Supporting Information

Synthesis and Evaluation of Potent Yaku'amide A Analogs

Concordia C. L. Lo,^a Daniel Joaquin,^a Diego A. Moyá,^a Alexander Ramos,^a David W. Kastner,^a Stephen M. White,^a Blake L. Christensen,^a Joseph G. Naglich,^b William J. Degnen^c and Steven L. Castle^{*a}

> ^aDepartment of Chemistry and Biochemistry Brigham Young University, Provo, Utah, 84602

^bBristol Myers Squibb, Research & Early Development, Mechanistic Pharmacology-Leads Discovery & Optimization Route 206 and Province Line Road, Princeton, NJ 08543

^cSpectrix Analytical Services

Table of Contents

General Experimental Details	S2
Experimental Procedures and Spectral Data	S2–S38
Description of Anticancer Assays and Data	S38–S41
Computational Data	S42–S54
¹ H and ¹³ C NMR Spectra	S55–S104

General Experimental Details

Dichloromethane, *N*,*N*-dimethylformamide, methanol, and tetrahydrofuran were dried by passage through a solvent drying system containing cylinders of activated alumina.¹ Chloroform was dried by storage over a mixture of activated 4Å MS and anhydrous K₂CO₃. Other solvents and reagents were purchased from commercial vendors and used without purification. Flash chromatography was carried out using 60–230 mesh silica gel. ¹H NMR spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) or dimethyl sulfoxide (2.50 ppm) as internal references. Signals are reported as follows: s (singlet), d (doublet), t (triplet), q (quartet), dd (doublet of doublets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ¹³C NMR spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) or dimethyl sulfoxide (39.51 ppm) as internal references. Infrared spectra were obtained on an FT-IR spectrometer. Mass spectral data were obtained using ESI techniques.

Ethyl 3-Hydroxy-3-methyl-2-((S)-3-methyl-2-((((R)-2,2,2-trichloro-1-phenylethoxy)carbonyl)amino)-3-((triethylsilyl)oxy)butanamido)butanoate (11). A suspension of 9^2 (175.0 mg, 0.332 mmol) and Me₃SnOH (288.0 mg, 1.592 mmol, 4.8 equiv) in hexanes (10 mL, pretreated with Na₂SO₄ for 12 h) under Ar was stirred at 60 °C for 48 h. The solvent was concentrated *in vacuo*, and the residue was treated with Et₂O (12 mL). The mixture was filtered through Celite, (washed with 50 mL of Et₂O), and the filtrate was concentrated *in*

¹ A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, 15, 1518.

² Y. Cai, Z. Ma, J. Jiang, C. C. L. Lo, S. Luo, A. Jalan, J. M. Cardon, A. Ramos, D. A. Moyá, D. Joaquin and S. L. Castle, *Angew. Chem. Int. Ed.*, 2021, **60**, 5162.

vacuo to afford the crude carboxylic acid as a pale yellow oil that was used directly in the next step without further purification.

A solution of the crude carboxylic acid in anhydrous CH₂Cl₂ (3.0 mL) at 0 °C under Ar was treated with amine 10^{2,3} (109 mg, 0.676 mmol, 2.0 equiv), HOBt (ca. 20% H₂O content, 114 mg, 0.675 mmol, 2.0 equiv), and EDC•HCl (130 mg, 0.678 mmol, 2.0 equiv). The resulting mixture was stirred at 0 °C under Ar for 4 h. The reaction was guenched by the addition of sat aq NaHCO₃ (3 mL) and H_2O (2 mL), and the layers were separated. The aqueous layer was extracted with CH_2Cl_2 (4 × 5 mL), and the combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (10 mL of SiO₂, 0-1.5% MeOH in CH₂Cl₂ gradient elution) afforded 11 (181 mg, 0.282 mmol, 85%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz, minor rotamers present, data for major rotamer of each diastereomer) δ 7.61 (d, J = 7.6 Hz, 2H), 7.44 - 7.34 (m, 3H), 7.14 (d, J = 8.3 Hz, 1H), 6.32 (s, 1H), 6.10 and 6.04 (2d, 2d, 2d)J = 7.6 and 6.7 Hz, 1H), 4.49 and 4.40 (2d, J = 8.7 and 8.1 Hz, 1H), 4.28–4.17 (m, 2H), 4.16 (d, J) = 7.7 Hz, 1H), 2.64 and 2.62 (2s, 1H), 1.42 and 1.41 (2s, 3H), 1.32–1.24 (m, 6H), 1.21 and 1.20 (2s, 3H), 1.19 (s, 3H), 1.03–0.94 (m, 9H), 0.74–0.64 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.4 and 170.9, 170.0 and 169.6, 154.7 and 154.5, 133.0, 129.7 (2C), 129.5, 127.9 (2C), 99.7 and 99.6, 83.6 and 83.5, 72.0 and 71.4, 63.7, 62.9, 61.6 and 61.5, 60.3, 27.5 and 27.3, 27.1 and 26.7, 26.4 and 26.1, 25.0, 14.2 and 14.1, 7.0 (3C), 6.4 (3C); IR (film) v_{max} 3349, 2956, 2876, 1738, 1667, 1505, 1375, 1202, 1059 cm⁻¹; HRMS (ESI) m/z 641.1984 (MH⁺, C₂₇H₄₃Cl₃N₂O₇SiH⁺ requires 641.1978).

³ Z. Ma, B. C. Naylor, B. M. Loertscher, D. D. Hafen, J. M. Li and S. L. Castle, J. Org. Chem., 2012, 77, 1208.

Ethyl 2-((S)-2-((tert-Butoxycarbonyl)amino)-3-methyl-3-((triethylsilyl)oxy)

butanamido)-3-hydroxy-3-methylbutanoate (12). A suspension of **11** (80.0 mg, 0.125 mmol) in a mixture of THF (2.0 mL) and sat aq NaHCO₃ (1.0 mL) was treated with 10% Pd/C (30.2 mg, 0.38 wt equiv) and Boc₂O (28.1 mg, 0.129 mmol, 1.03 equiv) at rt under Ar. The resulting mixture was stirred at rt under H₂ (200 psi) for 24 h, then diluted with H₂O (4 mL), and extracted with EtOAc (4 × 6 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (11 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded **12** (56.1 mg, 0.114 mmol, 92%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz) δ 7.33 and 7.14 (2 br s, 1H), 5.48 and 5.45 (2 br s, 1H), 4.57 and 4.48 (2d, *J* = 8.3 and 8.4 Hz, 1H), 4.28–4.19 (m, 2H), 4.15 and 4.04 (2 br s, 1H), 2.86 and 2.78 (2 br s, 1H), 1.45 and 1.44 (2s, 9H), 1.38 and 1.35 (2s, 3H), 1.32–1.25 (m, 12H), 0.98 (t, *J* = 7.9 Hz, 9H), 0.71– 0.65 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.0, 170.9, 156.1, 79.7, 76.4, 75.4, 72.1 and 71.7, 61.4, 60.2 and 60.1, 28.2 (3C), 27.5, 27.2, 26.8, 26.6 and 26.5, 14.1, 7.0 (3C), 6.4 (3C); IR (film) v_{max} 3257, 2954, 2876, 1747, 1646, 1513, 1366, 1165, 1052 cm⁻¹; HRMS (ESI) *m/z* 491.3152 (MH⁺, C₂₃H₄₆N₂O₇SiH⁺ requires 491.3147).

((triethylsilyl)oxy)butanamido)-3-methylbut-2-enoyl)-D-alaninate (13). A solution of 12 (40.1 mg, 0.0817 mmol) in *t*-BuOH (800 μ L) was treated with LiOH•H₂O (17.4 mg, 0.415 mmol, 5.1 equiv) and H₂O (300 μ L), then stirred at rt for 6 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with EtOAc (3 × 5 mL). The

combined organic layers were dried (Na_2SO_4) and concentrated *in vacuo*. The crude carboxylic acid was used directly without further purification.

A solution of the crude carboxylic acid in anhydrous DMF (2 mL) was treated with EDC•HCl (156.5 mg, 0.816 mmol, 10.0 equiv) and stirred at rt under Ar for 24 h. The resulting mixture was treated with D-Ala-OMe•HCl (113.5 mg, 0.813 mmol, 10.0 equiv), Et₃N (180 µL, 131 mg, 1.29 mmol, 15.9 equiv), and additional DMF (1 mL), then stirred at 70 °C under Ar for 48 h. The mixture was diluted with H_2O (8 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (12 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded **13** (24.6 mg, 0.0464 mmol, 57% from 12) as a yellow film: $[\alpha]^{25}_{D}$ +15.1 (c 0.6, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, mixture of rotamers) δ 7.64 and 7.59 (2 br s, 1H), 6.91 and 6.83 (br s and d, J = 6.2 Hz, 1H), 5.47 (br s, 1H), 4.60 (q, J = 7.1 Hz, 1H), 4.10 and 4.04 (2d, J = 5.9 and 5.9 Hz, 1H), 3.74 and 3.73 (2s, 3H), 2.07 and 2.04 (2s, 3H), 1.78 (s, 3H), 1.45 and 1.44 (2s, 9H), 1.38 (d, *J* = 6.9 Hz, 3H), 1.34 (s, 3H), 1.29 and 1.26 $(2s, 3H), 0.98 (t, J = 7.9 Hz, 9H), 0.67 (q, J = 7.8 Hz, 6H); {}^{13}C NMR (CDCl_3, 125 MHz, mixture)$ of rotamers) δ 173.33 and 173.27, 169.7 and 169.5, 165.6 and 165.3, 139.5 and 138.6, 129.2 and 127.6, 124.0 and 123.6, 80.3, 75.5, 63.9, 52.3 and 52.2, 48.22 and 48.17, 34.4, 28.2 (3C), 27.3 and 27.2, 26.7, 20.6 and 20.5, 17.9 and 17.8, 6.9 (3C), 6.5 (3C); IR (film) v_{max} 3257, 2954, 2876, 1697, 1513, 1366, 1165, 1052 cm⁻¹; HRMS (ESI) m/z 530.3249 (MH⁺, C₂₅H₄₇N₃O₇SiH⁺ requires 530.3256).

tert-Butyl ((4*S*,10*S*,13*R*,16*R*,22*S*)-25,25-Diethyl-

4,10,13-triisopropyl-2,16,23,23-tetramethyl-6,9,12,15,18,21-hexaoxo-7,19-di(propan-2-

ylidene)-24-oxa-2,5,8,11,14,17,20-heptaaza-25-silaheptacosan-22-yl)carbamate (14). A

solution of tetrapeptide 8^2 (6.7 mg, 0.013 mmol) in anhydrous CH₂Cl₂ (750 µL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 60 µL, 0.24 mmol, 19 equiv). The resulting mixture was stirred at rt for 1.5 h, then treated with Et₃N (150 µL, 109 mg, 1.08 mmol, 84 equiv) and concentrated *in vacuo*. The crude amine was used directly in the coupling with 7 without further purification.

A solution of tripeptide **13** (9.0 mg, 0.017 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) was treated with LiOH•H₂O (4.1 mg, 0.098 mmol, 5.8 equiv), then stirred at rt for 5 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **7** was used directly without further purification.

A solution of crude carboxylic acid 7 (ca. 0.017 mmol. 1.3 equiv) in anhydrous THF (500 µL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 4.8 mg, 0.028 mmol, 2.2 equiv) and EDC•HCl (5.6 mg, 0.029 mmol, 2.3 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the crude tetrapeptide amine (ca. 0.013 mmol) in anhydrous THF (500 µL) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL) and extracted with CHCl₃ (5 × 3 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (15 mL of SiO₂, 0–3% MeOH in CHCl₃ with 1% Et₃N gradient elution) afforded heptapeptide **14** (11.2 mg, 0.0121 mmol, 95%) as a white film: $[\alpha]^{25}_{D}$ +88 (*c* 0.98, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 9.87 (br s, 2H), 8.77 (br s, 2H), 8.02 (br s, 2H), 5.59 (br s, 1H), 4.22–4.18 (m, 2H), 4.05 (br s, 1H), 3.62–3.52 (m, 1H), 3.49–3.39 (m, 1H), 3.03 (s, 3H), 2.95 (s, 3H), 2.41–2.30 (m, 5H), 1.95 (s, 3H), 1.91 (s, 3H), 1.75 (s, 3H), 1.73 (s, 3H), 1.35 (s, 9H), 1.30 (s, 3H), 1.26–1.21 (m, 3H), 1.18 (s,

3H), 1.01 (s, 3H), 0.99 (s, 3H), 0.95–0.85 (m, 15H), 0.82 (s, 3H), 0.80 (s, 3H), 0.59 (q, J = 7.6 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz, data for major rotamer) δ 176.1, 175.4, 174.1, 173.4, 173.1, 166.8, 157.2, 129.1, 128.2, 124.1, 115.5, 79.8, 73.4, 65.0, 61.0, 59.3, 49.3, 46.4, 42.8 (2C), 31.1, 30.9, 29.5, 29.2, 28.4 (3C), 27.3, 26.9, 21.1, 20.9, 20.7, 20.3, 19.6, 19.5, 19.4, 19.13, 19.09, 18.9, 17.1, 7.0 (3C), 6.5 (3C); IR (film) ν_{max} 3304, 2964, 2936, 2876, 1660, 1653, 1526, 1390, 1369, 1309, 1240, 1169, 1053, 1008 cm⁻¹; HRMS (ESI) *m/z* 923.6363 (MH⁺, C₄₆H₈₆N₈O₉SiH⁺ requires 923.6360).

tert-Butyl

((4*S*,10*S*,13*R*,16*R*,22*S*,25*R*,28*R*,29*S*)-22,25-bis(2-hydroxypropan-2-yl)-4,10,13-triisopropyl-2,16,29-trimethyl-6,9,12,15,18,21,24,27-octaoxo-7,19-di(propan-2-ylidene)-

2,5,8,11,14,17,20,23,26-nonaazahentriacontan-28-yl)carbamate (5). A solution of ethyl (*R*)-2-((2*R*,3*S*)-2-((*tert*-butoxycarbonyl)amino)-3-methylpentanamido)-3-hydroxy-3-methylbutanoate² (7.9 mg, 0.021 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) at 0 °C was treated with LiOH•H₂O (4.4 mg, 0.10 mmol, 5.0 equiv), then stirred at rt for 4 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CHCl₃ (5 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **6** was used directly without further purification.

