Βλ𝛾 Π𝜋ΛΓ𝜋 𝜋Πλ𝛾Π 𝛾ΒβΛΒ ΓβΒλβ Γ𝜋ΛΓ𝛾 𝛾Πλ𝛾Γ λλλ𝛾Β ΛΛΛΓβ λβΖΛΒ ΛΒ𝜁λβ Γλ𝜁λβ 𝛾ΛΖΛΒ λλλ𝛾Γ 
ΛΛΛΓ𝛾 λλ𝛾ΛΒ ΛΛΓλβ Π𝜋ΛΒ𝛾 𝜋ΠλβΓ ΛΛ𝜁λβ λλΖΛΒ Γ𝛾Γ𝛾Λ 𝛾Γ𝛾Γλ Γλ𝜁λλ 𝛾ΛΖΛΛ λλβΓ𝜁 ΛΛΒ𝛾Ζ Π𝛾𝜁λβ 𝜋ΓΖΛΒ 
λ𝜁λ𝜋Π ΛΖΛΠ𝜋 λλ𝜁𝛾Β ΛΛΖΓβ ΛΓ𝛾Β𝜋 λ𝛾ΓβΠ ΛΛΖΛΖ λλ𝜁λ𝜁 ΒλβΛΖ βΛΒλ𝜁 𝛾ΓβΛΒ Γ𝛾Βλβ βΛΛ𝛾Γ ΒλλΓ𝛾 Γ𝛾ΛΖΛ 
𝛾Γλ𝜁λ Π𝜋ΛΓ𝛾 𝜋Πλ𝛾Γ Π𝜋Βλβ 𝜋ΠβΛΒ ΠλβΠ𝜋 𝜋ΛΒ𝜋Π ΛΓβΓβ λ𝛾Β𝛾Β λ𝛾Βλ𝜁 ΛΓβΛΖ ΠλβΛΖ 𝜋ΛΒλ𝜁 ΓβΛΓ𝛾 𝛾Βλ𝛾Γ 
ΛΓ𝜁λβ λ𝛾ΖΛΒ 𝜋ΛΒ𝛾Β ΠλβΓβ λλβΛΒ ΛΛΒλβ 𝜋ΓβΛΒ Π𝛾Βλβ Πλ𝜁λβ 𝜋ΛΖΛΒ   
 
List S2. 50 random cyclic peptide sequences in the test dataset (Dataset 4). 
rNDsF vrdvA RfdNr SVFdR ANDnA DdFVs RAvRs fffaa SSrsA nvDnF nsaaF DAvsD snGAa avNSd 
SdFrS avVrr dVsrf NAnNS RsFDS arFGa AsNAr fNvAA RADaS RDAvs FAdNA SrGnR nrRAv SaARF 
FvrFR vfDsR VssSN RaRDR nARRD FsGna DfaNv NNDas DdSrD fnDSd VSadn dfRNd FdNfA VaAVn 
sDAsF SVFAa AsNVs dNsGV GNsrn sdSfd vsVAG FaanA 
 
