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1. Methods 

1.1 Selection of CFG Glycan Array Protein Binding Data 

A list of glycan array datasets was obtained from a search of the CFG website.  Available CFG data 

was downloaded for all v5.0, 5.1, 5.2 Mammalian arrays.  After minor corrections of the links, in par-

ticular duplicate link removal, data was downloaded from URLs of the form: http://www.functionalgly-

comics.org:80/glycomics/HFileServlet?operation=downloadRawFile&fileType=DAT&side-

Menu=no&objId=1006594 

where the final seven digits (the objId) varies between samples.  See Supplementary Table S2 for a list 

of the samples and their objId numbers. 

The downloaded files are MS Excel Workbooks, and we extracted the source data from the ImaGene 

file formatted table.  Datasets without this table were excluded from this work.  The RFU for each rep-

licate was calculated as: Mean.Signal – Mean.Background (both columns in the ImaGene table) which 

matches CFG’s processing described in the MS Excel files.  Mean and standard deviation of these RFU 

values were calculated across the six replicates.  This produces a wider dispersion than CFG’s num-

bers.  Additional alignment, blank spots, and reference signals IgG, etc., were not used. 

We omitted some data.  Of the 611 glycans on the arrays:  
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i) we omitted 2 glycans not present in all three versions of the arrays,  

Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-2)Man(α1-6)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-

2)Man(α1-3)]Man(β1-4)GlcNAc(β1-4)GlcNAc(β-Sp13 

GlcNAc(β1-2)Man(α1-6)[Neu5Ac(α2-6)Gal(β1-4)GlcNAc(β1-2)Man(α1-3)]Man(β1-4)Glc-

NAc(β1-4)GlcNAc(β-Sp12 

ii) we omitted 1 glycan structure reported with a broken (unbalanced and therefore unparsable) branch-

ing pattern,  

Gal(β1-4)GlcNAc(β1-6)[Gal(β1-4)GlcNAc(β1-2)]Man(α1-6)[GlcNAc(β1-4)]Gal(β1-4)Glc-

NAc(β1-4)[Gal(β1-4)GlcNAc(β1-2)]Man(α1-3)]Man(β1-4)GlcNAc(β1-4)[Fuc(α1-6)]GlcNAc(-

Sp21 

iii) we omitted 1 glycan structure reported to contain …Man(α1-3)[... Man(α1-3)]Man… (two sub-

structures both bound to carbon-3),  

Fuc(α1-4)[Fuc(α1-2)Gal(β1-3)]GlcNAc(β1-2)Man(α1-3)[Fuc(α1-4)[Fuc(α1-2)Gal(β1-3)]Glc-

NAc(β1-2)Man(α1-3)]Man(β1-4)GlcNAc(β1-4)GlcNAc(β-Sp19 

iv) we omitted 8 glycans that contained one of five rare sugars (four or fewer instances within the CFG 

glycan set). 

Rha(α-Sp8,    GlcN(Gc)(β-Sp8,    G-ol(-Sp8,    MurNAc(β1-4)GlcNAc(β-Sp10 

Neu5,9Ac2(α-Sp8,    Neu5,9Ac2(α2-6)Gal(β1-4)GlcNAc(β-Sp8 

Neu5,9Ac2(α2-3)Gal(β1-4)GlcNAc(β-Sp0,    Neu5,9Ac2(α2-3)Gal(β1-3)GlcNAc(β-Sp0 

We use the remaining 599 glycans and a full list of the glycans is in Supplementary Table S3. There are 

some minor differences in glycan name/structures found in different files, we used the latest version of 

the name/structure, which often corrected obvious errors in earlier versions. Our analysis ignores the 

linkage/spacer attaching each glycan to the glass array and the stereochemistry of the anomeric position 

(alpha or beta) to which the linker is attached. We note that the removal of the stereochemistry of the 

anomeric carbon impairs the model as it cannot distinguish between cases such as Man(a1- and 

Man(b1- which have distinct binding properties. We also note that the information about the stereo-

chemistry of the anomeric position is not available for 105 out of 599 glycans (see Supplementary Ta-

ble S3). 

Removal of the linker/spacer information creates some duplicates. Specifically, in a list of 599 glycans 

with linkers there are 520 unique glycan structures. After removal of linker, we treat glycans as distinct 

entities during training although our network cannot predict different results for them.  For example, 

(3S)Gal(β1-3)GlcNAc(β-Sp0 and (3S)Gal(β1-3)GlcNAc(β-Sp8 are treated as identical and they are en-

coded using the same features (Supplementary Table S5). Further details of the duplicates are available 

in Supplementary Table S3.  

1.2 Preprocessing 

Initial preprocessing of the data was copied from Coff et al.1; a constant was added to each array’s data 

so that the mean RFU minimum is one before transforming with log10.  Then low-end noise was filtered 

out with a minimum clamp at the 1/3rd rank position. 

