Supporting Information

for

Solvent Coordination to Palladium Can Invert the Selectivity of Oxidative Addition

Emily K. Elias, Steven M. Rehbein, Sharon R. Neufeldt*
Department of Chemistry and Biochemistry, Montana State University
Bozeman, MT 59717, USA

*Correspondence: sharon.neufeldt@montana.edu

Table of Contents

I. Experimental Details
A. General Materials and Methods S4
B. Synthesis and Characterization of Substrates and Authentic Samples of Products S5
C. Catalytic Suzuki Couplings of $\mathbf{1}$

1. Evaluation of Precatalyst and Water Effect on Selectivity S9
2. Benzonitrile Additives (Table 1 and Figure 1) S11
3. Mixed THF/Benzonitrile Solvent S14
4. Results with Fluoroacetonitrile, Sulfolane (Table 2), and Tetrahydrothiophene S16
5. Effect of Temperature (Table 4) S17
6. Effect of Additives (Table 6) S20
7. Recycling "Decomposed" Catalyst \quad S21
D. Reactions with $\mathbf{3 a}$ and $\mathbf{3 b}$
8. Catalytic Suzuki Couplings S24
9. Stoichiometric Oxidative Addition Studies (Table 3)
a. ${ }^{19}$ F NMR Calibrations \quad S25
b. ${ }^{19}$ F NMR Chemical Shifts \quad S25
c. Oxidative Addition Reactions S26
E. Reactions with S15a and S15b
10. Catalytic Suzuki Couplings S32
11. Stoichiometric Oxidative Addition Studies
a. ${ }^{19}$ F NMR Calibrations \quad S33
b. ${ }^{19}$ F NMR Chemical Shifts \quad S33
c. Oxidative Addition Reactions S33
F. Stille Cross-Couplings
12. Reactions of $\mathbf{1}$ (Scheme 3) S35
13. Reactions of $\mathbf{8}$ (Table 5) S36
14. Independent Reactions of an Aryl Chloride and an Aryl Triflate S37
15. Efforts to Reproduce Literature Results for the Base-Free Stille Coupling of $\mathbf{1} \quad$ S39
G. Evaluation of Alternative Hypotheses
16. Alternative Hypothesis: Is Solvent Effect Related to KF Solubility? S41
17. Alternative Hypothesis: Is Oxidative Addition Reversible (Curtin-Hammett)? S43
18. Alternative Hypothesis: "Greasy Tin Hypothesis" S45
19. Alternative Hypothesis: Effect of $\mathrm{Bu}_{3} \mathrm{SnOTf} \quad \mathrm{S} 46$
20. Alternative Hypothesis: Autocatalysis in Stoichiometric Oxidative Addition? S47
H. Error Analysis S49
II. Computational Details
A. General Methods S51
B. Reaction Free Energy Diagram Using DMF Calculated with B3LYP-D3(BJ) S52
C. DFT Predictions at $100^{\circ} \mathrm{C}$ S53
D. Discussion of DFT Shortcomings \quad S53
E. Energies, Entropies, and Lowest Frequencies of Minimum Energy Structures S56

III. References	S58

IV. NMR Spectra
A. Compound Characterization S60
B. Stoichiometric Oxidative Addition Studies with $\mathbf{3 a}$ and $\mathbf{3 b}$

1. Experiments from Table 3 and with Deuterated Solvents S89
2. Experiments in DMF at 100 and $0^{\circ} \mathrm{C}$ S120
3. Monitoring the Reaction in DMF over Time S124
4. Reactions in the Presence of Additives S136
C. Stoichiometric Oxidative Addition Studies with S15a and S15b S144
D. Reaction with $\mathbf{S 1 1}$ and $\mathrm{NBu}_{4} \mathrm{OTf}$ S154

I. Experimental Details

A. General Materials and Methods

NMR spectra were recorded at 298 K on Bruker DPX Avance I $300 \mathrm{MHz}\left(300.130 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 75.468 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}, 282.404 \mathrm{MHz}$ for ${ }^{19} \mathrm{~F}, 121.495 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$), Bruker Ascend 400 MHz (400.130 MHz for ${ }^{1} \mathrm{H}$ NMR, 100.613 for ${ }^{13} \mathrm{C}, 376.498$ for ${ }^{19} \mathrm{~F}, 161.967$ for ${ }^{31} \mathrm{P}$), Bruker Ascend Avance III $500 \mathrm{MHz}\left(500.130\right.$ for ${ }^{1} \mathrm{H}, 125.758 \mathrm{MHz}$ for ${ }^{13} \mathrm{C}$, 470.592 for ${ }^{19} \mathrm{~F}, 202.478 \mathrm{MHz}$ for ${ }^{31} \mathrm{P}$), or Bruker Avance III $600 \mathrm{MHz}\left(600.130 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}, 150.903$ for ${ }^{13} \mathrm{C}$) NMR spectrometers. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak used as an internal reference [${ }^{1} \mathrm{H}$ NMR: $\left.\mathrm{CHCl}_{3}(7.26 \mathrm{ppm}) ;{ }^{13} \mathrm{C} \mathrm{NMR:} \mathrm{CDCl}_{3}(77.16 \mathrm{ppm}).\right]{ }^{19} \mathrm{~F}$ chemical shifts are reported in ppm relative to fluorobenzene (-113.15 ppm). Multiplicities are reported as follows: singlet (s), doublet (d), triplet (t), quartet (q), quartet of triplets (qt), triplet of triplets (tt), triplet of quintets (tqn), triplet of sextets of doublets (tsd), multiplet (m). GC data were collected using a Shimadzu GC-2010 Plus with a flame ionization detector equipped with a SH-Rxi-5ms capillary column (15 mx 0.25 mm ID x $0.25 \mu \mathrm{~m} \mathrm{df}$). GCMS data were collected on a Shimadzu GCMS-QP2020 NX gas chromatograph mass spectrometer. HRMS data were collected on a Bruker MicroTOF II in acetonitrile with NaCl doping. Purifications via flash chromatography were performed using a Biotage Selekt Flash Purification System. "Room temperature" reactions described herein are generally between $23-25^{\circ} \mathrm{C}$ as measured by a temperature probe on the reaction stir plates.

Unless otherwise noted, all commercially-obtained chemicals were used as received. Anisonitrile, dioxane, $N, N-$ dimethylformamide, p-cresol, $\mathrm{PdCl}_{2}, \mathrm{KF}$, sulfolane, 4-(dimethylamino)benzonitrile, 4-chlorophenol, and 4chlorotoluene were obtained from Acros Organics. Propylene carbonate was obtained from Aldrich Chemical. Acetonitrile, $\mathrm{K}_{2} \mathrm{CO}_{3}$, tetrahydrothiophene, $\mathrm{P}^{t} \mathrm{Bu}_{3}$, and 4-methylbiphenyl were obtained from Alfa Aesar. Benzonitrile was obtained from Eastman Chemical. p-Xylene was obtained from Honeywell Fluka Research Chemicals. 4-Chloro-1,1'-biphenyl was obtained from Matrix Scientific. Biphenyl, methyl-4-cyanobenzoate, nitromethane, o-tolyl boronic acid, phenyl boronic acid, tetrabutylammonium bromide, tetrabutylammonium chloride, tetrabutylammonium fluoride hexahydrate, tetrabutylammonium trifluoromethanesulfonate, tetrabutylstannane, trifluoromethanesulfonic anhydride, 1-chloro-2-trifluoromethylbenzene, 1-naphthol, 18-crown-6, 2bromobenzotrifluoride, 2-chlorobenzotrifluoride, 4-(trifluoromethyl)benzonitrile, 4-aminobenzonitrile, 4ethoxybenzonitrile, 4-fluorobenzonitrile, 4-hydroxybenzonitrile, and 4-nitrobenzonitrile were obtained from Oakwood Chemical. The boronic acids were recrystallized from water prior to use. 1-Methylnaphthalene, ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnOTf}$, $\mathrm{Me}_{3} \mathrm{SnPh}$, and α, α, α-trifluorotoluene were obtained from Millipore Sigma. Bis(tri-tbutylphosphine)palladium(o), methanesulfonato(tri-t-butylphosphino)(2'-methylamino-1,1'-biphenyl-2yl)palladium(II) (Buchwald's precatalyst $\mathrm{PtBu}_{3}-\mathrm{Pd}-\mathrm{G} 4$), and $\mathrm{Me}_{3} \mathrm{SnBr}$ were obtained from Strem Chemical. Fluoroacetonitrile, $\quad N$-methyl-2-pyrrolidone, $\quad p$-terphenyl, $\quad p$-tolunitrile, $\quad 1$-chloronaphthalene, \quad 1,4dimethylnaphthalene, 4-chlorobenzotrifluoride, 4-chloro-1-naphthol, 4-hydroxybenzotrifluoride, and 4-phenyl-1bromonaphthalene were obtained from TCI America. KPF6 was obtained from Alfa Aesar, Oakwood Chemical, or Millipore Sigma. ${ }^{n} \mathrm{Bu}_{3} \mathrm{SnPh}$ was obtained from Alfa Aesar or Millipore Sigma. Tris(dibenzylideneacetone)dipalladium(o) $\left(\mathrm{Pd}_{2} \mathrm{dba}_{3}\right)$ was obtained from Millipore Sigma or Strem Chemical. Compounds 1, ${ }^{1} \mathbf{2 a},{ }^{1} \mathbf{2 b},{ }^{1} \mathbf{3 a},{ }^{1} \mathbf{3 b},{ }^{1} \mathbf{4 b},{ }^{2} \mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}, 3\left[\mathrm{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)\left(o-\mathrm{CF}_{3} \mathrm{Ph}\right)(\mathrm{Cl})\right](\mathbf{S 1 0}), 4$ and $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3} \cdot \mathrm{HCl}_{5}$ were synthesized according to literature procedures.

Acetone, acetonitrile, chloroform, dichloromethane, diethyl ether, dimethyl formamide (DMF), dimethylsulfoxide (DMSO), ethanol, ethyl acetate, fluorobenzene, hexanes, isopropanol, methanol, pentane, tetrahydrofuran (THF), and toluene were obtained from Fisher Chemical. Benzene was obtained from TCI America. Solvents were used as received except for those that were used inside the glovebox. In these cases, MeCN, MeOH, DMF, toluene, and fluorobenzene were degassed and dried with a JC Meyer solvent system prior to use. The dried DMF, MeCN, toluene, and methanol were stored over molecular sieves in the glovebox. Deuterated solvents (CDCl_{3}, $\mathrm{C}_{6} \mathrm{D}_{6}$) were obtained from Cambridge Isotopes and stored over molecular sieves.

B. Synthesis and Characterization of Substrates and Authentic Samples of Products

2-(Trifluoromethyl)phenyl triflate (3b): The title compound was prepared according to a modified literature procedure. ${ }^{6}$ With cooling to $\mathrm{o}^{\circ} \mathrm{C}$, a solution of trifluoromethanesulfonic anhydride (4.0 mL , 24.0 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise to a solution of 2hydroxybenzotrifluoride (3.24 g , 20.0 mmol) and pyridine (3.23 mL , 40.0 mmol , 2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL}$). The mixture was allowed to warm to room temperature and stirred for 1 h , after which the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and acidified with aqueous $1 M \mathrm{HCl}$. The layers were separated, and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated NaHCO_{3} and brine (aqueous NaCl), dried over MgSO_{4}, filtered, and concentrated to give a yellow oil that was purified through a short silica plug (100% hexanes) to afford $\mathbf{3} \mathbf{b}$ as a clear, colorless oil ($4.40 \mathrm{~g}, 75 \%$ yield). Spectral data are consistent with those previously reported. 7

4-Phenylnaphthalen-1-yl triflate (9a). The title compound was prepared according to a modified literature procedure. ${ }^{8} \mathrm{Pd}^{-\mathrm{P}^{t} \mathrm{Bu}_{3}-\mathrm{G} 4}$ ($7.0 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%$), phenyl boronic acid ($49.3 \mathrm{mg}, 0.404 \mathrm{mmol}, 1.01$ equiv), and KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, 4-chloronaphthalen-1-yl triflate (8, 79 $\mu \mathrm{L}, 0.40 \mathrm{mmol}$), deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), and THF (1.0 mL) were added to the vial and the mixture was immediately sparged with nitrogen for $\sim 2 \mathrm{~min}$. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford 9 a as a colorless oil ($40 \mathrm{mg}, 28 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 8.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.5,1 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (multiple overlapping signals, 8 H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}, ~ \delta$): 145.2, 141.3, 139.4, 133.3, 130.1, 128.6, 128.0, 127.8, 127.6, 126.8, 126.7 , 126.2, 121.1, 118.9 (q, ${ }^{1} J_{\mathrm{CF}}=320 \mathrm{~Hz}$), 117.4; ${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-73.3$. HRMS (ESI/Q-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}$375.0273. Found 375.0261.

1-Chloro-4-phenylnaphthalene (9b). $\mathrm{PdCl}_{2}(2.1 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%)$, phenyl boronic acid (48.8 mg , o. 40 mmol , 1 equiv), and KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, 4-chloronaphthalen-1-yl triflate (8, 79 $\mu \mathrm{L}, 0.40 \mathrm{mmol}$), deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), and acetonitrile ($750 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for $\sim 2 \mathrm{~min}$. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 22 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford $\mathbf{9 b}$ as a colorless oil ($79 \mathrm{mg}, 84 \%$ yield). Spectral data are consistent with those previously reported. ${ }^{9}$

4-Methylnaphthalen-1-yl triflate (9c): In a nitrogen-filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(6.9 \mathrm{mg}, 0.0075$ $\mathrm{mmol} 1.5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}(7.7 \mathrm{mg}, 0.015 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$, and $\mathrm{KPF}_{6}(276 \mathrm{mg}, 1.50 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, 4^{-} chloronaphthalen-1-yl triflate ($\mathbf{8}, 98 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), $\mathrm{PhSnMe}_{3}(100 \mu \mathrm{~L}, 0.55 \mathrm{mmol}, 1.1$ equiv), and DMF (1.0 mL) were added. The vial was sealed with a PTFE-lined cap and the mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes, dryloaded on C 18 silica gel) to afford $\mathbf{9 c}$ as a white solid ($52 \mathrm{mg}, 36 \%$ yield).). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.21-8.01 (two overlapping signals, 2 H), 7.68-7.6o (two overlapping signals, 2 H), 7.38-7.30 (two overlapping signals 2 H), $2.71(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} 8$): 144.4, 135.6, 133.9, 127.6, 127.3, 126.5, 125.7, 124.7, 122.7, 118.8 (q, ${ }^{1} J_{\text {CF }}=320 \mathrm{~Hz}$), 117.5, 19.4; ${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right.$): -73.4. HRMS (ESI/Q-TOF) m/z: [M+Na]+ Calcd for $\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{NaO}_{3} \mathrm{~S}^{+}$313.0117. Found 313.0123.

1-Chloro-4-methylnaphthalene (9d): In a nitrogen-filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(6.9 \mathrm{mg}, 0.0075$ mmol $1.5 \mathrm{~mol} \%$), $\mathrm{Pd}\left(\mathrm{P}^{2} \mathrm{Bu}_{3}\right)_{2}\left(7.7 \mathrm{mg}, 0.015 \mathrm{mmol}, 3.0 \mathrm{~mol} \%\right.$), and $\mathrm{KPF}_{6}(276 \mathrm{mg}, 1.50 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, 4^{-} chloronaphthalen-1-yl triflate ($\mathbf{8}, 98 \mu \mathrm{~L}, 0.50 \mathrm{mmol}$), $\mathrm{PhSnMe}_{3}(100 \mu \mathrm{~L}, 0.55 \mathrm{mmol}, 1.1$ equiv), and DMF (1.0 mL) were added. The vial was sealed with a PTFE-lined cap and the mixture was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes, dry-loaded on C 18 silica gel) to afford 9 d as a white solid ($31 \mathrm{mg}, 35 \%$ yield). Spectral data are consistent with those previously reported, ${ }^{10}$ but higher resolution data are included here. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 8.30 (dd, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $8.0(\mathrm{dd}, 7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70-7.57$ (two overlapping signals, 2 H), $7.46(\mathrm{~d}, 7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, 7.7$ $\mathrm{Hz}, 1 \mathrm{H}$, overlaps with solvent), $2.67(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13 \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : 133.8, 133.7, 130.8, 130.2, 130.0, 128.5, 126.8 (d, $J=7.2 \mathrm{~Hz}$), 126.5, 125.9, 124.1, 124.7, 19.4.

1-Methyl-4-phenylnaphthalene (9f): The title compound was prepared according to a modified literature procedure. ${ }^{8} \mathrm{Pd}^{\mathrm{P}} \mathrm{Bu}_{3}-\mathrm{G} 4$ ($7.0 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%$), phenyl boronic acid (49.3 mg , 0.404 mmol , 1.01 equiv), and KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, 1-bromo-4-methylnaphthalene ($63 \mu \mathrm{l}, 0.40$ mmol), deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), and THF (1.0 mL) were added to the vial and the mixture was immediately sparged with nitrogen for $\sim 2 \mathrm{~min}$. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford $\mathbf{9 f}$ as a white solid ($76 \mathrm{mg}, 87 \%$ yield). Spectral data are consistent with those previously reported. ${ }^{11}$

1,4-Diphenylnaphthalene (9g): The title compound was prepared according to a modified literature procedure. ${ }^{8}$ Pd-PtBu ${ }_{3}$ - 44 ($7.0 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%$), phenyl boronic acid (49.3 mg , $0.404 \mathrm{mmol}, 1.01$ equiv), KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv), and 1-bromo-4-phenylnaphthalene ($113.3 \mathrm{mg}, 0.40 \mathrm{mmol}$) were combined in a 1-dram vial equipped with a magnetic stir bar. In rapid succession, deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv) and THF (1.0 mL) were added to the vial and the mixture was immediately sparged with nitrogen for $\sim 2 \mathrm{~min}$. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford 9 g as a white solid ($45 \mathrm{mg}, 40 \%$ yield). Spectral data are consistent with those previously reported. ${ }^{11}$

2-(Trifluoromethyl)phenyl nonaflate (S11). The title compound was prepared according to a modified literature procedure. ${ }^{12}$ To an oven-dried 50 mL round bottom flask was added ${ }^{2-}$ (trifluoromethyl)phenol ($0.68 \mathrm{~g}, 4.2 \mathrm{mmol}, 1$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.87 \mathrm{~g}, 6.3 \mathrm{mmol}, 1.5$ equiv), and acetonitrile ($8.3 \mathrm{~mL}, 0.5 \mathrm{M}$). The resulting slurry was stirred rapidly while perfluorobutanesulfonyl fluoride (1.26 g , $5.0 \mathrm{mmol}, 1.2$ equiv) was added via Pasteur pipette. The solution was allowed to stir at room temperature for 16 h , after which the slurry was filtered over a pad of silica gel and rinsed thoroughly with hexanes. The filtrate was concentrated under vacuum to yield $\mathbf{S 1 1}$ as a clear, colorless oil ($1.39 \mathrm{~g}, 75 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 146.4,134.2,128.4,128.2(\mathrm{q}, ~ J=5.5 \mathrm{~Hz}), 123.6(\mathrm{q}, J=33.1 \mathrm{~Hz}), 122.6,122.2(\mathrm{q}, J=272.7 \mathrm{~Hz})$, 117.5, (qt, $J=295.6,33.1 \mathrm{~Hz}$), 114.7 (tt, $J=295.6,33.1$), 110.1 (tqn, $J=272.7,31.8 \mathrm{~Hz}$), 108.7 (tsd, $J=272.7,31.8$, 5.5 Hz). ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$,) : -60.9, -80.7, -109.3, -120.9, -125.9. HRMS (EI/Q-TOF) m/z: [M]+ Calcd for $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{~F}_{12} \mathrm{O}_{3} \mathrm{~S}^{+} 443.9690$. Found 443.9686.