List S3. 705 semi-random cyclic peptide sequences in the training dataset (Dataset 3) for StrEAMM (1,2)+(1,3)/random. 
SnSVa nNnGA NfNdv fFfDV FaFrG aAaRd AvAsD vVvSr VGVnR GdGNs dDdfS DrDFn rRraN RsRAf sSsvF 
drrFV DRRaG rssAd RSSvD snnVr SNNGR nffds faarn avvsf vGGna VddNA GDDfv AGsVN vdSGf VDndF 
GrNDa dRfrA DsFRv rSasV RnASG sNvnd SfVND nFGfr NadFR fADas FvrAS aVRvn VNrSS GfRnn dFsNN 
DaSff rAnFF RvNaa sVfAA SGFvv ndaVV NDAGG frvdd asGrr ASdRR vnDss sFdns SaDNS nArfn NvRFN 
fVsaf FGSAF adnva vrfGv VRFdV GsaDG dSArd DnvRD rNVsr RfGSR nddRr NDDsR frrSs FRRnS assNn 
ASSfN vnnFf VNNaF GffAa dFFvA DaaVv rAAGV RvvdG sVVDd SGGrD RRRGr sssdR SSSDs nnnrS NNNRn 
fffsN FFFSf aaanF AAANa vvvfA VVVFv GGGaV dddAG DDDvd rrrVD dfRFv DFsaV raSAG RAnvd svNVD 
SVfGr nGFdR NdaDs fDArS FrvRn aRVsN AsGSf vSdnF VnDNa GNrfA VnsRD GNSsr dfnSR DFNns rafNS 
RAFfn svaFN SVAaf nGvAF NdVva fDGVA FrdGv aRDdV AsrDG vSRrd DnFSA rNanv RfANV sFvfG SaVFd 
nAGaD NvdAr fVDvR FGrVs adRGS ADsdn vrSDN VRnrf GsNRF dSfsa dnGnR DNdNs rfDfS RFrFn saRaN 
SAsAf nvSvF NVnVa fGNGA Fdfdv aDFDV ArarG vRARd VsvsD GSVSr vVdDG VGDrd GdrRD dDRsr DrsSR 
rRSns RsnNS sSNfn SnfFN nNFaf NfaAF fFAva FavVA aAVGv AvGdV sRRFV SssaG nSSAd NnnvD fNNVr 
FffGR aFFds AaaDS vAArn VvvRN GVVsf dGGSF Dddna rDDNA Rrrfv DaFDs rAarS RvARn sVvsN SGVSf 
ndGnF NDdNa frDfA FRrFv asRaV ASsAG vnSvd VNnVD GfNGr dFfdR vDdRa VrDsA GRrSv dsRnV DSsNG 
rnSfd RNnFD sfNar SFfAR naFvs NAaVS fvAGn FVvdN aGVDf AdGrF GdsGn dDSdN DrnDf rRNrF RsfRa 
sSFsA SnaSv nNAnV NfvNG fFVfd FaGFD aAdar AvDAR vVrvs VGRVS NGdFd fdDaD FDrAr arRvR ARsVs 
vsSGS VSndn GnNDN dNfrf DfFRF rFasa RaASA sAvnv SvVNV nVGfG DDGFs rrdaS RRDAn ssrvN SSRVf 
nnsGF NNSda ffnDA FFNrv aafRV AAFsG vvaSd VVAnD GGvNr ddVfR DnrAF rNRva RfsVA sFSGv SandV 
nANDG Nvfrd fVFRD FGasr adASR ADvns vrVNS VRGfn GsdFN dSDaf ARDan vsrAN VSRvf GnsVF dNSGa 
DfndA rFNDv RafrV sAFRG Svasd nVASD NGvnr fdVNR FDGfs ardFS RaaGN sAAdf SvvDF nVVra NGGRA 
fddsv arrnG ARRNd vssfD VSSFr GnnaR dNNAs DffvS rFFVn GdvDf dDVrF DrGRa rRdsA RsDSv sSrnV 
SnRNG nNsfd NfSFD fFnar FaNAR aAfvs AvFVS vVaGn VGAdN NAASv fvvnV FVVNG aGGfd AddFD vDDar 
VrrAR GRRvs dssVS DSSGn rnndN RNNDf sffrF SFFRa naasA AsaNR vSAfs VnvFS GNVan dfGAN DFdvf 