1.3 Glycan Representation for Input to the Neural Networks 

For the CFG glycan set there are 272 features, for a list see the columns of the fingerprint file (Supple-

mentary Table S5).  Features “S3”, “S4”, “S6”, and “P6” are SO4/PO4 attached to carbons 3, 4, 6, and 6 
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respectively.  Feature names beginning with ‘[‘ are monosaccharides located in terminal positions, 

these are also counted within the regular monosaccharide counts.  As noted in Section 1.1 above, not 

included in the features and therefore not available to the model are details of the spacer attaching the 

glycan to the substrate and details of its attachment.  

1.4 Neural Network Architecture. 

• fully-connected feedforward neural network 

• 0-3 hidden layers, all hidden layers of a common size 

• ReLU activation functions, except for linear outputs at the final stage; all with biases 

• feature count vector (fingerprint) to describe a glycan as network input 

• list of RFU values, one for each of the protein samples as output 

• implemented using PyTorch2 

• ADAM3 optimiser with weight decay and early stopping 

1.5 Trained model quality evaluated by 10-fold CV 

Folds were created by randomly dividing (unique) fingerprints (feature vectors).  Equal numbers (±1) 

of unique fingerprints are assigned to each fold.  This means that indistinguishable glycans (i.e. those 

with duplicate feature vectors) are assigned to the same fold. In particular, multiple instances of the 

same glycan distinguished by CFG with different spacers are grouped together. This prevents evaluat-

ing in the hold-out fold (i.e. the post-training test-fold) a glycan also in another fold and thus used for 

training.  The exact number of glycans in each group varies. MSE was used to assess quality of training 

and CV. 

1.6 Parameter Optimization 

The ensure comparability when testing the effect of the number of outputs on the model, the MSEs are 

computed over the same set of 1200 protein samples for all output sizes.  A random permutation of the 

protein samples was produced and to evaluate the 10-output case a first model using the first ten out-

puts was produced, a second model from the second group of ten, until 120 models had been created.  

The same permutation was also used for the other sizes.  The reduction to 1200 outputs is because 1200 

is highly composite, had all 1257 been used only comparable 1-, 3-, 417-, and 1257-output cases could 

be produced. 

Using MSE and the in-fold results we tested zero through three hidden layers with 25 to 1100 neurons 

in each of them.  By the MSE we found that a single hidden layer of 100 neurons produced an optimal 

MSE CV score (Fig. 4b).  Similarly, we varied the ADAM weight decay parameter, while keeping 100 

neurons per hidden layer and found the MSE performance was impaired as the weight-decay increased 

much beyond 10-4 (Fig. 4c).  Accordingly, we fixed this parameter at 10-4 for subsequent work. 

1.7 Comparison with Other Works 

For binary classification tasks, the comparisons with CCARL and the SweetTalk immunogenicity sin-

gle output, the final output layer of the neural networks are changed to logistic activation functions, and 

the output is then thresholded at ½ to produce the binary classification. 

SweetTalk immunogenicity dataset:  The 684 glycans in the immunogenic_glycans_clean.csv and 684 

randomly chosen human glycans from glycol_targets_species_seq.csv dataset (presumed non-immuno-

genic). This dataset is the same as used by the SweetTalk developers, we retain some duplicate glycans 

present in both groups. 
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This data is added as an additional “glycan array” to the CFG data by using “artificial” RFU values of 4 

and 1 (after log transformation) for the immunogenic and non-immunogenic glycans respectively.  Pro-

cessing this also requires expanding the list of features to accommodate the additional mono-, di- and 

tri-saccharides not found in the 599 CFG glycan set.  To convert the predicted RFU values (hold-out 

fold) of for this dataset to the binary classes, they were thresholding at the mean (2.5) of the two RFU 

input values.  Changing the threshold setting from this half-way point reduced the accuracy of the re-

sults. 

To run the CFG data used in this paper on the SweetNet viral receptor prediction architecture4, we 

needed to supress the protein sequence input.  To minimize the changes needed to the code provided by 

Bojar and coworkers, we provided a single dummy sequence, “X” (i.e. a single ambiguous amino acid), 

for all cases.  With no pattern between this constant input and the RFU outputs, no learning can occur.  

The other inputs were then the glycan graphs (using Bojar’s notation convention) and the RFU values.  

Depending on whether we were training for the single- or multi-task case each glycan corresponds to 

either one RFU value (for the appropriate protein) or a list of 1257 values.  Other changes that were 

made were a modification to enable using graphs with no edges (i.e. monosaccharides) and the removal 

of the prot_env variable.  We also modified the code to learn on all five cross-validation folds and to 

output the results for all glycan-protein sample pairs. 

1.8 Statistics 

The RFU values obtained from CFG each have measurements are 6 replicate spots on the glycan array.  

We take the difference between the reported Signal Mean and Signal Background as the RFU for each 

spot, before calculating the mean RFU, µ, over all 6 replicates.  A population standard deviation, σ, is 

calculated from the same six values.  To estimate a 95% confidence interval the limits µ ± 1.96 σ are 

used, the symmetric 95% CI of a Gaussian having the mean and standard deviation of the replicates. 

