Supporting Information

Photocytotoxicity and Photoinduced Phosphine Ligand Exchange in a Ru(II) Polypyridyl Complex

Sean J. Steinke, ${ }^{\dagger}$ Sayak Gupta, ${ }^{\dagger}$ Eric J. Piechota, ${ }^{\ddagger}$ Curtis E. Moore,${ }^{\ddagger}$ Jeremy J. Kodanko, ${ }^{\dagger *}$ and Claudia Turro**
${ }^{\ddagger}$ Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
${ }^{\dagger}$ Department of Chemistry, Wayne State University, Detroit, MI 48208
*Corresponding Authors: turro.1@osu.edu; jkodanko@wayne.edu

Table of Contents Page Number
In-process and Final ${ }^{1} \mathrm{H}$ and ${ }^{\mathbf{3 1}} \mathbf{P}\{\mathbf{H}\}$ NMR Spectra... 3

Figure S3. ${ }^{1}$ H NMR Spectrum of 1a ... S 4
Figure S4. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR Spectrum of 1a .. 4
Figure S5. ${ }^{1} \mathrm{H}$ NMR Spectrum of $[\mathrm{Ru}(\mathrm{p}$-cymene) $(\mathrm{phen}) \mathrm{Cl}] \mathrm{Cl}$. S 5

Figure S10. Circular Voltammograms of 1a and 2a ...S7

Identification of Photolysis Intermediate I S8
Figure S12. ORTEP plot of intermediate species I S8
Table S1. Crystallographic data for intermediate species I S9
Spectral Deconvolution and Kinetic Analysis S10
Figure S13. Absorption Spectra of 2a and Photoproducts in Pyridine S11
Table S2. Spectra Data for Photolysis of 2a in Pyridine S12
Figure S14. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR Spectrum of $\mathbf{1 a}$ as a function of irradiation. S13
Table S3. Crystallographic data for 1a, 2a, and 2b S14
Table S4. Crystallographic and ${ }^{1}$ GS calculated bond lengths and angles for 1a, 2a, and 2b S15
Figure S15. Electronic density plots of 1a HOMO and LUMO S16
Figure S16. Electronic density plots of 2a HOMO and LUMO S16
Table S5. Composition of Calculated HOMO and LUMO in 1a and 2a S16
Cell Viability S17
Figure S17. EC_{50} curves of 1a S17
Figure S18. EC $_{50}$ curves of $2 \mathbf{2 a}$ S18
Figure S19. Viability of MDA-MB-231 cells treated with PPh_{3} S19

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Ru}(\text { phen })_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]^{+}$in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S2. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR spectrum of $\left[\mathrm{Ru}(\text { phen })_{2}\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]^{+}$in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{1 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S4. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR of $\mathbf{1 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR of $\left[\mathrm{Ru}(\mathrm{p}\right.$-cymene)(phen) Cl$] \mathrm{Cl}$ in $\mathrm{CD}_{3} \mathrm{OD}$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\mathrm{Ru}(\text { biq })(\text { phen })\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]^{+}$in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure $\mathbf{S 7} .{ }^{31} \mathrm{P}\{\mathrm{H}\} \mathrm{NMR}$ spectrum of $\left[\mathrm{Ru}(\text { biq })(\text { phen })\left(\mathrm{PPh}_{3}\right) \mathrm{Cl}\right]^{+}$in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{2 a}$ in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S9. ${ }^{31} \mathrm{P}\{\mathrm{H}\} \mathrm{NMR}$ of 2a in $\mathrm{CD}_{3} \mathrm{CN}$.

Figure S10. Circular Voltammograms of 1a (top) and 2a (bottom) in $\mathrm{CH}_{3} \mathrm{CN}\left(0.1 \mathrm{M} \mathrm{TBAPF}_{6}\right)$.

Figure S11. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR of OPPh_{3} in $\mathrm{CD}_{3} \mathrm{CN}$.

Identification of Photolysis Intermediate I.

Figure S12. ORTEP plot of intermediate species $\left[\mathrm{Ru}(\text { biq })(\text { phen })(\mathrm{py})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{2+}$ (I) (thermal ellipsoids have been drawn at 50% probability and hydrogen atoms, $\mathrm{PF}_{6}{ }^{-}$molecules, and co-
crystallized solvent molecules have been omitted for clarity); Ru: cyan, N : light purple, and C : grey.
Table S1. Crystallographic data for intermediate species I.