A solution of heptapeptide **14** (18.0 mg, 0.0195 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 160 µL, 0.64 mmol, 33 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **6** without further purification.

A solution of crude carboxylic acid 6 (ca. 0.021 mmol. 1.1 equiv) in anhydrous CH_2Cl_2 (1) mL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 7.2 mg, 0.043 mmol, 2.2 equiv) and EDC•HCl (11.3 mg, 0.059 mmol, 3.0 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the crude heptapeptide amine (ca. 0.0195 mmol) in anhydrous CH_2Cl_2 (1 mL) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (2.0 mL) and extracted with CHCl₃ (5×5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (15 mL of SiO₂, 0– 7% MeOH in CHCl₃ with 1% Et₃N gradient elution) afforded nonapeptide 5 (16.2 mg, 0.0156 mmol, 80% from heptapeptide 14) as a white film: $[\alpha]^{25}_{D}$ +67 (c 1.1, CHCl₃); ¹H NMR (DMSO-d₆, 500 MHz, data for major rotamer) δ 9.70 (br s, 1H), 9.21 (s, 1H), 8.07 (d, J = 7.0 Hz, 1H), 7.87-7.77 (m, 4H), 7.70 (d, J = 9.0 Hz, 1H), 6.92 (d, J = 9.2 Hz, 1H), 5.06 (s, 1H), 4.93 (s, 1H), 4.43 (d, J = 9.1 Hz, 1H), 4.37 (d, J = 8.0 Hz, 1H), 4.25–4.15 (m, 2H), 4.13 (t, J = 7.2 Hz, 1H), 4.05–3.95 (m, 2H), 3.27–3.14 (m, 2H), 2.84 (br s, 3H), 2.72 (br s, 3H), 2.08–2.00 (m, 2H), 1.98 (s, 3H), 1.92 (s, 3H), 1.80–1.68 (m, 4H), 1.67 (s, 3H), 1.66 (s, 3H), 1.36 (s, 9H), 1.21 (s, 3H), 1.17 (d, *J* = 7.0 Hz, 3H), 1.14 (s, 3H), 1.11 (s, 3H), 1.06 (s, 3H), 0.91–0.87 (m, 9H), 0.85–0.79 (m, 12H), 0.74 (d, J = 6.8 Hz, 3H); ¹³C NMR (DMSO- d_6 , 125 MHz, data for major rotamer) δ 172.7, 172.3, 171.9, 171.8, 170.1, 169.8, 166.4, 165.1, 156.0, 138.7, 134.8, 125.2, 124.3, 79.7, 78.6, 71.9, 60.7, 60.2, 59.4, 58.7, 58.6, 49.9, 49.2, 45.2 (2C), 42.0, 36.9, 31.8, 31.0, 30.1, 29.5, 28.6 (3C), 28.4, 28.3, 26.3, 25.7, 21.9, 21.3, 20.7, 19.75, 19.72, 19.67, 19.63, 19.0, 18.6, 18.3, 17.6, 15.0, 12.0; IR (film) v_{max} 3294, 2966, 2932, 2876, 2255, 2126, 1660, 1530, 1467, 1307, 1238, 1171, 1027, 1008 cm⁻¹; HRMS (ESI) m/z 1037.6970 (MH⁺, C₅₁H₉₂N₁₀O₁₂H⁺ requires 1037.6969).

¹ Ethyl 3-Ethyl-3-hydroxy-2-((2*S*,3*R*)-3-methyl-2-((((*R*)-2,2,2-trichloro-1-

phenylethoxy)carbonyl)amino)-3-((triethylsilyl)oxy)pentanamido)pentanoate (17a). A suspension of 15^2 (127.5 mg, 0.2357 mmol) and Me₃SnOH (171.1 mg, 0.9462 mmol, 4.0 equiv) in hexanes (8 mL, pretreated with Na₂SO₄ for 6 h) was stirred at 60 °C under Ar for 72 h. The mixture was concentrated *in vacuo*, and the residue was treated with Et₂O (3 mL). The mixture was filtered through Celite, (washed with 10 mL of Et₂O), and the filtrate was concentrated *in vacuo* to afford the crude acid as a colorless oil that was used directly in the next step without further purification.

The crude acid prepared above was dissolved in anhydrous CH_2Cl_2 (2 mL), cooled to 0 °C under Ar, then treated with amine **16a**⁴ (67.2 mg, 0.355 mmol, 1.5 equiv), HOBt (ca. 20% H₂O content, 60.0 mg, 0.355 mmol, 1.5 equiv), and EDC•HCl (67.7 mg, 0.353 mmol, 1.5 equiv). The resulting mixture was stirred at 0 °C to rt under Ar for 18 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (3 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (44 mL of SiO₂, 0–1.5% MeOH in CH_2Cl_2 gradient elution) afforded **17a** (142.4 mg, 0.2081 mmol, 88%) as a white film that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz, minor rotamers present, data for major rotamer of each diastereomer) δ 7.61 (d, *J* = 6.8 Hz, 2H), 7.44–7.35 (m, 3H), 7.25 and 7.09 (2d, *J* = 8.6 and 8.7 Hz, 1H), 6.28 and 6.26 (2s, 1H), 6.01 and 5.92 (2d, *J* = 8.0 and 7.5 Hz, 1H), 4.63 and 4.56 (2d, *J* = 8.8 and 8.7 Hz 1H), 4.28–4.15 (m, 3H), 2.45 and 2.40 (2 br s, 1H), 1.63–1.45 (m, 6H), 1.31 (t, *J* = 7.2 Hz, 3H),

⁴ J. Jiang, S. Luo and S. L. Castle, *Tetrahedron Lett.*, 2015, 56, 3311.

1.25 and 1.23 (2s, 3H), 1.02–0.92 (m, 9H), 0.90–0.79 (m, 9H), 0.75–0.63 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 172.04 and 171.98, 170.1 and 169.8, 154.7 and 154.5, 133.52 and 133.45, 130.2, 129.8 (2C), 128.0 (2C), 99.7, 83.71 and 83.67, 78.7, 78.2, 76.4 and 76.1, 62.1 and 61.7, 57.4 and 57.1, 32.8 and 31.8, 28.74 and 28.69, 26.8 and 26.6, 24.11 and 24.08, 14.3, 8.9 and 8.7, 7.84 and 7.79, 7.7, 7.3 (3C), 6.8 (3C); IR (film) ν_{max} 3353, 3286, 2964, 2878, 2359, 1732, 1661, 1505, 1377, 1200, 1067 cm⁻¹; HRMS (ESI) *m/z* 683.2445 (MH⁺, C₃₀H₄₉Cl₃N₂O₇SiH⁺ requires 683.2447).

Ethyl 2-((2S,3R)-2-((*tert*-Butoxycarbonyl)amino)-3-methyl-3-

((triethylsilyl)oxy)pentanamido)-3-ethyl-3-hydroxypentanoate (18a). A suspension of carbamate 17a (142.4 mg, 0.2081 mmol) in THF–sat aq NaHCO₃ (2:1, 2.3 mL) was treated sequentially with 10% Pd/C (22.1 mg, 0.16 wt equiv) and Boc₂O (49.9 mg, 0.229 mmol, 1.1 equiv). The resulting mixture was stirred at rt under H₂ (200 psi) for 24 h, diluted with H₂O (3 mL), and extracted with EtOAc (3×7 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (44 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded 18a (104.0 mg, 0.1952 mmol, 94%) as a white film that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz) δ 7.39 and 7.34 (2 br s, 1H), 7.02 (br s, 1H), 5.39 and 5.31 (d and br s, J = 7.2 Hz, 1H), 4.60 and 4.53 (2d, J = 8.7 Hz and 8.8 Hz, 1H), 4.21–4.11 (m, 3H), 2.50 and 2.48 (2 br s, 1H), 1.55–1.41 (m, 6H), 1.40 and 1.39 (2s, 9H), 1.29–1.22 (m, 5H), 0.96–0.80 (m, 18H), 0.69–0.59 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 172.1, 171.0 and 170.7, 156.2 and 155.9, 80.0 and 79.8, 78.9 and 78.2, 76.5 and 76.1, 74.3, 61.5, 57.2 and 56.8, 33.0 and 31.9, 28.6, 28.4 (3C), 26.7, 24.2, 14.3, 8.9 and 8.7, 7.8 and 7.7, 7.74, 7.3 (3C), 6.9 and 6.8 (3C);

IR (film) v_{max} 3359, 2968, 2878, 2360, 2342, 1722, 1662, 1505, 1367, 1166, 1023 cm⁻¹; HRMS (ESI) *m/z* 533.3614 (MH⁺, C₂₆H₅₂N₂O₇SiH⁺ requires 533.3617).

((triethylsilyl)oxy)pentanamido)-3-ethylpent-2-enoyl)glycinate (19a). A solution of ester 18a (45.0 mg, 0.0845 mmol) in *t*-BuOH–H₂O (3:1, 3 mL) was treated with LiOH•H₂O (17.7 mg, 0.422 mmol, 5.0 equiv) at 0 °C, then stirred at rt for 5 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with $CH_2Cl_2(3 \times 5 mL)$. The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid was used directly without further purification.

A solution of the crude carboxylic acid in anhydrous DMF (3 mL) was treated with EDC+HCl (162.0 mg, 0.8451 mmol, 10 equiv) under Ar and stirred at rt for 24 h. The resulting mixture was treated with Gly-OMe+HCl (106.1 mg, 0.8451 mmol, 10 equiv), Et₃N (190 µL, 138 mg, 1.36 mmol, 16 equiv), and additional anhydrous DMF (1 mL), then stirred under Ar at 80 °C for 48 h. The solution was cooled to rt, diluted with EtOAc (10 mL), and washed with brine (10 × 10 mL) to remove the DMF. The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (20 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded **19a** (23.0 mg, 0.0412 mmol, 49%) as a pale yellow oil: $[\alpha]^{25}_{D}$ –3.3 (*c* 1.7, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.41 (br s, 1H), 7.01 (br s, 1H), 5.31 (br s, 1H), 4.05–3.98 (m, 2H), 3.91 (dd, *J* = 12.5, 5.5 Hz, 1H), 3.66 (s, 3H), 2.41–2.32 (m, 2H), 2.06 (q, *J* = 7.6 Hz, 2H), 1.64–1.58 (m, 2H), 1.37 (s, 9H), 1.29 (s, 3H), 1.03 (t, *J* = 7.4 Hz, 3H), 0.97–0.87 (m, 12H), 0.85–0.78 (m, 3H), 0.60 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.5, 170.2, 166.3, 156.4, 150.2, 123.0, 80.3, 78.1, S11

61.6, 52.2, 41.3, 32.7, 28.3 (3C), 28.0, 24.23, 24.18, 13.2, 12.1, 8.8, 7.1 (3C), 6.7 (3C); IR (film) v_{max} 3335, 2962, 2877, 2359, 1682, 1505, 1367, 1169, 1066, 1008 cm⁻¹; HRMS (ESI) *m/z* 538.3570 (MH⁺, C₂₇H₅₁N₃O₇SiH⁺ requires 538.3569).

Ethyl (5R,6S)-6-((tert-Butoxycarbonyl)amino)-3,3,5-triethyl-15-

(2-hydroxypropan-2-yl)-5-methyl-7,10,13-trioxo-9-(pentan-3-ylidene)-4-oxa-8,11,14-triaza-3-silahexadecan-16-oate (20a). A solution of tripeptide 19a (10.6 mg, 0.0190 mmol) in *t*-BuOH (600 μ L) was treated with LiOH•H₂O (4.3 mg, 0.10 mmol, 5.4 equiv) and H₂O (200 μ L), then stirred at rt for 3 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with EtOAc (2 × 3 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid was used directly without further purification.

The crude acid was dissolved in anhydrous CH_2Cl_2 (2.0 mL), cooled to 0 °C under Ar, then treated with amine **10** (4.9 mg, 0.030 mmol, 1.6 equiv), HOBt (ca. 20% H₂O content, 4.8 mg, 0.028 mmol, 1.5 equiv) and EDC•HCl (5.8 mg, 0.030 mmol, 1.6 equiv). The resulting mixture was stirred at rt under Ar for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (4 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography 23 mL of SiO₂, 0–4% MeOH in CH_2Cl_2 gradient elution) afforded **20a** (10.5 mg, 0.0153 mmol, 80%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz) δ 7.64–7.50 (m, 2H), 7.34–7.26 (m, 1H), 7.01 and 6.94 (2 br s, 1H), 5.48 (br s, 1H), 4.54 and 4.51 (2d, *J* = 9.4 and 9.2 Hz, 1H), 4.20–4.05 (m, 3H), 4.02–3.98 and 3.94–3.90 (2m, 1H), 3.73–3.64 (m, 1H), 2.44–2.28 (m, 2H), 2.12–2.05 (m, 2H), 1.62–1.54 (m, 2H), 1.38 and 1.37 (2s, 9H), 1.30–1.26 (m, 3H), 1.23–1.17 (m, 9H), 1.04–1.00 (m, 3H), 0.98 (t, J = 7.6 Hz, 3H), 0.92 (t, J = 7.9 Hz, 9H), 0.86–0.78 (m, 3H), 0.63–0.57 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.3, 170.5, 170.4, 159.8, 156.7, 150.9, 130.0, 81.0, 77.8, 72.0, 62.2 and 62.0, 61.2 and 61.0, 60.5, 43.2, 32.8, 28.3 (3C), 27.3, 26.8, 24.4, 24.3, 24.2, 14.2 and 14.1, 13.2, 12.1, 8.8, 7.1 (3C), 6.7 (3C); IR (film) ν_{max} 3371, 2911, 2868, 2214, 1750, 1631, 1590, 1389, 1311, 1298, 1170 cm⁻¹; HRMS (ESI) *m*/*z* 687.4361 (MH⁺, C₃₃H₆₂N₄O₉SiH⁺ requires 687.4359).

