Supporting Information

Photocytotoxicity and Photoinduced Phosphine Ligand Exchange in a Ru(II) Polypyridyl Complex

Sean J. Steinke,[‡] Sayak Gupta,[†] Eric J. Piechota,[‡] Curtis E. Moore,[‡] Jeremy J. Kodanko,[†]*

and Claudia Turro[‡]*

[‡]Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210 [†]Department of Chemistry, Wayne State University, Detroit, MI 48208

*Corresponding Authors: turro.1@osu.edu; jkodanko@wayne.edu

Table of Contents	Page Number
In-process and Final ¹ H and ³¹ P{H} NMR Spectra	
Figure S1. ¹ H NMR Spectrum of [Ru(phen) ₂ (PPh ₃)Cl] ⁺	
Figure S2. ³¹ P{H} NMR Spectrum of $[Ru(phen)_2(PPh_3)Cl]^+$	S3
Figure S3. ¹ H NMR Spectrum of 1a	S4
Figure S4. ³¹ P{H} NMR Spectrum of 1a	S4
Figure S5. ¹ H NMR Spectrum of [Ru(p-cymene)(phen)Cl]Cl	S5
Figure S6. ¹ H NMR Spectrum of [Ru(biq)(phen)(PPh ₃)Cl] ⁺	S5
Figure S7. ³¹ P{H} NMR Spectrum of [Ru(biq)(phen)(PPh ₃)Cl] ⁺	S6
Figure S8. ¹ H NMR Spectrum of 2a	S6
Figure S9. ³¹ P{H} NMR Spectrum of 2a	S7
Figure S10. Circular Voltammograms of 1a and 2a	S7
Figure S11. ³¹ P{H} NMR Spectrum of OPPh ₃	S8

Identification of Photolysis Intermediate I	S8
Figure S12. ORTEP plot of intermediate species I	S8
Table S1. Crystallographic data for intermediate species I	S9
Spectral Deconvolution and Kinetic Analysis	.S10
Figure S13. Absorption Spectra of 2a and Photoproducts in Pyridine	.S11
Table S2. Spectra Data for Photolysis of 2a in Pyridine	S12
Figure S14. ³¹ P{H} NMR Spectrum of 1a as a function of irradiation	.S13
Table S3. Crystallographic data for 1a, 2a, and 2b	.S14
Table S4. Crystallographic and ¹ GS calculated bond lengths and angles for 1a, 2a, and 2b	.S15
Figure S15. Electronic density plots of 1a HOMO and LUMO	.S16
Figure S16. Electronic density plots of 2a HOMO and LUMO	.S16
Table S5. Composition of Calculated HOMO and LUMO in 1a and 2a	.S16
Cell Viability	S17
Figure S17. EC ₅₀ curves of 1a	.S17
Figure S18. EC ₅₀ curves of 2a	.S18
Figure S19. Viability of MDA-MB-231 cells treated with PPh ₃	.S19

Figure S1. ¹H NMR spectrum of [Ru(phen)₂(PPh₃)Cl]⁺ in (CD₃)₂CO.

Figure S2. ${}^{31}P{H}$ NMR spectrum of $[Ru(phen)_2(PPh_3)Cl]^+$ in $(CD_3)_2CO$.

Figure S3. ¹H NMR of 1a in CD₃CN.

Figure S4. ${}^{31}P{H}$ NMR of 1a in CD₃CN.

Figure S5. ¹H NMR of [Ru(p-cymene)(phen)Cl]Cl in CD₃OD.

Figure S6. ¹H NMR spectrum of [Ru(biq)(phen)(PPh₃)Cl]⁺ in (CD₃)₂CO.

1			1		1	1			1		
	60		4	0		:	20		()	[ppm]

Figure S7. ³¹P{H} NMR spectrum of $[Ru(biq)(phen)(PPh_3)Cl]^+$ in $(CD_3)_2CO$.

Figure S8. ¹H NMR of 2a in CD₃CN.

Figure S10. Circular Voltammograms of 1a (top) and 2a (bottom) in CH₃CN (0.1 M TBAPF₆).

Identification of Photolysis Intermediate I.

Figure S12. ORTEP plot of intermediate species $[Ru(biq)(phen)(py)(CH_3CN)]^{2+}$ (I) (thermal ellipsoids have been drawn at 50% probability and hydrogen atoms, PF_6^- molecules, and co-

crystallized solvent molecules have been omitted for clarity); Ru: cyan, N: light purple, and C: grey.