Complex	$\left[\mathrm{Ru}(\mathrm{biq})(\mathrm{phen})(\mathrm{py})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{2+}(\mathbf{I})$
Chemical formula	$\mathrm{RuC}_{37} \mathrm{H}_{28} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{P}_{2}$
Formula weight	947.66
Temp (K)	100(2)
Crystal system	Triclinic
Space Group	P-1
$a(\AA)$	10.7106(3)
$b(\AA)$	12.0600(3)
$c(\AA)$	17.6215(4)
$\alpha\left({ }^{\circ}\right)$	109.847(1)
$\beta\left({ }^{\circ}\right)$	92.875(1)
$\gamma\left({ }^{\circ}\right.$	103.835(1)
$\mathrm{V}\left(\AA^{3}\right)$	2057.24(9)
Z	2
$\mathrm{D}_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.530
Absorption coefficient (mm^{-1})	4.629
F(000)	948
Crystal size (mm)	$0.25 \times 0.137 \times 0.072$
Theta range for data collection (${ }^{\circ}$)	2.694 to 74.926
Index ranges	$-13 \leq h \leq 13$
	$-15 \leq \mathrm{k} \leq 15$
	$-21 \leq 1 \leq 22$
Reflections collected	54578
Unique reflections	$\begin{aligned} & 8374 \\ & {[\mathrm{R}(\mathrm{int})=0.0318]} \end{aligned}$
Completeness to theta $=25.000^{\circ}$	99.7\%
Data/restraints/parameters	8374 / 526 / 699
R1 ${ }^{\text {a }}$ (\%) (all data)	0.0408 (0.0425)
wR2 ${ }^{\text {b }}$ (\%) (all data)	0.1090 (0.1114)
Goodness-of-fit on F^{2}	1.052
Largest diff. peak and hole (e \AA^{-3})	0.870 and -0.390
${ }^{\text {a }} \mathrm{R} 1=\boldsymbol{\Sigma}\| \| \mathbf{F o}\|-\|\mathbf{F c}\|\| / \boldsymbol{\Sigma}\|\mathbf{F o}\| \mathbf{x} 100$	

```
b
```


Spectral Deconvolution and Kinetic Analysis.

Analysis of the photolysis data for $\mathbf{2 a}$ in pyridine was performed under the assumption of a consecutive chemical reaction of the type $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C}$. The data supported this assumption through the appearance of two sets of isosbestic points. For the conversion of A to B, isosbestic points report directly on the formation of C and were observed at 316,448 , and 500 nm . By contrast, direct information on the disappearance of A was garnered from B to C isosbestic points at 338,361 , and 550 nm .

The concentration of A and C were calculated directly from a linear combination of individual specie absorbance, Abs, at a fixed wavelength, λ, Eq. S1.
$A b s_{\lambda}=b\left(\varepsilon_{A}^{\lambda}[A]+\varepsilon_{B}^{\lambda}[B]+\varepsilon_{C}^{\lambda}[C]\right)$
And
$[A]+[B]+[C]=\left[C_{t}\right]$
Where ε_{i} is the extinction coefficient of the i th species at λ, b is the path length, and [A], [B], and [C] are molar concentrations of each component and C_{t} is the total concentration, e.g. the concentration of A initially present in solution. At a B to C isosbestic point,
$\varepsilon_{B}^{\lambda}=\varepsilon_{C}^{\lambda}=\varepsilon_{B C}^{\lambda}$
Which allows simplification of Equation S1 into terms of [A],
$[A]=\frac{A b s_{\lambda}-\varepsilon_{B C}^{\lambda}\left[C_{t}\right]}{\varepsilon_{A}^{\lambda}-\varepsilon_{B C}^{\lambda}}$
provided the extinction coefficient of the product, C , is known. At $\mathrm{t}=20 \mathrm{~min}$, it was assumed that the conversion of A to C was complete and ε_{C} was calculated from the initial concentration of $\mathbf{2 a}$ $\left(\varepsilon_{477}=5,700 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right.$ in $\left.\mathrm{CH}_{3} \mathrm{CN},\left[\mathrm{C}_{\mathrm{t}}\right]=38.7 \mu \mathrm{M}\right)$ used in the experiment, Figure S13.