A solution of the crude carboxylic acid in anhydrous DMF (1 mL) was treated with EDC•HCl (39.0 mg, 0.203 mmol, 10.1 equiv) and stirred at rt under Ar for 24 h, at which point the azlactone intermediate was formed according to MS. The resulting mixture was treated with D-Val-OMe•HCl (34.1 mg, 0.203 mmol, 10.1 equiv), Et₃N (46 μ L, 33 mg, 0.33 mmol, 16 equiv), and additional anhydrous DMF (1 mL), then stirred at 80 °C under Ar for 48 h. The solution was cooled to rt, diluted with EtOAc (5 mL), and washed with brine (10 × 8 mL) to remove the DMF. The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography

(10 mL of SiO₂, 0–10 % MeOH in CH₂Cl₂ gradient elution) afforded **21a** (7.1 mg, 0.0094 mmol, 47%) as a yellow oil: $[\alpha]^{25}_{D}$ –10.9 (*c* 1.1, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 8.48 (br s, 1H), 7.68 (br s, 1H), 6.94 (d, *J* = 8.0 Hz, 1H), 5.44 (br s, 1H), 5.35 (br s, 1H), 4.47 (dd, *J* = 8.0, 5.8 Hz, 1H), 4.19 (dd, *J* = 16.9, 6.4 Hz, 1H), 4.00 (d, *J* = 5.1 Hz, 1H), 3.81–3.73 (m, 1H), 3.71 (s, 3H), 2.53–2.35 (m, 2H), 2.25–2.12 (m, 2H), 2.12 (s, 3H), 2.09–2.00 (m, 1H), 1.81 (s, 3H), 1.70–1.62 (m, 2H), 1.45 (s, 9H), 1.33 (s, 3H), 1.10 (t, *J* = 7.5 Hz, 3H), 1.04 (t, *J* = 7.6 Hz, 3H), 1.01–0.96 (m, 12H), 0.94–0.82 (m, 6H), 0.68 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.2, 171.1, 169.0, 166.2, 165.9, 154.5, 148.0, 141.8, 130.2, 130.0, 81.2, 77.2 (obscured by solvent), 62.1, 58.0, 52.1, 44.1, 32.1, 29.5, 28.5 (3C), 27.4, 25.7, 24.6, 22.9, 21.0, 19.3, 18.5, 13.4, 12.4, 8.9, 7.3 (3C), 6.9 (3C); IR (film) v_{max} 3312, 2965, 2983, 2855, 1698, 1623, 1510, 1359, 1168 cm⁻¹; HRMS (ESI) *m/z* 754.4783 (MH⁺, C₃₇H₆₇N₅O₉SiH⁺ requires 754.4781).

Methyl 2-Amino-3-ethyl-3-hydroxypentanoate (16b). A solution of benzyl ((methylsulfonyl)oxy)carbamate⁵ (1.80 g, 7.34 mmol, 1.5 equiv) in CH₃CN (50 mL) at rt was treated with OsO_4 (4 wt % solution in H₂O, 3.1 mL, 0.49 mmol, 0.1 equiv), stirred for 15 min, then treated with methyl 3-ethylpent-2-enoate⁶ (685.8 mg, 4.823 mmol) and H₂O (5 mL). The resulting mixture was stirred at 47 °C for 72 h, then quenched by the addition of sat aq K₂S₂O₅ (15 mL), diluted with H₂O (15 mL), and extracted with EtOAc (3 × 35 mL). The combined organic layers were washed with sat aq NaHCO₃ (2 × 35 mL) and brine (35 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography (85 mL of SiO₂, 0–25% EtOAc in hexanes gradient ⁵ L. Qin, Z. Zhou, J. Wei, T. Yan and H. Wen, *Synth. Commun.*, 2010, **40**, 642.

⁶ (a) R. Ciabatti, S. Maffioli, A. Checchia, G. Romano', G. Candiani and G. Panzone, WO 2003076460 A1, 2003.
(b) V. Rawat, P. V. Chouthaiwale, V. B. Chavan, G. Suryavanshi, and A. Sudalai, *Tetrahedron Lett.*, 2010, 51, 6565.

elution) afforded methyl 2-(((benzyloxy)carbonyl)amino)-3-ethyl-3-hydroxypentanoate (537.2 mg, 1.736 mmol, 36%) as a light yellow oil: ¹H NMR (CDCl₃, 500 MHz) δ 7.39–7.31 (m, 5H), 5.66 (d, *J* = 9.2 Hz, 1H), 5.12 (s, 2H), 4.38 (d, *J* = 9.4 Hz, 1H), 3.78 (s, 3H), 2.27 (br s, 1H), 1.62–1.40 (m, 4H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.87 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 173.0, 156.4, 136.3, 128.7 (2C), 128.4, 128.3 (2C), 76.3, 67.4, 58.6, 52.5, 28.6, 26.6, 7.8, 7.7; IR (film) v_{max} 3432, 3033, 2970, 2950, 2883, 1723, 1514, 1455, 1378, 1209, 1051 cm⁻¹; HRMS (ESI) *m/z* 310.1651 (MH⁺, C₁₆H₂₃NO₅H⁺ requires 310.1649).

A solution of methyl 2-(((benzyloxy)carbonyl)amino)-3-ethyl-3-hydroxypentanoate (537.2 mg, 1.736 mmol) in MeOH (10 mL) at rt under Ar was treated with 10% Pd/C (53.3 mg, 0.10 wt equiv). The resulting suspension was stirred at rt under H₂ (550 psi) for 72 h, then filtered through Celite. The Celite pad was rinsed with MeOH, and the filtrate was concentrated *in vacuo* to afford **16b** (154 mg, 0.879 mmol, 51%) as a light yellow oil. The crude amine was used directly without further purification.

Ethyl 3-Hydroxy-3-methyl-2-(((2S,3R)-3-methyl-2-((((R)-2,2,2-trichloro-

1-phenylethoxy)carbonyl)amino)-3-((triethylsilyl)oxy)pentanamido)butanoate (17b). A suspension of 15^4 (200 mg, 0.370 mmol) and Me₃SnOH (401 mg, 2.22 mmol, 6.0 equiv) in hexane (25 mL, pretreated with Na₂SO₄ for 6 h) was stirred at 70 °C under Ar for 72 h. The mixture was concentrated *in vacuo*, and the residue was treated with Et₂O (10 mL). The mixture was filtered through Celite, (washed with 60 mL of Et₂O), and the filtrate was concentrated *in vacuo* to afford the crude acid as a colorless oil that was used directly in the next step without further purification.

The crude acid prepared above (ca. 0.370 mmol) was dissolved in anhydrous CH₂Cl₂ (2 mL), cooled to 0 °C under Ar, then treated with amine 10^{2,3} (77.6 mg, 0.481 mmol, 1.3 equiv), HOBt (ca. 20% H₂O content, 100 mg, 0.592 mmol, 1.6 equiv), and EDC•HCl (107 mg, 0.558 mmol, 1.5 equiv). The resulting mixture was stirred at 0 °C under Ar for 3 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (6 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (88 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded 17b (203 mg, 0.309 mmol, 84%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz, minor rotamers present, data for major rotamer of each diastereomer) δ 7.61 (d, J = 6.4 Hz, 2H), 7.45–7.35 (m, 3H), 7.28 and 7.13 (2d (one is partially obscured by solvent), J = 8.5 Hz, 1H), 6.28 and 6.26 (2s, 1H), 6.01 and 5.93 (2d, J = 8.1 and 7.3 Hz, 1H), 4.55 and 4.48 (2d, J = 8.6 and 8.6 Hz, 1H), 4.29–4.17 (m, 3H), 2.69 (br s, 1H), 1.66–1.43 (m, 2H), 1.31 (t, *J* = 7.2 Hz, 3H), 1.30–1.22 (m, 9H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.90–0.80 (m, 3H), 0.68 (q, J = 7.5 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.5 and 171.3, 170.4 and 170.1, 154.7 and 154.6, 133.5 and 133.4, 130.2, 129.8 (2C), 128.1 (2C), 99.6, 83.7, 78.7 and 78.2, 72.4 and 71.8, 62.2 and 62.1, 61.8, 60.4 and 60.3, 32.8 and 31.9, 27.2 and 26.94, 26.87 and 26.7, 24.1, 14.4, 8.9 and 8.7, 7.3 (3C), 6.8 (3C); IR (film) v_{max} 3352, 2923, 2361, 1734, 1668, 1506, 1377, 1065 cm⁻ ¹; HRMS (ESI) *m/z* 655.2139 (MH⁺, C₂₈H₄₅Cl₃N₂O₇SiH⁺ requires 655.2135.

Ethyl Ethyl 2-((2*S***,3***R***)-2-((***tert***-Butoxycarbonyl)amino)-3-methyl-3-((triethylsilyl)oxy)pentanamido)-3-hydroxy-3-methylbutanoate (18b). A suspension of carbamate 17b (87.0 mg, 0.133 mmol) in THF–sat aq NaHCO₃ (2:1, 10 mL) was treated** sequentially with 10% Pd/C (43.5 mg, 0.50 wt equiv) and Boc₂O (116 mg, 0.532 mmol, 4.0 equiv). The resulting mixture was stirred at rt under H₂ (600 psi) for 15 h, diluted with H₂O (1 mL) and sat aq NaHCO₃ (1 mL), and extracted with EtOAc (5 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (98 mL of SiO₂, 0–1.5% MeOH in CH₂Cl₂ gradient elution) afforded **18b** (64.0 mg, 0.127 mmol, 96%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz) δ 7.39 and 7.08 (2 br s, 1H), 5.42 and 5.36 (d and br s, *J* = 7.2 Hz, 1H), 4.56 and 4.49 (2d, *J* = 8.8 Hz and 8.6 Hz, 1H), 4.28–4.17 (m, 2.5H), 4.15–4.09 (m, 0.5H), 2.84 (br s, 1H), 1.69–1.60 and 1.58–1.46 (2m, 2H), 1.45 (s, 9H), 1.35–1.27 (m, 6H), 1.26 (s, 3H), 1.25 (s, 3H), 1.01–0.94 (m, 9H), 0.92–0.84 (m, 3H), 0.74–0.62 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 172.7, 171.0 and 170.9, 156.4 and 156.2, 80.6 and 80.5, 74.0 and 73.9, 72.4 and 72.2, 61.9 and 61.7, 60.2 and 60.0, 59.1 and 58.6, 30.72 and 30.66, 28.5 (3C), 27.0, 26.8 and 26.7, 24.2 and 23.8, 14.3, 8.0, 7.3 and 7.0 (3C), 6.8 and 6.6 (3C); IR (film) v_{max} 3371, 2923, 2359, 1718, 1652, 1506, 1457, 1368, 1164 cm⁻¹; HRMS (ESI) *m/z* 505.3299 (MH⁺, C₂₄H₄₈N₂O₇SiH⁺ requires 505.3309).

Methyl (2-((2*S*,3*R*)-2-((*tert*-Butoxycarbonyl)amino)-3-methyl-3-((triethylsilyl)oxy)pentanamido)-3-methylbut-2-enoyl)glycinate (19b). A solution of ester 18b (116.0 mg, 0.2298 mmol) in *t*-BuOH (800 μ L) was treated with LiOH•H₂O (48.0 mg, 1.14 mmol, 5.0 equiv) and H₂O (200 μ L) at 0 °C, then stirred at 0 °C to rt for 4 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid was used directly in the next step without further purification. A solution of the crude carboxylic acid in anhydrous CH_2Cl_2 (2 mL) was treated with EDC•HCl (441.0 mg, 2.300 mmol, 10.0 equiv) and stirred at rt under Ar for 24 h. The resulting mixture was treated with brine (4 mL) and extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude azlactone was used directly in the next step without further purification.

A solution of the crude azlactone in anhydrous DMF (2 mL) was treated with DMAP (60.0 mg, 0.491 mmol, 2.1 equiv, Gly-OMe•HCl (290.0 mg, 2.310 mmol, 10.1 equiv), and Et₃N (480 μ L, 348 mg, 3.44 mmol, 15.0 equiv). The resulting solution was stirred at 80 °C under Ar for 72 h. The solution was diluted with H₂O (8 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with brine (2 × 5 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography (50 mL of SiO₂, 0–3% MeOH in CH₂Cl₂ gradient elution) afforded **19b** (87.0 mg, 0.164 mmol, 71%) as a white solid: [α]²⁵_D –3.6 (*c* 0.84, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.49 (s, 1H), 7.03 (br s, 1H), 5.39 (br s, 1H), 4.13–4.05 (m, 2H), 4.02 (dd, *J* = 18.0, 5.5 Hz, 1H), 3.74 (s, 3H), 2.10 (s, 3H), 1.79 (s, 3H), 1.67–1.56 (m, 2H), 1.44 (s, 9H), 1.37 (s, 3H), 0.99 (t, *J* = 7.9 Hz, 9H), 0.92 (t, *J* = 7.6 Hz, 3H), 0.68 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz) δ 170.4, 170.2, 166.3, 156.7, 142.7, 123.5, 80.6, 78.3, 62.0, 52.4, 41.5, 32.9, 28.5 (3C), 24.5, 21.5, 20.9, 8.9, 7.3 (3C), 6.9 (3C); IR (film) v_{max} 3328, 2955, 2877, 1667, 1526, 1369, 1212, 1008 cm⁻¹; HRMS (ESI) *m/z* 530.3239 (MH⁺, C₂₅H₄₇N₃O₇SiH⁺ requires 530.3250).

Methyl (5R,6S)-6-((tert-Butoxycarbonyl)amino)-3,3,5-triethyl-

15-(3-hydroxypentan-3-yl)-5-methyl-7,10,13-trioxo-9-(propan-2-ylidene)-4-oxa-8,11,14triaza-3-silahexadecan-16-oate (20b). A solution of tripeptide 19b (20.0 mg, 0.0378 mmol) in *t*-

BuOH (800 μ L) was treated with LiOH•H₂O (7.9 mg, 0.19 mmol, 5.0 equiv) and H₂O (200 μ L), then stirred at rt for 4 h. The resulting mixture was neutralized to pH ~7 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid was used directly without further purification.