Naphthalen-1-yl triflate (S12): The title compound was prepared according to a modified literature procedure. ${ }^{6}$ With cooling to $0{ }^{\circ} \mathrm{C}$, trifluoromethanesulfonic anhydride ($1.0 \mathrm{~mL}, 6.0 \mathrm{mmol}$, 1.2 equiv) was added dropwise to a solution of 1-naphthol ($0.72 \mathrm{~g}, 5.0 \mathrm{mmol}$) and pyridine (0.81 mL , $10.0 \mathrm{mmol}, 2$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was allowed to warm to room temperature and stirred for 1 h , after which the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and acidified with aqueous 1 N HCl . The layers were separated, and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. and the combined organics washed with saturated NaHCO_{3} and NaCl brine. The combined organic layers were washed with saturated NaHCO_{3} and brine (aqueous NaCl), dried over MgSO_{4}, filtered, and concentrated to give a yellow oil that was purified through a short silica plug (100% hexanes) to afford $\mathbf{S 1 2}$ as a clear, colorless oil ($1.05 \mathrm{~g}, 76 \%$ yield). Spectral data are consistent with those previously reported. 7

2-Methyl-2'-(trifluoromethyl)biphenyl (S13). The title compound was prepared according to a modified literature procedure. ${ }^{8} \mathrm{Pd}^{\mathrm{P} t} \mathrm{Bu}_{3}$-G4 ($7.0 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%$), orthotolylboronic acid ($54.9 \mathrm{mg}, 0.404 \mathrm{mmol}$, 1.01 equiv), and KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. In rapid succession, deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), 2 -chlorobenzotrifluoride ($54 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$), and toluene (1.0 mL) were added to the vial and the mixture was immediately sparged with nitrogen for $\sim 2 \mathrm{~min}$. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford $\mathbf{S 1 3}$ as a colorless oil ($45 \mathrm{mg}, 48 \%$ yield).). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 7.79$ (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (dd, $J=7.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.52 (dd, $J=7.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 7.37-7.23 (multiple signals, 4 H , overlaps with solvent), $7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\{1 \mathrm{H}\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3} 8$): 140.8 , $139.0,136.1,131.7,131.4,129.7,129.6,128.9\left(q,{ }^{2} J_{\mathrm{CF}}=29 \mathrm{~Hz}\right), 128.0,127.4,126.1\left(\mathrm{q}, 3 J_{\mathrm{CF}}=5 \mathrm{~Hz}\right), 125.0,124.1(\mathrm{q}$, ${ }^{1} J_{\mathrm{CF}}=276 \mathrm{~Hz}$), 20.2. ${ }^{19} \mathrm{~F}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right):-59.2$. HRMS (ESI/Q-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{Na}^{+}$ 259.0705. Found 259.0711 .

1-Phenylnaphthalene (S14): The title compound was prepared according to a modified literature procedure. ${ }^{8}$ Pd-PtBu ${ }_{3}$-G4 ($7.0 \mathrm{mg}, 0.012 \mathrm{mmol}, 3 \mathrm{~mol} \%$), phenyl boronic acid ($49.3 \mathrm{mg}, 0.404 \mathrm{mmol}$, 1.01 equiv), and KF ($69.7 \mathrm{mg}, 1.20 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, deionized water ($7.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), 1 chloronaphthalene ($55 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 1$ equiv), and THF (1.0 mL) were added to the vial and the mixture was immediately sparged with nitrogen for ~ 2 min.. The vial was sealed with a PTFE-lined cap and the reaction was stirred at room temperature for 24 h . The reaction mixture was extracted with ethyl acetate, and the organic extract was filtered over a plug of celite. The filtrate was concentrated and then purified by flash column chromatography (100% hexanes) to afford $\mathbf{S 1 4}$ as a viscous, colorless oil ($6 \mathrm{mg}, 7 \%$ yield). Spectral data are consistent with those previously reported. ${ }^{13}$

4-(Trifluoromethyl)phenyl triflate (S15b): The title compound was prepared according to a modified literature procedure..14 With cooling to $\mathrm{o}{ }^{\circ} \mathrm{C}$, a solution of trifluoromethanesulfonic anhydride (4.0 mL , 24.0 mmol , 1.2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added dropwise to a solution of 4-hydroxybenzotrifluoride ($3.24 \mathrm{~g}, 20.0 \mathrm{mmol}$) and pyridine ($3.25 \mathrm{~mL}, 40.3 \mathrm{mmol}$, 2 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was allowed to warm to room temperature and stirred for 1 h , after which the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and acidified with aqueous $1 M \mathrm{HCl}$. The layers were separated, and the aqueous layer was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with saturated NaHCO_{3} and brine (aqueous NaCl), dried over MgSO_{4}, filtered, and concentrated to give a yellow oil that was purified through a short silica plug (100% hexanes) to afford $\mathbf{S 1 5 b}$ as a clear, colorless oil ($4.53 \mathrm{~g}, 77 \%$ yield). Spectral data are consistent with those previously reported. ${ }^{15}$

C. Catalytic Suzuki Couplings of 1

1. Evaluation of Precatalyst and Water Effect on Selectivity

General Procedure with Precatalyst System A: Without exclusion of air or moisture, PtBu $-\mathrm{Pd}-\mathrm{G} 4$ ($1.5 \mathrm{mg}, 0.0026$ $\mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , $0.081 \mathrm{mmol}, 1.01$ equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, water ($0-1.4 \mu \mathrm{~L}, \mathrm{o}-0.08 \mathrm{mmol}$, $0-1$ equiv), 4 -chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and solvent ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

General Procedure for Precatalyst System B: In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol}$ $\%$), $\operatorname{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}(0.6 \mathrm{mg}, ~ o .0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%), o$-tolyl boronic acid ($11.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv), and KF $(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. The vial was sealed with a PTFE-lined cap and removed from the glovebox. Outside of the glovebox, the cap was removed and, in rapid succession, water ($0-1.4 \mu \mathrm{~L}, \mathrm{o}-0.08 \mathrm{mmol}, \mathrm{o}-1$ equiv), 4 -chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and solvent $(150 \mu \mathrm{~L})$ were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum cap was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S1. Effect of Precatalyst and Water on Selectivity ${ }^{a}$

> precatalyst system $\mathbf{A}: \mathrm{P}^{t} \mathrm{Bu}_{3}-\mathrm{Pd}-\mathrm{G} 4(3 \mathrm{~mol} \%)$
> precatalyst system $\mathbf{B}: \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.75 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}(1.5 \mathrm{~mol} \%)$

entry	solvent	precatalyst	$\mathrm{H}_{2} \mathrm{O}$ (equiv)	trial	1 (\%)	2 a (\%)	2b (\%)
1	THF	A	0	1	25	79	1
2	THF	A	0	2	21	79	1
3	THF	A	0	Average	23	79	1
4	THF	A	1	1	5	63	<1
5	THF	A	1	2	23	72	<1
6	THF	A	1	3	26	68	1
7	THF	A	1	4	25	71	1
8	THF	A	1	5	27	75	1
9	THF	A	1	6	24	79	1
10	THF	A	1	7	20	78	1
11	THF	A	1	8	18	79	1
12	THF	A	1	Average	20	74	<1
13	THF	B	1	1	28	72	1
14	THF	B	1	2	19	75	1
15	THF	B	1	Average	24	74	1
16	MeOH	A	1	1	0	68	3
17	MeOH	A	1	2	0	65	2
18	MeOH	A	1	Average	0	67	2
19	MeOH	B	1	1	35	19	2
20	MeOH	B	1	2	36	21	2
21	MeOH	B	1	Average	35	19	2
22	DMF	A	0	1	65	6	30
23	DMF	A	0	2	63	7	31
24	DMF	A	O	Average	64	7	30
25	DMF	A	1	1	16	9	58
26	DMF	A	1	2	19	9	61
27	DMF	A	1	3	24	11	59
28	DMF	A	1	4	26	11	59
29	DMF	A	1	5	16	12	66
30	DMF	A	1	6	20	11	62
31	DMF	A	1	7	18	9	66
32	DMF	A	1	8	46	7	46
33	DMF	A	1	Average	23	10	60
34	DMF	B	1	1	49	7	42
35	DMF	B	1	2	23	10	62
36	DMF	B	1	Average	36	9	52
37	MeCN	A	1	1	8	2	75
38	MeCN	A	1	2	8	2	78
39	MeCN	A	1	Average	8	2	77
40	MeCN	B	1	1	16	4	72
41	MeCN	B	1	2	19	4	71
42	MeCN	B	1	Average	17	4	72
43	propylene carbonate	A	1	1	9	57	6

44	propylene carbonate	\mathbf{A}	$\mathbf{1}$	$\mathbf{2}$	23	68	6
45	propylene carbonate	\mathbf{A}	$\mathbf{1}$	3	12	75	5
46	propylene carbonate	\mathbf{A}	$\mathbf{1}$	4	19	68	6
47	propylene carbonate	\mathbf{A}	$\mathbf{1}$	Average	16	67	6
48	propylene carbonate	\mathbf{B}	$\mathbf{1}$	$\mathbf{1}$	22	52	6
49	propylene carbonate	\mathbf{B}	$\mathbf{1}$	2	20	55	5
50	propylene carbonate	\mathbf{B}	$\mathbf{1}$	Average	21	53	6

${ }^{a}$ GC yields calibrated against undecane as an internal standard. Diarylated product observed in $\leq 5 \%$ yield in all cases.

Discussion: The addition of 1 equiv water does not significantly impact selectivity (compare entries 3 vs 12 , and 24 vs 33). Precatalyst systems A and \mathbf{B} provide very similar selectivity in all solvents examined, although in some cases precatalyst \mathbf{A} affords somewhat higher yields. Precatalyst \mathbf{A} has the added advantage that it can be handled open to air.

2. Benzonitrile Additives (Table 1 and Figure 1)

General Procedure: Without exclusion of air or moisture, PtBu - Pd-G4 ($1.5 \mathrm{mg}, 0.0026 \mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , 0.081 mmol , 1.01 equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a $1-\mathrm{dram}$ vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4 -chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), benzonitrile additive ($0.04 \mathrm{mmol}, 0.5$ equiv, if applicable), and solvent (usually THF, $150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S2. Effect of Benzonitrile Additives on Selectivity ${ }^{a}$

			 (1.01 equiv)	$+$ (0.5 equiv)					
entry	X	σ_{p}	$\sigma_{\mathrm{p}}{ }^{+}$	trial	1 (\%)	2a (\%)	2b (\%)	$\log (\mathbf{2 a / 2 b})$	std. dev. ${ }^{\text {b }}$
$1^{\text {c }}$	--	--	--	1	5	63	<1	>1.80	
$2^{\text {c }}$	--	--	--	2	23	72	<1	>1.86	
$3^{\text {c }}$	--	--	--	3	26	68	1	1.83	
$4{ }^{\text {c }}$	--	--	--	4	25	71	1	1.85	
$5^{\text {c }}$	--	--	--	5	27	75	1	1.88	
$6{ }^{\text {c }}$	--	--	--	6	24	79	1	1.90	
$7{ }^{\text {c }}$	--	--	--	7	20	78	1	1.89	
$8{ }^{\text {c }}$	--	--	--	8	18	79	1	1.90	
$9{ }^{\text {c }}$	--	--	--	Average	20	74	<1	>1.87	0.03
10	NMe2	-0.83	-1.70	1	46	28	15	0.27	
11	NMe2	-0.83	-1.70	2	47	29	20	0.16	
12	NMe2	-0.83	-1.70	3	37	36	21	0.23	

13	NMe2	-0.83	-1.70	Average	44	31	18	0.24	0.06
14	NH2	-0.66	-1.30	1	29	46	19	0.38	
15	NH2	-0.66	-1.30	2	29	45	20	0.35	
16	NH2	-0.66	-1.30	3	36	43	17	0.40	
17	NH2	-0.66	-1.30	Average	31	45	19	0.37	0.03
18	OH	-0.37	-0.92	1	38	50	16	0.49	
19	OH	-0.37	-0.92	2	28	53	14	0.58	
20	OH	-0.37	-0.92	3	33	46	16	0.46	
21	OH	-0.37	-0.92	Average	33	50	15	0.52	0.06
22	OEt	-0.24	-0.81	1	35	47	10	0.67	
23	OEt	-0.24	-0.81	2	41	45	8	0.75	
24	OEt	-0.24	-0.81	3	48	42	10	0.62	
25	OEt	-0.24	-0.81	Average	42	45	10	0.65	0.06
26	OMe	-0.27	-0.73	1	72	26	3	0.94	
27	OMe	-0.27	-0.73	2	56	18	2	0.95	
28	OMe	-0.27	-0.73	3	62	32	4	0.90	
29	OMe	-0.27	-0.73	Average	63	26	3	0.94	0.03
30	Me	-0.17	-0.31	1	65	35	2	1.24	
31	Me	-0.17	-0.31	2	66	25	2	1.10	
32	Me	-0.17	-0.31	3	69	28	2	1.15	
33	Me	-0.17	-0.31	Average	67	29	2	1.16	0.07
34	F	0.06	-0.07	1	40	51	5	1.01	
35	F	0.06	-0.07	2	71	30	2	1.18	
36	F	0.06	-0.07	3	46	50	5	1.00	
37	F	0.06	-0.07	Average	52	44	4	1.04	0.10
38	H	O	O	1	37	53	3	1.25	
39	H	0	0	2	43	53	6	0.95	
40	H	O	0	3	38	59	3	1.29	
41	H	0	0	Average	39	55	4	1.14	0.19
42	COOMe	0.45	0.49	1	56	41	3	1.14	
43	COOMe	0.45	0.49	2	55	44	3	1.17	
44	COOMe	0.45	0.49	3	55	41	3	1.14	
45	COOMe	0.45	0.49	Average	55	42	3	1.15	0.02
46	CF3	0.54	0.61	1	44	45	3	1.18	
47	CF3	0.54	0.61	2	46	49	3	1.21	
48	CF3	0.54	0.61	3	49	44	3	1.17	
49	CF3	0.54	0.61	Average	46	46	3	1.19	0.02
50	NO2	0.78	0.79	1	63	32	8	0.60	
51	NO 2	0.78	0.79	2	49	38	8	0.68	
52	NO 2	0.78	0.79	3	59	35	6	0.77	
53	NO 2	0.78	0.79	Average	57	35	7	0.70	0.08
54^{d}	--	--	--	1	27	7	54	-0.89	
55^{d}	--	--	--	2	26	7	53	-0.88	
56^{d}	--	--	--	Average	27	7	53	-0.88	0.01

${ }^{a}$ GC yields calibrated against undecane as an internal standard. Diarylated product observed in $\leq 5 \%$ yield in all cases. Sigma values from reference $16 .{ }^{b}$ Standard deviation of the $\log (\mathbf{2 a} / \mathbf{2 b})$ values. ${ }^{b}$ No benzonitrile derivatives were added. ${ }^{c} \mathrm{PhCN}$ was used as the reaction solvent (no additional benzonitrile derivatives were added).

Discussion: Table S2 entries 10-49 were used to create Figure 1 in the manuscript, which shows a good correlation between $\sigma_{\mathrm{p}}{ }^{+}$and $\log (\mathbf{2 a} / \mathbf{2 b})$, with an R^{2} value of 0.8639 . The correlation to σ_{p} is not quite as strong (Figure S 1). Unusual results were observed with 4-nitrobenzonitrile (entry 53). With this additive, the $\mathbf{2 a} / \mathbf{2 b}$ ratio was much smaller than expected based on the trend with all of the other substituted benzonitriles (Figure S2). This particularly electron-poor nitrile is expected to coordinate to $\operatorname{Pd}(o)$ as a π-acceptor, and we speculate that the increased reaction
at OTf may be due to this coordination mode. There is no evidence that nitro groups in isolation promote reaction at triflate. For example, high selectivity for reaction at chloride is observed in the catalytic Suzuki coupling using 3nitrophenylboronic acid in MeOH and THF, ${ }^{8}$ and running the reaction shown in Table S 2 with PhNO_{2} as the solvent leads exclusively to product $2 \mathbf{a}$ from reaction at chloride.

Figure S1. Hammett-type plot using σ shows slightly worse correlation than the plot using $\sigma+$.

Figure S2. NO_{2} is an outlier in the Hammett-type plot correlating benzonitrile donor ability and increased reaction at triflate.

3. Mixed THF/Benzonitrile Solvent

General Procedure: Without exclusion of air or moisture, PtBu - Pd-G4 ($1.5 \mathrm{mg}, 0.0026 \mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , 0.081 mmol , 1.01 equiv), and KF ($13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4-chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and solvent(s) (total of $150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S3. Effect of Mixed PhCN/THF Solvent on Selectivitya ${ }^{a}$

		$\mathrm{OH})_{2}$ quiv)	${ }_{3}-\mathrm{Pd}$-G4 (3 m $\mathrm{H}_{2} \mathrm{O}$ (1 equiv) KF (3 equiv) 24 h, r.t.				
PhCN (\% of total solvent volume)	THF (\% of total solvent volume)	trial	1 (\%)	2 a (\%)	2b (\%)	total yield $2 \mathbf{a}+2 \mathbf{b}$	ratio 2a: 2b
0	100	1	5	63	<1	63	>63: 1
0	100	2	23	72	<1	72	>72:1
0	100	3	26	68	1	69	68:1
0	100	4	25	71	1	72	71: 1
0	100	5	27	75	1	76	75: 1
0	100	6	24	79	1	80	79:1
0	100	7	20	78	1	79	78:1
0	100	8	18	79	1	80	79:1
0	100	average	21	74	1	75	74:1
1	99	1	33	56	2	58	28:1
1	99	2	19	74	2	76	37:1
1	99	average	26	65	2	67	33: 1
5	95	1	58	30	6	36	5:1
5	95	2	45	41	9	50	5:1
5	95	average	51	35	7	43	5:1
10	90	1	39	33	17	50	2:1
10	90	2	38	36	19	55	2:1
10	90	average	39	35	18	53	2:1
25	75	1	26	25	38	63	1:2
25	75	2	21	26	38	64	1:2
25	75	average	24	25	38	63	1:2
50	50	1	13	15	48	63	1:3
50	50	2	17	13	52	65	1:4
50	50	average	15	14	50	64	1: 4
75	25	1	18	12	56	68	1: 5
75	25	2	27	10	44	54	1: 4
75	25	average	22	11	50	61	1:5
100	0	1	27	7	54	61	1:8
100	0	2	26	7	53	60	1:8
100	0	average	27	7	53	60	1:8

[^0]Discussion: The data in Table S3 show that selectivity inverts between $10-25 \%$ PhCN, as illustrated in Figure S3. Interestingly, small amounts of PhCN (5% and 10% of total volume) lead to lower conversion than observed in neat THF or with larger amounts of PhCN ($\geq 25 \%$ of total volume). This phenomenon is illustrated in Figure S4. The unusual shape of the curve in Figure S 4 may relate to solvent polarity. Small quantities of PhCN begin to suppress reaction at chloride because Pd is more likely to be bisligated. Reaction at triflate increases with small quantities of PhCN, but it increases even more with larger quantities of PhCN because of increased polarity of the reaction medium. Aryl triflates are known to undergo faster oxidative addition at bisligated palladium in more polar media. ${ }^{17}$

Figure S3. Effect of PhCN/THF ratio on product ratio.

Figure S4. Effect of PhCN/THF ratio on the total yield of $\mathbf{2 a}+\mathbf{2 b}$.