raDVF RArGa svRdA SVsDv nGSrV NdnRG fDNsd FrfSD aRFnr vaGRD VAdsr GvDSR dVrns DGRNS rdsfn 
srnaf nsfva fnaGv FNAdV afvDG AFVrd DvGnr rVdNR RGDfs sdrFS SDRan nrsAN NRSvf fsnVF FSNGa 
anfdA ANFDv vfarV VFARG Gavsd dAVSD vNNFN Vffaf GFFAF daava rvvGv RVVdV sGGDG Sddrd nDDRD 
Nrrsr fRRSR Fssns aSSNS Annfn aFdra AaDRA vArsv VvRSV GVsnG dGSNd DdnfD rDNFr RrfaR sRFAs 
SsavS nSAVn NnvGN fNVdf FfGDF GVvFv dGVaV DdGAG rDdvd RrDVD sRrGr SsRdR nSsDs NnSrS fNnRn 
FfNsN aFfSf AaFnF vAaNa VvAfA asvrR ASVRs vnGsS VNdSn GfDnN dFrNf DaRfF rAsFa RvSaA sVnAv 
SGNvV ndfVG NDFGd fradD FRADr SsVGd nSGdD NndDr fNDrR FfrRs aFRsS AasSn vASnN VvnNf GVNfF 
dGfFa DdFaA rDaAv RrAvV sRvVG vdVda VDGDA Grdrv dRDRV DsrsG rSRSd RnsnD sNSNr SfnfR nFNFs 
NafaS fAFAn FvavN aVAVf AGvGF ASrdf vnRDF VNsra GfSRA dFnsv DaNSV rAfnG RvFNd sVafD SGAFr 
ndvaR NDVAs frGvS FRdVn asDGN vVsdd VGSDD Gdnrr dDNRR Drfss rRFSS Rsann sSANN Snvff nNVFF 
NfGaa fFdAA FaDvv aArVV AvRGG nadda fvrrv aGssG AdSSd vDnnD VrNNr GRffR dsFFs DSaaS rnAAn 
RNvvN sfVVf SFGGF snrvS SNRVn nfsGN NFSdf fanDF FANra avfRA AVFsv vGaSV VdAnG GDvNd drVfD 
DRGFr rsdaR RSDAs RfvFf sFVaF SaGAa nAdvA NvDVv fVrGV FGRdG adsDd ADSrD vrnRr VRNsR GsfSs 
dSFnS DnaNn rNAfN RFRfD sasFr SASaR nvnAs NVNvS fGfVn FdFGN aDadf ArADF vRvra VsVRA GSGsv 
dndSV DNDnG rfrNd VAGFf GvdaF dVDAa DGrvA rdRVv RDsGV srSdG SRnDd nsNrD NSfRr fnFsR FNaSs 
afAnS AFvNn vaVfN vNSAA Vfnvv GFNVV dafGG DAFdd rvaDD RVArr sGvRR SdVss nDGSS Nrdnn fRDNN 
Fsrff aSRFF Ansaa sAaAN SvAvf nVvVF NGVGa fdGdA FDdDv arDrV ARrRG vsRsd VSsSD GnSnr dNnNR 
DfNfs rFfFS RaFan rVFaV RGaAG sdAvd SDvVD nrVGr NRGdR fsdDs FSDrS anrRn ANRsN vfsSf VFSnF 
GanNa dANfA DvfFv SrsVd nRSGD Nsndr fSNDR Fnfrs aNFRS Afasn vFASN Vavnf GAVNF dvGfa DVdFA 
rGDav RdrAV sDRvG DNVAD FVGNA AdDFV DSnGR RNfDS SFaRN NAvSF aDAAV NFAVA FsVDD AADAN VSFAf 
FDSNs ARNFn NvGAD DFRVF FFDDS DVRRV SVFVR NVfrn Fdasf Arvna VsGfv dnDaG rfRvD saSGR SAnds 
VNaDS VrRAV nNdsD fFrnR aAsfS vVnaN GdfvF sSVrG DaVsv GfAra dFvRA FRnvn rAGSG Rvdnd NDsas 
frSAS NADRV VadrG dvrsD SrNFF RdSNF SfGFR VDNrA sFAAR AFSRv DDASa DnfSn FGDVr FNRSr GSdFD 
GsnRv NRDRd RNANS RfaNn RsvRV SavFf VVSFV dRFsS fVdvv nAVAA nvNDG DraAr sNVSf GrfAn nFdad 
 