The crude acid was dissolved in anhydrous CH_2Cl_2 (4.0 mL), cooled to 0 °C under Ar, then treated with amine 16b (9.9 mg, 0.056 mmol, 1.5 equiv), HOBt (ca. 20% H₂O content, 10.2 mg, 0.060 mmol, 1.6 equiv), and EDC+HCl (10.9 mg, 0.0569 mmol, 1.5 equiv). The resulting mixture was stirred at rt under Ar for 5 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1) mL), the layers were separated, and the aqueous layer was extracted with CH_2Cl_2 (6 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated in vacuo. Flash chromatography (30 mL of SiO₂, 0–4% MeOH in CH₂Cl₂ gradient elution) afforded **20b** (18.0 mg, 0.0267 mmol, 71%) as a white film that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz, minor rotamers present, data for major rotamer of each diastereomer) δ 7.81 and 7.63 (2 br s, 1H), 7.63 and 7.47 (br s and d, J = 6.9 Hz, 1H), 7.01 and 6.96 (2 br s, 1H), 5.56 and 5.50 (2 br s, 1H), 4.75 and 4.73 (2s, 1H), 4.29–4.12 (m, 1H), 4.08 (d, J = 4.6 Hz, 1H), 3.95–3.81 (m, 1H), 3.73 and 3.71 (2s, 3H), 2.10 and 2.05 (2s, 3H), 1.83 and 1.81 (2s, 3H), 1.74–1.50 (m, 7H), 1.45 (s, 9H), 1.36 (s, 3H), 0.99 (t, J = 7.9 Hz, 9H), 0.93 and 0.92 (2t, J = 7.4 and 7.4 Hz, 6H), 0.84 and 0.83 (2t, J = 7.4and 7.4 Hz, 3H), 0.72–0.65 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz) & 172.1, 171.6 and 171.5, 171.3, 165.3 and 165.0, 157.1 and 157.0, 139.8 and 139.6, 123.8 and 123.5, 81.2 and 81.0, 78.3 and 77.9, 76.5, 62.4 and 62.2, 57.6, 52.3 and 52.1, 43.3, 33.0 and 32.7, 28.5 (3C), 27.6, 27.3 and 27.2, 24.6, 21.0, 20.8, 9.0 and 8.9, 8.1, 8.0, 7.3 (3C), 6.9 (3C); IR (film) v_{max} 3358, 2927, 2877, 2358, 1738, 1651, 1511, 1463, 1368, 1300, 1242, 1170 cm⁻¹; HRMS (ESI) m/z 673.4229 (MH⁺, C₃₂H₆₀N₄O₉SiH⁺ requires 673.4208).

Methyl (2-(2-((2S,3R)-2-((tert-Butoxycarbonyl)amino)-3methyl-3-((triethylsilyl)oxy)pentanamido)-3-methylbut-2-enamido)acetamido)-3-ethylpent-2-enoyl)-*D*-valinate (21b). A solution of ester 20b (14.0 mg, 0.0208 mmol) in *t*-BuOH (800 µL) was treated with LiOH•H₂O (8.7 mg, 0.21 mmol, 10 equiv) and H₂O (200 µL), then stirred at rt for 3 h. The resulting mixture was acidified to pH 7 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with EtOAc (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid was used directly without further purification.

A solution of the crude carboxylic acid in anhydrous CH_2Cl_2 (2 mL) was treated with EDC•HCl (40.0 mg, 0.209 mmol, 10.0 equiv) and stirred at rt under Ar for 24 h. The resulting mixture was treated with brine (4 mL) and extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude azlactone was used directly in the next step without further purification.

A solution of the crude azlactone in anhydrous DMF (2 mL) was treated with DMAP (5.1 mg, 0.042 mmol, 2.0 equiv), D-Val-OMe•HCl (35.0 mg, 0.209 mmol, 10.0 equiv), and Et₃N (43.5 μ L, 31.6 mg, 0.312 mmol, 15.0 equiv). The resulting mixture was stirred at 65 °C under Ar for 72 h, then diluted with H₂O (4 mL) and extracted with EtOAc (3 × 5 mL). The combined organic layers were washed with brine (2 × 5 mL), dried (Na₂SO₄) and concentrated *in vacuo*. Flash

chromatography (30 mL of SiO₂, 0–4% MeOH in CH₂Cl₂ gradient elution) afforded **21b** (5.0 mg, 0.0066 mmol, 32%) as a white film: $[\alpha]^{25}_{D}$ –4.6 (*c* 0.57, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 8.39 (br s, 1H), 7.63 (br s, 1H), 7.03 (d, *J* = 7.4 Hz, 1H), 5.46 (br s, 1H), 5.40 (br s, 1H), 4.50 (dd, *J* = 8.2, 5.4 Hz, 1H), 4.24–4.17 (m, 1H), 4.11–4.04 (m, 1H), 4.03 (dd, *J* = 15.3, 5.2 Hz, 1H), 3.71 (s, 3H), 2.25–2.12 (m, 4H), 2.09 (s, 3H), 1.82 (s, 3H), 1.76–1.53 (m, 3H), 1.45 (s, 9H), 1.26 (s, 3H), 1.10 (t, *J* = 7.4 Hz, 3H), 1.04 (t, *J* = 7.6 Hz, 3H), 1.02–0.95 (m, 12H), 0.93–0.80 (m, 6H), 0.68 (q, *J* = 7.9 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz, data for major rotamer) δ 172.9, 170.8, 169.5, 166.1, 165.8, 157.2, 138.0, 136.7, 123.3, 119.6, 81.2, 77.2 (overlap with solvent), 62.1, 57.9, 52.0, 44.0, 32.1, 31.0, 28.5 (3C), 24.6, 22.9, 21.0, 19.3, 18.6, 18.3, 14.4, 13.6, 12.3, 8.9, 7.3 (3C), 6.9 (3C); IR (film) ν_{max} 3303, 2957, 2924, 2853, 1665, 1515, 1367, 1166, 1068, 1007 cm⁻¹; HRMS (ESI) *m/z* 754.4792 (MH⁺, C₃₇H₆₇N₅O₉SiH⁺ requires 754.4786).

EVV (2a). A solution of ester **21a** (11.6 mg, 0.0154 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) at 0 °C was treated with LiOH•H₂O (3.2 mg, 0.076 mmol, 5.0 equiv), then stirred at rt for 4 h. The resulting mixture was acidified to pH 4~5 by the addition of 1N HCl, diluted with H₂O (2 mL), and extracted with CHCl₃ (5 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **4a** was used directly in the coupling with the amine derived from **5** without further purification.

A solution of nonapeptide **5** (16.0 mg, 0.0154 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 170 μ L, 0.68 mmol, 44 equiv). The resulting

mixture was stirred at rt for 5 h, then concentrated *in vacuo*. The crude nonapeptide amine was purified using reverse-phase HPLC (COSMOSIL π -nap, 10 × 250 mm, 10–40% *n*-PrOH in H2O with 1% AcOH gradient over 50 min, 2.5 mL/min flow rate, UV detection at 226 nm, t_R = 16.3 min) to afford the free amine derived from **5**.

A solution of crude carboxylic acid **4a** (ca. 0.0154 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 8.3 mg, 0.049 mmol, 3.2 equiv) and EDC•HCl (11.8 mg, 0.0616 mmol, 4.0 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the nonapeptide amine (ca. 0.0154 mmol, 1.0 equiv) in anhydrous CH_2Cl_2 (1 mL) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (2.0 mL) and extracted with $CHCl_3$ (5 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–10% MeOH in CHCl₃ gradient elution) to afford tetradecapeptide **22a** (7.0 mg, 0.0042 mmol, 27%) as a white film. The purity of **22a** was deemed suitable for proceeding to the next step based on TLC analysis. Accordingly, the purification by HPLC that would have been required for rigorous spectral characterization was not pursued.

A solution of tetradecapeptide **22a** (7.0 mg, 0.0042 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 50 µL, 0.20 mmol, 47 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **3** without further purification.

A solution of carboxylic acid 3^2 (10.0 mg, 0.0499 mmol, 11.8 equiv) in anhydrous DMF (500 μ L) at 0 °C under Ar was treated with COMU (21.5 mg, 0.0502 mmol, 11.9 equiv) and 2,4,6-collidine (10 μ L, 9.2 mg, 0.076 mmol, 18 equiv). The resulting mixture was allowed to warm to rt

and was stirred under Ar for 30 min, then treated with a solution of the crude tetradecapeptide amine (ca. 0.0042 mmol) in anhydrous DMF (500 µL) at 0 °C. The resulting mixture was stirred at rt under Ar for 15 h, then cooled to 0 °C. The reaction was quenched by the addition of sat aq NaHCO₃ (1.5 mL) at 0 °C, diluted with EtOAc (3 mL), and washed with brine (10×4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0-7% MeOH in CHCl₃ with gradient elution) to afford semi-pure 2a (5.7 mg). Further purification using reverse-phase HPLC (COSMOSIL π -nap, 10 × 250 mm, 80-85% n-PrOH in H₂O with 1% AcOH gradient over 70 min, 2.5 mL/min flow rate, UV detection at 226 nm, $t_R = 11.8 \text{ min}$) afforded **2a** (1.2 mg, 0.00074 mmol, 17%) as a white solid: $[\alpha]^{25}_{D}$ +5.1 (*c* 0.53, MeOH); ¹H NMR (DMSO-*d*₆, 500 MHz) δ 10.05 (br s, 1H), 9.34 (br s, 1H), 9.10 (s, 1H), 8.81 (s, 1H), 8.53 (d, J = 7.5 Hz, 1H), 8.24 (d, J = 6.3 Hz, 1H), 8.03 (br s, 1H), 7.91 (br s, 1H), 7.84 (t, J = 9.6 Hz, 1H), 7.73–7.67 (m, 1H), 7.39 (d, J = 7.4 Hz, 1H), 7.23 (br s, 1H), 7.12 (d, J = 9.1 Hz, 1H), 6.69 (br s, 1H), 4.41–4.34 (m, 2H), 4.31 (d, J = 8.6 Hz, 1H), 4.23–4.17 (m, 2H), 4.15–4.09 (m, 2H), 4.06 (t, J = 7.4 Hz, 1H), 3.82–3.76 (m, 2H), 3.70–3.66 (m, 2H), 2.85– 2.78 (m, 1H), 2.40–2.36 (m, 2H), 2.24–2.18 (m, 3H), 2.10 (s, 6H), 2.04 (s, 3H), 2.02–1.97 (m, 3H), 1.92 (s, 3H), 1.89 (s, 3H), 1.78–1.73 (m, 2H), 1.69 (s, 6H), 1.66 (s, 3H), 1.65 (s, 3H), 1.63 (s, 3H), 1.54–1.44 (m, 3H), 1.37 (s, 3H), 1.33–1.30 (m, 1H), 1.28 (s, 3H), 1.20 (s, 3H), 1.20–1.18 (m, 3H), 1.16 (s, 3H), 1.14 (s, 3H), 1.14–1.11 (m, 1H), 1.11 (s, 3H), 1.07 (s, 3H), 1.07–1.04 (m, 2H), 0.99 (t, J = 7.4 Hz, 3H), 0.95-0.91 (m, 6H), 0.90-0.76 (m, 33H); ¹³C NMR (DMSO- d_6 , 125 MHz) 8 213.5, 175.2, 174.7, 173.1, 172.6, 171.8, 171.3, 170.8, 170.3, 169.7, 169.1, 167.5, 165.7, 165.5, 165.1, 134.8, 132.1, 130.1, 129.1, 126.1, 124.7, 123.8, 119.1, 73.7, 72.0, 71.7, 67.9, 61.1, 60.9, 58.9, 58.6, 56.8, 56.7, 56.6, 51.6, 49.3, 45.9 (2C), 43.3, 38.5, 35.6, 31.7, 30.3, 29.6, 29.3, 29.2, 29.1, 29.0, 28.8, 28.4, 28.0, 27.0, 26.1, 25.6, 25.2, 25.0, 24.0, 23.9, 23.7, 22.9, 22.6, 22.3, 22.2, 21.8, 21.7, 21.3, 21.2, 20.8, 20.7, 19.9, 19.8, 18.8, 18.5, 17.9, 17.7, 15.1, 14.4, 13.5, 12.3, 12.0, 11.3, 8.6; IR (film) v_{max} 3310, 2924, 2854, 2362, 1763, 1662, 1653, 1553, 1457, 1392, 1245, 1180, 1076 cm⁻¹; HRMS (ESI) *m/z* 1627.0812 (MH⁺, C₈₂H₁₄₃N₁₅O₁₈H⁺ requires 1627.0808).

HPLC Chromatogram of purified **2a** (COSMOSIL π -nap, 4.6 × 250 mm, 80–82% *n*-PrOH in H₂O with 1% AcOH gradient over 20 min, 0.6 mL/min flow rate, UV detection at 214 nm)

VEV (2b). A solution of ester **21b** (3.6 mg, 0.0048 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) at 0 °C was treated with LiOH•H₂O (1.0 mg, 0.024 mmol, 5.0 equiv), then stirred at rt for 4 h. The resulting mixture was acidified to pH 4~5 by the addition of 1N HCl, diluted with H₂O (2 mL), and extracted with CHCl₃ (5 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **4b** was used directly in the coupling with the amine derived from **5** without further purification.

A solution of nonapeptide **5** (7.0 mg, 0.0067 mmol) in anhydrous CH₂Cl₂ (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 70 µL, 0.28 mmol, 41 equiv). The resulting mixture was stirred at rt for 5 h, then concentrated *in vacuo*. The crude nonapeptide amine was purified using reverse-phase HPLC (COSMOSIL π -nap, 10 × 250 mm, 10–40% *n*-PrOH in H₂O with 1% AcOH gradient over 50 min, 2.5 mL/min flow rate, UV detection at 226 nm, t_R = 16.3 min) to afford the free amine derived from **5**.