4. Results with Fluoroacetonitrile, Sulfolane (Table 2), and Tetrahydrothiophene

General Procedure: Without exclusion of air or moisture, PtBu ${ }_{3}$-Pd-G4 ($1.5 \mathrm{mg}, 0.0026 \mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , 0.081 mmol , 1.01 equiv), and KF ($13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4 -chlorophenyl triflate ($14 \mu \mathrm{~L}$, $0.08 \mathrm{mmol}, 1$ equiv), and solvent ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S4. Modifying the Coordinating Ability of Common Solvents Leads to Changes in Selectivity ${ }^{a}$

entry	solvent	ε^{b}	trial	1 (\%)	2a (\%)	2b (\%)
1	$\mathrm{CH}_{3} \mathrm{CN}$	36.6	1	8	2	75
2	$\mathrm{CH}_{3} \mathrm{CN}$	36.6	2	8	2	78
3	$\mathrm{CH}_{3} \mathrm{CN}$	36.6	Average	8	2	77
4	$\mathrm{CH}_{2} \mathrm{FCN}$	~ 36	1	85	4	10
5	$\mathrm{CH}_{2} \mathrm{FCN}$	~ 36	2	88	3	9
6	$\mathrm{CH}_{2} \mathrm{FCN}$	~ 36	Average	86	4	10
7	DMSO	47.2	1	61	1	26
8	DMSO	47.2	2	25	1	64
9	DMSO	47.2	Average	43	1	45
10	sulfolane	42.2	1	41	44	12
11	sulfolane	42.2	2	41	43	10
12	sulfolane	42.2	Average	41	44	11
13	THF	7.5	1	5	63	<1
14	THF	7.5	2	23	72	<1
15	THF	7.5	3	26	68	1
16	THF	7.5	4	25	71	1
17	THF	7.5	5	27	75	1
18	THF	7.5	6	24	79	1
19	THF	7.5	7	20	78	1
20	THF	7.5	8	18	79	1
21	THF	7.5	Average	20	74	<1
22	tetrahydrothiophene	8.6	1	92	0	2
23	tetrahydrothiophene	8.6	2	105	0	1
24	tetrahydrothiophene	8.6	Average	99	0	2

${ }^{a} \mathrm{GC}$ yields calibrated against undecane as an internal standard. Results are the average of at least two trials. Diarylated product observed in $\leq 3 \%$ yield in all cases. ${ }^{b}$ Dielectric constants from references 18 and 19.

Discussion: Although reaction in THF provides $\mathbf{2 a}$ as the major product (Table S4, entry 21), the only product observed in tetrahydrothiophene (THT) is $\mathbf{2 b}$ (entry 24). This is consistent with THT acting as a coordinating ligand during oxidative addition. However the yield is so low that selectivity cannot be reliably interpreted. The low yield is likely due to the strong coordinating ability of sulfides to palladium, effectively poisoning it as a catalyst. For a discussion of entries 1-12, see the manuscript.

5. Effect of Temperature (Table 4)

General Procedure with Precatalyst System A: Without exclusion of air or moisture, PtBu - -Pd-G4 ($1.5 \mathrm{mg}, 0.0026$ $\mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , $0.081 \mathrm{mmol}, 1.01$ equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4-chlorophenyl triflate ($14 \mu \mathrm{~L}$, $0.08 \mathrm{mmol}, 1$ equiv), and solvent ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

General Procedure for Precatalyst Systems B-E: In a nitrogen filled glovebox, the following reagents were combined with o-tolyl boronic acid (11.0 mg , $0.081 \mathrm{mmol}, 1.01$ equiv) and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) in a 1 -dram vial equipped with a magnetic stir bar:
Precatalyst System B: $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%\right.$), $\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}(0.6 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$
Precatalyst System C: $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(1.1 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%\right.$), PtBu_{3} ($0.5 \mathrm{mg}, 0.0024 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$)
Precatalyst System D: $\mathrm{Pd}(\mathrm{OAc})_{2}\left(0.7 \mathrm{mg}, 0.0024 \mathrm{mmol}, 3.0 \mathrm{~mol} \%\right.$), $\mathrm{PtBu}_{3}(0.5 \mathrm{mg}, 0.0024 \mathrm{mmol}, 3.0 \mathrm{~mol} \%)$
Precatalyst System E: $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(0.9 \mathrm{mg}, 0.0024 \mathrm{mmol}, 3.0 \mathrm{~mol} \%), \mathrm{PtBu}_{3}(0.5 \mathrm{mg}, 0.0024 \mathrm{mmol}, 3.0$ $\mathrm{mol} \%)$
The vial was sealed with a PTFE-lined cap and removed from the glovebox. Outside of the glovebox, the cap was removed and, in rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4 -chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and solvent ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S5. Effect of Reaction Temperature of Suzuki Selectivitya ${ }^{\text {a }}$

entry	solvent	precatalyst	temperature	trial	1 (\%)	2 a (\%)	2 b (\%)	$\Delta \Delta \mathrm{G}^{\ddagger}$
1	THF	A	r.t.	1	5	63	<1	>2.4
2	THF	A	r.t.	2	23	72	<1	>2.5
3	THF	A	r.t.	3	26	68	1	2.5
4	THF	A	r.t.	4	25	71	1	2.5
5	THF	A	r.t.	5	27	75	1	2.6
6	THF	A	r.t.	6	24	79	1	2.6
7	THF	A	r.t.	7	20	78	1	2.6
8	THF	A	r.t.	8	18	79	1	2.6
9	THF	A	r.t.	Average	20	74	<1	>2.5
10	THF	A	$100{ }^{\circ} \mathrm{C}$	1	9	77	0	>2.6
11	THF	A	$100{ }^{\circ} \mathrm{C}$	2	10	87	1	2.6
12	THF	A	$100{ }^{\circ} \mathrm{C}$	Average	10	82	<1	>2.6
13	THF	B	r.t.	1	17	79	1	2.6
14	THF	B	r.t.	2	16	78	0	2.6
15	THF	B	r.t.	Average	17	79	1	2.6
16	THF	B	$100{ }^{\circ} \mathrm{C}$	1	7	75	<1	>2.6
17	THF	B	$100{ }^{\circ} \mathrm{C}$	2	5	72	<1	>2.5
18	THF	B	$100{ }^{\circ} \mathrm{C}$	Average	6	73	<1	>2.5
19	DMF	A	r.t.	1	16	9	58	-1.1
20	DMF	A	r.t.	2	19	9	61	-1.1
21	DMF	A	r.t.	3	24	11	59	-1.0
22	DMF	A	r.t.	4	26	11	59	-1.0
23	DMF	A	r.t.	5	16	12	66	-1.0
24	DMF	A	r.t.	6	20	11	62	-1.0
25	DMF	A	r.t.	7	18	9	66	-1.2
26	DMF	A	r.t.	8	46	7	46	-1.1
27	DMF	A	r.t.	Average	23	10	60	-1.1
28	DMF	A	$100{ }^{\circ} \mathrm{C}$	1	2	24	29	-0.1
29	DMF	A	$100{ }^{\circ} \mathrm{C}$	2	3	19	31	-0.3
30	DMF	A	$100{ }^{\circ} \mathrm{C}$	Average	2	21	30	-0.2
31	DMF	B	r.t.	1	17	11	67	-1.1
32	DMF	B	r.t.	2	17	11	67	-1.1
33	DMF	B	r.t.	Average	17	11	67	-1.1
34	DMF	B	$100{ }^{\circ} \mathrm{C}$	1	6	33	24	0.2
35	DMF	B	$100{ }^{\circ} \mathrm{C}$	2	9	34	22	0.3
36	DMF	B	$100{ }^{\circ} \mathrm{C}$	Average	7	33	23	0.2
37	DMF	C	r.t.	1	101	0	1	--
38	DMF	C	r.t.	2	75	3	23	-1.2

39	DMF	\mathbf{C}	r.t.	Average	88	2	12	-1.1
40	DMF	\mathbf{C}	$100{ }^{\circ} \mathrm{C}$	1	10	38	19	0.4
41	DMF	\mathbf{C}	$100^{\circ} \mathrm{C}$	2	42	30	19	0.3
42	DMF	\mathbf{C}	$100{ }^{\circ} \mathrm{C}$	Average	26	34	19	0.3
43	DMF	\mathbf{D}	r.t.	1	48	1	42	-2.2
44	DMF	\mathbf{D}	r.t.	2	39	7	44	-1.1
45	DMF	\mathbf{D}	r.t.	Average	44	4	43	-1.4
46	DMF	\mathbf{D}	$100^{\circ} \mathrm{C}$	1	12	20	18	0.1
47	DMF	\mathbf{D}	$100^{\circ} \mathrm{C}$	2	11	8	14	-0.3
48	DMF	\mathbf{D}	$100^{\circ} \mathrm{C}$	Average	11	14	16	-0.1
49	DMF	\mathbf{E}	r.t.	1	60	4	33	-1.2
50	DMF	\mathbf{E}	r.t.	2	39	6	47	-1.2
51	DMF	\mathbf{E}	r.t.	Average	50	5	40	-1.2
52	DMF	\mathbf{E}	$100{ }^{\circ} \mathrm{C}$	1	9	26	20	0.2
53	DMF	\mathbf{E}	$100{ }^{\circ} \mathrm{C}$	2	9	38	20	0.4
54	DMF	\mathbf{E}	$100^{\circ} \mathrm{C}$	Average	9	32	20	0.3

${ }^{a}$ GC yields calibrated against undecane as an internal standard. ${ }^{b}$ Calculated difference in activation barriers to forming products (2b-2a) based on $\Delta \Delta G^{\ddagger}=R T \ln (\mathbf{2 a} / \mathbf{2 b})$.

Discussion: In DMF, more reaction at chloride is observed at $100^{\circ} \mathrm{C}$ compared to room temperature. However, the $100{ }^{\circ} \mathrm{C}$ product ratios vary somewhat depending on precatalyst source. This difference is most prominent for precatalyst system \mathbf{A} compared to the other precatalyst systems. As shown in Table $S 6$, the change in $\Delta \Delta G^{\ddagger}$ when going from room temperature to $100^{\circ} \mathrm{C}$ is smaller for this system than for the other systems.

Table S6. Effect of Reaction Temperature of Suzuki Selectivitya

precatalyst	$\Delta \Delta \mathrm{G}_{(\mathbf{2 b - 2 a})^{\ddagger}}$ at r.t.	$\Delta \Delta \mathrm{G}_{(\mathbf{2 b}-\mathbf{2 a})^{\ddagger} \text { at } 100}{ }^{\circ} \mathrm{C}$	change in $\Delta \Delta \mathrm{G}^{\ddagger}$ from r.t. to $100{ }^{\circ} \mathrm{C}$
A	-1.1	-0.2	0.9
B	-1.1	+0.2	1.3
C	-1.1	+0.3	1.4
D	-1.4	-0.1	1.3
E	-1.2	+0.3	1.5

${ }^{a}$ Data are taken from Table S 5 .

The difference in selectivity between different precatalyst systems at $100^{\circ} \mathrm{C}$ is inconsistent with hypotheses that (a) the temperature effect is solely due to entropy (where higher temperature disfavors a bisligated oxidative addition transition state) or (b) that oxidative addition is reversible at this temperature and selectivity is based on thermodynamics or on the rate of a subsequent step of the catalytic cycle. Instead, these observations are consistent with catalyst decomposition at $100^{\circ} \mathrm{C}$ leading to a species that favors chloride activation. Different precatalysts may decompose at different rates. However, further study is needed to generate higher quality data to support or refute this hypothesis. In THF, no significant temperature effect is observed with either precatalyst system, and the reaction is selective for chloride at both temperatures.

6. Effect of Additives (Table 6)

General Procedure: Without exclusion of air or moisture, PtBu ${ }_{3}-\mathrm{Pd}-\mathrm{G} 4$ ($1.5 \mathrm{mg}, 0.0026 \mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid ($11.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv), $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv), and other additives ($0-3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4-chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and solvent ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S7. Additive Effects ${ }^{a}$

entry	solvent	additive (equiv)	trial	$\begin{gathered} \mathbf{1} \\ (\%) \end{gathered}$	$\begin{gathered} \mathbf{2 a} \\ (\%) \end{gathered}$	$\begin{aligned} & \hline \text { 2b } \\ & (\%) \end{aligned}$
1	THF	--	1	5	63	<1
2	THF	--	2	23	72	<1
3	THF	--	3	26	68	1
4	THF	--	4	25	71	1
5	THF	--	5	27	75	1
6	THF	--	6	24	79	1
7	THF	--	7	20	78	1
8	THF	--	8	18	79	1
9	THF	--	Average	20	74	<1
10	THF	18-crown-6 (3)	1	0	2	77
11	THF	18-crown-6 (3)	2	0	1	76
12	THF	18-crown-6 (3)	Average	O	1	76
$13^{\text {b }}$	THF	$\mathrm{NBu}_{4} \mathrm{~F}$ (3)	1	<1	<1	17
$14^{\text {b }}$	THF	$\mathrm{NBu}_{4} \mathrm{~F}$ (3)	2	<1	<1	9
15^{b}	THF	$\mathrm{NBu}_{4} \mathrm{~F}$ (3)	Average	<1	<1	13
16	THF	$\mathrm{NBu}_{4} \mathrm{Cl}$ (1)	1	20	4	70
17	THF	$\mathrm{NBu}_{4} \mathrm{Cl}$ (1)	2	21	4	69
18	THF	$\mathrm{NBu}_{4} \mathrm{Cl}$ (1)	Average	20	4	69
19	THF	$\mathrm{NBu}_{4} \mathrm{Br}$ (1)	1	1	4	90
20	THF	$\mathrm{NBu}_{4} \mathrm{Br}$ (1)	2	5	1	91
21	THF	$\mathrm{NBu}_{4} \mathrm{Br}$ (1)	Average	3	2	91
22	THF	$\mathrm{NBu}_{4} \mathrm{OTf}$ (1)	1	27	72	3
23	THF	$\mathrm{NBu}_{4} \mathrm{OTf}(1)$	2	26	67	3
24	THF	$\mathrm{NBu}_{4} \mathrm{OTf}$ (1)	Average	26	70	3
25	${ }^{i} \mathrm{PrOH}$	--	1	4	79	1
26	${ }^{i} \mathrm{PrOH}$	--	2	1	95	1
27	${ }^{i} \mathrm{PrOH}$	--	Average	2	87	1
28	${ }^{i} \mathrm{PrOH}$	18-crown-6 (3)	1	O	O	5
29	${ }^{i} \mathrm{PrOH}$	18-crown-6 (3)	2	0	O	1
30	${ }^{i} \mathrm{PrOH}$	18-crown-6 (3)	Average	0	O	3

31	PC	--	1	12	75	5
32	PC	--	2	19	68	6
33	PC	--	Average	15	71	5
34	PC	18-crown-6 (3)	1	5	2	14
35	PC	18-crown-6 (3)	2	5	1	8
36	PC	18-crown-6 (3)	Average	5	1	11
37	DMF	--	1	16	9	58
38	DMF	--	2	19	9	61
39	DMF	--	3	24	11	59
40	DMF	--	4	26	11	59
41	DMF	--	5	16	12	66
42	DMF	--	6	20	11	62
43	DMF	--	7	18	9	66
44	DMF	--	8	46	7	46
45	DMF	--	Average	23	10	60
46	DMF	18-crown-6 (3)	1	0	0	45
47	DMF	18-crown-6 (3)	2	0	0	50
48	DMF	18-crown-6 (3)	Average	0	0	47

${ }^{a} \mathrm{GC}$ yields calibrated against undecane as an internal standard. Diarylated product observed in $\leq 4 \%$ yield in all cases except entry 12 (8%). ${ }^{b} \mathrm{KF}$ was omitted from the reaction mixture.

7. Recycling "Decomposed" Catalyst

Hypothesis: The results in Tables 3-5 of the manuscript show that heating either the Stille or Suzuki coupling in DMF leads to increased reaction at chloride. One hypothesis is that, upon heating, the catalyst decomposes to a new catalytically active species that preferentially reacts at chloride. If this is the case, then we would expect that the 'decomposed' catalyst would continue to demonstrate chloride-selectivity when it is recycled. To test this hypothesis, we conducted a Suzuki coupling of $\mathbf{1}$ at $100{ }^{\circ} \mathrm{C}$ for 4 h , then added a second substrate (8) and a second boronic acid and stirred for an additional $100{ }^{\circ} \mathrm{C}$ at either room temperature or $100{ }^{\circ} \mathrm{C}$ (Table S 9). In order to interpret the results, it was necessary to establish the baseline selectivity of the Suzuki cross-coupling of $\mathbf{8}$ at both room temperature and $100^{\circ} \mathrm{C}$ (Table S8).

General Procedure for Table S8: In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%$), $\mathrm{Pd}(\mathrm{Pt}-$ $\left.\mathrm{Bu}_{3}\right)_{2}(0.6 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%)$, and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. The vial was sealed with a PTFE-lined cap and removed from the glovebox. Outside of the glovebox, the cap was removed and, in rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4chlorophenyl triflate ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), phenylboronic acid ($9.9 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv), and DMF ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes, then resealed with a PTFE-lined cap. The reaction was stirred vigorously at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

General Procedure for Table S9: In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.5 \mathrm{mg}$, $0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%$), $\mathrm{Pd}(\mathrm{Pt}-$ $\left.\mathrm{Bu}_{3}\right)_{2}$ (0.6 mg , $0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$) , o-tolyl boronic acid ($11.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv), and KF (13.9 mg , $0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. The vial was sealed with a PTFE-lined cap and removed from the glovebox. Outside of the glovebox, the cap was removed and, in rapid succession, water ($1.4 \mu \mathrm{~L}$, $0.08 \mathrm{mmol}, 1$ equiv), 4-chlorophenyl triflate ($14 \mu \mathrm{~L}$, $0.08 \mathrm{mmol}, 1$ equiv), and DMF (150 $\mu \mathrm{L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes, then resealed with a PTFE-lined cap and the reaction stirred vigorously at $100{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was allowed to cool to room temperature, then briefly uncapped (~ 10 seconds) and phenylboronic acid ($9.9 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv) and 4chloronaphthyl triflate ($16 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$) were quickly added. The reaction mixture was immediately sparged with nitrogen for two minutes through a septum cap. The sparging needle and septum cap were quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at the indicated temperature for an additional 24 h . Undecane ($7.5 \mu \mathrm{~L}$) and dodecane ($8.0 \mu \mathrm{~L}$) were added to the reaction mixture as internal standards, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S8. Effect of Temperature on Selectivity of Suzuki Coupling of Substrate $\mathbf{8}^{a}$

${ }^{a} \mathrm{GC}$ yields calibrated against undecane as an internal standard.

Table S9. Recycling Thermally Decomposed Catalyst ${ }^{a}$

entry	temperature	trial	$\mathbf{1}(\%)$	2a (\%)	2b (\%)	$\mathbf{8}(\%)$	9a (\%)	9b (\%)
1	r.t.	1	19	44	22	87	1	7
2	r.t.	2	25	40	21	89	1	4
3	r.t.	Average	22	42	21	88	1	5
4	$100^{\circ} \mathrm{C}$	1	17	29	17	24	22	13
5	$100^{\circ} \mathrm{C}$	2	17	40	20	25	29	20
6	$100^{\circ} \mathrm{C}$	Average	17	35	18	25	26	17

${ }^{a} \mathrm{GC}$ yields calibrated against undecane as an internal standard.

Discussion: As shown in Table S8, substrate $\mathbf{8}$ does not exhibit the same switch in selectivity at $100{ }^{\circ} \mathrm{C}$ as seen for substrate $\mathbf{1}$ in Table 4 of the manuscript. The major product of Suzuki coupling of $\mathbf{8}$ is $\mathbf{9 b}$, from reaction at triflate, at both room temperature and at $100{ }^{\circ} \mathrm{C}$. This observation may be rationalized by the higher reactivity of substrate 8. If Suzuki coupling is fast, then it can outcompete slower decomposition of catalyst. Notably, the mass balance is poor at both temperatures, suggesting that this substrate is prone to decomposition (e.g., by hydrolysis of the triflate).

When the catalyst is recycled, very poor conversion of $\mathbf{8}$ is observed at room temperature (Table S 9 , entry 3). Under these conditions, the major product remains the one resulting from triflate activation ($\mathbf{9 b}$), albeit in only 5% yield. On the other hand, the use of recycled catalyst at $100{ }^{\circ} \mathrm{C}$ leads to preferential reaction at chloride, giving 9 a as the major product in 26% yield (entry 6). Critically, this chloride selectivity is different from the triflate-selectivity observed in the high-temperature Suzuki reaction of $\mathbf{8}$ using fresh catalyst (Table S8, entry 6). A comparison of Table S8, entry 6 and Table S9, entry 6 demonstrates that high temperature alone is not sufficient to cause chlorideselective cross-coupling of $\mathbf{8}$. Instead, prior heat treatment of the catalyst (hypothesized to cause decomposition) is necessary before chloride-selectivity can be observed.