In Fig. 4 each marked data point is calculated on a different cross-validation fold. The mean and popu-

lation standard deviation were calculated, and the range of the plotted error bars is the 95% confidence 

interval calculated with µ ± 1.96 σ, as for the RFU values. Error bars are from a single set of predic-

tions across the 10-fold cross-validation, with a total of N = 10 points. 

For comparing sets of values (see Fig. 8), Mann-Whitney U-tests are used, and two-tailed p-values are 

reported.  Common language effect sizes reported are calculated by f = U / (n1 n2) where n1 and n2 are 

the sizes of the two sets being compared. 

Predictions of the top 10 or top 20 strongest binders 

Glycans from the set of 599 glycans or proteins from the set of 1257 protein samples were evaluated 

against a classic urn problem. For example, in Figure 5B-D, the model predicts top 20 strongest bind-

ing protein samples (from 1257 total) and it can predict a mean of 10.9 (95% CI: 6–15) of them cor-

rectly. How much better is this model than a random guess?  

Given an urn with 1257 balls, 20 red and the rest white. The random model then draws 20 balls (with-

out replacement).  What is the chance that 0 of them are red? 1 of them is red? 2 are red? ... 20 are red? 

The answers are a hypergeometric distribution: 

 

Pr(X = k) = K! (N - K)! n! (N-n!) / (k! (K-k)! (n-k)! (N-K-n+k)! N!) 

 

Where N = 1257 balls total, K = 20 red balls, n = 20 draws, and k is the number of red balls drawn. 

Evaluating the performance of this random model at various k: 

0 from the top-20:  72% 

1 from the top-20:  24% 
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2 from the top-20:  3.5% 

 

6 from the top-20:  2x10-5 %  (lower edge of 95% confidence interval) 

10 from the top-20:  1×10-12%  (average rounded down) 

11 from the top-20:  9×10-15%  (average rounded up) 

15 from the top-20:  1×10-24%  (upper edge of 95% confidence interval) 

 

1.9 Models on Expanded Dataset 

While most of our work has focussed on the dataset obtained from CFG’s version 5 glycan arrays, we 

have also experimented with a larger dataset which included data for additional samples run on Mam-

malian Printed Array versions 2, 2.1, 3, 3.1, 3.2, 4.0, 4.1, and 4.2.  As for the version 5 data. files (MS 

Excel formatted) containing the primary screening data were downloaded from CFG's website, and rep-

licate spot data was then extracted from embedded ImaGene tables.  Where the arrays had both 10 µM 

and 100 µM concentration parts, we used only data from the 100 µM spots. 

 

The RFU data for each sample was pre-processed as described for the main dataset with the minimum 

value noise-cutoff set to affect one third of the glycans for each sample.  Glycan names were matched 

to those in the version 5 arrays. 

 

To make the data processing as similar as possible with the original version 5 array dataset, the result-

ing log-scaled RFUs were copied into the same list of 599 glycans as we used for the rest of this work.  

As not every glycan in the version 5 arrays has a corresponding glycan in the older ones, there are 

missing values, which have been filled-in with a "not available" marker.  In practice, we found the 

value -1 to be useful for this, as it can be distinguished from the real log-scaled RFU values (all posi-

tive) by checking the sign. 

 

This results in a table (samples × glycans) of known log-RFUs, but which has some holes, locations 

where we do not have a value from experimental observations.  We can use table in our existing learn-

ing architecture, but it is necessary to prevent the backpropagation step from trying to drive the predic-

tion outputs at these missing values.  In order to do this, we modified the loss (squared error) function 

by adding a mask: 

 

Loss = mask × (predicted − actual)2, 

 

where the mask is zero (no actual RFU value known) or one (actual data known).  This forces 

the loss to zero when no measured value is available. 

 

1.10 Generation of lists of possible small glycans 

The lists of possible small glycans (ESI Table S1) were generated with a short program.  It works by 

taking base structures and creating a list of all the positions at which another monosacharride may be 

added.  Then at each of these positions the 10 monosacharrides are added in both alpha and beta con-

formations.  These new, larger structures are then used as the base structures for another round of en-

largement. 

 

As a concrete example consider GalNAc(b1-3)Glc(b1-.  There are six locations at which another glyco-

sidic bond may be formed are: GalNAc oxygens 3, 4, and 6 and Glc oxygens 2, 4, and 6. 
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Because they are already in glycosidic bonds are both position 1’s and Glc position 3 are not available.  

Similarly, GalNAc oxygen 2 is not available because of the NAc modification, and both oxygen-5s are 

unavailable as they are in the rings. 

 

At each of the six sites available for glycosidic bonds, we can add each of the ten monosaccharides, 

GlcNAc, GlcA, Gal, …, etc. as either alpha or beta to produce 6 x 10 x 2 = 120 trisaccharides from this 

disaccharide. 

 

The enlargement of the structures is restricted to positions 2, 3, 4, and 6 on the hexoses Gal, Glc, and 

Man.  From GalNAc and GlcNAc only additions at 3, 4, or 6 are considered.  GlcA allows extension at 

2, 3, and 4, while Fuc, Kdn, Neu5Ac, and Neu5Gc have no sites for the extension of the structures. 