List S4. 75 random cyclic peptide sequences in the test dataset (Dataset 6) for StrEAMM (1,2)+(1,3)/sys37, including 37 
types of amino acids. 
AaGGr AewYN AHCVE ANiRQ AqWLw ASFsY caTNv DeSMA dhKYA dyqDk EekVh emfAR FdFKF FlcsH fLWSl 
FrMRM FVnTK GcEQd GqqDE GyATS GYEtS HDckk HDlkt hlMKy hlstI HSfCT hwtiD IEKst INfWm IyyKA 
kKEct kqRef LlHHK LMdCW lWrHh MsMTK NhfwK nhSYY NHyFI nSLtc qaqQH qcyAf qIqrV QlSFV qTySW 
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qwHca QWRNH raNaK rddwn rICAm RQwsv rtiGN SdNTl sDyeT sSnvf SvVid Syhww taEVR TddDk Teslq 
tIqIL tIWci TqGdv vccVe vQNGk VTrDl WFFqN wHseh WtYdE YciGr YdFAm ynWvy ySmmw YvrNC YwnlK 
 
List S5. Dataset 6 in List S4 was divided into two sub datasets, Dataset 6.1 and Dataset 6.2. Dataset 6.1 was used in the 
training of StrEAMM GNN/random37; Dataset 6.2 was used for testing both StrEAMM GNN/random and StrEAMM 
GNN/random37. 
 
Dataset 6.1: 
AaGGr AewYN AHCVE ANiRQ AqWLw ASFsY caTNv DeSMA dhKYA dyqDk EekVh emfAR FdFKF FlcsH fLWSl 
FrMRM FVnTK GcEQd GqqDE GyATS GYEtS HDckk HDlkt hlMKy hlstI HSfCT hwtiD IEKst INfWm IyyKA 
kKEct kqRef LlHHK LMdCW lWrHh MsMTK NhfwK nhSYY NHyFI nSLtc qaqQH qcyAf qIqrV QlSFV qTySW 
qwHca QWRNH raNaK rddwn rICAm 
Dataset 6.2: 
RQwsv rtiGN SdNTl sDyeT sSnvf SvVid Syhww taEVR TddDk Teslq tIqIL tIWci TqGdv vccVe vQNGk 
VTrDl WFFqN wHseh WtYdE YciGr YdFAm ynWvy ySmmw YvrNC YwnlK 
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Figure S1. Illustration of the matrix equation (7) ln 𝒑 = 𝑨𝒘. The logarithms of populations are arranged into a column vector 
of size N, where N is the summation of the number of structure types of each cyclic peptide in the training set. Different weights 
are arranged into a column vector of size M, where M is the number of weights. Weights that are mirror images of each other are 
treated as equal, for example, 𝑤!&!&'!

"&"&'! = 𝑤%&%&'!
9&9&'! , 	𝑤!&!&'!!&'"

"&_"&'" = 𝑤%&%&'!%&'"
9&_9&'" , and 𝑤+

"!"""#"$"% = 𝑤+
9!9"9#9$9% , with capital and 

lowercase letter pairs representing enantiomers of amino acids and structures. The coefficient matrix 𝑨 controls which weights are 
used to compute the population of a specific cyclic-peptide sequence adopting a specific structure. 
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Figure S2. Performance of Scoring Function 1.0 on the test Dataset 4. Subplots show comparison between scores predicted by 
Scoring Function 1.0 and the actual populations of various structures observed in the MD simulations for 50 random sequences. 
Only structures whose observed populations are >1% or whose predicted scores are above 0.01 are shown. Green boxes show cyclic 
peptides whose top structures were predicted correctly by the scoring function. 
 

 
Figure S3. Distribution of weights for StrEAMM (1,2)/sys. The weights are related to (1,2) interactions. Both enantiomers of a 
weight are shown. 
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Figure S4. Performance of StrEAMM (1,2)/sys on the test Dataset 4. Subplots show comparison between populations predicted 
by StrEAMM (1,2)/sys and the actual populations of various structures observed in the MD simulations for 50 random sequences. 
Only structures with observed populations or predicted populations >1% are shown. Gray lines show where the predicted 
populations equal real populations. Green boxes show cyclic peptides whose top structures were predicted correctly by the 
StrEAMM model. 
 