These results are consistent with the following scenario: Using fresh catalyst, the Suzuki reaction of $\mathbf{8}$ is fast enough at $100{ }^{\circ} \mathrm{C}$ to outcompete catalyst decomposition. Thus, Suzuki coupling of $\mathbf{8}$ using fresh catalyst favors triflate activation at both room temperature and $100{ }^{\circ} \mathrm{C}$ (Table S8). The active catalytic species is expected to be $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{DMF})\right]$ prior to decomposition. Heating to $100{ }^{\circ} \mathrm{C}$ for 4 h in the presence of Suzuki coupling reagents (including $\mathbf{1}$) leads to decomposition of most of the catalyst to an unidentified species that exhibits chloride selectivity. When this decomposed catalyst is recycled at room-temperature for the reaction of $\mathbf{8}$, poor yield is observed because the decomposed catalyst is not active at low temperature (i.e., the barrier to one or more steps of the catalytic cycle with this catalytic species is too high to be overcome at room temperature). Instead, the small amount of cross-coupling that does occur at room temperature is catalyzed by residual $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{DMF})\right]$. However, the decomposed catalyst is active at $100^{\circ} \mathrm{C}$, and leads primarily to chloride activation (Table S9, entry 2).

D. Reactions with 3 a and $3 b$

1. Catalytic Suzuki Couplings

General Procedure: Without exclusion of air or moisture, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}-\mathrm{Pd}-\mathrm{G} 4$ (1.5 mg , o.0026 mmol, $3 \mathrm{~mol} \%$), o-tolyl boronic acid ($11.0 \mathrm{mg}, 0.081 \mathrm{mmol}, 1.01$ equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 1-chloro-2trifluoromethylbenzene ($6.5 \mu \mathrm{~L}$, $0.08 \mathrm{mmol}, 1$ equiv), 2-trifluoromethylphenyl triflate ($14.8 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and a $5: 1$ mixture of solvent:benzene ($150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S10. Intermolecular Competition Between 3a and $\mathbf{3} \mathbf{b}$ in the Catalytic Suzuki Coupling ${ }^{a}$

Discussion: The catalytic cross-coupling selectivity shown in Table S1o qualitatively matches the selectivity observed in the stoichiometric oxidative addition studies (Table 3). However, the mass balance is poor in polar solvents. For example, 91% yield of $\mathbf{S 1 3}$ is observed in MeOH , but 149% of the starting material is consumed (97% of $\mathbf{3 a}$ and 52% of $\mathbf{3} \mathbf{b}$). The poor mass balance in polar solvents is likely due to hydrolysis of the electron-deficient aryl triflate $\mathbf{3}$ b.

2. Stoichiometric Oxidative Addition Studies (Table 3)

a. 19F NMR Calibrations

Representative Procedure: Inside a nitrogen-filled glovebox, $\mathrm{P}^{t B u}{ }_{3}(5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) was measured into a 1-dram scintillation vial. In a separate vial, a solution was prepared of $\mathbf{3 a}(3.6 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), $\mathbf{3} \mathbf{b}$ ($5.0 \mu \mathrm{~L}$, $0.027 \mathrm{mmol}, 1$ equiv), and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\left(7.6 \mu \mathrm{~L}\right.$, $0.081 \mathrm{mmol}, 3$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}) .500 \mu \mathrm{~L}$ of the indicated solvent was added to the vial containing PtBu_{3}, followed by the entire volume of the substrate solution. The vial was capped and shaken briefly, and then the solution was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and the sample was immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR. The observed ratio of substrate to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ signals at this "time=0" was used to define the expected ratios for 100% calibrated yield of recovered substrates in the subsequent intermolecular competition reactions run for 6 h . For $\mathbf{3} \mathbf{b}$, yields were calculated separately based on each of its two fluorine signals and then averaged together.

b. ${ }^{19 F}$ NMR Chemical Shifts

Peaks corresponding to $\mathbf{3 a}, \mathbf{3} \mathbf{b}$, and 'free' triflate were assigned by comparison to the spectra of authentic samples of $\mathbf{3 a}, \mathbf{3} \mathbf{b}$, and $\mathrm{NBu}_{4} \mathrm{OTf}$ in $600 \mu \mathrm{~L}$ of a mixture of solvent: $\mathrm{C}_{6} \mathrm{D}_{6}(5: 1 \mathrm{v} / \mathrm{v})$. Chemical shifts were referenced to fluorobenzene (set to -113.15 ppm regardless of solvent). The ${ }^{19} \mathrm{~F}$ NMR signals corresponding to $\mathbf{S 1 0}$ were assigned by comparison to the spectra of an authentic sample prepared by a literature procedure and/or by analogy to the published spectral data for this compound and the spectra in other solvents. 4 Relevant chemical shifts in the different solvent mixtures are assigned as follows:

Table S11. ${ }^{19}$ F Chemical Shifts of Relevant Species by Solvent: ortho- CF_{3} Substrates

	 3a	 3b	 3b	OTf- anion $\left(\mathrm{NBu}_{4} \mathrm{OTf}\right)$	
toluene	-62.9	-61.2	-74.7	-78.4	$-55.3^{\text {b }}$
THF	-62.2	-60.3	-74.0	-78.1	-54.7^{c}
acetone	-61.6	-59.7	-73.5	-77.4	$-54.1^{\text {c }}$
$\mathrm{MeOH}^{\text {a }}$	-61.9	-60.0	-73.6	-78.0	$-54.3{ }^{\text {b }}$
MeCN	-61.5	-59.5	-73.1	-77.5	$-54.1{ }^{\text {b }}$
DMF	-61.1	-59.4	-73.3	-77.4	$-53.9^{\text {b }}$
sulfolane	-59.8	-61.7	-73.5	-80.0	n.d. ${ }^{\text {d }}$
PC	-59.5	-61.1	-73.1	-77.7	$-54.1^{\text {c }}$

${ }^{a}$ In a control reaction in this solvent in the absence of palladium, a small amount of decomposition of $\mathbf{3} \mathbf{b}$ to form $\mathbf{2}-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OH}$ and free OTf was observed. ${ }^{b}$ Chemical shift was identified by analysis of the authentic material, prepared by a literature
procedure, ${ }^{4}$ in the indicated solvent. ${ }^{\text {c }}$ Chemical shift was identified in the oxidative addition reactions by analogy to the chemical shift observed of this compound in other solvents. ${ }^{d}$ n.d. $=$ not determined.

c. Oxidative Addition Reactions

Representative Procedure: Inside a nitrogen-filled glovebox, PtBu_{3} ($5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(10.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) were combined in a 1 -dram vial equipped with a stir bar. In a separate vial, a solution was prepared of $\mathbf{3 a}(3.6 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), $\mathbf{3} \mathbf{b}$ ($5.0 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ ($7.6 \mu \mathrm{~L}$, o. $081 \mathrm{mmol}, 3$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}) .500 \mu \mathrm{~L}$ of the indicated solvent was added to the vial containing PtBu_{3} and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$, followed by the entire volume of the substrate solution. The vial was sealed with a PTFE-lined cap and the reaction was allowed to stir for 6 h at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Table S12. Stoichiometric oxidative addition reactions of $\mathbf{3 a}$ and $\mathbf{3 b}$.

		$\xrightarrow[\substack{\text { solvent } / C_{6} \mathrm{D}_{6}(5: 1) \\ \text { r.t., } 6 \mathrm{~h}}]{\substack{\text { Pd(COD)(CH2 TMS })_{2} \\ \text { PtBu equiv) }}}$		recovered $\mathbf{3 a}+\mathbf{3} \mathbf{3}$ $+$ oxidative addition byproducts	
entry	solvent	trial	recovered 3a	$\begin{gathered} \mathrm{d}(\%)^{a} \\ \mathbf{3 b} \end{gathered}$	$\begin{aligned} & \text { reacted } \\ & \mathbf{3 a}: \mathbf{3} \mathbf{b} \end{aligned}$
1	toluene	1	90	≥ 99	$\geq 10: 1$
2	toluene	2	89	≥ 99	$\geq 11: 1$
3	toluene	Average	89	≥ 99	$\geq 11: 1$
$4{ }^{\text {b }}$	toluene	1	64	≥ 99	$\geq 36: 1$
$5^{\text {b }}$	toluene	2	40	91	7:1
$6^{\text {b }}$	toluene	Average	52	98	24:1
7	THF		61	≥ 99	$\geq 39: 1$
8	THF	2	52	≥ 99	$\geq 48: 1$
9	THF	3	51	92	6:1
10	THF	Average	55	97	15:1
11	acetone	1	69	91	3:1
12	acetone	2	73	≥ 99	$\geq 27: 1$
13	acetone	Average	71	98	15:1
14	MeOH	1	66	≥ 99	$\geq 36: 1$
15	MeOH	2	74	≥ 99	$\geq 26: 1$
16	MeOH	Average	70	≥ 99	$\geq 30: 1$
17	MeCN	,	94	0	1:16
18	MeCN	2	96	3	1:24
19	MeCN	3	≥ 99	0	$\leq 1: 100$
20	MeCN	4	≥ 99	0	$\leq 1: 100$
21	MeCN	Average	97	1	1:33
22	DMF	1	88	57	1:4
23	DMF	2	87	57	1:3
24	DMF	3	76	33	1:3
25	DMF	4	63	29	1:2
26	DMF	Average	78	44	$1: 3$

27	sulfolane	1	82	93	$3: 1$
28	sulfolane	2	90	98	$5: 1$
29	sulfolane	Average	86	95	$3: 1$
30	PCc	1	74	93	$4: 1$
31	PC^{c}	2	79	95	$4: 1$
32	PC^{c}	3	98	97	$1: 2$
33	PCc	4	80	92	$3: 1$
34	PCc	Average	83	94	$3: 1$
35^{d}	MeCN	1	>99	≥ 99	--
36^{d}	DMF	1	>99	≥ 99	--
37^{e}	MeCN	1	n.a.	5	--
38^{e}	MeCN	2	n.a.	3	--
39^{e}	MeCN	3	n.a.	0	--
40^{e}	MeCN	Average	n.a.	3	--
41^{e}	DMF	1	n.a.	23	--
42^{e}	DMF	2	n.a.	25	--
43^{e}	DMF	3	n.a.	36	--
44^{e}	DMF	Average	n.a.	28	--
45	Toluene- d_{8}	1	74	97	$9: 1$
46	Toluene- d_{8}	2	85	≥ 99	$\geq 15: 1$
47	Toluene- d_{8}	Average	79	98	$11: 1$
48	MeCN- d_{3}	1	87	0	$1: 8$
49	MeCN- d_{3}	2	87	1	$1: 8$
50	MeCN- d_{3}	Average	87	1	$1: 8$
51	DMF- d_{7}	1	91	40	$1: 7$
52	DMF- d_{7}	2	93	52	$1: 7$
53	DMF- d_{7}	Average	92	46	$1: 7$
54^{f}	DMF	1	36	34	$1: 1$
55^{f}	DMF	2	47	45	$1: 1$
56^{f}	DMF	Average	42	39	$1: 1$
57^{g}	DMF	1	94	86	$1: 2$
58^{g}	DMF	2	98	83	$1: 8$
59^{g}	DMF	Average	96	83	$1: 4$

${ }^{a}{ }^{19} \mathrm{~F}$ NMR yields calibrated against $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ as an internal standard. ${ }^{b}$ Heated to $80^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{c} \mathrm{PC}=$ propylene carbonate. ${ }^{d} \mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$ was omitted from the reaction mixture. ${ }^{e} \mathbf{3}^{\mathbf{a}}$ was omitted from the reaction mixture (n.a. = not applicable).
${ }^{f}$ Heated at $100^{\circ} \mathrm{C} . g$ Cooled to $0^{\circ} \mathrm{C}$.

Table S13. Stoichiometric oxidative addition reactions of $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}$ in DMF tracked over time. ${ }^{a}$

Analysis of Variable Temperature and Time Studies for the Reaction in DMF

Three main signals are observed in the ${ }^{31} \mathrm{P}$ NMR spectrum of the DMF reaction after 6 h at room temperature: 85
 is absent, but there is an additional signal at $\sim 64 \mathrm{ppm}$. Finally, at $100{ }^{\circ} \mathrm{C}$ there are around a dozen signals. One small signal corresponds to $\mathrm{Pd}\left(\mathrm{P}^{\mathrm{tBu}} 3_{3}\right)_{2}$, but none of the other signals match those seen at r.t. or o ${ }^{\circ} \mathrm{C}$. Figure S_{5} illustrates the ${ }^{31} \mathrm{P}$ NMR spectra of these reactions, which correspond to entries 26,56 , and 59 in Table S12. The signals at ~ 74 and ~ 64 are tentatively assigned as products resulting from oxidative addition of aryl triflate $\mathbf{3} \mathbf{b}$. The following observations are worth noting:

- The signal at 64 ppm is observable within 10 minutes at room temperature (Table S13 and Figure S6), but is slowly replaced by the signal at 74 ppm . By 3 h reaction time, the 64 ppm signal is gone but the 74 ppm signal remains at 6 h .
- The signal at 64 ppm is detected even at 6 h when the reaction is run at cold temperature $\left(\mathrm{O}^{\circ} \mathrm{C}\right)$.
- The signal at 74 ppm is detected even in the absence of $\mathbf{3 a}$, so it is not derived from 3a.

Two signals in the ${ }^{19} \mathrm{~F}$ NMR spectra for the time studies in DMF display a pattern of growth and disappearance that matches those of the signals in the ${ }^{31} \mathrm{P}$ NMR spectra. These are labeled in Figure S7 with the same labels used in Figure S6.

3a
3b

Figure S5. Stacked ${ }^{31} 1 \mathrm{P}$ NMR spectra for the reaction of $\mathbf{3} \mathbf{a}$ and $\mathbf{3} \mathbf{b}$ in DMF at three temperatures.

6 h
\square ArOTf oxidative addition products

1 h

Figure S6. Stacked ${ }^{31} \mathrm{P}$ NMR spectra for the reaction of $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}$ tracked over time.

Figure S7. Stacked ${ }^{19}$ F NMR spectra for the reaction of $\mathbf{3}$ a and $\mathbf{3} \mathbf{b}$ tracked over time.

See pages S91-S135 for additional representative NMR spectra corresponding to the stoichiometric experiments with $\mathbf{3 a}$ and $\mathbf{3 b}$ (spectra are provided for a single replicate of each experiment, although most experiments were repeated multiple times).

Analysis of Decomposition Products of Oxidative Addition Adducts

The stoichiometric reaction of $\mathbf{3 a}$ and $\mathbf{3 b}$ was repeated in deuterated toluene, acetonitrile, and DMF (i.e., repeats of entries 3, 21, and 26 of Table S12 using deutero instead of protio solvents). The results were analyzed by ${ }^{1} \mathrm{H}$ NMR as well as by GCMS. The primary compounds detected by GCMS have $\mathrm{m} / \mathrm{z}=252$, which is consistent with Heck coupling products resulting from reaction of $\mathrm{Pd}(\mathrm{Ar})$ oxidative addition adducts with COD. Indeed, ${ }^{1} \mathrm{H}$ NMR reveals the presence of alkene signals that do not correspond to COD itself (see S92, S102, and S107).

and isomers
Exact Mass: 252.11

GCMS was also used to analyze the reactions of the stoichiometric oxidative additions performed in THF and propylene carbonate (PC). Heck products were detected in THF but not in PC.

E. Reactions with S15a and S15b

1. Catalytic Suzuki Couplings

General Procedure: Without exclusion of air or moisture, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}-\mathrm{Pd}-\mathrm{G} 4$ (1.5 mg , o.0026 mmol, $3 \mathrm{~mol} \%$), o-tolyl boronic acid (11.0 mg , 0.081 mmol , 1.01 equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 1-chloro-4trifluoromethylbenzene ($10.8 \mu \mathrm{~L}$, 0.08 mmol , 1 equiv), 4-trifluoromethylphenyl triflate ($14.8 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), and a $5: 1$ mixture of solvent:benzene $(150 \mu \mathrm{~L})$ were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at room temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S14. Intermolecular Competition Between S15a and S15b in the Catalytic Suzuki Coupling ${ }^{a}$

			OTf $+$ (1.01	$\underbrace{\mathrm{P}^{\mathrm{t} \mathrm{Bu}_{3}-\mathrm{Pd}-\mathrm{G} 4(3 \mathrm{~mol} \%)}}_{\substack{\text { solvent } / \mathrm{C}_{6} \mathrm{H}_{6}(5: 1)}}$		
entry	trial	solvent	recovered S15a (\%)	recovered S15b (\%)	total conversion S15a + S15b (\%)	$\begin{gathered} \text { reacted } \\ \mathbf{S 1 5 a}: \mathbf{S 1 5 b} \\ \hline \end{gathered}$
1	1	THF	18	89	92	7.7:1
2	2	THF	2	88	110	8.3:1
3	average	THF	10	89	101	8.0: 1
4	1	MeCN	68	1	131	$1: 3.1$
5	2	MeCN	53	1	147	1:2.1
6	average	MeCN	60	1	139	1:2.5
7	1	DMF	60	48	92	1:1.3
8	2	DMF	58	52	90	1: 1.2
9	average	DMF	59	50	91	1: 1.2
10	1	PC	4	61	135	2.4:1
11	2	PC	7	64	129	2.6 : 1
12	average	PC	6	62	132	2.5:1

${ }^{\mathrm{a}} \mathrm{GC}$ yield calibrated against undecane as an internal standard.

Discussion: The catalytic cross-coupling selectivities shown in Table S14 qualitatively match the selectivity observed in the stoichiometric oxidative additions and catalytic couplings of $\mathbf{3 a} / \mathbf{3} \mathbf{b}$ and $\mathbf{1}$. However, it is clear that one or both of the substrates is decomposing in a non-productive pathway based on the $>100 \%$ conversion observed in some cases. Hydrolysis of the electron-deficient aryl triflate $\mathbf{S 1 5 b}$ is likely taking place.