 

In practice, the program has a few refinements to prevent producing duplicate structures and produces 

the output in a depth-first order. 

2 Electronic Supplementary Information – Tables 

2.1 ESI Table S1 – List of Possible Small Glycans 

This table lists the possible mono-, di-, tri-, and tetra-saccharides we count in the introduction gener-

ated as described in Section 1.10. 

2.2 ESI Table S2 – List of Glycans Used 

This table contains details of the glycan identifiers used in the different data sources, this work, and the 

three versions of the CFG glycan arrays as well as the “Gene ID” used in the ImaGene style raw data 

tables.  This is not actually a gene identifier, but the standard label used by the software which expects 

to analyze a DNA microarray.  Entries without a number in the GlyNet column were not used in this 

work.  Groups of glycans which are identically encoded in our methodology are assigned the same 

Unique Encoding number; this field is left blank for uniquely encoded glycans. Glycans for which 

anomer attached to the spacer is unspecified are marked with a question mark in the “Unknown 

Anomer” column.  See Supplementary Methods 1.1 for rationals. 

2.3 ESI Table S3 – CFG Array Information 

This table lists the 1257 glycan array datasets used in this work, along with various metadata extracted 

from the CFG website including descriptions of the protein sample used. 

2.4 ESI Table S4 – Mean RFUs (reference from CFG) 

Contains the mean RFU values after all the preprocessing steps. The table is 599 glycans x 1257 pro-

tein samples. These values are the ground truth used in learning, and used for the references for MSE 

calculations, and references in Figs. 4-7 and associated animations. 

2.5 ESI Table S5 – Glycan Feature Counts 

This table contains are list of the glycans and the counts of the features used to describe them to the 

neural networks.  Apart from the header, each line of the file is a different glycan and its “fingerprint”. 
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2.6 ESI Table S6 – Linkers 

This table contains the list of unique linkers and their chemical structure. The chemical structures of the 

linkers are according to the information found at the CFG website (http://www.functionalgly-

comics.org/static/consortium/resources/resourcecoreh8.shtml). 

2.7 ESI Table S7 – Reproduction of Hold-out Data 

This table lists the GlyNet outputs (predictions) used in part to create Figs. 5 and 6 and produce the as-

sociated animated plots.  This table reports output values (corresponding to hold-out folds) that com-

pare to available CFG data (in ESI Table S5). 

2.8 ESI Table S8 – Protein Validation – Animation Time Index 

This table contains times and provides links at which different protein samples and occur within the an-

imated plot analysing the CFG-validation outputs one protein per frame. 

2.9 ESI Table S9 – Glycan Validation – Animation Time Index 

This table contains times and provides links at which different glycans occur within the animated plot 

analysing the CFG-validation outputs with one glycan per frame. 

2.10 ESI Table S10 – Complete Training of GlyNet 

This table lists GlyNet outputs used to create Fig. 7 and produce the associated animated plots.  Here 

the network has been trained on all the available data and is reproducing (after learning) the CFG RFU 

values. 

2.11 ESI Table S11 – Single Output Network Predictions 

Table with GlyNet outputs from the single-output network variants.  These are used in Fig. 4 and com-

pared with ESI Table S7 in ESI Fig. S6. 

2.12 ESI Table S12 – Protein Predictions – Animation Time Index 

This table lists times and provides links at which different glycans occur within the animated plots ana-

lysing the extrapolated predictions for the novel glycans. 

2.13 ESI Table S13 – Novel Glycan Extrapolation 

This table contains GlyNet outputs used to create Fig. 7 and produce the associated animated plots.  

Using the same learned weights, as in ESI Table S8, the network is extrapolating RFU values over the 

set of novel glycans. 

2.14 ESI Table S14 – Number of Top-10 Counts by Glycan 

This table contains statistics about how often different glycans appear as one of the ten strongest bind-

ing glycans for each protein sample. 

http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
http://www.functionalglycomics.org/static/consortium/resources/resourcecoreh8.shtml
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2.15 ESI Table S15 – Single-output vs. Multi-output Network Predictions 

Table of MSE and R2 values evaluation of the predictions across glycans for each protein sample from 

both a single-output network and a shared multi-output network. 
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3 Electronic Supplementary Information – Figures 

 

Top right corner (zoomed in)

       

Bottom left corner (zoomed in) 

 

Fig. S1 – High-resolution RFU Heatmap with Dendrograms 

Snapshots of the high-resolution version of the heatmap in panel Fig. 3a, this includes dendrograms 

showing clustering of the glycans and the glycan arrays (protein samples) as well as including textual 

labels for these items. Space limitations prevent these features from being included in Fig. 3a. The full 

figure is available in the supporting files folder as “Fig. S1 - RFU Data Heatmap with Dendro-

grams.pdf” 

Isomer 1 Isomer 2 
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GlyTouCan: G75850OP 

