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Atom typing scheme. We enumerated the atoms in the Cross-
Docked2020 dataset and plotted their property distributions, seen
in Figure S2, to create our atom typing scheme. Both for receptors
and ligands, we considered element, formal charge, aromaticity,
hydrogen bond acceptor/donor, and number of bonded hydro-
gens. We selected value ranges for the properties representative
of the vast majority of the data set and used placeholders for out-
of-range values. We also tried representing hydrogens explicitly.
We evaluated atom typing schemes with different combinations of
properties and selected the one that enabled the most accurate re-
construction of molecules. This evaluation is shown in Figure S1.

Bond inference algorithm. The goal of bond inference was to
connect atoms into a single molecule with realistic bonds and hy-
drogens subject to atom type constraints. We first added bonds
between all atoms in within a distance range. Then we set the
formal charge and hydrogen count based on the atom type. Any
bonds between atoms with invalid valences were removed, as
well as bonds that were excessively strained in length or angle.
Next the hybridization states of aromatic atoms were set to sp2,
the bonds between them were set as aromatic, and the orders
of all bonds were perceived using OpenBabel. Finally, empty va-
lences were filled with either hydrogens or higher bond orders.

Atom fitting algorithm. The atom fitting algorithm jointly op-
timized a set of atoms and their coordinates using a reference
density through an iterative approach. In each iteration, the set
of grid points with the highest density were evaluated as poten-
tial new atoms to expand the current structure. The atoms were
individually added to the structure and their coordinates opti-
mized by gradient descent with respect to the reference density.
If adding the new atom decreased the loss (sum of squared er-
ror), the structure was stored. At the end of each iteration, the
best new structure was set as the initial structure for the next it-
eration, and the remaining density was set as the new reference
density. This repeated until no new atoms could be found that
improved the loss.
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Fig. S1 Reconstructing molecules from atom types. Ability to re-
construct real molecules from their atom types and coordinates through
bond inference using different atom typing schemes. We selected “oadc.”

Algorithm 1: Bond inference algorithm

Data: T ∈ RN×NT ,C ∈ RN×3

Result: M ∈ Molecules
M← add all bonds within distance range(T,C);
M← add hydrogens and formal charges(M,T );
M← remove bad valences and geometry(M,T );
M← set hybridization and aromaticity state(M,T );
M← perceive bond orders based on geometry(M,T );
M← fill valences with hydrogen or bond orders(M,T );

Algorithm 2: Atom fitting algorithm

Data: Gre f ∈ RNT×NX×NY×NZ

Result: T ∈ RN×NT ,C ∈ RN×3

(T,C)← [], [];
while found new best structs do

foreach (tnew,cnew)← rank points by density(Gre f ) do
(Tnew,Cnew)← ([T, tnew], [C,cnew]);
Gdi f f ,Cnew, loss← gradient
descent(Gre f ,Tnew,Cnew);

if loss decreased then
add (loss,Gdi f f ,Tnew,Cnew) to new best structs;

end
end
(loss,Gre f ,T,C)← new best struct;

end
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Fig. S2 Atomic properties in the CrossDocked2020 data set. Log-scale distributions of atomic properties in the CrossDocked2020 data set that
were used to select value ranges represented in our atom type scheme (In-range). To limit the size of the density grids, rare elements were replaced
with a placeholder element (Out-of-range). We used different elements for receptor and ligand atoms, but all other properties used the same ranges.
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Fig. S3 Diversity of generated molecules. Comparison of two-dimensional diversity of generated molecules for a given protein binding pocket with
respect to the variability factor. The diversity was computed as the inverse of the expected Tanimoto fingerprint similarity of generated molecules
conditioned on each receptor.
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Fig. S4 Shape similarity metrics. This figure shows shape similarity metrics for generated molecules. On the left is the L2 loss of the density
representation of generated molecules with the generated density to which the molecules were fit using atom fitting (i.e. the objective function value
minimized by atom fitting). On the right is the Tanimoto shape similarity between generated molecules and the reference molecule.
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Fig. S5 Drug-likeness and change in internal energy. This figure displays quantitative estimate of drug-likeness scores for generated and real
molecules.52 In addition, the change in energy due to UFF minimization is shown for real and generated molecules in linear and logarithmic scales.
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Fig. S6 Atomic properties in generated molecules. Log-scale distributions of atomic properties in molecules sampled from the generative model
posterior and prior distributions.
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Fig. S7 Bond length distributions. Comparison of distributions of bond lengths for the ten most common bond types in the data set. For both
real and generated molecules, the bond lengths are shown after UFF minimization. The bond types are indexed by the elements, bond order, and
aromaticity of the bonded atoms (aromatic bonds are indicated by a dashed line).
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Fig. S8 Bond angle distributions. Comparison of distributions of bond angles for the ten most common bond angle types in the data set. For both
real and generated molecules, the bond angles are shown after UFF minimization. The bond angle types are indexed by the elements, bond order, and
aromaticity of the bonded atoms (aromatic bonds are indicated by a dashed line).
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Fig. S9 Torsion angle distributions. Comparison of distributions of torsion angles for the ten most common torsion angle types in the data set. For
both real and generated molecules, the torsion angles are shown after UFF minimization. The torsion angle types are indexed by the elements, bond
order, and aromaticity of the bonded atoms (aromatic bonds are indicated by a dashed line).
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Fig. S10 Controlling variability of posterior molecules. Properties of molecules generated from the posterior with different variability factors.
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Fig. S11 Controlling variability of prior molecules. Properties of molecules generated from the prior distribution with different variability factors.
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Fig. S12 Controlling bias towards reference molecule. Properties of molecules generated from distributions that were interpolated between the
prior and posterior. The prior distribution corresponds to a bias factor of 0.0 and the posterior distribution corresponds to a bias factor of 1.0.
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Fig. S13 Conditioning posterior molecules on mutant receptors. Properties of molecules generated from the posterior distribution when conditioned
on mutant receptors. Vina energy and CNN affinity were computed with respect to the conditional (mutant) receptor. Mutated residues highlighted
in blue were described in past work as interacting with the known ligand. Mutations highlighted in red inverted the charge of the residue. Gray lines
in the background show the property distribution (1st, 2nd, 3rd quartile) for molecules conditioned on the wild type receptor. Mutations that caused
significantly different property distributions compared to the wild type receptor are shown in bold (one-sided Kolmogorov-Smirnov test with α = 0.05).
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Fig. S14 Conditioning prior molecules on mutant receptors. Properties of molecules generated from the prior distribution when conditioned on
mutant receptors. Vina energy and CNN affinity were computed with respect to the conditional (mutant) receptor. Mutated residues highlighted in
blue were described in past work as interacting with the known ligand. Mutations highlighted in red inverted the charge of the residue. Gray lines in
the background show the property distribution (1st, 2nd, 3rd quartile) for molecules conditioned on the wild type receptor. Mutations that caused
significantly different property distributions compared to the wild type receptor are shown in bold (one-sided Kolmogorov-Smirnov test with α = 0.05).
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