2. Stoichiometric Oxidative Addition Studies

a. ${ }^{19}$ F NMR Calibrations

Representative Procedure: Inside a nitrogen-filled glovebox, $\mathrm{P}^{\mathrm{tBu}}{ }_{3}(5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) was measured into a 1-dram scintillation vial. In a separate vial, a solution was prepared of $\mathbf{S 1 5 a}(3.6 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), $\mathbf{S 1 5 b}$ ($5.0 \mu \mathrm{~L}$, 0.027 mmol , 1 equiv), and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ ($7.6 \mu \mathrm{~L}$, 0.081 mmol , 3 equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}) .500 \mu \mathrm{~L}$ of the indicated solvent was added to the vial containing $\mathrm{P}^{\mathrm{tBu}}$ 3 , followed by the entire volume of the substrate solution. The vial was capped and shaken briefly, and then the solution was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and the sample was immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR. The observed ratio of substrate to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ signals at this "time $=0$ " was used to define the expected ratios for 100% calibrated yield of recovered substrates in the subsequent intermolecular competition reactions run for 6 h. For S15b, yields were calculated separately based on each of its two fluorine signals and then averaged together.

b. ${ }^{19}$ F NMR Chemical Shifts

Peaks corresponding to $\mathbf{S 1 5 a}, \mathbf{S 1 5 b}$, and unbound triflate were assigned by comparison to the spectra of authentic samples of $\mathbf{S 1 5 a}, \mathbf{S 1 5 b}$, and $\mathrm{NBu}_{4} \mathrm{OTf}$ in $600 \mu \mathrm{~L}$ of a mixture of solvent: $\mathrm{C}_{6} \mathrm{D}_{6}(5: 1 \mathrm{v} / \mathrm{v})$. Chemical shifts were referenced to fluorobenzene (set to -113.15 ppm regardless of solvent). The ${ }^{19} \mathrm{~F}$ NMR signals corresponding to the putative complex S16 were assigned by comparison to the spectra obtained by reacting S15a in the absence of S15b in THF. Relevant chemical shifts in the different solvent mixtures are assigned as follows:

Table S15. ${ }^{19}$ F Chemical Shifts of Relevant Species by Solvent: para- CF_{3} Substrates ${ }^{a}$

				OTf- anion ($\mathrm{NBu}_{4} \mathrm{OTf}$)	
THF	-62.3	-62.3	-73.2	-78.2	$-62.8{ }^{\text {b }}$
MeCN	-61.5	-61.6	-72.2	-77.6	$-60.9{ }^{\text {b }}$
DMF	-61.4	-61.4	-72.6	-77.4	n.d.
PC	-61.4	-61.5	-72.3	-77.7	$-60.7^{\text {b }}$

${ }^{a}$ The chemical shifts of the Ar-CF 3 groups of $\mathbf{S} 15 \mathbf{a}$ and $\mathbf{S 1 5 b}$ are very close. In each of the 4 solvents examined, the ${ }^{19} \mathrm{~F}$ signal for $\mathbf{S 1 5 a}$ is slightly further downfield than S15b. n.d. = not determined. ${ }^{.}$Tentative assignment; the chemical shift of $\mathbf{S 1 6}$ was assigned by analogy to S1O and by corroboration with ${ }^{31} \mathrm{P}$ NMR.

c. Oxidative Addition Reactions

Representative Procedure: Inside a nitrogen-filled glovebox, PtBu_{3} ($5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(10.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) were combined in a 1 -dram vial equipped with a stir bar. In a
separate vial, a solution was prepared of $\mathbf{S 1 5 a}(3.6 \mu \mathrm{~L}, 0.027 \mathrm{mmol}$, 1 equiv), $\mathbf{S 1 5} \mathbf{b}$ ($5.0 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\left(7.6 \mu \mathrm{~L}, 0.081 \mathrm{mmol}, 3\right.$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}) .500 \mu \mathrm{~L}$ of the indicated solvent was added to the vial containing $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$, followed by the entire volume of the substrate solution. The vial was sealed with a PTFE-lined cap and the reaction was allowed to stir for 6 h at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19}$ F NMR.

Table S16. Solvent effect on selective of stochiometric oxidative addition

		Cl			$\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$ (1 equiv) PtBu_{3} (1 equiv)	recovered S15a + S15b oxidative addition byproducts	
entry	trial	solvent	$\begin{aligned} & \text { recover } \\ & \text { S15a } \end{aligned}$	$\begin{aligned} & \mathrm{ed}(\%)^{a} \\ & \text { S15b } \end{aligned}$	$\begin{gathered} \text { total con } \\ \mathbf{S 1 5 a}+\mathbf{S}_{1} \end{gathered}$	$\begin{aligned} & \text { version } \\ & \mathbf{1 5 b} \text { (\%) } \end{aligned}$	$\begin{gathered} \text { reacted } \\ \mathbf{S 1 5 a}: \mathbf{S 1 5} \mathbf{b} \end{gathered}$
1	1	THF	50	>99	50		> 50:1
2	2	THF	28	99	72		>72:1
3	Average	THF	39	>99	61		>61: 1
4	1	MeCN	71	7	122		1:3
5	2	MeCN	51	9	140		1:2
6	Average	MeCN	61	8	131		1:2
7	1	DMF	62	14	12		1:2
8	2	DMF	50	11	139		1:2
9	Average	DMF	56	13	131		1:2
10	1	PC ${ }^{b}$	52	98	50		24:1
11	2	PC ${ }^{b}$	51	91	60		6:1
12	Average	$\mathrm{PC}^{\text {b }}$	51	95	54		10: 1
13^{c}	1	DMF	>99	>99	<1		--
$14^{\text {c }}$	1	MeCN	89	>99	11		>11: 1
15^{c}	2	MeCN	93	95	12		1:1
16^{c}	Average	MeCN	91	>99	9		> $9: 1$
$17^{c, d}$	1	MeCN	97	96	7		1:1
$18^{c, d}$	2	MeCN	85	97	18		5:1
$19^{c, d}$	Average	MeCN	91	97	12		3:1
$20^{\text {d }}$	1	MeCN	89	35	76		1:6
$21^{\text {d }}$	2	MeCN	87	18	95		1:6
$22^{\text {d }}$	Average	MeCN	88	27	85		1:6

${ }^{a}{ }^{19} \mathrm{~F}$ NMR yields calibrated against $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ as an internal standard. ${ }^{\mathrm{b} P \mathrm{PC}=\text { propylene }}$
 $=1 \mathrm{~h}$.

Discussion: The selectivities shown in Table S16 qualitatively match the selectivity observed in the stoichiometric oxidative additions of $\mathbf{3 a} / \mathbf{3} \mathbf{b}$ and $\mathbf{1}$. However, more reaction of chloride ($\mathbf{S 1 5} \mathbf{5}$) is observed in MeCN (entry 6) than expected based on the results with $\mathbf{3 a} / \mathbf{3 b}$ (i.e., the selectivity in MeCN appears much worse for the $p-\mathrm{CF}_{3}$ substrates compared to the $o-\mathrm{CF}_{3}$ substrates). The selectivity is better at shorter reaction time (1 h , entry 22). On closer examination it appears that the substrates, especially S15a, undergo a background reaction in the absence of
palladium (see entries 14-19). The ${ }^{31} \mathrm{P}$ NMR spectra reveals at least 2 new signals (Figure S 8), suggesting that the substrate(s) can react with $\mathrm{P}_{\mathrm{tBu}}^{3}$, a process that is apparently hindered by ortho substituents in $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}$ (comparable signals are never detected in the reactions of $\mathbf{3 a}$ and $\mathbf{3} \mathbf{b}$).

Figure S8. ${ }^{31} \mathrm{P}$ NMR spectrum of Pd -free control reaction of $\mathbf{S} \mathbf{5} \mathbf{5}+\mathbf{S 1 5} \mathbf{b}$ with $\mathrm{P}^{t} \mathrm{Bu}_{3}$ in MeCN .

See pages S144-S153 for the NMR spectra corresponding to the experiments in Table S16.

F. Stille Cross-Couplings

1. Reactions of 1 (Scheme 3)

In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}\left(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%\right.$), $\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}(0.6 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.5$ $\mathrm{mol} \%$), and $\mathrm{KPF}_{6}(44.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. Trialkylphenyl stannane (0.088 mmol , 1.1 equiv), $\mathbf{1}$ ($14 \mu \mathrm{~L}$, o.08 mmol, 1 equiv), and DMF ($150 \mu \mathrm{~L}$) were added. The vial was immediately sealed with a PTFE-lined cap and removed from the glovebox, and the reaction was stirred at the indicated temperature for 24 h . Dodecane ($8.0 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography. (Safety Note: Organostannanes and their byproducts are toxic and should be handled in a fumehood or glovebox. For reactions utilizing fluoride bases, quenching crude reaction mixtures via acidification ${ }^{20}$ prior to disposal is undesirable due to the additional hazard of generating hydrogen fluoride.)

Table S17. Base-Free Stille Coupling of $\mathbf{1}^{a}$

$\mathbf{S 1 5 g}$ was identified based on MS but has not been isolated. S15e and S15f are
hypothetical and were not detected.

entry	Trial	R	temperature	$\mathbf{1}(\%)$	$\mathbf{7 a}(\%)$	$\mathbf{7 b}(\%)$	$\mathbf{e}(\%)$	$\mathbf{f}(\%)$	$\mathbf{g}(\%)$	$\mathbf{7 h}(\%)$
1	1	$n-\mathrm{Bu}$	r.t.	86	5	4	n.d.	n.d.	trace	o
2	2	n-Bu	r.t.	80	4	4	n.d.	n.d.	trace	0
3	Average	n-Bu	r.t.	83	5	4	n.d.	n.d.	trace	0
4	1	$n-\mathrm{Bu}$	$100^{\circ} \mathrm{C}$	71	14	2	n.d.	n.d.	trace	0
5	2	$n-\mathrm{Bu}$	$100^{\circ} \mathrm{C}$	76	14	2	n.d.	n.d.	trace	0
6	Average	$n-\mathrm{Bu}$	$100{ }^{\circ} \mathrm{C}$	74	14	2	n.d.	n.d.	trace	0
7	1	Me	r.t.	87	2	4	2	2	2	0
8	2	Me	r.t.	80	3	4	2	3	2	0
9	Average	Me	r.t.	83	2	4	2	3	2	0
10	1	Me	$100{ }^{\circ} \mathrm{C}$	7	42	5	20	4	4	5
11	2	Me	$100^{\circ} \mathrm{C}$	1	36	4	21	4	6	7
12	Average	Me	$100^{\circ} \mathrm{C}$	4	39	3	20	4	5	6

${ }^{a}$ GC yields calibrated against dodecane as an internal standard. Trace $=$ a minor signal with the expected mass for this compound was detected by GCMS, although no authentic material was available for calibration. n.d. = not detected by GCMS.

2. Reactions of 8 (Table 5)

General Procedure: In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(1.1 \mathrm{mg}, 0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}\right)_{2}(1.2 \mathrm{mg}$, $0.0024 \mathrm{mmol}, 3.0 \mathrm{~mol} \%$), and $\mathrm{KPF}_{6}(44.2 \mathrm{mg}$, $0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with
 $\mu \mathrm{L}$) were added. The vial was immediately sealed with a PTFE-lined cap and removed from the glovebox, and the reaction was stirred at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S18. Base-Free Stille Coupling of $\mathbf{8}^{a}$

S16c and S16f were identified based on MS but have not been isolated. S16d and S16e are hypothetical and were not detected.

entry	trial	R	temperature	$\mathbf{8}$ $(\%)$	$\mathbf{9 a}$ $(\%)$	$\mathbf{9 b}$ $(\%)$	\mathbf{c} $(\%)$	\mathbf{d} $(\%)$	\mathbf{e} $(\%)$	$\mathbf{f (\%)}$	$\mathbf{9 g}$ $(\%)$	$\mathbf{9 h}$ $(\%)$	$\mathbf{S 1 2}$ $(\%)$
1	1	$n-\mathrm{Bu}$	r.t.	79	4	5	trace	n.d.	n.d.	trace	1	1	<1
2	2	$n-\mathrm{Bu}$	r.t.	80	4	5	trace	n.d.	n.d.	trace	1	1	<1
3	Average	n-Bu	r.t.	80	4	5	trace	n.d.	n.d.	trace	1	1	<1
4	1	$n-\mathrm{Bu}$	$100^{\circ} \mathrm{C}$	15	19	11	trace	n.d.	n.d.	trace	10	1	<1
5	2	$n-\mathrm{Bu}$	$100^{\circ} \mathrm{C}$	39	30	8	trace	n.d.	n.d.	trace	4	1	<1
6	Average	$n-\mathrm{Bu}$	$100^{\circ} \mathrm{C}$	27	25	10	trace	n.d.	n.d.	trace	7	1	<1
7	1	Me	r.t.	24	1	10	3	39	1	1	1	1	<1
8	2	Me	r.t.	24	1	9	3	37	1	1	1	1	<1
9	Average	Me	r.t.	24	1	9	3	42	1	1	1	1	<1
10	1	Me	$100^{\circ} \mathrm{C}$	2	14	5	31	12	2	8	8	1	<1
11	2	Me	$100^{\circ} \mathrm{C}$	1	13	4	35	12	1	9	9	1	<1
12	Average	Me	$100^{\circ} \mathrm{C}$	1	13	4	33	12	1	8	9	1	<1
13^{b}	1	Me	r.t.	11	1	12	4	54	12	1	1	8	<1
14^{b}	2	Me	r.t.	11	2	12	4	50	13	1	1	4	<1
15^{b}	Average	Me	r.t.	11	1	12	4	52	12	1	1	6	<1

${ }^{a} \overline{\mathrm{GC}}$ yields calibrated against undecane as an internal standard. Average of two runs. Trace $=$ a minor signal with the expected mass for this compound was detected by GCMS, although no authentic material was available for calibration. n.d. $=$ not detected by GCMS. ${ }^{b} \mathrm{KPF}_{6}$ was omitted from the reaction mixture.

3. Independent Reactions of an Aryl Chloride and an Aryl Triflate

General Procedure: In a nitrogen filled glovebox, $\left.\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{P}^{t B u}\right)_{2}\right)_{2}(0.6 \mathrm{mg}$, $0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), and $\mathrm{KPF}_{6}(44.2 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. Trimethylphenyl stannane ($16 \mu \mathrm{~L}, 0.088 \mathrm{mmol}, 1.1$ equiv), 1 -substituted naphthalene substrate ($0.08 \mathrm{mmol}, 1$ equiv), and DMF ($150 \mu \mathrm{~L}$) were added. The vial was immediately sealed with a PTFE-lined cap and removed from the glovebox, and the reaction was stirred at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S19. Stille Cross-Couplings of 1-Chloronaphthalene and S12 Tracked Over Time ${ }^{a}$

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Discussion: The results suggest that an aryl triflate reacts with faster initial rate than an aryl chloride at both room temperature and at $100{ }^{\circ} \mathrm{C}$ in the base-free Stille cross-coupling in DMF. There is no clear trend in the ratio of phenylation versus methylation.

4. Efforts to Reproduce Literature ${ }^{21}$ Resultsfor the Base-Free Stille Coupling of 1

For the room-temperature base-free coupling of $\mathbf{1}$ with PhSnBu_{3} catalyzed by $\mathrm{Pd}_{2}(\mathrm{dba})_{3} / \mathrm{P}^{t} \mathrm{Bu}_{3}$, the literature reports a 1:7a:7b ratio of 45:47:8. We have been unable to reproduce this ratio. In an effort to control for possible variables, we evaluated different sources of most reagents (Table S20). Additionally, six different chemists across three different labs, including our own, set up the reaction using the exact conditions reported (e.g., same scale, same Pd and ligand source, same reaction time; Table S21). As shown below, none of these efforts enabled us to reproduce the literature report.

Procedure for Table S20: In a nitrogen filled glovebox, $\mathrm{Pd}_{2} \mathrm{dba}_{3}(0.5 \mathrm{mg}, 0.0006 \mathrm{mmol}, 0.75 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}(0.6$ mg , $0.0012 \mathrm{mmol}, 1.5 \mathrm{~mol} \%$), and KPF_{6} (44.2 mg , $0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1-dram vial equipped with a magnetic stir bar. Tributylphenyl stannane ($28 \mu \mathrm{~L}$, 0.088 mmol , 1.1 equiv), $\mathbf{1}$ ($14 \mu \mathrm{~L}, 0.08 \mathrm{mmol}$), and DMF $(150 \mu \mathrm{~L})$ were added. The vial was immediately sealed with a PTFE-lined cap and removed from the glovebox, and the reaction was stirred at room temperature for 24 h . Dodecane ($8.0 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Procedure for Table S21: Six chemists in three organometallic chemistry research groups were recruited to attempt to reproduce the literature results of the base-free Stille coupling of $\mathbf{1}$ by following the procedure described in Table 3 , entry 1 of reference 21 , on the same scale described in the literature (0.65 mmol of $\mathbf{1}$). The only alterations to the reported procedure are as follows: (1) an aqueous workup was not performed for entries 1 and 4-8 in Table S14 below, and (2) dodecane was used as the internal standard for calibrated GC yields instead of mesitylene, the standard reported in the literature. Dodecane was added to the reaction mixture after the 38 -hour reaction time. For the table entries without an aqueous workup, the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography. The preparation method for $\mathbf{1}$ is noted below. The chemists outside of our own laboratory ordered new bottles of all commercial reagents for use in these studies.

Table S20. Varying Material Sources in Stille Cross-Coupling of $\mathbf{1}^{a}$

entry	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ source	$\mathrm{Pd}_{2} \mathrm{dba}_{3}$ purity ${ }^{b}$	KPF6 source	$\mathrm{Bu}_{3} \mathrm{SnPh}$ source	literature procedure used to prepare 1	DMF source	trial	1	7 a	7 b
1	Aldrich	31\%	Oakwood	Aldrich	ref. 6	solvent system	1	84	4	3
2	Aldrich	31\%	Oakwood	Aldrich	ref. 6	solvent system	2	88	3	3
3	Aldrich	31\%	Oakwood	Aldrich	ref. 6	solvent system	Average	86	4	3
4	Aldrich	30\%	Oakwood	Aldrich	ref. 6	solvent system	1	88	4	3
5	Aldrich	30\%	Oakwood	Aldrich	ref. 6	solvent system	2	88	4	4
6	Aldrich	30\%	Oakwood	Aldrich	ref. 6	solvent system	Average	88	4	3
7	Aldrich	30%	Oakwood	Alfa Aesar	ref. 6	solvent system	1	88	3	3
8	Aldrich	30%	Oakwood	Alfa Aesar	ref. 6	solvent system	2	88	4	3
9	Aldrich	30%	Oakwood	Alfa Aesar	ref. 6	solvent system	Average	88	3	3
10	Aldrich	69\%	Oakwood	Alfa Aesar	ref. 6	solvent system	1	87	4	3
11	Aldrich	69\%	Oakwood	Alfa Aesar	ref. 6	solvent system	2	89	3	3
12	Aldrich	69\%	Oakwood	Alfa Aesar	ref. 6	solvent system	Average	89	4	3
13	Strem	63\%	Oakwood	Alfa Aesar	ref. 6	solvent system	1	88	3	3
14	Strem	63\%	Oakwood	Alfa Aesar	ref. 6	solvent system	2	88	3	3
15	Strem	63\%	Oakwood	Alfa Aesar	ref. 6	solvent system	Average	88	3	3
16	prepared inhouse (ref. 22)	27\%	Oakwood	Alfa Aesar	ref. 6	solvent system	1	88	3	3
17	prepared inhouse (ref.22)	27\%	Oakwood	Alfa Aesar	ref. 6	solvent system	2	88	4	3
18	prepared inhouse (ref.22)	27\%	Oakwood	Alfa Aesar	ref. 6	solvent system	Average	88	3	3
19	Aldrich	30\%	Aldrich ${ }^{\text {c }}$	Alfa Aesar	ref. 6	solvent system	1	92	3	3
20	Aldrich	30\%	Aldrich ${ }^{\text {c }}$	Alfa Aesar	ref. 6	solvent system	2	88	3	3
21	Aldrich	30\%	Aldrich ${ }^{\text {c }}$	Alfa Aesar	ref. 6	solvent system	Average	90	3	3
22	Aldrich	30\%	Alfa Aesar	Alfa Aesar	ref. 6	solvent system	,	92	3	3
23	Aldrich	30\%	Alfa Aesar	Alfa Aesar	ref. 6	solvent system	2	89	3	3
24	Aldrich	30\%	Alfa Aesar	Alfa Aesar	ref. 6	solvent system	Average	90	3	3
25	Aldrich	30\%	Oakwood		ref. 6	new, sealed ${ }^{d}$	1	89	4	4
26	Aldrich	30\%	Oakwood	Alfa Aesar	ref. 6	new, sealed ${ }^{\text {d }}$	2	89	4	4
27	Aldrich	30\%	Oakwood	Alfa Aesar	ref. 6	new, sealed ${ }^{\text {d }}$	Average	89	4	4
28	Aldrich	30\%	Oakwood	Alfa Aesar	ref. 21	solvent system	1	89	1	2
29	Aldrich	30\%	Oakwood	Alfa Aesar	ref. 21	solvent system	2	90	2	2
30	Aldrich	30\%	Oakwood	Alfa Aesar	ref. 21	solvent system	Average	89	1	2

${ }^{a}$ GC yields calibrated against undecane as an internal standard. Average of two runs. ${ }^{b}$ Purity was determined by ${ }^{1} \mathrm{H}$ NMR in CDCl_{3} by the method in reference $23 .{ }^{c} 99.5$ \% trace metals basis KPF6. ${ }^{d}$ Newly-opened bottle of DMF in an AcroSeal bottle from Acros Organics was used.