IUPAC: Neu5Ac(a2-6)Gal(b1-4)GlcNAc(b1-

2)Man(a1-6)[Gal(b1-4)GlcNAc(b1-

2)Man(a1-3)]Man(b1-4)GlcNAc(b1-4)Glc-

NAc(b-Sp12 

  
 

GlyTouCan: G91365ZQ 

IUPAC: Gal(b1-4)GlcNAc(b1-2)Man(a1-

6)[Neu5Ac(a2-6)Gal(b1-4)GlcNAc(b1-

2)Man(a1-3)]Man(b1-4)GlcNAc(b1-4)Glc-

NAc(b-Sp12 

 

          
 

GlyTouCan: G99129GB 

IUPAC: GlcNAc(b1-2)Man(a1-6)[Gal(b1-

4)GlcNAc(b1-2)Man(a1-3)]Man(b1-4)Glc-

NAc(b1-4)GlcNAc(-Sp12 

 
 

GlyTouCan: G86102WJ 

IUPAC: Gal(b1-4)GlcNAc(b1-2)Man(a1-

6)[GlcNAc(b1-2)Man(a1-3)]Man(b1-4)Glc-

NAc(b1-4)GlcNAc(-Sp12 

 

        
 

GlyTouCan: G40183QN 

IUPAC: Neu5Ac(a2-3)Gal(b1-3)GalNAc(b1-

4)[Neu5Ac(a2-8)Neu5Ac(a2-3)]Gal(b1-

4)Glc(b-Sp0 

 
 

GlyTouCan: G97898ZO 

IUPAC: Neu5Ac(a2-8)Neu5Ac(a2-3)Gal(b1-

3)GalNAc(b1-4)[Neu5Ac(a2-3)]Gal(b1-

4)Glc(-Sp21 

  

  

 

Fig. S2 – Isomeric glycans with identical glycan feature counts 

In the set of 599 glycans, we found three pairs of glycans (6 total) that are encoded by the same set of 

glycan feature counts. The Figure summarizes the structures, GlyTouCan codes and IUPAC names for 

these three pairs. Details of the encoding is available in Supplementary Table S5 - Glycan Feature 

Counts.xlsx 
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Fig. S3 – MSE vs. R2 

Comparison if the two measures of quality across the glycans and the protein samples. panel (A) is cop-

ied from the Main Text Figure 3A; the vertical and horizontal slice of the heatmap represent two ways 

of looking at the data: (B-C) a plot describing binding of one glycan to 1257 protein samples; there are 

599 plots total, all summarized as a scatter of 599 dots in MSE vs. R2 plot in panel (C) and available as 

599-frame-long video at https://youtu.be/biWNApZHMP8 

https://youtu.be/biWNApZHMP8
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(D-E) a plot describing binding of one protein sample to 599 different glycans (1257 plots total). there 

are 1257 plots total, all summarized as a scatter of 599 dots in MSE vs. R2 plot in panned C) and avail-

able as 1257-frame-long video at https://youtu.be/oHaFF4A22D8  

(B) is an example of the worst prediction of Glycan G36972EH binding to 1257 with MSE=0.495 cop-

ied from Figure 5D and the location of this prediction on the MSE vs. R2 plot (C) is indicated by an ar-

row. (D) is an example of the worst prediction for HA70 protein binding to 599 glycans and the loca-

tion of this prediction on the MSE vs. R2 plot (D) is indicated by an arrow.  

Although median MSE values are similar across (B-C) and (D-E) the median R2 values differ substan-

tially. Furthermore, in (D-E) the values MSE and R2 are not correlated and there are numerous in-

stances of models with low MSE (low error) but also low R2 (“poor fit”) and vice versa: high MSE 

(high error) but also high R2 (“good fit”). Figures S3-S5 provide further details.  

  

https://youtu.be/oHaFF4A22D8
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Fig. S4 – Correlation between MSE, R2 and properties of the data  

 (A) MSE correlates with the number of binding glycans that exhibit a response 10x above the back-

ground “NRFU10”. The error of the fit is low when samples has low NRFU10 whereas increase in the 

NRFU10 in general increases the error of the fit. (B-C) There is a weaker correlation between MSE and 

the number of binding glycans Nbind; Nbind was defined using criteria of Coff et al.1. (D) in contrast to 

(A), the R2 of the fit improves with increase in NRFU10, whereas low R2 is attributed exclusively to sam-

ples with no glycans that exhibit strong response (see Figure S3). (E-F) Samples with large number of 

binding glycans exhibit the best R2 values whereas majority of the data with poor R2 values can be at-

tributed to samples Nbind < 50. Further details are Table S9 - Timestamp Indices for Animations.xlsx 
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Fig. S5 – Examples of low-MSE-low-R2 data 

Snapshots of six datasets that have low MSE and low R2. In all six cases, there are no glycans that ex-

hibit RFU signal 10x over the baseline RFU signal and there are few or no glycans that can be classi-

fied as “binders”. Zoom in on the data in the bottom right offers some insight: the MSE is low because 

the absolute difference between ground truth and predicted signal is low. The R2 is insensitive to the 

absolute differences, it detects the low correlation between the ground truth and the predicted signal. 