Complex	$[Ru(biq)(phen)(py)(CH_3CN)]^{2+}(I)$
Chemical formula	$RuC_{37}H_{28}F_{12}N_6P_2$
Formula weight	947.66
Temp (K)	100(2)
Crystal system	Triclinic
Space Group	P-1
<i>a</i> (Å)	10.7106(3)
<i>b</i> (Å)	12.0600(3)
<i>c</i> (Å)	17.6215(4)
α (°)	109.847(1)
β (°)	92.875(1)
γ (°)	103.835(1)
V (Å ³)	2057.24(9)
Ζ	2
$D_{calc} (Mg/m^3)$	1.530
Absorption coefficient (mm ⁻¹)	4.629
F(000)	948
Crystal size (mm)	0.25 x 0.137 x 0.072
Theta range for data collection (°)	2.694 to 74.926
Index ranges	$-13 \le h \le 13$
	$-15 \le k \le 15$
	$-21 \le l \le 22$
Reflections collected	54578
Unique reflections	8374 [R(int) = 0.0318]
Completeness to theta = 25.000°	99.7%
Data/restraints/parameters	8374 / 526 / 699
R1 ^a (%) (all data)	0.0408 (0.0425)
$wR2^{b}$ (%) (all data)	0.1090 (0.1114)
Goodness-of-fit on F ²	1.052
Largest diff. peak and hole (e Å ⁻³)	0.870 and -0.390

Table S1. Crystallographic data for intermediate species I.

 $a\mathbf{R}\mathbf{1} = \boldsymbol{\Sigma} | |\mathbf{Fo}| - |\mathbf{Fc}| | / \boldsymbol{\Sigma} |\mathbf{Fo}| \mathbf{x} \mathbf{100}$

^bwR2 = $[\Sigma \mathbf{w} (\mathbf{F_0}^2 - \mathbf{F_c}^2)^2 / \Sigma (\mathbf{w} |\mathbf{F_0}|^2)^2]^{1/2} \mathbf{x} \mathbf{100}$

Spectral Deconvolution and Kinetic Analysis.

Analysis of the photolysis data for 2a in pyridine was performed under the assumption of a consecutive chemical reaction of the type $A \rightarrow B \rightarrow C$. The data supported this assumption through the appearance of two sets of isosbestic points. For the conversion of A to B, isosbestic points report directly on the formation of C and were observed at 316, 448, and 500 nm. By contrast, direct information on the disappearance of A was garnered from B to C isosbestic points at 338, 361, and 550 nm.

The concentration of A and C were calculated directly from a linear combination of individual specie absorbance, Abs, at a fixed wavelength, λ , Eq. S1.

$$Abs_{\lambda} = b(\varepsilon_{A}^{\lambda}[A] + \varepsilon_{B}^{\lambda}[B] + \varepsilon_{C}^{\lambda}[C])$$
(S1)

And

$$[A] + [B] + [C] = [C_t]$$
(S2)

Where ε_i is the extinction coefficient of the *i*th species at λ , b is the path length, and [A], [B], and [C] are molar concentrations of each component and C_t is the total concentration, *e.g.* the concentration of A initially present in solution. At a B to C isosbestic point,

$$\varepsilon_B^{\lambda} = \varepsilon_C^{\lambda} = \varepsilon_{BC}^{\lambda} \tag{S3}$$

Which allows simplification of Equation S1 into terms of [A],

$$[A] = \frac{Abs_{\lambda} - \varepsilon_{BC}^{\lambda}[C_t]}{\varepsilon_{A}^{\lambda} - \varepsilon_{BC}^{\lambda}}$$
(S4)

provided the extinction coefficient of the product, C, is known. At t = 20 min, it was assumed that the conversion of A to C was complete and ε_{C} was calculated from the initial concentration of **2a** (ε_{477} = 5,700 M⁻¹ cm⁻¹ in CH₃CN, [Ct] = 38.7 µM) used in the experiment, Figure S13.

Figure S13. Extinction coefficient spectra of the three species observed during the photolysis of 2a (red line) in pyridine to form $[Ru(biq)(phen)(py)(CH_3CN)]^{2+}$ (black line), and $[Ru(biq)(phen)(py)_2]^{2+}$ (blue line).

The same approach was applied at the A to B isosbestic points which reports directly on the formation of C, except that

$$\varepsilon_A^\lambda = \varepsilon_B^\lambda = \varepsilon_{AB}^\lambda \tag{S5}$$

which results in the following expression

$$[C] = \frac{Abs_{\lambda} - \varepsilon_{AB}^{\lambda}[C_t]}{\varepsilon_{C}^{\lambda} - \varepsilon_{AB}^{\lambda}}$$
(S6)

for the concentration of C as a function of time. Relevant spectroscopic data for the isosbestic points used to determine [A] and [C] are given in Table S1. Once [A] and [C] were known, [B] B was calculated at each time point based from [C_t].