Table S21. Impact of Chemist and Workup Procedure in Stille Cross-Coupling of $\mathbf{1}^{a}$

| entry | chemist | literature
 procedure used
 to prepare $\mathbf{1}$ | workup
 chemist | aqueous
 workup? | extra additive? | $\mathbf{1}$ | $\mathbf{7 a}$ | $\mathbf{7 b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | A | ref. 21 | A | no | no | 89 | 2 | 2 |
| 2 | A | ref. 21 | A | yes | no | 76 | 3 | 2 |
| 3 | A | ref. 21 | A | yes | mesitylene (1 equiv) | 84 | 3 | 2 |
| 4 | B | ref. 6 | B | no | no | 85 | 6 | 3 |
| 5 | C | ref. 6 | C | no | no | 94 | 2 | 2 |
| 6 | D | ref. 21 | D | no | no | 86 | 6 | 3 |
| 7 | E | ref. 21 | A | no | no | 77 | 10 | 6 |
| 8 | F | ref. 21 | A | no | no | 89 | 3 | 3 |

${ }^{a}$ GC yields calibrated against dodecane as an internal standard. Results of a single run. ${ }^{b}$ When indicated, the aqueous workup was performed after adding internal standard (dodecane) and followed the procedure described in reference 21. ${ }^{c}$ Mesitylene, which is the internal GCMS standard used in reference 21, was added with the other liquid reagents prior to the start of the reaction.

Discussion: As shown in Table S20, the Pd source and its purity, the KPF6 source, the $\mathrm{Bu}_{3} \mathrm{SnPh}$ source, the DMF source, and the preparation method for 1 did not have a significant effect on the reaction yields in our hands. Furthermore, there was little variation among the different chemists (Table S21). The total yield of products $7 \mathbf{a}+$ $7 \mathbf{b}$ ranged from 4-16\% yield, and the remaining starting material ranged from $77-94 \%$ based on calibrated GC.

G. Evaluation of Alternative Hypotheses

1. Alternative Hypothesis: Is Solvent Effect Related to KF Solubility?

Hypothesis: We evaluated an alternative hypothesis for the observed solvent effect wherein better solubility of KF promotes formation of anionic bisligated $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{F})\right]^{-}$, which in turn favors reaction at triflate.

General Procedure: Without exclusion of air or moisture, $\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}-\mathrm{Pd}-\mathrm{G} 4$ (1.5 mg , $0.0026 \mathrm{mmol}, 3 \mathrm{~mol} \%$), o-tolyl boronic acid ($11.0 \mathrm{mg}, 0.081 \mathrm{mmol}$, 1.01 equiv), and $\mathrm{KF}(13.9 \mathrm{mg}, 0.24 \mathrm{mmol}, 3$ equiv) were combined in a 1 -dram vial equipped with a magnetic stir bar. In rapid succession, water ($1.4 \mu \mathrm{~L}, 0.08 \mathrm{mmol}, 1$ equiv), 4-chlorophenyl triflate ($14 \mu \mathrm{~L}$, 0.08 mmol , 1 equiv), and solvent $(150 \mu \mathrm{~L}$) were added to the vial and the mixture was immediately sparged with nitrogen for two minutes. The sparging needle and septum was quickly replaced with a PTFE-lined cap and the reaction was stirred vigorously at the indicated temperature for 24 h . Undecane ($7.5 \mu \mathrm{~L}$) was added to the reaction mixture as an internal standard, and the mixture was diluted with EtOAc. A small aliquot was removed and filtered through celite, and the celite was washed with additional EtOAc. The filtrate was analyzed by gas chromatography.

Table S22. Comparing Selectivity to KF Solubility. ${ }^{a}$

			-G4 \%) nt quiv) r.t., 24 h	$+$			
entry	solvent	KF solubility $(\mathrm{g} \mathrm{KF} / 100 \mathrm{~g}$ solvent, $\left.20-25^{\circ} \mathrm{C}\right)^{b}$	reference for solubility data	trial	1 (\%)	2 a (\%)	2b (\%)
1	$\mathrm{H}_{2} \mathrm{O}$	102	24	1	22	55	0
2	$\mathrm{H}_{2} \mathrm{O}$	102	24	2	35	64	0
3	$\mathrm{H}_{2} \mathrm{O}$	102	24	Average	28	59	0
4	THF	0.85	25	1	5	63	<1
5	THF	0.85	25	2	23	72	<1
6	THF	0.85	25	3	26	68	1
7	THF	0.85	25	4	25	71	1
8	THF	0.85	25	5	27	75	1
9	THF	0.85	25	6	24	79	1
10	THF	0.85	25	7	20	78	1
11	THF	0.85	25	8	18	79	1
12	THF	0.85	25	Average	20	74	<1
13	DMF	7.0×10^{-3}	24	1	16	9	58
14	DMF	7.0×10^{-3}	24	2	19	9	61
15	DMF	7.0×10^{-3}	24	3	24	11	59
16	DMF	7.0×10^{-3}	24	4	26	11	59
17	DMF	7.0×10^{-3}	24	5	16	12	66
18	DMF	7.0×10^{-3}	24	6	20	11	62
19	DMF	7.0×10^{-3}	24	Average	23	10	60
20	MeCN	3.6×10^{-3}	24	1	8	2	75
21	MeCN	3.6×10^{-3}	24	2	8	2	78
22	MeCN	3.6×10^{-3}	24	Average	8	2	77
23	acetone	2.2×10^{-5}	24	1	16	72	3
24	acetone	2.2×10^{-5}	24	2	26	63	4
25	acetone	2.2×10^{-5}	24	Average	21	68	4
26	propylene carbonate (PC)	2.0×10^{-7}	26	1	9	57	6
27	propylene carbonate (PC)	2.0×10^{-7}	26	2	23	68	6
28	propylene carbonate (PC)	2.0×10^{-7}	26	3	12	75	5
29	propylene carbonate (PC)	2.0×10^{-7}	26	4	19	68	6
30	propylene carbonate (PC)	2.0×10^{-7}	26	Average	16	67	6

${ }^{a}$ GC yields calibrated against undecane as an internal standard. Diarylated product observed in $\leq 4 \%$ yield in all cases.

Figure S9. No correlation between KF solubility and selectivity is observed in six representative solvents.

Discussion: Solubility data and selectivity were plotted on a linear free energy relationship diagram (Table S22 and Figure S 9). For six representative solvents, in which KF solubility is known, there is no trend between solubility and selectivity. As such, it does not appear that fluoride availability is responsible for the observed solvent effects.

2. Alternative Hypothesis: Is Oxidative Addition Reversible (Curtin-Hammett)?

Hypothesis: We considered a scenario in which the previously reported difference between the Suzuki and Stille selectivities ${ }^{21}$ relates to reversible oxidative addition. If transmetallation with organostannane reagents is sufficiently slow, and oxidative addition is reversible, then the Stille reaction kinetics would fall into a CurtinHammett regime wherein transmetallation would actually be the selectivity-determining step. For this scenario to serve as an explanation for why chloride-selectivity was reported in the base-free Stille coupling in DMF, despite the observation that stoichiometric oxidative addition occurs preferentially at $\mathrm{C}-\mathrm{OTf}$ in this solvent, oxidative addition of triflate must be reversible and transmetallation at $\mathrm{P}^{t} \mathrm{Bu}_{3} \mathrm{Pd}(\mathrm{Ar}) \mathrm{Cl}$ must be faster than at a putative $\mathrm{P}_{t} \mathrm{Bu}_{3} \mathrm{Pd}(\mathrm{Ar}) \mathrm{OTf}$ intermediate. To evaluate this hypothesis, we conducted an experiment using an aryl nonaflate in the presence of triflate anion designed to look for reversible oxidative addition of fluorinated sulfonates. Successful oxidative addition of $\mathbf{S 1 1}$, followed by exchange of -ONf for -OTf at palladium and C-O bond-forming reductive elimination would result in product $\mathbf{3} \mathbf{b}$. We hypothesized that this process could be tracked by ${ }^{19} \mathrm{~F}$ NMR, since $\mathrm{NBu}_{4} \mathrm{OTf}(-77.4 \mathrm{ppm})$ would be consumed and peaks corresponding to product $\mathbf{3} \mathbf{b}$ (diagnostic signal at -73.3 ppm) would appear.

Procedure: Inside a nitrogen-filled glovebox, $\mathrm{PtBu}_{3}\left(5.5 \mathrm{mg}\right.$, $0.027 \mathrm{mmol}, 1$ equiv), $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(10.5 \mathrm{mg}$, $0.027 \mathrm{mmol}, 1$ equiv), and $\mathrm{NBu}_{4} \mathrm{OTf}(10.6 \mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) were combined in a 1 -dram vial equipped with a stir bar. In a separate vial, a solution was prepared of $\mathbf{S 1 1}$ ($0.027 \mathrm{mmol}, 1$ equiv), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}(7.6 \mu \mathrm{~L}, 0.081 \mathrm{mmol}, 3$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L})$. $\mathrm{DMF}(500 \mu \mathrm{~L})$ was added to the vial containing Pd, followed by the entire volume of the substrate solution. The vial was sealed with a PTFE-lined cap and the reaction was allowed to stir for $3-48 \mathrm{~h}$ at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Results and Discussion: The NMR spectra from these experiments show evidence of oxidative addition of S11 based on decrease in the signals corresponding to this compound, but $\mathbf{3 b}$ is not detected after 3 hours, nor after extended reaction time (up to 48 h). We conclude from these results that reductive elimination of $\mathrm{C}-\mathrm{OTf}$ is unlikely to occur in polar coordinating solvent at room temperature. As such, a Curtin-Hammett scenario involving rapid equilibrium between oxidative addition adducts $\left[\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)(\mathrm{Ar})(\mathrm{Cl})\right]$ and $\left[\mathrm{Pd}\left(\mathrm{PtBu}_{3}\right)(\mathrm{Ar})(\mathrm{OTf})\right]$ is not feasible. This conclusion is consistent with the dearth of literature examples of $\mathrm{C}_{(\mathrm{sp2} 2}-\mathrm{O}$ reductive elimination from $\mathrm{Pd}(\mathrm{II})$. Furthermore, DFT calculations suggest that oxidative addition of both $\mathrm{C}-\mathrm{OTf}$ and $\mathrm{C}-\mathrm{Cl}$ at $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\right]$ is highly exergonic and unlikely to be reversible based on the calculated free energy barriers for the reverse reaction (see Figure 2 of the manuscript).

See pages S 154 -S155 for the ${ }^{19} \mathrm{~F}$ NMR spectra corresponding to these experiments.

3. Alternative Hypothesis: "Greasy Tin Hypothesis"

Hypothesis: We considered an alternative hypothesis to explain the previously-reported anomalous solvent effects in the Stille coupling. In this hypothesis, we envisioned that the greasy organostannane reagents could modulate the polarity of the reaction medium (for example, oxidative addition could take place within nonpolar micelles rather than within the bulk reaction medium). To test this hypothesis, stoichiometric oxidative addition studies were conducted in DMF at room temperature in the presence of SnBu_{4} (a reagent that is structurally similar to $\mathrm{Bu}_{3} \mathrm{SnPh}$ but is unlikely to undergo transmetallation).

Procedure: Inside a nitrogen-filled glovebox, $\mathrm{P}^{\mathrm{tBu}} \mathrm{B}_{3}\left(5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(10.5$ $\mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) were combined in a 1 -dram vial equipped with a stir bar. In a separate vial, a solution was prepared of $\mathbf{3 a}$ ($3.6 \mu \mathrm{~L}$, o. 027 mmol , 1 equiv), $\mathbf{3 b}$ ($5.0 \mu \mathrm{~L}$, o.027 mmol, 1 equiv), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ ($7.6 \mu \mathrm{~L}, 0.081 \mathrm{mmol}, 3$ equiv), and SnBu_{4} ($8.9 \mu \mathrm{~L}-88.9 \mu \mathrm{~L}$, $0.027-0.27 \mathrm{mmol}$, $1-10$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L})$. DMF ($500 \mu \mathrm{~L}$) was added to the vial containing Pd, followed by the entire volume of the substrate solution. The vial was sealed with a PTFElined cap and the reaction was allowed to stir for 6 h at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Results:
Table S23. Effect of SnBu_{4} on Stoichiometric Selectivity ${ }^{a}$

Discussion: SnBu_{4} did not have a significant effect on the selectivity of oxidative addition, even when used in large excess. C-OTf oxidative addition continues to occur preferentially.

See pages S 136 -S138 for the ${ }^{19} \mathrm{~F}$ NMR spectra corresponding to these experiments.

4. Alternative Hypothesis: Effect of $\mathrm{n}_{\mathrm{Bu}}^{3} \mathbf{S n O T f}$

Hypothesis: We speculated that the byproduct of transmetallation with organotin reagents might influence the selectivity of oxidative addition in subsequent catalyst turnovers. In a coordinating solvent like DMF, which favors oxidative addition at triflate, the formal byproduct of transmetallation with PhSnR_{3} would be $\mathrm{R}_{3} \mathrm{SnOTf}\left(\mathrm{R}={ }^{n} \mathrm{Bu}\right.$ or Me). In this compound, tin has Lewis acidic character, and we envisioned that the Lewis acidic tin might activate an $\mathrm{Ar}-\mathrm{Cl}$ bond toward oxidative addition through interaction with lone pairs on Cl . We evaluated this hypothesis through stoichiometric oxidative addition studies in DMF in the presence of added $\mathrm{Bu}_{3} \mathrm{SnOTf}$.

Procedure: Inside a nitrogen-filled glovebox, $\mathrm{P}^{\mathrm{tBu}} \mathrm{H}_{3}\left(5.5 \mathrm{mg}, 0.027 \mathrm{mmol}, 1\right.$ equiv) and $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}(10.5$ $\mathrm{mg}, 0.027 \mathrm{mmol}, 1$ equiv) were combined in a 1-dram vial equipped with a stir bar. In a separate vial, a solution was prepared of $\mathbf{3 a}$ ($3.6 \mu \mathrm{~L}$, o. 027 mmol , 1 equiv), $\mathbf{3} \mathbf{b}$ ($5.0 \mu \mathrm{~L}$, o. 027 mmol , 1 equiv), $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ ($7.6 \mu \mathrm{~L}$, o.081 mmol, 3 equiv), and n - Bu_{3} SnOTf ($0.027-0.054 \mathrm{mmol}, 1-2$ equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}$). DMF ($500 \mu \mathrm{~L}$) was added to the vial containing Pd, followed by the entire volume of the substrate solution. The vial was sealed with a PTFE-lined cap and the reaction was allowed to stir for 2-6 h at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Results:
Table S24. Effect of $n-\mathrm{Bu}_{3} \mathrm{SnOTf}$ on Stoichiometric Selectivity ${ }^{a}$

Discussion: The addition of $n-\mathrm{Bu}_{3} \mathrm{SnOTf}$ does not influence the observed selectivity. Thus the previously reported difference between Stille and Suzuki selectivity in DMF should not be attributed to the formation of the byproduct n-Bu $u_{3} S n O T f$.

See pages S139-S140 for the ${ }^{19} \mathrm{~F}$ NMR spectra corresponding to these experiments.

5. Alternative Hypothesis: Autocatalysis in Stoichiometric Oxidative Addition?

Hypothesis: Hartwig has previously observed autocatalytic oxidative addition of PhBr to $\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2}$ through the proposed mechanism illustrated below in Figure S10. ${ }^{27}$ In this mechanism, a side product of the initial reaction is $\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)_{2} \mathrm{Pd}(\mathrm{H})(\mathrm{Br})$ (the proton is derived from $\mathrm{C}-\mathrm{H}$ activation of a phosphine ligand). This complex undergoes
 believed to undergo much more rapid oxidative addition into PhBr than the original neutral $\left.\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}\right)_{3}\right)_{\mathrm{n}}$ species.

Figure S10. Previously reported autocatalytic oxidative addition of PhBr mediated by phosphonium salt. ${ }^{27}$
We considered the possibility that, in our stoichiometric oxidative addition reactions between $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)\right]$ and $\mathbf{3 a} / \mathbf{3} \mathbf{b}$, an analogous process could occur that would generate highly reactive $\left[\mathrm{Pd}\left(\mathrm{P}_{t} \mathrm{Bu}_{3}\right)(\mathrm{Cl})\right]-$. This anionic bisligated $\mathrm{Pd}(0)$ species would be expected to preferentially react at $\mathrm{C}-\mathrm{OTf}$, as proposed by Proutiere and Schoenebeck. ${ }^{21}$ Because the envisioned autocatalytic cycle would be mediated by $\mathrm{P}^{t} \mathrm{Bu}_{3} \cdot \mathrm{HCl}$, by analogy to Figure S4, we evaluated this hypothesis by using $\mathrm{P}^{t} \mathrm{Bu}_{3} \cdot \mathrm{HCl}$ as an additive in our stoichiometric studies. If this species promotes a catalytic cycle involving anionic bisligated $\left[\mathrm{Pd}^{\left.\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{Cl})\right]^{-} \text {, we would expect to see a change in }}\right.$ selectivity toward increased reaction at triflate.

Procedure: Inside a nitrogen-filled glovebox, $\mathrm{PtBu}_{3}\left(5.5 \mathrm{mg}\right.$, 0.027 mmol , 1 equiv), $\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}_{2}(10.5 \mathrm{mg}\right.$, 0.027 mmol , 1 equiv), and $\mathrm{PtBu}_{3} \cdot \mathrm{HCl}(0.7 \mathrm{mg}, 0.0027 \mathrm{mmol}$, o.1 equiv) were combined in a $1-\mathrm{dram}$ vial equipped with a stir bar. In a separate vial, a solution was prepared of $\mathbf{3 a}(3.6 \mu \mathrm{~L}, 0.027 \mathrm{mmol}, 1$ equiv), $\mathbf{3} \mathbf{b}$ ($5.0 \mu \mathrm{~L}$, 0.027 mmol, 1 equiv), and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}\left(7.6 \mu \mathrm{~L}\right.$, 0.081 mmol , 3 equiv) in $\mathrm{C}_{6} \mathrm{D}_{6}(100 \mu \mathrm{~L}) .500 \mu \mathrm{~L}$ of the indicated solvent was added to the vial containing Pd, followed by the entire volume of the substrate solution. The vial was sealed with a PTFE-lined cap and the reaction was allowed to stir for 6 h at room temperature. The reaction mixture was transferred via Pasteur pipette into an NMR tube. The tube was capped tightly, removed from the glovebox, and immediately analyzed by ${ }^{19} \mathrm{~F}$ NMR.

Table S25. Effect of Phosphonium Chloride on Stoichiometric Selectivity

	 3b	$\begin{aligned} &+\quad \mathrm{PtBu}_{3} \bullet \\ & \mathrm{H} \\ &(0.1 \text { equi } \end{aligned}$	$\begin{gathered} \mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2} \\ (1 \text { equiv) } \\ \mathrm{PtBu}_{3}(1 \text { equiv) } \\ \hline \text { solvent/ } / \mathrm{C}_{6} \mathrm{D}_{6}(5: 1) \\ \text { r.t., } 6 \mathrm{~h} \end{gathered}$			recovered 3a + 3b oxidative addition byproducts
			solvent	THF, su	ane, DM	
				recov	(\%) ${ }^{a}$	reacted
entry	solvent	$\begin{gathered} \mathrm{PtBu}_{3} \cdot \mathrm{HCl} \\ \text { (equiv) } \end{gathered}$	trial	$3 \mathbf{}$	3 b	3a $\mathbf{3} \mathbf{b}$
1	THF	0	1	61	≥ 99	$\geq 39: 1$
2	THF	O	2	52	≥ 99	$\geq 48: 1$
3	THF	O	3	51	92	6:1
4	THF	0	Average	55	97	15: 1
5	THF	0.1	1	60	94	7:1
6	THF	0.1	2	62	96	10:1
7	THF	0.1	Average	61	95	8:1
8	sulfolane	0	1	82	93	3:1
9	sulfolane	O	2	90	98	5:1
10	sulfolane	O	Average	86	95	3:1
11	sulfolane	0.1	1	91	96	2:1
12	sulfolane	0.1	2	90	94	2:1
13	sulfolane	0.1	Average	90	95	2:1
14	DMF	0	1	88	57	1:4
15	DMF	0	2	87	57	1:3
16	DMF	0	3	76	33	1:3
17	DMF	O	4	63	29	1:2
18	DMF	O	Average	78	44	1:3
19	DMF	0.1	1	76	31	1:3
20	DMF	0.1	2	81	44	1:3
21	DMF	0.1	Average	79	37	1:3

${ }^{a}{ }^{19} \mathrm{~F}$ NMR yields calibrated against $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ as an internal standard.