A solution of crude carboxylic acid **4b** (ca. 0.0048 mmol) in anhydrous CH₂Cl₂ (1 mL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 2.6 mg, 0.015 mmol, 3.2 equiv) and EDC•HCl (3.7 mg, 0.019 mmol, 4.0 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the nonapeptide amine (ca. 0.0067 mmol, 1.4 equiv) in anhydrous CH₂Cl₂ (500 μ L) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (2 mL) and extracted with CHCl₃ (5 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–15% MeOH in CHCl₃ gradient elution) to afford tetradecapeptide **22b** (2.4 mg, 0.0014 mmol, 30%) as a white film. The purity of **22b** was deemed suitable for proceeding to the next step based on TLC analysis. Accordingly, the purification by HPLC that would have been required for rigorous spectral characterization was not pursued.

A solution of tetradecapeptide **22b** (2.4 mg, 0.0014 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 15.5 µL, 0.062 mmol, 43 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **3** without further purification.

A solution of carboxylic acid 3^2 (3.1 mg, 0.015 mmol, 11 equiv) in anhydrous DMF (100 µL) at 0 °C under Ar was treated with COMU (6.2 mg, 0.014 mmol, 10 equiv) and 2,4,6-collidine (3.8 µL, 3.5 mg, 0.029 mmol, 20 equiv). The resulting mixture was allowed to warm to rt and was stirred under Ar for 30 min, then treated with a solution of the crude tetradecapeptide amine (ca. 0.0014 mmol) in anhydrous DMF (200 µL) at 0 °C. The resulting mixture was stirred under Ar at rt for 15 h, then cooled to 0 °C. The reaction was guenched by the addition of sat ag NaHCO₃ (1 mL) at 0 °C, diluted with EtOAc (2 mL), and washed with brine (10×3 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–7% MeOH in CHCl₃ with gradient elution) to afford semipure 2a (1.3 mg). Further purification using reverse-phase HPLC (COSMOSIL π -nap, 10 × 250 mm, 80–85% n-PrOH in H₂O with 1% AcOH gradient over 70 min, 2.5 mL/min flow rate, UV detection at 226 nm, $t_R = 11.1$ min) afforded **2b** (0.6 mg, 0.0004 mmol, 25%) as a white solid: $[\alpha]^{25}_{D}$ +6.7 (c 0.24, MeOH); ¹H NMR (DMSO- d_6 , 500 MHz) δ 10.00 (br s, 1H), 9.31 (br s, 1H), 9.10 (s, 1H), 8.81 (s, 1H), 8.51 (br s, 1H), 8.21 (br s, 1H), 7.98 (br s, 1H), 7.92 (br s, 1H), 7.83 (d, *J* = 8.3 Hz, 1H), 7.73–7.66 (m, 1H), 7.37 (br s, 1H), 7.22 (br s, 1H), 7.11 (d, *J* = 8.9 Hz, 1H), 6.67 (br s, 1H), 4.40-4.35 (m, 2H), 4.28 (d, J = 8.5 Hz, 1H), 4.22-4.16 (m, 2H), 4.14-4.10 (m, 2H), 4.06 (t, J = 7.6 Hz, 1H), 3.80–3.75 (m, 2H), 3.70-3.65 (m, 2H), 2.84–2.78 (m, 1H), 2.37–2.35 (m, 2H), 2.23–2.18 (m, 3H), 2.09 (s, 6H), 2.03 (s, 3H), 2.00–1.95 (m, 3H), 1.91 (s, 6H), 1.77–1.72 (m, 2H), 1.67 (s, 3H), 1.65 (s, 9H), 1.62 (s, 3H), 1.47–1.43 (m, 3H), 1.35 (s, 3H), 1.34–1.32 (m, 1H), 1.29 (s, 3H), 1.27 (s, 3H), 1.25 (s, 3H), 1.19 (s, 3H), 1.14 (s, 3H), 1.13 (s, 3H), 1.11 (s, 3H), 1.09-1.07 (m, 1H), 1.06 (s, 3H), 1.05–1.03 (m, 2H), 1.02 (s, 3H), 0.94–0.90 (m, 6H), 0.87–0.77 (m, 33H); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 213.5, 174.8, 173.0, 172.6, 171.8, 171.3, 170.8, 169.7, 169.5, 166.3, 165.8, 165.5, 165.0, 158.3, 158.0, 132.1, 130.1, 129.1, 128.2, 126.1, 124.5, 119.1, 116.7, 73.6, 72.0, 71.7, 67.9, 67.5, 61.1 58.9, 58.5, 56.6, 56.1, 55.4, 51.6, 49.3, 45.9 (2C), 43.3, 38.5, 35.6, 31.7, 30.3, 29.6, 29.5, 29.3, 29.2, 29.0, 28.8, 28.4, 28.1, 27.1, 27.0, 26.1, 26.0, 25.6, 25.2, 23.9, 23.7, 22.9, 22.6, 22.3, 22.2, 21.8, 21.2, 20.8, 20.7, 19.9, 19.8, 18.9, 18.7, 18.5, 18.0, 17.9, 17.7, 15.0, 14.4, 13.5, 12.3, 12.0, 11.3, 8.7; IR (film) v_{max} 3312, 3312, 2925, 2891, 2314, 1656, 1648, 1595, 1534, 1411, 1366, 1205, 1137, cm⁻¹; HRMS (ESI) *m/z* 1627.0810 (MH⁺, C₈₂H₁₄₃N₁₅O₁₈H⁺ requires 1627.0808).

HPLC Chromatogram of purified **2b** (COSMOSIL π -nap, 4.6 × 250 mm, 80–82% *n*-PrOH in H₂O with 1% AcOH gradient over 20 min, 0.6 mL/min flow rate, UV detection at 214 nm)

2-((S)-2-((R)-2-Acetamido-3-methylbutanamido)-3-

methylbutanamido)-*N*-((*S*)-1-(dimethylamino)-3-methylbutan-2-yl)-3-methylbut-2-enamide (23). A solution of tetrapeptide 8 (77.5 mg, 0.147 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 700 µL, 2.8 mmol, 19 equiv). The resulting mixture was stirred at rt for 2 h and concentrated *in vacuo*. The crude amine was used directly in the following coupling without further purification.

A solution of the crude amine derived from 8 (ca. 0.147 mmol) in anhydrous CH_2Cl_2 (1 mL) under Ar was treated with Ac₂O (70 µL, 76 mg, 0.74 mmol, 5.0 equiv) and Et₃N (100 µL, 72.6 mg, 0.717 mmol, 4.9 equiv). The resulting mixture was stirred at rt for 2 h, then treated with sat aq NaHCO₃ (2 mL) and extracted with CHCl₃ (3 \times 5 mL). The combined organic layers were washed with brine (5 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography (30 mL of SiO₂, 0.5–5% MeOH in CHCl₃ with 1% Et₃N gradient elution) afforded **23** (14.0 mg, 0.0299 mmol, 20%) as a pale brown solid: $[\alpha]^{25}_{D}$ +32 (c 0.31, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 10.34 (br s, 1H), 8.90 (br s, 1H), 8.12 (br s, 1H), 6.46 (br s, 1H), 4.51 (dd, J = 9.2, 4.0 Hz, 1H), 4.25-4.18 (m, 1H), 3.63-3.56 (m, 1H), 3.52 (t, J = 12.2 Hz, 1H), 2.94 (d, J = 4.9 Hz, 3H), 2.88 (d, J = 4.9 Hz, 3H), 3.00–2.96 (m, 1H), 2.48–2.41 (m, 1H), 2.38–2.31 (m, 1H), 2.13 (s, 3H), 2.03 (s, 3H), 1.90 (s, 3H), 1.67–1.59 (m, 1H), 1.00 (d, J = 6.6 Hz, 3H), 0.93 (d, J = 6.6 Hz, 6H), 0.89 (d, J = 6.8 Hz, 6H), 0.85 (d, J = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 175.8, 174.3, 171.5, 165.6, 143.4, 122.3, 63.7, 60.5, 58.0, 49.4, 46.3, 42.5, 31.5, 29.7, 29.5, 23.3, 22.6, 21.1, 20.4, 19.9, 19.5, 19.2, 18.9, 18.6; IR (film) v_{max} 3270, 2963, 2926, 2846, 1654, 1534, 1466, 1373, 1307, 1262, 1222, 1172, 1111 cm⁻¹; HRMS (ESI) *m/z* 468.3540 (MH⁺, C₂₄H₄₅N₅O₄H⁺ requires 468.3544).

(2R,3S)-2-Acetamido-N-

```
((4S,10S,13R,16R,22S,25R)-26-hydroxy-22-(2-hydroxypropan-2-yl)-4,10,13-triisopropyl-
2,16,26-trimethyl-6,9,12,15,18,21,24-heptaoxo-7,19-di(propan-2-ylidene)-
2,5,8,11,14,17,20,23-octaazaheptacosan-25-yl)-3-methylpentanamide (24). A solution of
```

nonapeptide **5** (4.1 mg, 0.0040 mmol) in anhydrous CH_2Cl_2 (500 µL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 40 µL, 0.16 mmol, 40 equiv). The resulting mixture was stirred at rt for 5 h, concentrated *in vacuo*, and purified using reverse-phase HPLC (COSMOSIL π -nap, 10 × 250 mm, 10–40% *n*-PrOH in H₂O with 1% AcOH gradient over 50 min, 2.5 mL/min flow rate, UV detection at 226 nm, t_R = 16.3 min) to afford the free amine derived from **5**.

A solution of nonapeptide amine (ca. 0.0040 mmol) in anhydrous DMF (500 μ L) at rt under Ar was treated with Ac₂O (3.6 μ L, 3.9 mg, 0.038 mmol, 9.7 equiv) and Et₃N (5.3 μ L, 3.8 mg, 0.0381 mmol, 9.6 equiv). The resulting mixture was stirred at rt for 2 h, at which point the reaction was complete according to MS analysis. The mixture was treated with sat aq NaHCO₃(1 mL) and extracted with EtOAc (2 mL). The organic layer was washed with brine (10×4 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Acylated nonapeptide 24 was obtained as a white solid (3.1 mg, 0.0032 mmol, 80%): [α]²⁵_D –19.7 (*c* 3.3, MeOH); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 10.10 (br s, 1H), 8.63 (br s, 1H), 8.28 (d, J = 6.6 Hz, 1H), 8.14 (d, J = 9.6 Hz, 1H), 8.04 (br s, 1H), 7.92 (br s, 1H), 7.75–7.70 (m, 1H), 7.58–7.52 (m, 1H), 7.36 (s, 1H), 5.49 (br s, 1H), 5.36 (br s, 1H), 4.83 (d, J = 10.0 Hz, 1H), 4.38–4.35 (m, 1H), 4.33–4.28 (m, 1H), 4.25–4.20 (m, 2H), 4.12-4.10 (m, 1H), 3.92 (d, J = 5.6 Hz, 1H), 3.86-3.84 (m, 1H), 3.66 (s, 3H), 3.48 (dd, J= 10.6, 4.5 Hz, 1H), 3.11 (d, J = 4.9 Hz, 3H), 3.05 (d, J = 4.9 Hz, 3H), 2.48–2.43 (m, 1H), 2.39 (s, 3H), 2.36 (s, 3H), 2.33–2.29 (m, 2H), 2.25–2.22 (m, 1H), 2.00 (s, 3H), 1.82 (s, 3H), 1.62 (s, 3H), 1.60 (s, 3H), 1.59 (s, 3H), 1.58 (s, 3H), 1.47 (s, 3H), 1.44–1.41 (m, 3H), 1.04–0.99 (m, 2H), 0.96 (t, J = 7.0 Hz, 3H), 0.92–0.85 (m, 18H); ¹³C NMR (DMSO- d_6 , 125 MHz, data for major rotamer) δ 175.0, 172.8, 172.2, 171.7, 170.3, 169.8, 166.5, 165.2, 138.3, 129.2, 125.5, 124.4, 79.7, 77.8, 71.8, 70.2, 60.4, 59.0, 58.6, 56.5, 50.0, 49.1, 46.1 (2C), 45.3, 42.3, 36.9, 34.1, 31.8, 30.8, 29.2, 28.2, 26.3, 25.9, 25.0, 23.0, 22.6, 20.7, 19.8, 19.7, 19.0, 18.74, 18.65, 17.7, 15.0, 14.4, 12.1,

9.1; IR (film) ν_{max} 3421, 3303, 2922, 2815, 2348, 2090, 1653, 1647, 1559, 1540, 1507, 1457, 1374, 1122, cm⁻¹; HRMS (ESI) *m/z* 979.6545 (MH⁺, C₄₈H₈₆N₁₀O₁₁H⁺ requires 979.6550).

tert-Butyl ((7R,19S,20R)-20,22,22-Triethyl-7-isopropyl-

2,20-dimethyl-6,9,12,15,18-pentaoxo-10-(pentan-3-ylidene)-16-(propan-2-ylidene)-21-oxa-2,5,8,11,14,17-hexaaza-22-silatetracosan-19-yl)carbamate (25). A solution of pentapeptide 21b (5.5 mg, 0.0073 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) was treated with LiOH•H₂O (1.8 mg, 0.043 mmol, 5.9 equiv) and stirred at rt for 5 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **4b** was used directly without further purification.

