$K_3V_2O_3F_4(IO_3)_3$: A High-Performance SHG Crystal Containing Both Five and Six-coordinated V⁵⁺ Cations

Jin Chen,^{a,b,c} Chun-Li Hu,^a Yi-Lin Lin,^a Yan Chen,^a Qian-Qian Chen,^a Jiang-Gao Mao*^a

- a. State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
- b. College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China.
- c. University of Chinese Academy of Sciences, Beijing 100039, P. R. China

K(1)-F(1)	2.647(6)	V(1)-O(8)	1.576(10)
K(1)-F(1)#1	2.647(6)	V(1)-O(3)	1.872(6)
K(1)-O(2)#2	2.863(7)	V(1)-O(3)#3	1.872(6)
K(1)-O(2)#3	2.863(7)	V(1)-F(1)	1.872(5)
K(1)-O(4)#1	3.003(7)	V(1)-F(1)#3	1.872(5)
K(1)-O(4)	3.003(7)	V(1)-O(6)	2.311(9)
K(1)-O(1)#2	3.067(7)	V(2)-O(6)	1.633(9)
K(1)-O(1)#3	3.067(7)	V(2)-O(7)	1.700(9)
K(2)-F(2)#4	2.621(6)	V(2)-F(2)	1.856(6)
K(2)-F(1)	2.673(5)	V(2)-F(2)#3	1.856(6)
K(2)-F(2)#5	2.706(6)	V(2)-O(5)#7	2.032(8)
K(2)-O(1)#3	2.721(7)	I(1)-O(2)	1.782(6)
K(2)-F(1)#5	2.736(5)	I(1)-O(1)	1.791(6)
K(2)-O(4)#5	2.823(6)	I(1)-O(3)	1.882(6)
K(2)-O(6)#6	3.090(3)	I(2)-O(4)	1.819(6)
		I(2)-O(4)#3	1.819(6)
		I(2)-O(5)	1.850(8)

Table S1. Selected bond distances (Å) for $K_3V_2O_3F_4(IO_3)_3$.

Symmetry transformations used to generate equivalent atoms:

#1 -x, -y+2, z+1/2; #2 x, -y+2, z+1/2; #3 -x, y, z; #4 x, y+1, z; #5 -x, y+1, z; #6 -x, y+1, z+1/2; #7 -x, -y+1, z-1/2.

$V(1)O_4F_2$ octahed	on	V(2)O ₃ F ₂ trigonal-	bipyramid
O(8)-V(1)-O(3)	101.7(3)	O(6)-V(2)-O(7)	106.7(5)
O(8)-V(1)-O(3)#1	101.7(3)	O(6)-V(2)-F(2)	101.20(18)
O(3)-V(1)-O(3)#1	94.1(4)	O(7)-V(2)-F(2)	91.3(2)
O(8)-V(1)-F(1)	99.2(3)	O(6)-V(2)-F(2)#1	101.20(18)
O(3)-V(1)-F(1)	158.2(3)	O(7)-V(2)-F(2)#1	91.3(2)
O(3)#1-V(1)-F(1)	87.6(2)	F(2)-V(2)-F(2)#1	155.7(3)
O(8)-V(1)-F(1)#1	99.2(3)	O(6)-V(2)-O(5)#2	102.9(4)
O(3)-V(1)-F(1)#1	87.6(2)	O(7)-V(2)-O(5)#2	150.3(4)
O(3)#1-V(1)-F(1)#1	158.2(3)	F(2)-V(2)-O(5)#2	82.93(19)
F(1)-V(1)-F(1)#1	83.1(3)	F(2)#1-V(2)-O(5)#2	82.93(19)
O(8)-V(1)-O(6)	178.9(4)		
O(3)-V(1)-O(6)	79.0(2)		
O(3)#1-V(1)-O(6)	79.0(2)		
F(1)-V(1)-O(6)	80.0(2)		
F(1)#1-V(1)-O(6)	80.0(2)		

Table S2. The bond angles (°) for $V(1)O_4F_2$ octahedron and $V(2)O_3F_2$ trigonalbipyramid.