Still, low R2 value is inconsequential to predictions in any of these cases because none of these samples 

contains any binding glycans. Further details can be found in Table S9 - Timestamp Indices for Anima-

tions.xlsx 
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Fig. S6 – Correlation between MSE, R2 for multi-output vs single output GlyNet  

 (A) A scatter plot of 1257 MSE values for multi-output GlyNet vs. 1257 single output neural net-

works (architectures are shown on top). (B) MSE vs. R2 for 1257 single output neural networks: each 

dot is prediction for a separate protein sample. The trend of panel B is similar to the trend observed in 

Figure 3B (similar plot for multi-output GlyNet) but the dynamic range of R2 is even wider in this case. 

The same division of glycans into the CV folds was used for the all  the single-output and the multi-

output networks.  We note that the switch to a multi-task network does not benefit all the protein sam-

ples, the most extreme decline in MSE being 40% (Supplementary Table S11). The decline appeared to 

be protein-dependent, for example a list of the negatively impacted cases contained nine samples of 

Ulex europaeus agglutinin (UEA) and multiple instances of a few other GBPs.  This indicates that 

some aspects of the glycan binding properties of these GBPs was not being properly learned in the 

multi-output networks, and the single-output networks are able to learn these properties more effec-

tively. 
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Fig. S7 – The Top 50 Glycans 

(next page) We used GlyNet model to predict binding 4160 mammalian glycans from the GlyTouCan 

database to the 1257 protein samples measured using CFG glycan arrays. The images on the next two 

pages describes the top-50 privileged binding glycan structures that correspond to over 46% of the 10 

strongest binders in our predictions. Numbers below the structures are the number of samples for which 

the glycan is a top-10 binder. The first entry bas been nominated to be a top-10 binder for 505 out of 

1257 samples and the next two entries are essentially the same structure, but with fewer repeats. Images 

are either sorted by the occurrence of glycans (A) in the prediction or grouped by similarity (B).  
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Fig. S8 – Glycan Binding to SNA  

A) SNA binding motif reported by Mahal and coworkers5, (figure copied from Ref5). B) Representative 

glycan structures with strong binding to SNA in the CFG data.  C) Heatmap of binding of the 599 gly-

cans to SNA samples.  The top two rows are experimentally measured CFG log-RFUs: Row 1: 599 

glycans from a v5 array (1 µg/mL SNA; ID: 1004702); Row 2: 293 matching glycans from a v4 array 

(also 1 µg/mL SNA; ID: 1004421). The bottom two rows are GlyNet predictions made in hold-out 

folds: Row 3: outputs trained to match the v5 array; Row 4: outputs trained to match the v4 array gly-

cans and prediction for the 306 glycans not available in v4 arrays. D) The 20 glycans from the 4160 

novel glycans from the GlyTouCan database predicted by GlyNet to have the highest binding to the 1 

µg/mL SNA sample. All 20 predicted glycans contain canonical SNA binding motifs. 
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Fig. S9 – Glycan Binding to ConA 

A) ConA binding motif reported by Mahal and coworkers5, (figure copied from Ref5).  B) Representa-

tive glycan structures with strong binding to ConA in the CFG data.  C) Heatmap of binding of the 599 

glycans to ConA samples.  The top two rows are experimentally measured CFG log-RFUs: Row 1: 599 

glycans from a v5 array (1 µg/mL ConA; ID: 1004465); Row 2: 293 matching glycans from a v4 array 

(1 µg/mL ConA; ID: 1004412). The bottom two rows are GlyNet predictions made in hold-out folds: 

Row 3: outputs trained to match the version 5 array; Row 4: outputs trained to match the v4 array data 

and predictions for 306 glycans not available in v4 arrays. D) The 20 glycans from the 4160 novel gly-

cans from GlyTouCan database predicted by GlyNet to have the highest binding to 1 µg/mL ConA 

sample (CFG ID: 1004455). All 20 of these glycans contain canonical ConA binding motifs. 
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Fig. S10 – Glycan Binding to PNA 

A) The lectin binding motif reported by Mahal and coworkers5, (figure copied from Ref5).   

B) Representative glycan structures with strong binding to PNA in the CFG data.  C) Heatmap of bind-

ing of the 599 glycans to PNA samples. The top two rows are experimentally measured CFG log-

RFUs: Row 1: 599 glycans from a v5 array (10 µg/mL PNA; ID: 1004677); Row 2: 293 matching gly-

cans from a v4 array (10 µg/mL PNA; ID: 1004375). The bottom two rows are GlyNet predictions 

made in hold-out folds: Row 3: outputs trained to match the v5 array; Row 4: outputs trained to match 

the v4 array glycans and new prediction for 306 glycans not available in v4 arrays. The model attenu-

ates the intensity of the binding, but it effectively predicts the glycans that have the strongest interac-

tions with PNA. D) The 20 glycans from the 4160 novel glycans from GlyTouCan database predicted 

by GlyNet to have the highest binding to 1 µg/mL ConA sample (CFG ID: 1004667). Of the 20 pre-

dicted strongly-binding glycans, 17 contain canonical PNA binding motifs and three glycans contain 

close variants of the canonical motif (3-to-3 change in the stereochemistry or GalNAc-to-Gal change 

as indicated by a crimson arrow). 
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Fig. S11 – Glycan Binding to RCA 