Isosbestic	Reaction	$\epsilon_{\rm C}^{\lambda}({\rm M}^{-1}~{\rm cm}^{-1})$	$\epsilon_{AB}^{\lambda}(M^{-1} \text{ cm}^{-1})$	$\epsilon_{A^{\lambda}}(M^{-1} \text{ cm}^{-1})$	$\epsilon_{BC}^{\lambda}(M^{-1} \text{ cm}^{-1})$
Point (nm)					
316	A to B	14,400	18,900	-	-
448	A to B	5,900	4,100	-	-
500	A to B	4,300	4,900	-	-
338	B to C	-	-	15,200	24,000
361	B to C	-	-	18,600	21,200
550	B to C	-	-	1,340	5,200

 Table S2. Relevant Isosbestic Points, Reactions, and Extinction Coefficients Used In Spectral Deconvolution.

Note that the MLCT maxima for complex **2a** shifted to lower energy by ~10 nm (λ_{max} = 485 nm) when the solvent was changed from CH₃CN to pyridine. However, the extinction coefficient was assumed to be constant between these two points and 100% conversion to Ru(biq)(phen)(py)₂ was assumed in order to calculate the corresponding extinction coefficient spectrum. Finally, the extinction coefficient of Ru(biq)(phen)(py)(CH₃CN) was determined from Equation S7.

$$\varepsilon_B = \frac{A_o - \varepsilon_A[A] - \varepsilon_C[C]}{[B]} \tag{S7}$$

Numerical solutions to Equation S7 were determined at each time point from t = 0.25 to 10 min in order to collect an averaged, estimated extinction spectrum of Ru(biq)(phen)(py)(CH₃CN) which is shown in Fig S13.

Mole fractions of each component, χ_j , were calculated with Equation S8,

$$\chi_j = \frac{[j]}{[C_t]}, \ j = [A], [B], [C]$$
(S8)

which were used as the data points of Figure 6 in the main text.

Figure S14. ³¹P{H} NMR of 1a as a function of irradiation time in CD₃CN ($\lambda_{irr} \ge 395$ nm).

Complex	1a	2a	2b
Chemical formula	$RuC_{51}H_{42}F_{12}N_5P_3$	$RuC_{52}H_{41}N_{6}F_{12}P_{3}$	$RuC_{34}H_{26}F_{12}N_{6}P_{2}$
Formula weight	1146.87	1171.89	909.62
Temp (K)	100.0	150(2)	100.0
Crystal system	Monoclinic	Triclinic	Triclinic
Space Group	P 1 21/n 1	P-1	P-1
<i>a</i> (Å)	17.6755(7)	12.2183(5)	10.2271(12)
<i>b</i> (Å)	13.6841(5)	13.9009(6)	11.7137(12)
<i>c</i> (Å)	21.4460(9)	15.8262(6)	14.9235(19)
α (°)	90	101.454(2)	97.547
β (°)	111.9850(1)	103.216(2)	100.062
γ (°)	90	91.967(2)	97.284
$V(Å^3)$	4810.0(3)	2555.73(18)	1724.4(3)
Z	4	2	2
D_{calc} (Mg/m ³)	1.584	1.523	1.752
Absorption coefficient (mm ⁻¹)	0.515	0.487	0.650
F(000)	2320	1184	908
Crystal size (mm)	0.279 x 0.223 x 0.148	0.19 x 0.15 x 0.08	0.253 x 0.216 x 0.054
Theta range for data collection (°)	2.851 to 26.396	3.001 to 28.298	2.804 to 26.411
Index ranges	$-22 \le h \le 20$	$-16 \le h \le 16$	$-12 \le h \le 12$
	$-17 \le k \le 17$	$-18 \le k \le 18$	$-14 \le k \le 14$
	$-26 \le 1 \le 26$	$-21 \le 1 \le 20$	$-18 \le 1 \le 18$
Reflections collected	47844	63494	48979
Unique reflections	9818	12678	7076
1 Coursel to see to the to 25,0000	[R(int) = 0.0510]	[R(int) = 0.0260]	[R(int) = 0.0291]
Completeness to theta = 25.000°	99.8%	99.7%	99.8%
Data/restraints/parameters	9818 / 563 / 899	1267872537768	/0/6/86/528
$RI^{*}(\%)$ (all data)	3.81 (6.77)	2.97 (3.47)	2.72 (3.19)
wK2° (%) (all data)	8.29 (9.88)	7.68 (8.04)	6.76(7.07)
Goodness-of-fit on F ²	1.050	1.047	1.062
Largest diff. peak and hole ($e \dot{A}^{-3}$)	0.722 and -0.557	0.649 and -0.478	0.537 and -0.388

Table S3. Crystallographic data for 1a, 2a, and 2b.