Symmetry transformations used to generate equivalent atoms:

#1 -x, y, z; #2 -x, -y+1, z-1/2.

Compound	Structural features	SHG efficiency	Ref ^a
$Zn_2(VO_4)(IO_3)$	isolated $(VO_4)^{3-}$ and $(IO_3)^{-}$ unit	$6 \times \text{KDP}$	36
β -Ba[VFO ₂ (IO ₃) ₂]	0D trans-[VFO ₂ (IO ₃) ₂] ²⁻ unit	$1.5 \times \text{KDP}$	35
$\alpha-Ba_2[VO_2F_2(IO_3)_2]IO_3$	$OD aig [VO E (IO)]^{3-}$ unit	$9 \times \text{KDP}$	35
β -Ba ₂ [VO ₂ F ₂ (IO ₃) ₂]IO ₃	$0D cis-[vO_2F_2(IO_3)_2]^3$ unit	$9 \times \text{KDP}$	35
LaVO ₂ (IO ₃) ₄ ·H ₂ O	0D [VO ₂ (IO ₃) ₄] ³⁻ unit	$0.2 \times \text{KDP}$	40
K ₃ V ₂ O ₄ F ₃ (IO ₃) ₃	0D [V ₂ O ₄ F ₃ (IO ₃) ₃] ³⁻ unit	1.3 × KTP	This
5 2 4 5 (5)5			work
NaVO ₂ (IO ₃) ₂ (H ₂ O)	$1D [VO_2(IO_3)_2]^-$ chain	$20 \times \text{KDP}$	work 39
NaVO ₂ (IO ₃) ₂ (H ₂ O) K(VO) ₂ O ₂ (IO ₃) ₃	$\frac{10 [VO_2(IO_3)_2]^- \text{ chain}}{10 [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$	$20 \times \text{KDP}$ $3.6 \times \text{KTP}$	work 39 38
$\frac{\text{NaVO}_2(\text{IO}_3)_2(\text{H}_2\text{O})}{\text{K(VO)}_2\text{O}_2(\text{IO}_3)_3}$ $\frac{\text{Rb(VO)}_2\text{O}_2(\text{IO}_3)_3}{\text{Rb}(\text{VO})_2\text{O}_2(\text{IO}_3)_3}$	$\frac{1D [VO_2(IO_3)_2]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$	$20 \times \text{KDP}$ $3.6 \times \text{KTP}$ $2.2 \times \text{KTP}$	work 39 38 42
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1D [VO_2(IO_3)_2]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$	20 × KDP 3.6 × KTP 2.2 × KTP 1.3 × KTP	work 39 38 42 42
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1D [VO_2(IO_3)_2]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$	20 × KDP 3.6 × KTP 2.2 × KTP 1.3 × KTP 1.2 × KTP	work 39 38 42 42 42 42
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\frac{1D [VO_2(IO_3)_2]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$ $\frac{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}{1D [(VO)_2O_2(IO_3)_3]^- \text{ chain}}$	$20 \times \text{KDP}$ $3.6 \times \text{KTP}$ $2.2 \times \text{KTP}$ $1.3 \times \text{KTP}$ $1.2 \times \text{KTP}$ $0.4 \times \text{KTP}$	work 39 38 42 42 42 37

Table S3. The structure features and SHG properties of metal vanadium iodates.

a: The references in the table refer to those in the main text.

Figure S1. Simulated and measured powder X-ray diffraction patterns for $K_3V_2O_3F_4(IO_3)_3$.

Figure S2. SEM image of $K_3V_2O_3F_4(IO_3)_3$ (a), its elemental distribution maps (b-e) and the EDS image with quantitative analysis table (f).

Figure S3. The coordination geometries for $V(1)^+$ (a) and $V(2)^+$ (b) cations.

Figure S4. The coordination geometries for $K(1)^+$ (a) and $K(2)^+$ (b) cations.

Figure S5. IR spectrum for $K_3V_2O_3F_4(IO_3)_3$.

Figure S6. The scissor-added partial density of states for $K_3V_2O_3F_4(IO_3)_3$.