A) RCA binding motif reported by Mahal and coworkers5, (figure copied from Ref5). B) Representative 

glycan structures with strong binding to RCA in the CFG data.  C) Heatmap of binding of the 599 gly-

cans to RCA samples. Row 1: experimentally measured CFG log-RFUs from 599 glycans from a v5 

array (1 µg/mL RCA; ID 10044659); Row 2: measured CFG log-RFUs from 188 matching glycans 

from a v2 array (2 µg/mL RCA; ID 10044600). Rows 3-4 are GlyNet predictions made in hold-out 

folds: Row 3: outputs trained to reproduce the v5 array; Row 4: output predictions for the v2 array gly-

cans and predictions for 411 glycans not available in v2 arrays. Despite the elevated baseline in the v2 

training set (row 2) and 411/599=69% of the binding data missing from v2 dataset when compared to 

the v5 dataset, the extrapolated predictions for the v2 dataset (row 4) have strong binding to a majority 
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of the RCA-binding glycans experimentally validated in the v5 set (row 1). D) The 20 glycans from the 

4160 novel glycans from the GlyTouCan database predicted by GlyNet to have the highest binding to 

the 1 µg/mL RCA sample (CFG ID: 10044659). All 20 predicted glycans contain 3-4 copies of the ca-

nonical RCA binding motif: terminal Gal(−4)GlcNAc. 

 

 

 

 

 

 

Legend for the figure on the next page: 

Fig. S12 – Glycan Binding to UEA I 

A) The canonical UEA I binding motifs reported by Mahal and coworkers5, (figure from Ref5). B) Rep-

resentative glycan structures with strong binding to UEA I in the CFG data. C) Heatmap of binding for 

the 599 glycans to UEA I samples. Rows 1-14 are experimentally measured log-RFUs (see legend of 

ESI Fig. S13 for primscreen ID and more details of individual samples).  

Rows 1-3: 599 glycans from v5 arrays (0.1, 1, 100 µg/mL UEA I from Vector Laboratories);  

Row 4: 599 glycans from v5 arrays (10 µg/mL UEA I from EY Laboratories, Inc.);  

Rows 5-11: 599 glycans from v5 arrays (0.01, 0.1, 0.5, 1, 10, 50, 100 µg/mL UEA I from EY Labs); 

Rows 12-14: 293 matching glycans from v4 arrays (0.3, 3, 30 µg/mL UEA I, source unknown). 

Red lines highlight binding of non-canonical (4-GalNAc-)-oligomers (chitin oligomers) and other 

non-canonical motifs detailed in ESI Fig. S13 to the v5 arrays probed with UEA I from EY Labs but 

not the v4 arrays probed by UEA I from Vector Labs. We hypothesize that these differences are the re-

sult of differences in the source, extraction/purification or perhaps even contamination of one of the 

batches of UEA I (see ESI Fig. S13 for a more detailed analysis of the differences). 

 

Rows 15-28 are GlyNet predictions made in hold-out folds:  

Rows 1-3: predictions trained to match v5 array data (0.1, 1, 100 µg/mL UEA I from Vector Labs);  

Row 4: predictions trained to match v5 array data (10 µg/mL UEA I from EY Labs);  

Rows 5-11: predictions matching v5 data (0.01, 0.1, 0.5, 1, 10, 50, 100 µg/mL UEA I from EY Labs). 

Row 12-14: data trained to match v4 array data (0.3, 3, 30 µg/mL UEA I from unknown source) and 

predictions for 306 glycans not in the v4 arrays. 

The GlyNet predictions are attenuated in binding intensity, but they recapitulate the pattern of binding 

to canonical motifs. UEA I exhibited a significant divergence in experimental binding depending on the 

protein source. For example, non-canonical binding to (4-GalNAc-)-oligomers is pronounced in UEA 

I from EY Laboratories, but missing in UEA I from Vector Laboratories and in UEA I samples run on 

v4 arrays. As a result, the predictions also diverge; specifically, held-out predictions for the EY Labora-

tories sourced UEA I have strong binding to (4-GalNAc-)-penta- and hexasacharides matching the ex-

perimental observations, but for both UEA from Vector Laboratories and samples run on v4 arrays the 

held-out predictions for (4-GalNAc-) exhibit no binding. 