A solution of crude carboxylic acid **4b** (ca. 0.0073 mmol. 1.0 equiv) in anhydrous CH₂Cl₂ (500 µL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 2.7 mg, 0.016 mmol, 2.2 equiv) and EDC•HCl (3.8 mg, 0.020 mmol, 2.7 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of *N*,*N*-dimethylethylenediamine (2.1 µL, 1.7 mg, 0.019 mmol, 2.6 equiv) in anhydrous CH₂Cl₂ (500 µL) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL) and extracted with CHCl₃ (5 × 3 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (15 mL of SiO₂, 0–15% MeOH in CHCl₃ gradient elution) afforded **25** (4.0 mg, 0.0049 mmol, 68%) as a colorless oil: $[\alpha]^{25}_{D}$ –10.3 (*c* 0.35, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 8.83 (1 br s, 1H), 8.21 (br s, 1H), 7.99 (br s, 1H), 7.67 (d, *J* = 6.4 Hz,

1H), 7.42 (br s, 1H), 5.38 (br s, 1H), 4.26–4.20 (m, 1H), 4.10 (d, J = 4.7 Hz, 1H), 4.04 (d, J = 5.4 Hz, 1H), 3.76–3.69 (m, 1H), 3.12–3.00 (m, 2H), 2.79 (s, 3H), 2.67 (s, 3H), 2.41–2.33 (m, 2H), 2.32–2.24 (m, 2H), 2.11–2.04 (m, 2H), 1.99 (s, 3H), 1.72 (s, 3H), 1.64–1.50 (m, 3H), 1.37 (s, 9H), 1.29 (s, 3H), 1.00 (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H), 0.93–0.87 (m, 15H), 0.85 (t, J = 7.2 Hz, 3H); 0.65–0.55 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz, data for major rotamer) δ 172.9, 170.5, 169.8, 167.6, 166.7, 156.8, 151.0, 150.1, 124.6, 122.7, 80.3, 78.1, 62.2, 61.9, 60.6, 59.7, 57.5, 44.6, 43.9, 34.4, 32.6, 28.3 (3C), 24.9, 24.4, 24.3, 21.5, 20.8, 19.4, 18.5, 13.5, 12.2, 8.8, 7.1 (3C), 6.7 (3C); IR (film) v_{max} 3352, 3296 2962, 2921, 2887, 1660, 1543, 1362, 1167, 1023, 1006 cm⁻¹; HRMS (ESI) *m/z* 810.5524 (MH⁺, C₄₀H₇₅N₇O₈SiH⁺ requires 810.5519).

(S)-N-((7R,19S,20R)-20-Hydroxy-7-isopropyl-2,20-

dimethyl-6,9,12,15,18-pentaoxo-10-(pentan-3-ylidene)-16-(propan-2-ylidene)-2,5,8,11,14,17hexaazadocosan-19-yl)-2,2,4,6-tetramethyl-3-oxoheptanamide (26). A solution of pentapeptide 25 (4.0 mg, 0.0049 mmol) in anhydrous CH_2Cl_2 (700 µL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 53 µL, 0.21 mmol, 43 equiv). The resulting mixture was stirred at rt for 5 h, then concentrated *in vacuo*. The crude pentapeptide amine was used directly without further purification.

A solution of carboxylic acid 3^2 (8.2 mg, 0.041 mmol, 8.3 equiv) in anhydrous DMF (500 µL) at 0 °C under Ar was treated with COMU (19.0 mg, 0.0444 mmol, 9.0 equiv) and 2,4,6-collidine (12 µL, 11 mg, 0.091 mmol, 18 equiv). The resulting mixture was allowed to warm to rt and was stirred under Ar for 30 min, then treated with a solution of the crude pentapeptide amine (ca.

0.0049 mmol) in anhydrous DMF (500 µL) at 0 °C. The resulting mixture was stirred under Ar at rt for 15 h, then cooled to 0 °C. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL) at 0 °C, diluted with EtOAc (2 mL), and washed with brine (10×3 mL). The organic layer was dried (Na_2SO_4) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–15% MeOH in CHCl₃ with gradient elution) to afford 26 (2.9 mg, 0.0037 mmol, 75%) as a colorless oil that was a mixture of rotamers: $[\alpha]^{25}D - 18.8$ (c 0.16, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 9.47 (s, 1H), 9.36 (s, 1H), 9.11 (br s, 1H), 8.58 (s, 1H), 8.17 (br s, 1H), 7.97 (br s, 1H), 4.75 (d, J = 8.9 Hz, 1H), 4.35–4.25 (m, 2H), 3.88–3.79 (m, 1H), 3.77–3.73 (m, 1H), 3.69 (d, J = 14.6 Hz, 1H), 3.25 (d, J = 12.6 Hz, 1H), 3.02 (s, 6H), 2.92– 2.87 (m, 1H), 2.59–2.52 (m, 2H), 2.48–2.42 (m, 2H), 2.35 (t, J = 7.3 Hz, 2H), 2.15 (d, J = 7.6 Hz, 1H), 1.99 (s, 3H), 1.89–1.82 (m, 2H), 1.76 (s, 3H), 1.71 (s, 3H), 1.67–1.61 (m, 3H), 1.56 (s, 3H), 1.44 (s, 3H), 1.05 (d, J = 6.2 Hz, 3H), 0.97 (t, J = 6.2 Hz, 3H), 0.92–0.84 (m, 18H); ¹³C NMR (CDCl₃, 125 MHz, data for major rotamer) δ 217.4, 173.8, 173.3, 172.9, 172.1, 170.6, 168.4, 149.6, 141.3, 129.5, 123.3, 76.5, 64.0, 59.6, 58.1, 57.2, 45.7, 45.3, 43.2, 42.8, 38.4, 33.8, 33.3, 32.0, 29.4, 28.4, 25.5, 24.9, 24.2, 23.4, 22.7, 21.9, 21.3, 20.1, 19.1, 17.6, 14.2, 13.4, 12.4, 8.2; IR (film) v_{max} 3792, 3287, 2957, 2924, 2852, 1710, 1658, 1529, 1462, 1376, 1261, 1163, 1024 cm⁻¹; HRMS (ESI) m/z 778.5442 (MH⁺, C₄₀H₇₁N₇O₈H⁺ requires 778.5437).

trioxo-10-(propan-2-ylidene)-15-oxa-2,5,8,11-tetraaza-16-silaoctadecan-13-yl)carbamate (27). A solution of tripeptide 13 (7.7 mg, 0.015 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) was treated with LiOH•H₂O (3.1 mg, 0.074 mmol, 5.1 equiv) and stirred at rt for 5 h. The resulting

mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CH₂Cl₂ (3×5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **7** was used directly without further purification.

A solution of crude carboxylic acid 7 (ca. 0.015 mmol, 1.0 equiv) in anhydrous CH₂Cl₂ (500 µL) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 5.9 mg, 0.035 mmol, 2.4 equiv) and EDC•HCl (8.4 mg, 0.044 mmol, 3.0 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of DMEDA (5.0 µL, 4.0 mg, 0.046 mmol, 3.1 equiv) in anhydrous CH_2Cl_2 (500 µL) and stirred at rt for 15 h. The reaction was guenched by the addition of sat aq NaHCO₃ (1.5 mL) and extracted with CH_2Cl_2 (3 × 3 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (15 mL of SiO₂, 0– 10% MeOH in CHCl₃ gradient elution) afforded **27** (3.9 mg, 0.0067 mmol, 46%) as a colorless oil: $[\alpha]^{25}_{D}$ +31 (c 0.87, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, mixture of rotamers) δ 8.04 and 7.90 (2 br s, 1H), 7.60 (br s, 1H), 7.30 and 7.10 (2 br s, 1H), 5.41 and 5.37 (2 br s, 1H), 4.53-4.47 and 4.47-4.40 (2m, 1H), 4.05 and 3.87 (2d, J = 6.2 and 4.7 Hz, 1H), 3.60-3.45 (m, 1H), 3.42-3.32 and 3.30–3.18 (2m, 1H), 2.80–2.61 (m, 2H), 2.44 (s, 3H), 2.41 (s, 3H), 2.00 and 1.92 (2s, 3H), 1.72 (s, 3H), 1.41 (d, J = 7.0 Hz, 3H), 1.37 and 1.36 (2s, 9H), 1.33 and 1.31 (2s, 3H), 1.23 and 1.18 (2s, 3H), 1.23 and 1.28 (2s, 3H), 1.28 and 1.28 and 1. 3H), 0.91 (t, J = 7.9 Hz, 9H), 0.60 (q, J = 7.9 Hz, 6H); ¹³C NMR (CDCl₃, 125 MHz, mixture of rotamers) δ 173.1 and 172.7, 169.7 and 169.6, 165.3 and 165.2, 156.8 and 156.5, 134.3, 124.9 and 123.7, 80.7, 80.1, 76.2 and 74.5, 65.1 and 63.2, 57.9 and 57.7, 49.6 and 49.0, 44.6 (2C), 36.1, 28.34 and 28.28 (3C), 27.9 and 27.4, 25.7, 20.7 and 20.5, 17.3 and 17.2, 7.0 (3C), 6.5 (3C); IR (film) v_{max} 3439, 3318, 2954, 2937, 2876, 2243, 1700, 1504, 1367, 1167 cm⁻¹; HRMS (ESI) *m/z* 586.3991 (MH⁺, C₂₈H₅₅N₅O₆SiH⁺ requires 586.3994).

hydroxypropan-2-yl)-2,7,20-trimethyl-6,9,12,15,18-pentaoxo-10-(propan-2-ylidene)-

2,5,8,11,14,17-hexaazadocosan-19-yl)carbamate (28). A solution of ethyl (*R*)-2-((2*R*,3*S*)-2-((*tert*-butoxycarbonyl)amino)-3-methylpentanamido)-3-hydroxy-3-methylbutanoate² (5.1 mg, 0.014 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) at 0 °C was treated with LiOH•H₂O (2.9 mg, 0.069 mmol, 5.1 equiv), then stirred at rt for 4.5 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid **6** was used directly without further purification.

A solution of **27** (6.0 mg, 0.010 mmol) in anhydrous CH_2Cl_2 (750 µL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 80 µL, 0.32 mmol, 31 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **6** without further purification.

A solution of crude carboxylic acid **6** (ca. 0.014 mmol. 1.3 equiv) in anhydrous CH₂Cl₂ (500 μ L) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 3.7 mg, 0.022 mmol, 2.1 equiv) and EDC•HCl (5.2 mg, 0.027 mmol, 2.6 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the crude tripeptide (ca. 0.010 mmol) in anhydrous CH₂Cl₂ (500 μ L) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (2.0 mL) and extracted with CHCl₃ (5 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. Flash chromatography (15 mL of SiO₂, 0–5% MeOH in CHCl₃ with 1% Et₃N gradient elution) afforded **28** (5.6 mg, 0.0080 mmol, 78%) as a

white film: $[\alpha]^{25}_{D}$ –9.5 (*c* 0.21, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, data for major rotamer) δ 8.67 (br s, 1H), 7.96 (br s, 1H), 7.64 (br s, 1H), 7.38 (br s, 1H), 7.11 (br s, 1H), 5.03 (br s, 1H), 4.49 (d, *J* = 8.2 Hz, 1H), 4.44–4.40 (m, 1H), 4.35–4.30 (m, 1H), 4.28–4.23 (m, 1H), 4.16–4.11 (m, 1H), 4.04–4.00 (m, 1H), 3.47–3.39 (m, 2H), 3.26–3.21 (m, 1H), 2.76 (d, *J* = 7.0 Hz, 3H), 2.53 (br s, 3H), 2.05–2.00 (m, 2H), 1.91 (s, 3H), 1.69 (s, 3H), 1.36 (s, 9H), 1.35–1.33 (m, 2H), 1.27 (s, 3H), 1.22 (d, *J* = 6.9 Hz, 3H), 1.18 (br s, 6H), 1.14 (t, *J* = 7.2 Hz, 3H), 0.88–0.83 (m, 3H), 0.81–0.76 (m, 3H); ¹³C NMR (CDCl₃, 125 MHz, data for major rotamer) δ 172.3, 172.2, 171.3, 170.0, 155.2, 152.0, 123.0, 122.2, 79.6, 71.6, 71.2, 70.2, 60.6, 59.4, 57.9, 57.0, 44.8 (2C), 43.7, 36.3, 28.7, 27.2 (3C), 26.0, 25.5, 20.5, 20.0, 19.6, 19.4, 13.2, 10.7, 9.0; IR (film) v_{max} 3305, 2971, 2927, 2875, 2855, 1657, 1525, 1462, 1366, 1240, 1166, 1042 cm⁻¹; HRMS (ESI) *m/z* 700.4606 (MH⁺, C₃₃H₆₁N₇O₉H⁺ requires 700.4604).

((7*R*,13*S*,16*R*,19*R*,22*R*,34*S*,35*R*)-19-((*S*)-*sec*-Butyl)-35-hydroxy-13,16-bis(2-hydroxypropan-2-yl)-22-isopropyl-2,7,35-trimethyl-6,9,12,15,18,21,24,27,30,33-decaoxo-25-(pentan-3ylidene)-10,31-di(propan-2-ylidene)-2,5,8,11,14,17,20,23,26,29,32-

undecaazaheptatriacontan-34-yl)-2,2,4,6-tetramethyl-3-oxoheptanamide (30). A solution of pentapeptide 21b (5.5 mg, 0.0073 mmol) in *t*-BuOH (750 μ L) and H₂O (250 μ L) was treated with LiOH•H₂O (1.8 mg, 0.043 mmol, 5.9 equiv) and stirred at rt for 5 h. The resulting mixture was acidified to pH 4~5 by the addition of 1 N HCl, diluted with H₂O (2 mL), and extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The crude carboxylic acid 4b was used directly without further purification.

A solution of **28** (5.6 mg, 0.0080 mmol) in anhydrous CH_2Cl_2 (750 µL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 64 µL, 0.26 mmol, 32 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **4b** without further purification.

A solution of crude carboxylic acid **4b** (ca. 0.0073 mmol) in anhydrous CH₂Cl₂ (500 μ L) at 0 °C under Ar was treated with HOBt (ca. 20% H₂O content, 3.2 mg, 0.019 mmol, 2.6 equiv) and EDC•HCl (4.6 mg, 0.024 mmol, 3.3 equiv). The resulting mixture was stirred at 0 °C under Ar for 20 min, then treated with a solution of the amine derived from **28** (ca. 0.0080 mmol, 1.1 equiv) in anhydrous CH₂Cl₂ (500 μ L) and stirred at rt for 15 h. The reaction was quenched by the addition of sat aq NaHCO₃ (2 mL) and extracted with CHCl₃ (5 × 4 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–15% MeOH in CHCl₃ gradient elution) to afford **29** (4.2 mg, 0.0032 mmol, 44%) as a clear oil. The purity of **29** was deemed suitable for proceeding to the next step based on TLC analysis. Accordingly, the purification by HPLC that would have been required for rigorous spectral characterization was not pursued.