Figure S13. Extinction coefficient spectra of the three species observed during the photolysis of 2 a (red line) in pyridine to form $\left[\mathrm{Ru}(\text { biq })(\text { phen })(\mathrm{py})\left(\mathrm{CH}_{3} \mathrm{CN}\right)\right]^{2+}$ (black line), and $\left[\mathrm{Ru}(\text { biq })(\text { phen })(\text { py })_{2}\right]^{2+}$ (blue line).

The same approach was applied at the A to B isosbestic points which reports directly on the formation of C , except that
$\varepsilon_{A}^{\lambda}=\varepsilon_{B}^{\lambda}=\varepsilon_{A B}^{\lambda}$
which results in the following expression
$[C]=\frac{A b s_{\lambda}-\varepsilon_{A B}^{\lambda}\left[C_{t}\right]}{\varepsilon_{C}^{\lambda}-\varepsilon_{A B}^{\lambda}}$
for the concentration of C as a function of time. Relevant spectroscopic data for the isosbestic points used to determine [A] and [C] are given in Table S1. Once [A] and [C] were known, [B] B was calculated at each time point based from $\left[\mathrm{C}_{\mathrm{t}}\right]$.

Table S2. Relevant Isosbestic Points, Reactions, and Extinction Coefficients Used In Spectral Deconvolution.

Isosbestic Point (nm)	Reaction	$\varepsilon_{C^{\lambda}}\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\varepsilon_{\mathrm{AB}}{ }^{\lambda}\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\varepsilon_{\mathrm{A}}{ }^{\lambda}\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	$\varepsilon_{\mathrm{BC}}{ }^{\lambda}\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$
316	A to B	14,400	18,900	-	-
448	A to B	5,900	4,100	-	-
500	A to B	4,300	4,900	-	-
338	B to C	-	-	15,200	24,000
361	B to C	-	-	18,600	21,200
550	B to C	-	-	1,340	5,200

Note that the MLCT maxima for complex 2a shifted to lower energy by $\sim 10 \mathrm{~nm}\left(\lambda_{\max }=\right.$ 485 nm) when the solvent was changed from $\mathrm{CH}_{3} \mathrm{CN}$ to pyridine. However, the extinction coefficient was assumed to be constant between these two points and 100% conversion to Ru (biq)(phen)(py) ${ }_{2}$ was assumed in order to calculate the corresponding extinction coefficient spectrum. Finally, the extinction coefficient of $\mathrm{Ru}($ biq $)($ phen $)($ py $)\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ was determined from Equation S7.
$\varepsilon_{B}=\frac{A_{o}-\varepsilon_{A}[A]-\varepsilon_{C}[C]}{[B]}$
Numerical solutions to Equation S7 were determined at each time point from $t=0.25$ to 10 \min in order to collect an averaged, estimated extinction spectrum of $\mathrm{Ru}($ biq $)($ phen $)(\mathrm{py})\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ which is shown in Fig S13.

Mole fractions of each component, χ_{j}, were calculated with Equation S8,
$\chi_{j}=\frac{[j]}{\left[C_{t}\right]}, j=[A],[B],[C]$
which were used as the data points of Figure 6 in the main text.

Figure S14. ${ }^{31} \mathrm{P}\{\mathrm{H}\}$ NMR of $\mathbf{1 a}$ as a function of irradiation time in $\mathrm{CD}_{3} \mathrm{CN}\left(\lambda_{\mathrm{irr}} \geq 395 \mathrm{~nm}\right)$.

Table S3. Crystallographic data for 1a, 2a, and 2b.