D) The 20 glycans from the 4160 novel GlyTouCan glycans predicted by GlyNet to have the highest 

binding to the 50 µg/mL EY Lab UEA I sample. Of the 20, 18 contain canonical UEA binding motifs, 

whereas two possess the (4-GalNAc-)-oligomer binding motif, in accordance with these non-canoni-

cal motifs being observed to bind strongly in the corresponding experimental data. 
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Legend for the figure on the next page: 

Fig. S13 – Patterns of Glycan Binding to UEA I in the CFG Data 

Detailed examination of canonical and non-canonical binding preferences of UEA I lectin based on an 

extract of ESI Table S4, which gives log-scaled RFU values for several protein samples across v5 ar-

rays.  Here we have extracted samples from multiple sources of UEA I applied at a range of concentra-

tions.  These have been supplemented with data from three samples run on v4 arrays, missing values 

are glycans not present in these arrays.  The first three columns were measured using UEA I for which 

we do not know the source, whereas a vendor is known for the other cases; eight columns were ac-

quired using Biotin-UEA-I from EY Laboratories, and the last three columns were measured using 

UEA I from Vector Laboratories. The strongest interactions are coloured yellow, with green for inter-

mediate values, and with blue for the weakest interactions.  Besides the binding motif reported by Ma-

hal and coworkers (A)5 Biotin-UEA-I from EY Labs at 50-100 µg/mL binds to at least three other gly-

can patterns: B) GlcNAc(β1-4)GlcNAc also seen in ESI Figs. S12 and S14, C) GlcNAc(α1-3/4)Gal(β1-

4)GlcNAc, and D) GalNAc(β1-4)GlcNAc.  The structures in B and D seem to tolerate modification by 

sulfate or sialic acid in the 6-position but not in positions 3 or 4. 

 

All measurements in Figure S13 are from the following CFG samples: 

 

UEA I protein: Unknown source CFG: cbp 1010 

1. 1004420  primscreen_4421  0.3 µg/mL 

2. 1004419  primscreen_4420  3 µg/mL 

3. 1004418  primscreen_4419  30 µg/mL 

UEA I protein: EY Labs Cat. #: BA-2201-2  Lot #: 290224-2  CFG cbp 2532 

4. 1004737  primscreen_4738  10 µg/mL 

UEA I protein: EY Labs Cat. #: BA-2201-2  Lot #: 290224-1  CFG cbp 2787 

5. 1004796  primscreen_4797  0.01 µg/mL 

6. 1004797  primscreen_4798  0.1 µg/mL 

7. 1004798  primscreen_4799  0.5 µg/mL 

8. 1004799  primscreen_4800  1 µg/mL 

9. 1004802  primscreen_4803  10 µg/mL 

10. 1004800  primscreen_4801  50 µg/mL 

11. 1004801  primscreen_4802  100 µg/mL 

UEA I protein: Vector Labs Cat. #: B-1065  Lot #: V 1207 CFG cbp 2481 

12. 1004733  primscreen_4734  0.1 µg/mL 

13. 1004734  primscreen_4735  1 µg/mL 

14. 1004736  primscreen_4737  100 µg/mL 
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A                 B 

 
C                 D 

 

Fig. S14 –Glycan Binding to UEA I 

(A) Snapshots taken from https://youtu.be/pa_6nO0Zl64?t=1156 (frame at 1156 seconds) detailing the 

binding of EY Labs UEA I lectin at 100 µg/mL to CFG ver 5 array and (B) predictions made by 

GlyNet for the ability of this EY Laboratories UEA I to bind 4160 glycans from GlyTouCan database. 

(C) Snapshots taken from  https://youtu.be/pa_6nO0Zl64?t=1165 (frame at 1165 seconds) detailing the 

binding of Vector Labs UEA I lectin at 100 µg/mL to CFG ver 5 array and (D) predictions made by 

GlyNet for the ability of this Vector Laboratories UEA I to bind 4160 glycans from GlyTouCan data-

base. In panel (A), glycans 1 and 2 (4-GalNAc-oligomers) do not contain a canonical UEA I recogni-

tion motif but they are among the strongest binding experimentally measured binders for EY 

https://youtu.be/pa_6nO0Zl64?t=1156
https://youtu.be/pa_6nO0Zl64?t=1165
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Laboratories UEA I at 100 µg/mL; In panel (B), the predicted binders to EY UEA I at 100 µg/mL also 

contain non-canonical (4-GalNAc-)-oligomer motifs (glycans 9 and 10). In contrast non-canonical 

glycan binders are not observed experimentally in binding to Vector Laboratories UEA I. Predicted 

binders from GlyTouCan database also do not contain non-canonical UEA I motifs (D). Overall, there 

is a divergence in predicted binding glycans for EY Laboratories (B) and Vector Laboratories proteins 

(D).   
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Fig. S15 – Analysis of Predictions from the SweetNet Multi-output Models 

Analysis in the style of Fig. S3 of relation between MSE and R2 by A) protein samples and B) glycan 

on hold-out fold predictions from the multi-output SweetNet4 models.  Observations on this figure par-

allel those of our data in Fig. S3. 
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3.1 Fig. S16 – Comparison of MSE Distribution between the SweetNet and GlyNet Models 

The per protein sample MSEs from hold out fold predictions produced by both systems are plotted.  

The correlation between the MSEs indicates that in general both architectures perform relatively well 

or poorly on particular samples.  
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