A solution of **29** (4.2 mg, 0.0032 mmol) in anhydrous CH_2Cl_2 (1 mL) at 0 °C under Ar was treated with HCl (4.0 M in dioxane, 34 µL, 0.14 mmol, 43 equiv). The resulting mixture was stirred at rt for 4 h, then concentrated *in vacuo*. The crude amine was used directly in the coupling with **3** without further purification.

A solution of carboxylic acid 3^2 (7.6 mg, 0.038 mmol, 12 equiv) in anhydrous DMF (500 µL) at 0 °C under Ar was treated with COMU (15.1 mg, 0.0353 mmol, 11 equiv) and 2,4,6-collidine (9.0 µL, 8.3 mg, 0.068 mmol, 21 equiv). The resulting mixture was allowed to warm to rt and was
stirred under Ar for 30 min, then treated with a solution of the crude amine derived from 29 (ca. 0.0032 mmol) in anhydrous DMF (500 μ L) at 0 °C. The resulting mixture was stirred at rt under Ar for 15 h, then cooled to 0 $^{\circ}$ C. The reaction was quenched by the addition of sat aq NaHCO₃ (1 mL) at 0 °C, diluted with EtOAc (2 mL), and washed with brine (10×3 mL). The organic layer was dried (Na_2SO_4) and concentrated *in vacuo*. The residue was purified via flash chromatography (15 mL of SiO₂, 0–15% MeOH in CHCl₃ gradient elution) to afford **30** (2.5 mg, 0.0019 mmol, 61%) as a colorless oil: $[\alpha]^{25}_{D}$ –4.4 (*c* 0.25, MeOH); ¹H NMR (DMSO-*d*₆, 500 MHz) δ 9.48 (br s, 1H), 9.37 (s, 1H), 9.31 (s, 1H), 8.83 (br s, 1H), 8.29 (t, J = 5.9 Hz, 1H), 8.07 (d, J = 7.2 Hz, 1H), 8.00–7.95 (m, 1H), 7.91 (d, J = 9.2 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.67 (d, J = 9.4 Hz, 1H), 7.29–7.25 (m, 1H), 5.06 (br s, 1H), 5.02–4.93 (m, 2H), 4.42 (d, J = 9.4 Hz, 1H), 4.37 (t, J = 8.5Hz, 1H), 4.28 (d, J = 8.0 Hz, 1H), 4.20–4.12 (m, 3H), 3.78–3.70 (m, 2H), 3.18–3.13 (m, 3H), 3.09 (dd, J = 7.2, 4.9 Hz, 1H), 2.89-2.83 (m, 1H), 2.81 (s, 3H), 2.80 (s, 3H), 2.66-2.64 (m, 1H), 2.38-2.83 (m, 2H), 2.81 (s, 3H), 2.80 (s, 3H), 2.66-2.64 (m, 2H), 2.38-2.83 (m, 2H), 2.81 (s, 2H), 2.812.36 (m, 1H), 2.35–2.27 (m, 2H), 2.18 (t, J = 7.4 Hz, 1H), 2.11–2.06 (m, 2H), 2.03–1.99 (m, 2H), 1.94 (br s, 6H), 1.88–1.84 (m, 1H), 1.71 (br s, 6H), 1.55–1.42 (m, 9H), 1.36 (s, 3H), 1.34 (s, 3H), 1.28 (s, 3H), 1.25 (s, 3H), 1.18 (s, 3H), 1.14 (s, 3H), 1.09 (s, 3H), 0.97–0.92 (m, 9H), 0.88–0.77 (m, 18H); ¹³C NMR (DMSO-*d*₆, 125 MHz) δ 213.6, 175.1, 173.7, 173.32, 173.27, 172.8, 170.2, 165.2, 157.2, 156.2, 154.2, 147.4, 133.9, 130.1, 125.0, 123.9, 122.0, 116.0, 79.6, 73.2, 71.7, 70.2, 66.1, 60.7, 60.2, 59.5, 57.9, 56.5, 56.1, 49.2, 46.1, 43.1 (2C), 39.3, 34.6, 34.1, 31.8, 29.5, 29.4, 29.2, 29.0, 28.2, 28.1, 25.7, 25.2, 25.0, 24.4, 23.8, 22.6, 22.3, 21.9, 21.2, 20.7, 19.7, 18.8, 18.0, 17.5, 15.0, 14.4, 13.5, 12.4, 12.1, 9.0, 8.5; IR (film) v_{max} 3296, 2918, 2798, 2352, 1765, 1702, 1655, 1610, 1546, 1450, 1387, 1215, 1090, 1036 cm⁻¹; HRMS (ESI) m/z 1289.8444 (MH⁺, $C_{64}H_{112}N_{12}O_{15}H^+$ requires 1289.8443).

Description of Anticancer Assays

Cells (40 µL) are added into individual wells of a 384-well black/clear bottom plate on day zero at concentrations enabling continuous log growth over the course of the assay. On day one, compounds (or DMSO) are transferred using an ATS-liquid handler (100 nL per well) to individual wells containing cells and the cells are treated for 72 hours (37 °C, 5% CO₂) prior to measuring proliferation using MTS reagent following manufacturer's instructions. Net OD values are determined by subtracting the average OD values of cells (measured on day 1, T = 0) from average total OD value of cells (measured on day 4, T = 72h). IC₅₀ values are calculated using proprietary software (IC₅₀ values normalized against all compounds). Results represent n>2 independent studies (in duplicate).

Table S1. Antiproliferative Data of Compounds 1a, 2a, 2b, 23, 24, 26, and 30.

	A5	49	HC	Г116	JUR	КАТ	MC	C F7
Compound	Aver IC ₅₀ (nM)	Std Dev						
1a	108.0	63.8	1,744.7	569.8	4,945.2	2,459.7	125.1	193.8
2a	86.5	46.1	1,127.8	246.4	4,210.8	1,194.3	13,012.8	13,854.0
2b	248.7	275.6	4,261.9	1,453.6	13,371.7	8,426.2	13,022.7	13,841.9
23	>25,000	0.0	>25,000	0.0	>25,000	0.0	19,185.5	11,629.0
24	>25,000	0.0	>25,000	0.0	>25,000	0.0	19,185.5	11,629.0
26	>25,000	0.0	>25,000	0.0	>25,000	0.0	6,343.8	12,438.5
30	20,648.1	6,215.9	>25,000	216.4	22,826.2	5,324.8	12,591.9	14,328.3
Paclitaxel	4.6	0.7	3.4	0.5	5.3	1.5	13.2	7.8
Camptothecin	27.7	6.0	10.9	2.7	7.3	0.6	13.2	7.8

	MR	RC5	MV	411	OVC	CAR3	RAM	MOS
Compound	Aver IC ₅₀ (nM)	Std Dev						
1a	14,534.2	6,918.9	118.7	43.9	227.2	91.2	974.9	173.3
2a	5,469.2	604.5	20.8	9.6	81.4	34.4	361.7	64.4
2b	17,514.5	8,480.0	48.8	7.0	185.5	76.2	1,199.8	135.0
23	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
24	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
26	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	7,969.6

30	>25,000	0.0	2,702.1	1,131.6	12,643.6	3,408.0	24,322.3	911.9
Paclitaxel	8.8	2.2	4.4	0.2	3.0	0.6	5.9	2.1
Camptothecin	52.5	40.4	7.1	2.0	53.4	17.1	9.7	1.7

	TH	[P1	U9	37	A3	75	BX	PC3
Compound	Aver IC ₅₀ (nM)	Std Dev						
1a	9,289.9	7,479.8	1,209.6	272.4	2,136.4	1,625.9	3,816.6	789.3
2a	9,185.2	7,520.7	434.7	70.0	1,506.9	718.1	3,901.3	1,509.5
2b	9,685.9	7,089.5	947.3	691.0	254.2	74.0	9,310.0	4,017.8
23	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
24	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
26	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
30	>25,000	0.0	>25,000	0.0	24,742.5	477.6	>25,000	0.0
Paclitaxel	6.8	2.2	3.0	0.7	7.7	2.6	5.5	1.8
Camptothecin	44.9	22.2	19.7	2.1	5.9	2.9	38.4	21.8

	CA	LU6	COL	O678	HI	.60	НЛ	29
Compound	Aver IC ₅₀ (nM)	Std Dev						
1a	2,219.3	1,687.2	2,686.3	450.2	577.6	182.1	2,886.4	621.5
2a	578.0	700.6	2,008.8	543.5	370.4	224.9	2,271.9	127.9
2b	1,003.0	885.3	6,501.7	2,024.8	465.0	82.3	5,254.0	1,484.0
23	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
24	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
26	>25,000	0.0	>25,000	0.0	>25,000	0.0	>25,000	0.0
30	>25,000	0.0	>25,000	0.0	20,025.5	5,602.3	>25,000	0.0
Paclitaxel	3.6	0.3	24.0	31.3	9.7	4.7	6.0	2.7
Camptothecin	10.2	3.0	125.5	102.1	21.0	8.6	103.1	76.1

	NCIE	I1048	PANO	C 1005	SNU	JC1
Compound	Aver IC ₅₀ (nM)	Std Dev	Aver IC ₅₀ (nM)	Std Dev	Aver IC ₅₀ (nM)	Std Dev
1a	3,110.4	1,222.3	2,832.8	419.7	129.1	26.4
2a	1,307.0	30.4	1,967.4	839.2	34.4	12.2
2b	2,366.1	664.7	8,813.2	2,318.1	58.3	23.6
23	>25,000	0.0	>25,000	0.0	>25,000	0.0
24	>25,000	0.0	>25,000	0.0	24,871.8	362.7
26	>25,000	0.0	>25,000	0.0	>25,000	0.0
30	>25,000	0.0	>25,000	0.0	20,551.2	6,920.0

Paclitaxel	4.7	0.4	7.4	9.4	26.5	14.2
Camptothecin	9.7	4.4	45.3	61.3	47.4	16.9

Table S2. Human Cell Line Descriptions.

Human Cell Line*	Description
A375	Malignant Melanoma
A549	Lung - NSCLC
BXPC3	Pancreatic - Adenocarcinoma
CALU6	Lung - Adenocarcinoma
COLO678	Colon Carcinoma
HCT116	Colon Carcinoma
HL60	Leukema - Promyelocytic
HT29	Colon Carcinoma
JURKAT	T-cell - acute T-cell leukemia
MCF7	Breast Carcinoma
MRC5	Lung Fibroblast
MV411	Acute Myeloid Leukemia
NCIH1048	Lung - SCLC
OVCAR3	Ovary - Adenocarcinoma
PANC1005	Pancreatic - Adenocarcinoma
RAMOS	Burkitt's lymphoma
SNUC1	Colon Carcinoma
THP1	Monocyte-like - Acute Monocytic Leukemia
U937	Pro-monocytic, Human Myeloid Leukemia

^{*}All cells were obtained from ATCC and are authenticated

Computational Data

Table S3. AMBER Partial Charges for the *N*-Terminal Acyl Group.Results of the R.E.D.

RESP partial charge calculations for the *N*-terminal acyl group. Stereobonds are used where the output was otherwise ambiguous.

N-Termi	nal Acyl Group) (NTA)
Ref.	Туре	Charge
1	С	0.5542
2	Ο	-0.5455
3	CT	0.0459
4	CT	-0.0869
5	HC	0.0369
6	HC	0.0369
7	HC	0.0369
8	СТ	-0.2884
9	HC	0.0704
10	HC	0.0704
11	HC	0.0704
12	С	0.4655
13	Ο	-0.4947
14	CT	0.0658
15	HC	0.0031
16	CT	-0.2482
17	HC	0.0692
18	HC	0.0692
19	HC	0.0692
20	CT	-0.1398
21	HC	0.0396
22	HC	0.0396
23	CT	0.2324
24	HC	-0.0060
25	CT	-0.1839
26	HC	0.0293
27	HC	0.0293
28	HC	0.0293
29	СТ	-0.1244
31	HC	0.0181
31	HC	0.0181
32	HC	0.0181
Total		0.0000

Table S4. AMBER Partial Charges for β -Hydroxyisoleucine. Results of the R.E.D. RESP partial charge calculations for β -hydroxyisoleucine. Stereobonds are used where the output was otherwise ambiguous.

Hydroxyis	soleucine (B-C	DHILE)				16 17
Ref.	Туре	Charge			11 Н	н н
1	С	0.4444		9	Ï	\setminus
2	Ο	-0.5203	•	H		15)
3	СТ	-0.0431	°н_		<u></u>	
4	H1	0.0593		6		12/
5	СТ	0.2817	/	$^{\prime}$		
6	CT	-0.1480	7 ^H		5	
7	HC	0.0460				Ĥ
8	HC	0.0460	کړ		3	13 کے
9	HC	0.0460	~ ²	1/	$ \land$	_19 كى
10	OH	-0.6284		\mathbb{M}		N I
11	HC	0.3977			H	
12	СТ	0.0189		II	4	ļ
13	HC	-0.0060		2		⊓ 20
14	HC	-0.0060		2		
15	СТ	-0.0428				
16	HC	0.0159				
17	HC	0.0159				
18	HC	0.0159				
19	Ν	-0.2302				
20	Н	0.2371				
Total		0.0000	•			

. d тт 1 •

Table S5. AMBER Partial Charges for Dehydroisoleucine. Results of the R.E.D. RESP partial charge calculations for (Z)-Dehydroisoleucine. Stereobonds are used where the output was otherwise ambiguous.

14

^{∕−}^H11

–н **15**

Ref.	Туре	Charge				13 H
1	С		0.5621	-	8	
2	Ο		-0.5591		Ĥ	
3	СМ		-0.1089	7 _{H.}		/
4	СМ		0.0739		5	9 /
5	CT		-0.2263		\frown	4
6	HC		0.0872	6 ^H		\uparrow
7	HC		0.0872			H H
8	HC		0.0872	کے		10
9	CT		-0.0358	` در ا	<u>\1</u>	3 16
10	HC		0.0456		Ĭ	N I
11	HC		0.0456			
12	СТ		-0.0905			I H
13	HC		0.0294		2	17
14	HC		0.0294			
15	HC		0.0294			
16	Ν		-0.3673			
17	Н		0.3109			
Total			0.0000	-		

(Z)-Dehvdroisoleucine (Z- Δ ILE)

Table S6. AMBER Partial Charges for (E)-Dehydroisoleucine. Results of the R.E.D. RESP partial charge calculations for (E)-Dehydroisoleucine. Stereobonds are used where the output was otherwise ambiguous.