Complex	1a	2a	2b
Chemical formula	$\mathrm{RuC}_{51} \mathrm{H}_{42} \mathrm{~F}_{12} \mathrm{~N}_{5} \mathrm{P}_{3}$	$\mathrm{RuC}_{52} \mathrm{H}_{41} \mathrm{~N}_{6} \mathrm{~F}_{12} \mathrm{P}_{3}$	$\mathrm{RuC}_{34} \mathrm{H}_{26} \mathrm{~F}_{12} \mathrm{~N}_{6} \mathrm{P}_{2}$
Formula weight	1146.87	1171.89	909.62
Temp (K)	100.0	150(2)	100.0
Crystal system	Monoclinic	Triclinic	Triclinic
Space Group	P $121 / \mathrm{n} 1$	P-1	P-1
$a(\AA)$	17.6755(7)	12.2183(5)	10.2271(12)
$b(\AA)$	13.6841(5)	13.9009(6)	11.7137(12)
$c(\AA)$	21.4460(9)	15.8262(6)	14.9235(19)
$\alpha\left({ }^{\circ}\right)$	90	101.454(2)	97.547
$\beta\left({ }^{\circ}\right)$	111.9850(1)	103.216(2)	100.062
$\gamma\left({ }^{\circ}\right)$	90	91.967(2)	97.284
$\mathrm{V}\left(\AA^{3}\right)$	4810.0(3)	2555.73(18)	1724.4(3)
Z	4	2	2
$\mathrm{D}_{\text {calc }}\left(\mathrm{Mg} / \mathrm{m}^{3}\right)$	1.584	1.523	1.752
Absorption coefficient (mm^{-1})	0.515	0.487	0.650
F(000)	2320	1184	908
Crystal size (mm)	$0.279 \times 0.223 \times 0.148$	$0.19 \times 0.15 \times 0.08$	$0.253 \times 0.216 \times 0.054$
Theta range for data collection (${ }^{\circ}$)	2.851 to 26.396	3.001 to 28.298	2.804 to 26.411
Index ranges	$-22 \leq \mathrm{h} \leq 20$	$-16 \leq \mathrm{h} \leq 16$	$-12 \leq \mathrm{h} \leq 12$
	$-17 \leq \mathrm{k} \leq 17$	$-18 \leq \mathrm{k} \leq 18$	$-14 \leq \mathrm{k} \leq 14$
	$-26 \leq 1 \leq 26$	$-21 \leq 1 \leq 20$	$-18 \leq 1 \leq 18$
Reflections collected	47844	63494	48979
Unique reflections	$\begin{aligned} & 9818 \\ & {[\mathrm{R}(\mathrm{int})=0.0510]} \end{aligned}$	$\begin{aligned} & 12678 \\ & {[\mathrm{R}(\mathrm{int})=0.0260]} \end{aligned}$	$\begin{aligned} & 7076 \\ & {[\mathrm{R}(\mathrm{int})=0.0291]} \end{aligned}$
Completeness to theta $=25.000^{\circ}$	99.8\%	99.7\%	99.8\%
Data/restraints/parameters	9818 / 563 / 899	12678 / 253 / 768	7076 / 86 / 528
R1 ${ }^{\text {a }}$ (\%) (all data)	3.81 (6.77)	2.97 (3.47)	2.72 (3.19)
$\mathrm{wR} 2^{\mathrm{b}}$ (\%) (all data)	8.29 (9.88)	7.68 (8.04)	6.76 (7.07)
Goodness-of-fit on F^{2}	1.050	1.047	1.062
Largest diff. peak and hole (e \AA^{-3})	0.722 and -0.557	0.649 and -0.478	0.537 and -0.388
${ }^{\text {a }}$ R1 $=\mathbf{\Sigma}\| \| \mathbf{F o}\|-\|\mathbf{F c}\|\| / \Sigma \boldsymbol{\Sigma}\|\mathbf{F o}\| \mathbf{x} 100$			

Table S4. Crystallographic and ${ }^{1}$ GS calculated bond lengths and angles for 1a, 2a, and $\mathbf{2 b}$.