Discussion: The addition of $10 \mathrm{~mol} \%$ of $\mathrm{PtBu}_{3} \cdot \mathrm{HCl}$ led to some selectivity deterioration in THF and sulfolane. However, addition of this quantity of phosphonium salt was insufficient to result in an inversion of selectivity in these solvents. There was no change to the observed selectivity in DMF. These results suggest that, under the standard stoichiometric conditions in the absence of added $\mathrm{PtBu}_{3} \cdot \mathrm{HCl}$, it is unlikely that bisligated anionic $\left[\mathrm{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{Cl})\right]^{-}$is primarily responsible for the preferential triflate selectivity that is observed in coordinating solvents.

Additionally, there are other observations that contradict the hypothesis that triflate selectivity in DMF/MeCN is due to the involvement of $\left[\operatorname{Pd}\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{Cl})\right]-$ under the stoichiometric conditions. (1) While it makes sense to consider that this anionic species would be better stabilized in polar solvents, preferential reaction at triflate is not observed in polar noncoordinating solvents like sulfolane and propylene carbonate (see Table 3 of the manuscript, entries 89). (2) Hartwig observed autocatalysis in the oxidative addition of PhBr in the nonpolar solvents toluene and THF, in addition to the polar non-coordinating solvent 2-butanone. If a similar mechanism occurred in our stoichiometric
studies, we would expect to see preferential reaction at triflate (via $\left[\mathrm{Pd}^{\left.\left.\left(\mathrm{P}^{t} \mathrm{Bu}_{3}\right)(\mathrm{Cl})\right]-\right) \text { in toluene, } \mathrm{THF} \text {, and acetone, }}\right.$ but instead we see preferential selectivity for reaction of chloride in these solvents (Table 3, entries 1-4). (3) Control studies show that the presence of a $\mathbf{3 a}$ as a chloride source is not necessary to observe reaction of $\mathbf{3 b}$ in MeCN and DMF (Table 3, entries 12-13).

See pages S141-S143 for the ${ }^{19} \mathrm{~F}$ NMR spectra corresponding to these experiments.

H. Error Analysis

Possible sources of error in GC yields include measurements of reagents and internal standard (typically undecane) and instrument error. To analyze measurement error, substrate $\mathbf{1}$ and undecane were measured out by volume in the same manner used for reaction set up, and the masses of the measured volumes were weighed by injecting the volume into an empty tared vial. In particular, $7.5 \mu \mathrm{~L}$ of undecane was measured with a $10 \mu \mathrm{~L}$ syringe (marked with $0.2 \mu \mathrm{~L}$ gradations), and $14 \mu \mathrm{~L}$ of $\mathbf{1}$ was measured with a $25 \mu \mathrm{~L}$ syringe (marked with $0.5 \mu \mathrm{~L}$ gradations). This process was repeated 5x for each compound. The results are summarized in Tables S26 and S27 below. To analyze error in GC analysis, the same reaction sample was analyzed by GC 5 x (Table S28).

Table S26. Undecane measurement error.

trial	mass
1	5.8 mg
2	5.7 mg
3	5.5 mg
4	5.6 mg
5	5.7 mg
Average	5.66 mg
Std. dev.	0.11 mg
Std. dev. as	$\pm 1.9 \%$
\% of avg	

Table S27. Substrate 1 measurement error.

trial	mass
1	21.8 mg
2	21.9 mg
3	21.6 mg
4	21.9 mg
5	21.7 mg
Average	21.78 mg
Std. dev.	0.13 mg
Std. dev. as	$\pm 0.6 \%$
\% of avg	

Table S28. Instrument error: GC yields based on 5 GC runs of the same sample.

Discussion:

The standard deviation of the measured quantity of undecane is $\pm 1.9 \%$ of the average. The standard deviation of the measured quantity of substrate is $\pm 0.6 \%$ of the average. The standard deviation of the yields of $\mathbf{2 a}$ and $\mathbf{2 b}$ determined by GC analysis is $\pm 0.2 \%$ of the average. As such, measurement error of both substrate and (especially) standard are expected to contribute to the most error in calculated yields. Instrument variation is associated with only a small amount of error. Overall, the estimated error in the total mass balance throughout the manuscript is about $\pm 3 \%$ based on the standard deviations of the measurements in this error analysis. Importantly, this error is expected to influence the yields of the two products in the same direction (e.g., under-measuring undecane would increase the yield of both $\mathbf{2 a}$ and $\mathbf{2 b}$, leading to a relatively minor effect on calculated ratio). Additional variation in yields can be attributed to factors including other measurement errors (e.g., of precatalyst), minor variations in room temperature, heterogeneity of particle size of solid reagents, and variations in the amount of residual O_{2} in the reaction vessel.

II. Computational Details

A. General Methods

Calculations were performed with Gaussian $16 .{ }^{28}$ An ultrafine integration grid and the keyword 5d were used for all calculations. Geometry optimizations of stationary points were carried out in implicit solvent using the CPCM continuum solvation model ${ }^{29}$ with the indicated functional (B3LYP or MN15 L^{30}) and basis sets (either LANL2DZ ${ }^{31}$ or SDD for Pd and $6-31+\mathrm{G}(\mathrm{d})$ for all other atoms). Frequency analyses were carried out at the same level to evaluate the zero-point vibrational energy and thermal corrections at 298.15 K. Unless otherwise indicated, Gibbs free energy values are reported after applying Cramer and Truhlar's quasi-harmonic approximation to vibrational entropy ${ }^{32}$ and Head-Gordon's quasi-harmonic approximation to vibrational enthalpy 33 to frequencies that are less than 100 cm^{-1}. All thermodynamic quantities were computed with the GoodVibes code. 34 The nature of the stationary points was determined in each case according to the appropriate number of negative eigenvalues of the Hessian matrix. Forward and reverse intrinsic reaction coordinate (IRC) calculations were carried out on the optimized transition structures to ensure that the TSs indeed connect the appropriate reactants and products. 35 Multiple conformations were considered for all structures, and the lowest energy conformations are reported. It is worth noting that the lowest-energy π-complexes are not necessarily directly connected to the oxidative addition transition structures on the potential energy surfaces (i.e., in some cases the IRC calculations lead to different higher-energy π complexes than the lowest-energy structures reported). This factor is unimportant to the overall energetics, assuming that the barrier to interconverting π-complexes is low (e.g., by palladium ring-walking or by rotation of the triflate group). 3D images of optimized structures were generated with CYLview. ${ }^{36}$ Where indicated, Grimme's D3(BJ) empirical dispersion correction with Becke-Johnson damping was added to the B3LYP energies using the empiricaldispersion=GD3BJ keyword. ${ }^{37}$

B. Reaction Free Energy Diagram Using DMF Calculated with B3LYP-D3(BJ)

CPCM(DMF)-B3LYP-D3BJ/6-31+G(d)/SDD(Pd)
free energies are corrected for concentration and reported after applying Truhlar and Head-Gordon's quasi-harmonic approximations to entropy and enthalpy

Figure S11. Reaction free energy diagrams in DMF calculated with B3LYP-D3(BJ).

Discussion: Although the functional B3LYP does not consider London dispersion forces, dispersion corrections can be added. Here we applied Grimme's D_{3} (BJ) empirical dispersion correction with Becke-Johnson damping to the DFT energies using the empiricaldispersion=GD3BJ keyword. ${ }^{8}$ The results are similar to those obtained using MN15L in that TS55b-dmf becomes much more favorable than it appears without dispersion. However, this level of theory also predicts that $\mathbf{T S}_{5} \mathbf{5}$ and $\mathbf{T S}_{5}$ a should be isoenergetic, which contradicts the well-established preference for monoligated Pd to react at chloride. ${ }^{1,3,40,40,41}$ As such, MN15L appears to perform better than B3LYP-D3BJ for these calculations. This observation is consistent with prior benchmarking studies with transition metals. ${ }^{42}$

C. DFT Predictions at $100^{\circ} \mathrm{C}$

Applying thermal corrections at 373.15 K to the calculations performed at the $\operatorname{CPCM}(\mathrm{DMF})-\mathrm{MN} 15 \mathrm{~L} / 6$ $31+G(d) / S D D(P d)$ level of theory predicts lower selectivity for triflate, (Figure S12). This is expected because TS55bdmf is less entropically favorable than TS5a.

Figure S12. DFT predictions at $100^{\circ} \mathrm{C}$ using CPCM(DMF)-MN15L/6-31+G(d)/SDD(Pd).

D. Discussion of DFT Shortcomings

Our DFT calculations, at minimum, suggest that solvent coordination should not be ruled out on the basis of dispersion-free DFT calculations. In particular, they show that the energy of TS5b-dmf is similar in energy to TS5a. However, even when dispersion is included, the DFT methods used in this work fall short of being able to reproduce the expected coordinating ability trends of different solvents to palladium. For example, the expected order of solvent cordinating ability is MeCN > DMF > THF > benzene, but DFT predicts different trends that vary with method. These results are summarized in Tables S29-S31.

Table S29. Differences in energy between TS5b-dmf and TS5a calculated in implicit DMF ${ }^{a}$

Method	TS5b-dmf - TS5a				
	$\Delta \mathrm{E}$	$\Delta \mathrm{H}_{\mathrm{qh}}$	$\Delta \mathrm{G}$	$\Delta \mathrm{G}_{\mathrm{qh}}$	
CPCM(DMF)-B3LYP/6-31+G(d)/LANL2DZ(Pd)	+6.3	+6.3	+16.2	+16.4	
CPCM(DMF)-B3LYP-D3(BJ)/6-31+G(d)/LANL2DZ(Pd)	-9.3	-8.2	+0.9	+0.7	
CPCM(DMF)-B3LYP-D3(BJ)/6-31+G(d)/SDD(Pd)	-10.6	-10.3	-0.1	-0.1	
CPCM(DMF)-MN15L/6-31+G(d)/LANL2DZ(Pd)	-13.0	-12.7	-1.7	-2.4	
CPCM(DMF)-MN15L/6-31+G(d)/SDD(Pd)	-13.7	-12.7	-2.0^{c}	-2.9	

${ }^{a}$ Thermal corrections at 298.15 K . All energies reported in $\mathrm{kcal} / \mathrm{mol}$. Free energies are corrected for concentration (ratio of DMF:Pd $=765: 1$). Enthalpy ($\Delta \mathrm{H}_{\mathrm{qh}}$) is reported after applying Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. The free energy value labeled with $\Delta \mathrm{G}_{\mathrm{qh}}$ is reported after applying Cramer and Truhlar's and Head-Gordon's quasiharmonic approximations to vibrational entropy and enthalpy, while the value labeled as $\Delta \mathrm{G}$ does not include the quasiharmonic approximations.

Table S30. Differences in energy between TS5b-MeCN and TS5a calculated in implicit MeCN ${ }^{a}$

${ }^{a}$ Thermal corrections at 298.15 K . All energies reported in kcal/mol. Free energies are corrected for concentration (ratio of DMF: $\mathrm{Pd}=1,118: 1$). Enthalpy $\left(\Delta \mathrm{H}_{\mathrm{qh}}\right)$ is reported after applying Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. The free energy value labeled with $\Delta \mathrm{G}_{\mathrm{qh}}$ is reported after applying Cramer and Truhlar's and Head-Gordon's quasiharmonic approximations to vibrational entropy and enthalpy, while the value labeled as $\Delta \mathrm{G}$ does not include the quasiharmonic approximations.

Table S31. Differences in energy between TS5b-thf and TS5a calculated in implicit THF ${ }^{a}$

${ }^{a}$ Thermal corrections at 298.15 K . All energies reported in kcal/mol. Free energies are corrected for concentration (ratio of DMF:Pd = 718:1). Enthalpy ($\Delta \mathrm{H}_{\mathrm{qh}}$) is reported after applying Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. The free energy value labeled with $\Delta \mathrm{G}_{\mathrm{qh}}$ is reported after applying Cramer and Truhlar's and Head-Gordon's quasiharmonic approximations to vibrational entropy and enthalpy, while the value labeled as $\Delta \mathrm{G}$ does not include the quasiharmonic approximations.

Using CPCM(solvent)-MN15L/6-31+G(d)/LANL2DZ(Pd), we also attempted to evaluate coordinating strength of several different solvents at both $\operatorname{Pd}(0)$ and $\mathrm{Pd}(\mathrm{II})$ by calculating the energies of the species depicted in Schemes S 1 and S 2 . The free energy values in these schemes are reported after applying a standard state concentration assuming that Pd is $0.017 M$ in solvent, and with quasi-harmonic approximations to vibrational enthalpy and entropy. However, as shown, DFT at this level of theory suggests that the order of coordinating ability to $12 e^{-} \operatorname{Pd}(0)$ should be benzene $>\mathrm{MeCN}>\mathrm{DMF}>\mathrm{THF}$, which does not match the expected order of MeCN > DMF > THF > benzene. When considering coordination to $14 e^{-} \mathrm{Pd}(\mathrm{II})$, the calculations indicate that solvent coordination is unfavorable in all cases, and the energetics suggest the following order of coordinating ability to $\mathrm{Pd}(\mathrm{II})$: benzene $>\mathrm{DMF} \approx \mathrm{MeCN}$ > THF. Moreover, in the optimized structures of the solvato complexes with THF and benzene, the solvent molecule is very far away from $\operatorname{Pd}(\geq 3.65 \AA$). The failure of DFT to discriminate between coordinating ability of these solvents indicates that this level of theory is not adequate for describing the strength of weak dative bonds. It is possible that
more useful information may be gleaned using different functionals or larger basis sets; alternatively, molecular dynamics simulations may contribute to a more accurate representation of solvent coordination.

Scheme S1. Calculating favorability of solvent coordination to $12 e^{-} \operatorname{Pd}(0)$.

Scheme S2. Calculating favorability of solvent coordination to $14 e^{-} \operatorname{Pd}(I I)$.

E. Energies, Entropies, and Lowest Frequencies of Minimum Energy Structures

Table S32. Calculations at the CPCM(DMF)-B3LYP/6-31+G(d)/LANL2DZ(Pd) level of theory. ${ }^{a}$

Structure	Eelec (Hartree)	ZPE (Hartree)	H_{qh} (Hartree) ${ }^{\text {c }}$	\mathbf{G}^{d} (Hartree)	$\mathbf{G}_{\mathbf{q h}}{ }^{e}$ (Hartree)	Imaginary Freqf
4	-2594.348615	0.479968	-2593.838126	-2593.939812	-2593.935128	
TS5a	-2594.33273	0.478858	-2593.823409	-2593.925542	-2593.920232	-206.2301
TS5b	-2594.325045	0.47793	-2593.816619	-2593.916959	-2593.913175	-259.9956
6 a	-2594.380785	0.481617	-2593.868329	-2593.967968	-2593.965253	
6b	-2594.388147	0.481944	-2593.875515	-2593.97488	-2593.97189	
$(4-d m f){ }^{b}$	-2842.870244	0.583401	-2842.251221	-2842.367065	-2842.362175	-14.5954
(TS5a-dmf) ${ }^{b}$	-2842.851507	0.583269	-2842.232268	-2842.350003	-2842.34438	-179.6848
TS5b-dmf	-2842.853054	0.582742	-2842.234138	-2842.351143	-2842.345837	-260.8251
6a-dmf	-2842.911073	0.586476	-2842.28799	-2842.404586	-2842.39992	
6b-dmf	-2842.919852	0.586244	-2842.297336	-2842.41364	-2842.409048	
DMF	-248.530317	0.102799	-248.420798	-248.45138	-248.451688	

${ }^{a}$ 信 Hartree $=627.51 \mathrm{kcal} \mathrm{mol}^{-1}$. Thermal corrections at 298.15 K , with concentration $=13 M$ for DMF and $0.017 M$ for all other species. ${ }^{b}$ Optimized with a constrained $\mathrm{Pd}-\mathrm{O}$ distance; so these are unlikely to represent a true minimum-energy structure at this level of theory. ${ }^{c}$ Enthalpy reported after application of Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. ${ }^{d}$ Solvent-corrected free energy given by $\mathrm{G}=\mathrm{E}_{\text {elec }}+\mathrm{G}_{\text {corr, }}$, where $\mathrm{G}_{\text {corr }}$ is the thermal correction to Gibbs free energy. ${ }^{e}$ Solvent-corrected free energy given by $\mathrm{Gqh}_{\mathrm{qh}}=\mathrm{Eelec}+\mathrm{Gcorr}^{*}$, where $\mathrm{G}_{\text {corr* }}$ is the thermal correction to Gibbs free energy obtained after applying Cramer and Truhlar's and Head-Gordon's quasi-harmonic approximations. ${ }^{f}$ The single imaginary frequency is reported for the structures that have one (i.e., the transition structures; and 4-dmf (optimized with constrained Pd-O distance) also has one imaginary frequency).

Table S33. Calculations at the CPCM(DMF)-MN15L/6-31+G(d)/SDD(Pd) level of theory. ${ }^{a}$

Structure	Eelec (Hartree)	ZPE (Hartree)	$\mathbf{H}_{\mathbf{q h}}$ (Hartree)			
		$\mathbf{G}^{\boldsymbol{c}}$ (Hartree)	$\mathbf{G}_{\mathbf{q h}^{\boldsymbol{d}}}$ (Hartree)	Imaginary Freq \boldsymbol{e}		
4	-2593.644346	0.481345	-2593.133222	-2593.228452	-2593.227671	
TS5a	-2593.625463	0.480954	-2593.114724	-2593.210282	-2593.2083	-171.5502
TS5b	-2593.616729	0.478692	-2593.108203	-2593.205818	-2593.202853	-228.3686
6a	-2593.675812	0.483879	-2593.161958	-2593.257676	-2593.255789	
6b	-2593.685169	0.483386	-2593.17171	-2593.266324	-2593.265437	
4-dmf	-2841.934404	0.586643	-2841.312338	-2841.419651	-2841.419805	
TS5a-dmf	-2841.902557	0.585601	-2841.281456	-2841.391212	-2841.389741	-137.2208
TS5b-dmf	-2841.914925	0.585201	-2841.294157	-2841.402029	-2841.401882	-246.0247
6a-dmf	-2841.959897	0.588859	-2841.33526	-2841.446021	-2841.443004	
6b-dmf	-2841.974739	0.588358	-2841.350582	-2841.459279	-2841.45836	
DMF	-248.26759	0.10276	-248.158125	-248.188622	-248.188946	

${ }^{a}$ 俗 Hartree $=627.51 \mathrm{kcal} \mathrm{mol}^{-1}$. Thermal corrections at 298.15 K , with concentration $=13 M$ for DMF and $0.017 M$ for all other species. ${ }^{b}$ Enthalpy reported after application of Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. ${ }^{c}$ Solventcorrected free energy given by $\mathrm{G}=$ Eelec $+\mathrm{G}_{\text {corr, }}$, where $\mathrm{G}_{\text {corr }}$ is the thermal correction to Gibbs free energy. ${ }^{d}$ Solvent-corrected free energy given by $\mathrm{G}_{\mathrm{qh}}=$ Eelec $+\mathrm{G}_{\text {corr* }}$, where Gcorr^{*} is the thermal correction to Gibbs free energy obtained after applying Cramer and Truhlar's and Head-Gordon's quasi-harmonic approximations. ${ }^{e}$ The single imaginary frequency is reported for the structures that have one (i.e., the transition structures).