 $\mathbf{aR1} = \boldsymbol{\Sigma} \mid |\mathbf{Fo}| - |\mathbf{Fc}| \mid / \boldsymbol{\Sigma} \mid \mathbf{Fo} \mid \mathbf{x} \mid \mathbf{100}$

^bwR2 = [Σ w (F₀²-F_c²)² / Σ (w |F₀|²)²]^{1/2} x 100

Bond angle (°)	1 a		2	a	2b		
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	
N1-Ru1-N2	80.1(1)	79.48	79.60(6)	78.98	79.54(7)	78.95	
N1-Ru1-N3	87.7(2)	92.81	94.11(6)	93.57	100.22(7)	98.89	
N1-Ru1-N4	166.3(5)	168.45	169.52(6)	168.79	172.15(7)	171.95	
N1-Ru1-N5	94.6(1)	94.39	97.92(6)	96.32	94.34(7)	96.45	
N1-Ru1-P1/N6	93.68(8)	91.80	85.23(4)	86.80	82.24(7)	83.92	
N2-Ru1-N3	91.2(2)	88.87	81.96(6)	82.94	87.52(6)	86.24	
N2-Ru1-N4	93.4(5)	92.72	94.71(6)	95.39	92.81(7)	93.42	
N2-Ru1-N5	171.6(1)	172.04	174.21(6)	173.07	173.88(7)	175.02	
N2-Ru1-P1/N6	93.41(8)	95.38	89.61(4)	89.06	87.70(7)	87.86	
N3-Ru1-N4	80.3(5)	78.42	76.28(6)	76.01	77.54(7)	77.84	
N3-Ru1-N5	82.1(2)	86.35	93.05(6)	92.34	93.52(7)	92.62	
N3-Ru1-P1/N6	175.4(2)	174.23	171.51(4)	171.75	174.14(7)	172.85	
N4-Ru1-N5	90.3(5)	92.55	86.91(6)	88.35	93.30(7)	91.07	
N4-Ru1-P1/N6	98.8(4)	97.45	103.64(4)	102.91	99.31(7)	98.50	
N5-Ru1-P1/N6	93.43(8)	89.84	95.42(4)	95.81	91.59(7)	93.60	

Table S4. Crystallographic and ¹GS calculated bond lengths and angles for 1a, 2a, and 2b.

Torsion angle (°)	1 a			2a		2b	
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	
N1-C-C-N2	1.1(4)	0.96	2.1(2)	0.71	0.6(3)	0.89	
N3-C-C-N4	2(1)	0.65	10.5(2)	9.98	3.1(3)	3.09	

Bond lengths (Å)	1a		2	a	2b		
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.	
Ru1-N1	2.066(3)	2.0817	2.072(2)	2.0827	2.084(2)	2.0960	
Ru1-N2	2.056(2)	2.0798	2.077(2)	2.0962	2.075(2)	2.0917	
Ru1-N3	2.106(9)	2.1361	2.148(1)	2.1695	2.073(2)	2.1048	
Ru1-N4	2.06(1)	2.1082	2.112(2)	2.1330	2.084(2)	2.0991	
Ru1-N5	2.030(2)	2.0076	2.036(2)	1.9998	2.046(2)	2.0099	
Ru1-P1/N6	2.343(1)	2.4105	2.3669(5)	2.4408	2.034(2)	2.0185	

Figure S15. Electronic density plots of the calculated HOMO (left) and LUMO (right) of **1a** (drawn at isovalues of 0.02).

Figure S16. Electronic density plots of the calculated HOMO (left) and LUMO (right) of **2a** (drawn at isovalues of 0.02).

Table S5. Composition of Calculated HOMO and LUMO in 1a and 2a.

	1	a	2	a
	HOMO	LUMO	HOMO	LUMO
Ru-d character (%)	77.3	2.60	71.2	3.25
CH ₃ CN (%)	7.97	0.21	7.98	0.44
PPh ₃ (%)	3.27	0.75	1.84	1.24
phen (N1 and N2) (%)	5.62	10.4	4.30	11.0
biq/phen (N3 and N4) (%)	5.73	85.7	15.2	84.5

Figure S17. EC₅₀ curves of **1a** (a) kept in the dark and (b) upon irradiation ($t_{irr} = 20 \text{ min}$, $\lambda_{irr} = 460-470 \text{ nm}$, 56 J/cm. Data are representative of three different experiments.

Figure S18. EC₅₀ curves of **2a** (a) kept in the dark and (b) upon irradiation ($t_{irr} = 20 \text{ min}$, $\lambda_{irr} = 460-470 \text{ nm}$, 56 J/cm. Data are representative of three different experiments.

Figure S19. Viability of MDA-MB-231 cells when treated with DMEM supplemented with 10% FBS and 1,000 units/mL penicillin/streptomycin containing various concentrations of PPh₃ both in the dark and when irradiated with blue light ($t_{irr} = 20 \text{ min}, \lambda_{irr} = 460-470 \text{ nm}, 56 \text{ J/cm}^2$).