(E)-Dehyd	lroisoleucine ($(E-\Delta ILE)$	10	11
Ref.	Туре	Charge	Н	Н
1	С	0.5852	• • • • • • • • • • • • • • • • • • •	
2	Ο	-0.5634	38	\ °
3	CM	-0.2488		5
4	CM	0.0909	7 H	\frown
5	СТ	-0.0166		/
6	HC	0.0379	~	H E
7	HC	0.0379	2	
8	CT	-0.0204	د	
9	HC	0.0107		
10	HC	0.0107		
11	HC	0.0107		2
12	CT	-0.1016		
13	HC	0.0444		
14	HC	0.0444		
15	HC	0.0444		
16	Ν	-0.2323		
17	Н	0.2659		
Total		0.0000		

β-Hydroxyvaline (β-OHVAL)					
Ref.	Туре	Charge			
1	С	0.5959			
2	0	-0.5575			
3	С	-0.0130			
4	Н	0.1044			
5	С	0.2615			
6	С	-0.1277			
7	Н	0.0408			
8	Н	0.0408			
9	Н	0.0408			
10	0	-0.7079			
11	Н	0.4541			
12	С	-0.1843			
13	Н	0.0517			
14	Н	0.0517			
15	Н	0.0517			
16	Ν	-0.3346			
17	Н	0.2316			
Total		0.0000			

Table S7. AMBER Partial Charges for β -Hydroxyvaline. Results of the R.E.D. RESP partial charge calculations for hydroxyvaline. Stereobonds are used where the output was otherwise ambiguous.

Dehydrovaline (ΔVAL)						
Ref.	Туре	Charge				
1	С	0.7785				
2	Ο	-0.6029				
3	CM	-0.2929				
4	CM	0.1206				
5	CT	-0.2080				
6	HC	0.0652				
7	HC	0.0652				
8	HC	0.0652				
9	CT	-0.1418				
10	HC	0.0642				
11	HC	0.0642				
12	HC	0.0642				
13	Ν	-0.2955				
14	Н	0.2538				
Total		0.0000				

Table S8. AMBER Partial Charges for Dehydrovaline. Results of the R.E.D. RESP partial charge calculations for dehydrovaline. Stereobonds are used where the output was otherwise ambiguous.

Table S9. AMBER Partial Charges for Dehydroethylnorvaline. Results of the R.E.D. RESP partial charge calculations for dehydroethylnorvaline. Stereobonds are used where the output was otherwise ambiguous.

Ref.	Туре	Charge	10 <u>1</u> 1	16 <u>1</u> 7
1	С	0.5958		\sim
2	Ο	-0.5687		45
3	CM	-0.1596	9 H	15 H 10
4	CM	-0.0116	5	12
5	CT	-0.0059		НАА
6	HC	0.0499		114
7	HC	0.0499	/ H	۱ H
8	CT	-0.0348	6 [13 ડ ્
9	HC	0.0111	$\frac{5}{1}$	
10	HC	0.0111	\square	N I
11	HC	0.0111		
12	CT	-0.0318		 H
13	HC	0.0587	2	20
14	HC	0.0587		
15	CT	-0.1276		
16	HC	0.0375		
17	HC	0.0375		
18	HC	0.0375		
19	Ν	-0.3280		
20	Н	0.3092	_	
Total		0.0000	_	

Dehydroethylnorvaline (ΔEnv)

Table S10. Amber Partial Charges for the *C*-Terminal Amine. Results of the R.E.D. RESP partial charge calculations for the *C*-terminal amine. Stereobonds are used where the output was otherwise ambiguous.

_

C-Terminal Amine (CTA)					
Ref.	Туре	Charge			
1	N	-0.4859			
2	Н	0.2983			
3	CT	0.0106			
4	H1	0.1642			
5	CT	0.2061			
6	HC	-0.0089			
7	CT	-0.1229			
8	HC	0.0209			
9	HC	0.0209			
10	HC	0.0209			
11	CT	-0.2487			
12	HC	0.0579			
13	HC	0.0579			
14	HC	0.0579			
15	CT	-0.2269			
16	H1	0.1146			
17	H1	0.1146			
18	N3	-0.2375			
19	CT	-0.0988			
20	H1	0.0663			
21	H1	0.0663			
22	H1	0.0663			
23	CT	-0.1607			
24	H1	0.0822			
25	H1	0.0822			
26	H1	0.0822			
Total		0.0000			

2 H	16 4 ∺	20 17 H H 19	21 H	22
-1 N X	3	5 N	23	-н 24
8H 7 9 ^H H	э Н 6 Н	1н 12 н 13	н 26	^H 25
10	14			

Table S11. Bond Stretch Function Definition. The obtained AMBER force constant (N) and equilibrium bond length (R) parameters for the indicated atoms.

Туре	Atom Types	Ν	R
HrmStr1	N–CM	400.10	1.399
HrmStr1	H1–C	340.00	1.08

Table S12. Angle Bend Function Definition. The obtained AMBER force constant (N) and equilibrium bond angle (θ) parameters for the indicated atoms.

Туре	Atom 1	N	θ
HrmBnd1	C-CT-C	63.380	111.63
HrmBnd1	CT-C-CT	62.040	116.50
HrmBnd1	C-N-CM	64.53	122.15
HrmBnd1	N-CM-CM	68.71	123.67
HrmBnd1	N-CM-C	69.192	116.055
HrmBnd1	H–N–CM	47.63	117.90
HrmBnd1	CM-C-N	69.957	115.17
HrmBnd1	CM-CT-CT	63.41	111.56
HrmBnd1	CT-CM-CT	62.87	115.65
HrmBnd1	H1-C-N	50.0	109.50
HrmBnd1	Н1-С-О	50.00	109.50

Table S13. Torsional Angle Function Definition. The obtained AMBER parameters for the torsional angles. The required values include four atoms, one to four phase offsets (PO), V/2 magnitudes (Mag), and the number of paths (NPaths).

Туре	Atom Types	РО 1	PO2	PO3	PO4	Mag 1	Mag 2	Mag 3	Mag 4	N P
AmbTrs	C–CT–C–O	0	180	0	0	0	0	0	0	1
AmbTrs	C-CT-C-CT	0	180	0	0	0	0	0	0	1
AmbTrs	С–СТ–СТ–НС	0	0	0	0	0	0	0.2	0	1
AmbTrs	O-C-CT-CT	0	180	0	0	0	0	0	0	1
AmbTrs	O-C-N-H	0	180	0	0	2	2.5	0	0	1
AmbTrs	CT-C-N-H	0	180	0	0	0	2.5	0	0	1
AmbTrs	СТ–С–СТ–НС	0	180	0	0	0	0	0	0	1
AmbTrs	CT-C-CT-CT	0	180	0	0	0	0	0	0	1

AmbTrs	C-CT-C-N	0	180	0	0	0	0	0	0	1
AmbTrs	C-CT-CT-CT	0	0	0	0	0	0	0.2	0	1
AmbTrs	O-C-CT-HC	0	0	180	0	0.8	0	0.1	0	1
AmbTrs	СТ-СТ-СТ-НС	0	0	0	0	0	0	0.2	0	1
AmbTrs	CT-CT-CT-CT	180	180	0	0	0.2	0.3	0.2	0	1
AmbTrs	НС-СТ-СТ-НС	0	0	0	0	0	0	0.2	0	1
AmbTrs	C-N-CT-H1	0	0	0	0	0	0	0	0	1
AmbTrs	C-N-CT-CT	0	0	180	180	0.5	0	0.2	0.5	1
AmbTrs	O-C-N-CT	0	180	0	0	0	2.5	0	0	1
AmbTrs	N-CT-CT-CT	0	0	0	0	0	0	0.2	0	1
AmbTrs	N-CT-CT-OH	0	0	0	0	0	0	0.2	0	1
AmbTrs	N-CT-C-O	0	180	0	0	0	0	0	0	1
AmbTrs	H-N-CT-H1	0	0	0	0	0	0	0	0	1
AmbTrs	H-N-CT-CT	0	0	0	0	0	0	0	0	1
AmbTrs	H–N–CT–C	0	0	0	0	0	0	0	0	1
AmbTrs	СТ–СТ–ОН–НО	0	0	0	0	0.3	0	0.2	0	1
AmbTrs	H1-CT-CT-CT	0	0	0	0	0	0	0.2	0	1
AmbTrs	Н1-СТ-СТ-ОН	0	0	0	0	0.3	0	0	0	1
AmbTrs	Н1-СТ-С-О	0	0	180	0	0.8	0	0.1	0	1
AmbTrs	H1-CT-C-N	0	180	0	0	0	0	0	0	1
AmbTrs	СТ–СТ–С–О	0	180	0	0	0	0	0	0	1
AmbTrs	C-CT-CT-OH	0	0	0	0	0	0	0.2	0	1
AmbTrs	НС-СТ-СТ-ОН	0	0	0	0	0.3	0	0	0	1
AmbTrs	СТ–СТ–СТ–ОН	0	0	0	0	0	0	0.2	0	1
AmbTrs	С–N–СМ–СМ	180	180	0	0	1.2	0.7	0	0	1
AmbTrs	С–М–СМ–С	0	180	0	0	0	0.7	0	0	1
AmbTrs	O-C-N-CM	0	180	0	0	0	2.5	0	0	1
AmbTrs	N-CM-CM-CT	0	180	0	0	0	6.7	0	0	1
AmbTrs	NСМСО	0	180	0	0	0	2.2	0	0	1

AmbTrs	N-CM-C-N	0	180	0	0	0	2.2	0	0	1
AmbTrs	H-N-CM-CM	0	180	0	0	0	0.7	0	0	1
AmbTrs	H–N–CM–C	0	180	0	0	0	0.7	0	0	1
AmbTrs	СМ-СМ-СТ-НС	0	0	180	0	1.2	0	0.4	0	1
AmbTrs	СМ-СМ-СТ-СТ	0	0	0	0	0	0	0	0	1
AmbTrs	СМ-С-N-Н	0	180	0	0	0	2.5	0	0	1
AmbTrs	СМ-СМ-С-О	0	180	0	0	0	2.2	0	0	1
AmbTrs	СМ-СМ-С-N	0	180	0	0	0	2.2	0	0	1
AmbTrs	СМ-СТ-СТ-НС	0	0	0	0	0	0	0.2	0	1
AmbTrs	СТ-СМ-СТ-НС	0	0	0	0	0	0	0	0	1
AmbTrs	CT-CM-CT-CT	0	0	0	0	0	0	0	0	1
AmbTrs	N-CT-CT-H1	0	0	0	0	0	0	0.2	0	1
AmbTrs	N-CT-CT-N3	0	0	0	0	0	0	0.2	0	1
AmbTrs	N-CT-CT-HC	0	0	0	0	0	0	0.2	0	1
AmbTrs	CT-CT-N3-CT	0	0	0	0	0	0	0.2	0	1
AmbTrs	Н1-СТ-СТ-Н1	0	0	0	0	0	0	0.2	0	1
AmbTrs	H1-CT-CT-N3	0	0	0	0	0	0	0.2	0	1
AmbTrs	Н1-СТ-СТ-НС	0	0	0	0	0	0	0.2	0	1
AmbTrs	CT-N3-CT-H1	0	0	0	0	0	0	0.2	0	1
AmbTrs	N3-CT-CT-CT	0	0	0	0	0	0	0.2	0	1

Table S14. Applied ONIOM Methods. Shows each of the analogs, the ONIOM partitioning, and the model chemistries that were used to optimize the structures.

Analogs	ONIOM Partitioni	ng	Model Chemistry
Parent: YA	84:177	٦	
Analog 1: VVV	75:177		
Analog 2: VVE	81:177		
Analog 3: VEE	87:177		B3LYP/d95(d,p):AMBER
Analog 4: EEE	93:177	-	B3LYP/6-311g(d,p):AMBER
Analog 5: EEV	87:177		M06-2X/6-31+G(d):AMBER
Analog 6: EVV	81:177		
Analog 7: EVE	87:177		
Analog 8: VEV	81:177		

 Table S15. RMSD Comparision of All Heavy Atoms. Extra methyl groups were removed so that all

 structures had the same number of atoms. All methods used AMBER for the low layer. Values are calculated in angstroms.

	AMBER	B3LYP/	B3LYP/	M06-2X/
		d95(d,p)	6-311g(d,p)	6-31+G(d)
1: VVV	0.1112	1.3861	1.4055	1.3892
2: VVE	0.4772	0.9712	1.0010	1.4828
3: VEE	0.4595	1.5816	1.6535	0.9689
4: EEE	0.3525	1.1119	1.1771	0.7729
5: EEV	0.1936	1.4367	1.3862	1.1808
6: EVV	0.1034	0.4241	0.2036	1.3060
7: EVE	0.2592	1.5890	1.5544	1.2500
8: VEV	0.4772	1.5890	0.6943	0.8822

 Table S16. RMSD Comparison for Backbone Atoms Only.Calculated RMSDs from the backbone for each analog in angstroms.

	AMBER	B3LYP/	B3LYP/	M06-2X/
		d95(d,p)	6-311g(d,p)	6-31+G(d)
1: VVV	0.0663	0.8276	0.8454	1.0020
2: VVE	0.2999	0.7467	0.7623	1.1194
3: VEE	0.3728	0.8591	0.9706	0.7261
4: EEE	0.2585	0.6692	0.6963	0.5618
5: EEV	0.2585	0.8452	0.7453	0.8478
6: EVV	0.0847	0.8452	0.1289	0.8517
7: EVE	0.1515	0.8630	1.0237	0.7567
8: VEV	0.1248	0.8297	0.4115	0.5895