 
Figure S5. Distributions of weights for StrEAMM (1,2)+(1,3)/sys. a, Distribution of the weights related to (1,2) interactions. 
Both enantiomers of a weight are shown. b, Distribution of the weights related to (1,3) interactions. Both enantiomers of a weight 
are shown. 
 

a b(1, 2) interactions (1, 3) interactions
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Figure S6. Performance of StrEAMM (1,2)+(1,3)/sys on the test Dataset 4. Subplots show comparison between populations 
predicted by StrEAMM (1,2)+(1,3)/sys and the actual populations of various structures observed in the MD simulations for 50 
random sequences. Only structures with observed populations or predicted populations >1% are shown. Gray lines show where the 
predicted populations equal real populations. Green boxes show cyclic peptides whose top structures were predicted correctly by 
the StrEAMM model. 
 
 

 
Figure S7. Distributions of weights for StrEAMM (1,2)+(1,3)/random. a, Distribution of the weights related to (1,2) 
interactions. Both enantiomers of a weight are shown. b, Distribution of the weights related to (1,3) interactions. Both 
enantiomers of a weight are shown. 
 

a b(1, 2) interactions (1, 3) interactions
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Figure S8. Performance of StrEAMM (1,2)+(1,3)/random on the test Dataset 4. Subplots show comparison between 
populations predicted by StrEAMM (1,2)+(1,3)/random and the actual populations of various structures observed in the MD 
simulations for 50 random sequences. Only structures with observed populations or predicted populations >1% are shown. Gray 
lines show where the predicted populations equal real populations. Green boxes show cyclic peptides whose top structures were 
predicted correctly by the StrEAMM model. 
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Figure S9. Performance of StrEAMM (1,2)+(1,3)/sys37. a, Comparison between the fitted populations and the actual 
populations of various structures observed in the MD simulations of the training dataset. b, Comparison between the populations 
predicted by StrEAMM (1,2)+(1,3)/sys37 and the actual populations of various structures observed in the MD simulations of 75 
random test sequences (List S4); only structures with observed populations or predicted populations >1% are shown. Pearson 
correlation coefficient (R),  weighted error (WE = ∑ >&,)*+,-.,/?>&,)*+,-.,/@>&,01,)-2?&

∑ >&,)*+,-.,/&
, where 𝑝,,&6*8'A is the fitted population or the 

predicted population), and weighted squared error (WSE = ∑ >&,)*+,-.,/B>&,)*+,-.,/@>&,01,)-2C
"

&

∑ >&,)*+,-.,/&
) were calculated.  Gray lines show where 

the fitted/predicted populations equal the observed populations in MD simulations. StrEAMM (1,2)+(1,3)/sys37 successfully 
predicts the most-populated structures of 51 out of the 75 cyclic peptides in the test dataset, and these structures are shown as 
orange stars. 
  

StrEAMM (1,2)+(1,3)/sys37

Training dataset Test dataset

b
R = 0.841

WE = 4.907
WSE = 83.177

a
R = 0.999

WE = 0.180
WSE = 0.151
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Figure S10. Performance of StrEAMM GNN/random. a, Comparison between the fitted populations and the actual populations of 
various structures observed in the MD simulations of the training dataset (Dataset 3). Data for enantiomers and cyclically permuted 
sequences are not shown, and only structures with observed populations or fitted populations >1% are shown. b, Comparison 
between the populations predicted by StrEAMM GNN/random and the actual populations of various structures observed in the MD 
simulations of 50 random test sequences (Dataset 4, List S2); only structures with observed populations or predicted populations 
>1% are shown. The model successfully predicts the most-populated structures of 42 out of the 50 cyclic peptides in the test dataset, 
and these structures are shown as orange stars. c, Comparison between the populations predicted by StrEAMM GNN/random and 
the actual populations of various structures observed in the MD simulations of another 25 random test sequences including 37 
amino acids (Dataset 6.2, List S5); only structures with observed populations or predicted populations >1% are shown. The model 
successfully predicts the most-populated structures of 13 out of the 25 cyclic peptides in the test dataset, and these structures are 
shown as orange stars. Pearson correlation coefficient (R), weighted error (WE), and weighted squared error (WSE) were calculated. 
Gray lines show where the fitted/predicted populations equal the observed populations in MD simulations. 
 