Table S34. Calculations at the CPCM(DMF)-B3LYP-D3BJ/6-31+G(d)/SDD(Pd) level of theory. ${ }^{a}$

Structure	Eelec (Hartree)	ZPE (Hartree)	$\mathbf{H}_{\text {qh }}$ (Hartree) b	$\mathbf{G}^{\boldsymbol{c}}$ (Hartree)	$\mathbf{G}_{\text {qh }^{d}}$ (Hartree)	
4	-2595.688612	0.481727	-2595.176572	-2595.276064	-2595.272339	
TS5a	-2595.670641	0.481266	-2595.159196	-2595.257293	-2595.254542	-143.4386
TS5b	-2595.66856	0.479359	-2595.158894	-2595.258514	-2595.254518	-291.4703
6a	-2595.728252	0.48407	-2595.213709	-2595.311295	-2595.309183	
6b	-2595.735645	0.484165	-2595.221073	-2595.318547	-2595.316219	
4-dmf	-2844.243619	0.586633	-2843.621117	-2843.734454	-2843.731391	
TS5a-dmf	-2844.220638	0.586291	-2843.598437	-2843.71181	-2843.708974	-101.0273
TS5b-dmf	-2844.231449	0.585406	-2843.610018	-2843.722351	-2843.720012	-320.8933
6a-dmf	-2844.286863	0.589193	-2843.661374	-2843.775281	-2843.771396	
6b-dmf	-2844.298688	0.588445	-2843.674178	-2843.788233	-2843.784421	
DMF	-248.543978	0.10288	-248.434389	-248.464973	-248.46527	

${ }^{a_{1}}$ Hartree $=627.51 \mathrm{kcal} \mathrm{mol}^{-1}$. Thermal corrections at 298.15 K , with concentration $=13 \mathrm{M}$ for DMF and 0.017 M for all other species. ${ }^{b}$ Enthalpy reported after application of Head-Gordon's quasi-harmonic approximation to vibrational enthalpy. ${ }^{\text {'S Solvent- }}$ corrected free energy given by $\mathrm{G}=$ Eelec +Gcorr , where G corr is the thermal correction to Gibbs free energy. ${ }^{\text {d }}$ Solvent-corrected free energy given by $\mathrm{G}_{\mathrm{qh}}=\mathrm{E}_{\text {elec }}+\mathrm{G}_{\text {corr" }}$, where $\mathrm{G}_{\text {corr** }}$ is the thermal correction to Gibbs free energy obtained after applying Cramer and Truhlar's and Head-Gordon's quasi-harmonic approximations. ${ }^{e}$ The single imaginary frequency is reported for the structures that have one (i.e., the transition structures).

III. References

1. Reeves, E. K.; Humke, J. N.; Neufeldt, S. R. J. Org. Chem. 2019, 84, 11789-11812.
2. Gill, D.; Hester, A. J.; Lloyd-Jones, G. C. Org. Biomol. Chem. 2004, 2, 2547-2548.
3. Andersen, T. L.; Kramer, S.; Overgaard, J.; Skrydstrup, T. Organometallics 2017, 36, 2058-2066.
4. Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2009, 131, 8141-8154.
5. Morozova, V.; Mayer, P.; Berionni, G. Angew. Chem. Int. Ed. 2015, 54, 14508-14512.
6. Gooßen, L.J.; Rodríguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130, 15248-15249.
7. Onodera, S.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2019, 84, 6508-6515
8. Reeves, E.K.; Bauman, O.R.; Mitchem, G.B.; Neufeldt, S.R. Isr. J. Chem. 2020, 6o, 406-409.
9. Entz, E. D.; Russell, J. E. A.; Hooker, L. V. J. Am. Chem. Soc. 2020, 142, 15454-15463.
10. Bartoli, G.; Bosco, M. Synthesis 1980, 8, 616-617.
11. Viswanathan, G.S.; Wang, M.; Li, C.J. Angew. Chem. Int. Ed. 2002, 41, 2138-2141.
12. Shekhar, S.; Dunn, T. B.; Kotecki, B. J.; Montavon, D. K.; Cullen, S. C. J. Org. Chem. 2011, 76, 4552-4563.
13. Zhang, Z.; Wang, Z. J. Am. Chem. Soc. 2006, 71, 7485-7487.
14. Gooßen, L.J.; Rodríguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130, 15248-15249.
15. Gill, D.; Hester, A.J.; Lloyd-Jones, G.C. Org. \& Biomol. Chem. 2004, 2, 2547-2548.
16. Hansch, C.; Leo, A.; Taft, R.W. Chem. Rev. 1991, 91, 165-195.
17. Roy, A. H.; Hartwig, J. F. Organometallics 2004, 23, 194-202.
18. Wohlfarth, C. "Permittivity (Dielectric Constant) of Liquids" in CRC Handbook of Chemistry and Physics, Rumble, Jr., J. R.; Lide, D. R.; Bruno, T. J., eds. CRC Press, Boca Raton, FL, 2020.
19. Suzuki, K.; Shin-ya, M.; Ono, Y.; Matsumoto, T.; Nanbu, N.; Takehara, M.; Ue, M.; Sasaki, Y.

Electrochemistry 2007, 75, 611-614.
20. Salmon, C. J.; Danelon, G. O.; Mascaretti, O. A. J. Org. Chem. 2000, 65, 9220-9222.
21. Proutiere, F.; Schoenebeck, F. Angew. Chem. Int. Ed. 2011, 50, 8192-9195.
22. Fairlamb, I.J.S.; Kapdi, A.R.; Lee, A.F. J. Am. Chem. Soc. 2004, 6, 4435-4438,
23. Zalesskiy, S.S.; Ananikov, V.P. Organometallics 2012, 13, 2302-2309.
24. National Institute of Health PubChem. Potassium fluoride.
https://pubchem.ncbi.nlm.nih.gov/compound/522689 (accessed Sep 30, 2020).
25. Wynn, D. A.; Roth, M. M.; Pollard, B. D. Talanta 1984, 31, 1036-1040.
26. Peruzzi, N.; Lo Nostro, P.; Ninham, B. W.; Baglioni, P. J. Solution Chem. 2015, 44, 1224-1239.
27. Barrios-Landeros, F.; Carrow, B. P.; Hartwig, J. F. J. Am. Chem. Soc. 2008, 130, 5842-5843
28. Gaussian 16, Revision C.o1, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.;

Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016
29. Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. J. Comput. Chem. 2003, 24, 669.
30. Yu, H. S.; He, X.; Truhlar, D. G. J. Chem. Theory Comput. 2016, 12, 1280.
31. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 299.
32. Ribeiro, R.F.; Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. J. Phys. Chem. B. 2011, 115, 14556.
33. Li, Y.-P.; Gomes, J.; Sharada, S. M.; Bell, A.T.; Head-Gordon, M. J. Phys. Chem. C 2015, 119, 1840
34. Luchini, G.; Alegre-Requena, J. V.; Funes-Ardoiz, I.; Paton, R. S. GoodVibes: Automated Thermochemistry for Heterogeneous Computational Chemistry Data. FioooResearch, 2020, 9, 291.
35. (a) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154; (b) Gonzalez, C.; Schlegel, H.B. J. Phys. Chem. 1990, 94, 5523; (c) Fukui, K. Acc. Chem. Res. 1981, 14, 363.
36. CYLview, 1.ob; Legault CY, Université de Sherbrooke, 2009 (http://www.cylview.org)

37 (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104-154119. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.

38 (a) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132, 154104-154119. (b) Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011, 32, 1456-1465.
39. Schoenebeck, F.; Houk, K. N. J. Am. Chem. Soc. 2010, 132, 2496.
40. Niemeyer, Z. L.; Milo, A.; Hickey, D. P.; Sigman, M. S. Nat. Chem. 2016, 8, 610.
41. So, C. M.; Yuen, O. Y.; Ng, S. S.; Chen, Z. ACS Catal. 2021, 11, 7820/
42. Moltved, K. A.; Kepp, K. P. J. Chem. Theory Comput. 2018, 14, 3479.

IV. NMR Spectra

A. Compound Characterization

(


```
~
```


S11

F2 - Acquisition Parameter	
Date_	20200709
Time	16.35 h
INSTRUM	spect
PROBHD	Z127277_0002 (
PULPROG	zgpg30
TD	65536
SOLVENT	CDC13
NS	1024
DS	4
SWH	36057.691 Hz
FIDRES	1.100393 Hz
AQ	0.9087659 sec
RG	184.4
DW	13.867 usec
DE	18.00 usec
TE	300.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TD0	1
SFO1	150.9178981 MHz
NUC1	13C
PO	4.00 usec
P1	12.00 usec
PLWI	91.00000000 W
SFO2	600.1324005 MHz
NUC2	1H
CPDPRG [2	waltz16
PCPD2	70.00 user
PLW2	5.59999990 W
PLW12	0.07314300 W
PLW13	0.03679000 W
F2 - Processing parameters	
SI	32768
SF	150.9027731 MHz
WDW	EM
SSB	0
LB	1.00 Hz
GB	0 O
PC	1.40

S12

F2 - Acquisition Parameter

Date_	20210702
Time	12.13 h
INSTRUM	Avance Neo
PROBHD	Z152088_0031
PULPROG	zgig
TD	130892
SOLVENT	CDCl3
NS	16
DS	4
SWH	90909.094 Hz
FIDRES	1.389070 Hz
AQ	0.7199060 sec
RG	101
DW	5.500 usec
DE	6.50 usec
TE	298.1 K
D1	1.00000000 sec
D11	0.03000000 sec
TDO	1
SFO1	376.4607164 MHz
NUC1	19 F
P1	12.00 usec
PLW1	31.08900070 W
SFO2	400.1316005 MHz
NUC2	10
CPDPRG[2	waltz16
PCPD2	90.00 uset
PLW2	24.03499985 W
PLW12	0.18990999 W

F2	Processing parameters
SI	65536
SF	376.4983662 MHz
WDW	0
SSB	0
LB	
GB	0

S13

F2 - Acquisition Parameter

Time $\quad 15.39 \mathrm{l}$
INSTRUM 7125869 spect
PROBHD Z125869_0055 (
PULPROG zgflqn
$\begin{array}{lr}\text { TD } & 130892 \\ \text { SOLVENT } & \text { CDCl3 }\end{array}$
NS
DS
SWH $\quad 113636.367 \mathrm{~Hz}$
$\begin{array}{lr}\text { FIDRES } \quad 113636.367 \mathrm{~Hz} \\ \text { AO } & 1.736338 \mathrm{~Hz}\end{array}$
$\begin{array}{lc}\text { AQ } & 0.5759248 \mathrm{sec} \\ \text { RG } & 17.9 \mathrm{~B} \\ \text { DW } & 4.400 \mathrm{usec}\end{array}$
4.400 usec
18.00 usec
18.00 usec
1.00000000 sec
470.6394024 MHz
19 F
19 F
11.70800018 W

F2	- Processing parameters
SI	65536
SF	470.6864712 MHz
WDW	0
SSB	0
LB	0

S15b

Current Data Parameters
NAME
$6-S M R-25$
$\begin{array}{lr}\text { NAME } & 6-S M R-25 \\ \text { EXPNO } & 12\end{array}$
PROCNO

F2-Acquisition Parameter	
Date_	20211105
Time	21.32 h
INSTRUM	Avance Neo
PROBHD	Z152088_0031
PULPROG	zg
TD	131072
SOLVENT	CDCl3
NS	16
DS	4
SWH	90909.094 Hz
FIDRES	1.387163 Hz
AQ	0.7208960 sec
RG	101
DW	5.500 usec
DE	6.50 usec
TE	298.0 K
D1	1.0000000 sec
TDO	1
SFO1	376.4607164 MHz
NUC1	199 F
P1	12.00 usec
PLW1	31.08900070 W
F2 - Processing parameters	
SI	65536
SF	376.4989587 MHz
WDW	EM
SSB	0
LB	0
GB	0.30 Hz
PC	
	1.00

B. Stoichiometric Oxidative Addition Studies with 3a and 3b 1. Experiments from Table 3 and with Deuterated Solvents

(

$\mathrm{OD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$
(1 equiv)
$\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ (1 equiv)
$\mathbf{3 a}+3 \mathbf{b}$
toluene- $\boldsymbol{d}_{\mathbf{8}} / \mathrm{C}_{6} \mathrm{D}_{6}(5: 1)$ $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ (3 equiv)
r.t., 6 h

Current Data Parameters NAME 6-SMR-41-3 $\begin{array}{lr}\text { EXPNO } & 10 \\ \text { PROCNO } & 1\end{array}$

F2 - Acquisition Parameter	
Date_	20211116
Time	15.16 h
INSTRUM	spect
PROBHD	z125869_0055
PULPROG	2 z 30
TD	65536
SOLVENT	Tol
NS	64
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	30.54
DW	50.000 usec
DE	16.00 usec
TE	298.0 K
D1	2.0000000 sec
TDO	1
SFO1	500.2330889 MHz
NUC1	10 H
PO	4.00 usec
P1	12.00 usec
PLW1	11.44699955 W

F2 - Processing parameters
$\mathrm{SF} \quad 500.2300000 \mathrm{MHz}$
SSB 0
0.30 Hz

GB 0
1.00

$\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$

(1 equiv)

and isomers whun

Current Data Parameters
NAME
6-SMR-41-11
EXPNO
PROCNO

F2-Acquisition Parameter	
Date_	20211116
Time	16.15 h
INSTRUM	spect
PROBHD	Z125869_0055
PULPROG	2 g 30
TD	65536
SOLVENT	DMF
NS	64
DS	2
SWH	10000.000 Hz
FIDRES	0.305176 Hz
AQ	3.2767999 sec
RG	37.93
DW	50.000 usec
DE	16.00 usec
TE	298.0 K
D1	2.00000000 sec
TDO	1
SFO1	500.2330889 MHz
NUC1	10 H
PO	4.00 usec
P1	12.00 usec
PLW1	11.44699955 W

${ }^{t} \mathrm{Bu}_{3} \mathrm{P}-\mathrm{Pd}-\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$

(

GRUKER

Current Data Parameters NAME 6-SMR-39-15 EXPNO

F2 - Acquisition Parameter	
Date_	20211115
Time	17.09 h
INSTRUM	Avance Neo
PROBHD	Z152088_0031
PULPROG	zgpg30
TD	65536
SOLVENT	C6D6
NS	32
DS	4
SWH	65789.477 Hz
FIDRES	2.007735 Hz
AQ	0.4980736 sec
RG	101
DW	7.600 usec
DE	6.50 usec
TE	298.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
SFO1	161.9674942 MHz
NUC1	31 P
PO	2.67 usec
P1	8.00 usec
PLW1	45.86100006 W
SFO2	400.1316005 MHz
NUC2	1 H
CPDPRG 2	waltz16
PCPD2	90.00 usec
PLW2	24.03499985 W
PLW12	0.18990999 W
PLW13	0.09552100 W

F2 - Processing parameters SI 32768

SF		161.9755930 MH
WDW		EM
SSB	0	1.00 Hz
LB	0	
GB	0	1.40

(

- S118 -

2. Experiments in DMF at 100 and $o^{\circ} \mathrm{C}$

BRUKER

Current Data Parameters NAME 6-SMR-42-8 EXPNO 10 PROCNO

F2-Acquisition Parameter	
Date_	20211117
Time	15.37 h
INSTRUM	spect
PROBHD	Z125869_0055
PULPROG	zgpg30
TD	65536
SOLVENT	C6D6
NS	16
DS	4
SWH	81521.742 Hz
FIDRES	2.487846 Hz
AQ	0.4019541 sec
RG	190.44
DW	6.133 usec
DE	18.00 usec
TE	273.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TDO	1
SFO1	202.4866909 MHz
NUC1	31 P
PO	4.00 usec
P1	12.00 usec
PLW1	40.26200104 W
SFO2	500.2320009 MHz
NUC2	1 H
CPDPRG [2	waltz16
PCPD2	80.00 usec
PLW2	11.44699955 W
PLW12	0.25756001 W
PLW13	0.12955000 W

F2	- Processing parameters
SI	32768
SF	202.4968157 MHz
WDW	0

3. Monitoring the Reaction in DMF over Time

(

$00^{\circ} 69$ $80^{\circ} G L-$ $68^{\circ} \boxed{\circ}-$

GRUKER

Current Data Parameters
NAME
6-SMR-43-1h
EXPNO
PROCNO

F2-Acqu	isition Parameter
Date_	20211117
Time	9.59 h
INSTRUM	spect
PROBHD	Z125869_0055 (
PULPROG	z gpg 30
TD	65536
SOLVENT	C6D6
NS	16
DS	4
SWH	81521.742 Hz
FIDRES	2.487846 Hz
AQ	0.4019541 sec
RG	190.44
DW	6.133 usec
DE	18.00 usec
TE	298.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TD0	1
SFO1	202.4666909 MHz
NUC1	31 P
PO	4.00 usec
P1	12.00 usec
PLW1	40.26200104 W
SFO2	500.2320009 MHz
NUC2	1H
CPDPRG[2	waltz16
PCPD2	80.00 uset
PLW2	11.44699955 W
PLW1 2	0.25756001 W
PLWI 3	0.12955000 W

F2 - Processing parameters

SF	202.4968157 MHz
WDW	

WDW		EM
SSB	0	1.00 Hz
LB		
GB	0	1.40

Current Data Parameters
NAME
$6-S M R-43-3 h$
EXPNO
11
1

F2 - Acqu	isition Parameter
Date_	20211117
Time	12.03 h
INSTRUM	spect
PROBHD	Z125869_0055 (
PULPROG	zgpg 30
TD	65536
SOLVENT	C6D6
NS	16
DS	4
SWH	81521.742 Hz
FIDRES	2.487846 Hz
AQ	0.4019541 sec
RG	190.44
DW	6.133 usec
DE	18.00 usec
TE	298.0 K
D1	2.00000000 sec
D11	0.03000000 sec
TD0	1
SFO1	202.4866909 MHz
NUC1	31P
PO	4.00 usec
P1	12.00 usec
PLW1	40.26200104 W
SFO2	500.2320009 MHz
NUC2	1H
CPDPRG [2	waltz16
PCPD2	80.00 user
PLW2	11.44699955 W
PLW1 2	0.25756001 W
PLW1 3	0.12955000 W

F2 - Processing parameters	
SI	32768
SF	202.4968157 MHz
WDW	EM
SSB	0

4. Reactions in the Presence of Additives

3a
$\mathrm{Pd}(\mathrm{COD})\left(\mathrm{CH}_{2} \mathrm{TMS}\right)_{2}$
(1 equiv)
$\mathrm{P}^{\mathrm{t}} \mathrm{Bu}_{3}$ (1 equiv)
$\mathrm{P}^{\mathrm{P}} \mathrm{Bu}_{3} \cdot \mathrm{HCl}$ (1 equiv)
sulfolane $/ \mathrm{C}_{6} \mathrm{D}_{6}(5: 1)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~F}$ (3 equiv)
r.t., 6 h

3b

Current Data Parameters NAME EXPNO PROCNO

F2-Acquisition Parameter	
Date_	20210912
Time	18.0 B h
INSTRUM	Avance Neo
PROBHD	Z152088_0031
PULPROG	zg
TD	130892
SOLVENT	C6D6
NS	16
DS	4
SWH	90909.094 Hz
FIDRES	1.389070 Hz
AQ	0.7199060 sec
RG	101
DW	5.500 usec
DE	6.50 usec
TE	298.0 K
D1	1.00000000 sec
TDO	1
SFO1	376.4607164 MHz
NUC1	19 F
P1	12.00 usec
PLW1	31.08900070 W

F2 - Processing parameters
SI 65536

SF		376.4982233 MHz
WDW		EM
SSB	0	
LB	0	0.30 Hz
GB	0	1.00

C. Stoichiometric Oxidative Addition Studies with S15a and S15b

D. Reaction with S 11 and $\mathrm{NBu}_{4} \mathrm{OTf}$

[^0]: ${ }^{a}$ GC yields calibrated against undecane as an internal standard.