Bond angle (${ }^{\circ}$)	1a		2a		2b	
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.
N1-Ru1-N2	$80.1(1)$	79.48	$79.60(6)$	78.98	$79.54(7)$	78.95
N1-Ru1-N3	$87.7(2)$	92.81	$94.11(6)$	93.57	$100.22(7)$	98.89
N1-Ru1-N4	$166.3(5)$	168.45	$169.52(6)$	168.79	$172.15(7)$	171.95
N1-Ru1-N5	$94.6(1)$	94.39	$97.92(6)$	96.32	$94.34(7)$	96.45
N1-Ru1-P1/N6	$93.68(8)$	91.80	$85.23(4)$	86.80	$82.24(7)$	83.92
N2-Ru1-N3	$91.2(2)$	88.87	$81.96(6)$	82.94	$87.52(6)$	86.24
N2-Ru1-N4	$93.4(5)$	92.72	$94.71(6)$	95.39	$92.81(7)$	93.42
N2-Ru1-N5	$171.6(1)$	172.04	$174.21(6)$	173.07	$173.88(7)$	175.02
N2-Ru1-P1/N6	$93.41(8)$	95.38	$89.61(4)$	89.06	$87.70(7)$	87.86
N3-Ru1-N4	$80.3(5)$	78.42	$76.28(6)$	76.01	$77.54(7)$	77.84
N3-Ru1-N5	$82.1(2)$	86.35	$93.05(6)$	92.34	$93.52(7)$	92.62
N3-Ru1-P1/N6	$175.4(2)$	174.23	$171.51(4)$	171.75	$174.14(7)$	172.85
N4-Ru1-N5	$90.3(5)$	92.55	$86.91(6)$	88.35	$93.30(7)$	91.07
N4-Ru1-P1/N6	$98.8(4)$	97.45	$103.64(4)$	102.91	$99.31(7)$	98.50
N5-Ru1-P1/N6	$93.43(8)$	89.84	$95.42(4)$	95.81	$91.59(7)$	93.60
Torsion angle ($\left.{ }^{\circ}\right)$		$\mathbf{1 a}$		$\mathbf{2 a}$		2b
	Expt.	Calc.	Expt.	Calc.	Expt.	Calc.
N1-C-C-N2	$1.1(4)$	0.96	$2.1(2)$	0.71	$0.6(3)$	0.89
N3-C-C-N4	$2(1)$	0.65	$10.5(2)$	9.98	$3.1(3)$	3.09
Bond lengths (Å)						
	1a		$\mathbf{2 a}$		$\mathbf{2 b}$	
Ru1-N1	$2.066(3)$	2.0817	$2.072(2)$	2.0827	$2.084(2)$	2.0960
Ru1-N2	$2.056(2)$	2.0798	$2.077(2)$	2.0962	$2.075(2)$	2.0917
Ru1-N3	$2.106(9)$	2.1361	$2.148(1)$	2.1695	$2.073(2)$	2.1048
Ru1-N4	$2.06(1)$	2.1082	$2.112(2)$	2.1330	$2.084(2)$	2.0991
Ru1-N5	$2.030(2)$	2.0076	$2.036(2)$	1.9998	$2.046(2)$	2.0099
Ru1-P1/N6	$2.343(1)$	2.4105	$2.3669(5)$	2.4408	$2.034(2)$	2.0185

Figure S15. Electronic density plots of the calculated HOMO (left) and LUMO (right) of 1a (drawn at isovalues of 0.02).

Figure S16. Electronic density plots of the calculated HOMO (left) and LUMO (right) of 2a (drawn at isovalues of 0.02).

Table S5. Composition of Calculated HOMO and LUMO in 1a and 2a.

| | 1a | | | 2a | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | HOMO | LUMO | | HOMO | LUMO |
| Ru-d character (\%) | 77.3 | 2.60 | | 71.2 | 3.25 |
| $\mathrm{CH}_{3} \mathrm{CN}(\%)$ | 7.97 | 0.21 | | 7.98 | 0.44 |
| PPh_{3} (\%) | 3.27 | 0.75 | | 1.84 | 1.24 |
| phen (N1 and N2) (\%) | 5.62 | 10.4 | | 4.30 | 11.0 |
| biq/phen (N3 and N4) (\%) | 5.73 | 85.7 | | 15.2 | 84.5 |

EC $_{50}$ Curves

(a)

(b)

Figure S17. EC_{50} curves of $\mathbf{1 a}$ (a) kept in the dark and (b) upon irradiation $\left(t_{\mathrm{irr}}=20 \mathrm{~min}, \lambda_{\mathrm{irr}}=\right.$ $460-470 \mathrm{~nm}, 56 \mathrm{~J} / \mathrm{cm}$. Data are representative of three different experiments.
(a)

(b)

Figure S18. EC_{50} curves of $\mathbf{2 a}$ (a) kept in the dark and (b) upon irradiation $\left(t_{\mathrm{irr}}=20 \mathrm{~min}, \lambda_{\mathrm{irr}}=\right.$ $460-470 \mathrm{~nm}, 56 \mathrm{~J} / \mathrm{cm}$. Data are representative of three different experiments.

Figure S19. Viability of MDA-MB-231 cells when treated with DMEM supplemented with 10% FBS and 1,000 units $/ \mathrm{mL}$ penicillin/streptomycin containing various concentrations of PPh_{3} both in the dark and when irradiated with blue light $\left(t_{\text {irr }}=20 \mathrm{~min}, \lambda_{\text {irr }}=460-470 \mathrm{~nm}, 56 \mathrm{~J} / \mathrm{cm}^{2}\right)$.