 
Figure S11. Performance of StrEAMM GNN/random37. a, Comparison between the fitted populations and the actual populations 
of various structures observed in the MD simulations of the training dataset (705 sequences in Dataset 3 including 15 amino acids, 
plus another 50 random sequences in Dataset 6.1 (List S5) including 37 amino acids). Data for enantiomers and cyclically permuted 
sequences are not shown, and only structures with observed populations or fitted populations >1% are shown. b, Comparison 
between the populations predicted by StrEAMM GNN/random37 and the actual populations of various structures observed in the 
MD simulations of 50 random test sequences (Dataset 4, List S2); only structures with observed populations or predicted 
populations >1% are shown. The model successfully predicts the most-populated structures of 43 out of the 50 cyclic peptides in 
the test dataset, and these structures are shown as orange stars. c, Comparison between the populations predicted by StrEAMM 
GNN/random37 and the actual populations of various structures observed in the MD simulations of another 25 random test 
sequences including 37 amino acids (Dataset 6.2, List S5); only structures with observed populations or predicted populations >1% 
are shown. The model successfully predicts the most-populated structures of 17 out of the 25 cyclic peptides in the test dataset, and 
these structures are shown as orange stars. Pearson correlation coefficient (R), weighted error (WE), and weighted squared error 
(WSE) were calculated. Gray lines show where the fitted/predicted populations equal the observed populations in MD simulations. 

Training dataset:
705 15-aa sequences

Test dataset:
50 15-aa sequences

b
R = 0.980

WE = 1.319
WSE = 5.361

a
R = 0.997

WE = 0.527
WSE = 1.123

Test dataset:
25 37-aa sequences

c
R = 0.821

WE = 5.232
WSE = 70.117

StrEAMM GNN/random

StrEAMM GNN/random37

Training dataset:
705 15-aa sequences + 

50 37-aa sequences

Test dataset: 
50 15-aa sequences

b
R = 0.980

WE = 1.297
WSE = 5.205

a
R = 0.997

WE = 0.530
WSE = 1.050

Test dataset:
25 37-aa sequences

c
R = 0.945

WE = 2.953
WSE = 25.872
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Figure S12. The Ramachandran plot is divided into 10 regions for structural description. a, The total probability distribution 
of (f, y) of cyclo-(GGGGG). The plot is the same as Fig. 6a of the main text except that grids with the lowest densities are colored 
white. b, Only grid points with a probability density larger than 0.00001 are shown and used for further cluster analysis. c, The 
grids in b are grouped into 10 clusters. The centroid of each cluster is marked by black dots. d, All the grid points in the 
Ramachandran plot are assigned to their closest centroid, forming 10 regions: L, l, G, g, B, b, P, p, Z, and z. 
 

 
Figure S13. Universality of the binning map in Fig. S12d. The (f, y) distributions for G, A, V, F, N, S, R, and D are from cyclo-
(GGGGG), cyclo-(AGGGG), cyclo-(VGGGG), cyclo-(FGGGG), cyclo-(NGGGG), cyclo-(SGGGG), cyclo-(RGGGG), and cyclo-
(DGGGG), respectively. The boundaries of the binning map are overlaid on each Ramachandran plot. Ramachandran plots of D-
amino acids are not shown because their distribution is center-symmetric with that of the corresponding L-amino acids about origin 
(0°, 0°). 
 
 

a b c d

G A V F

N S R D
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Figure S14. Comparison of performance of Scoring Function 1.0 and the StrEAMM models on cyclo-(GNSRV). Cyclo-
(GNSRV) is a well-structured cyclic peptide predicted by Slough et al.17 The three most-populated structures are shown, with a 
representative conformation shown in sticks and 100 randomly selected conformations shown in magenta lines. The actual 
populations observed in the MD simulations are given and compared to the predictions made by Scoring Function 1.0 and StrEAMM 
(1,2)/sys, StrEAMM (1,2)+(1,3)/sys, and StrEAMM (1,2)+(1,3)/random.    
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