Supporting Information

Solvent Directed Chemical Divergent Synthesis of β -Lactams and α -Amino Acid Derivatives with Chiral Isothiourea

Dong-Sheng Ji^a, Hui Liang ^a, Kai-Xuan Yang ^a, Zhi-Tao Feng ^c, Yong-Chun Luo ^{*a}, Guo-Qiang Xu^a, Yucheng Gu^d and Peng-Fei Xu ^{*ab}

- ^{b.} State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, P. R. China
- ^c Department of Chemistry, University of California Davis, One Shields Avenue, Davis, California 95616, U. S
- d. Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K

^{a.} State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China, Email: xupf@lzu.edu.cn, luoych@lzu.edu.cn

1. General information	1
2 Substrates synthesis	2
3 Condition optimization	3
3.1 The attempt of Lewis acid and Lewis base cooperative catalysis	3
3.2 The optimization of catalyst (Table S2)	3
3.3 The detailed optimization of solvents (Table S3)	4
3.4 Optimization of the loading of base(Table S4)	4
3.5 Further optimization of stereoselectivity(Table S5)	5
3.6 Optimization of the conditions of synthesis α-amino acid derivatives(Table S6)	5
4 General procedures	7
4.1 General procedures for the synthesis β -lactam derivatives	7
4.2 General procedures for the synthesis α -amino acids derivatives	7
4.3 The synthesis of racemic product	7
5 The Mechanism exploration	9
5.1 Isotope labeling experiments	9
5.2 The identification of divergent synthesis	9
5.3 The mixed solvent experiment	10
5.4 Ths studies to the others species that might influenced the epimerization of product 3	10
5.5 Non-linear effects experiments	11
5.6 The exploration competitive process of acyl ammonium ion pair	12
6. The model of stereochemistry of reaction	14
7 The Gram scale synthesis and further transformation of product	17
7.1 The gram scale synthesis	17
7.2 The synthesis of 5	17
7.3 The synthesis of 6	17
7.4 The synthesis of 7 and 8	
8 Crystal information	19
9 The characterization data of product	
10 The copy of NMR and HPLC	

Contents

1. General information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 or 600 spectrometer (400 or 600 MHz ¹H, 100 or 151 MHz ¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) (δ = 77.0 ppm) or TMS (¹H) (δ = 0.00 ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with a Daicel Chirapak IA and IF-3 column on Agilent 1260/1100 series with *i*-PrOH and *n*-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with [a]_D values reported in degrees. Concentration (c) is in g/100 mL. Substrate imine¹ and phenyl acetate² were prepared according to the procedures in the literature reports, all the isothiourea catalysts³ were synthesized according to the procedures in the literature reports in laboratory.

2 Substrates synthesis

2.1 The general procedures for synthesis Imine 1

Imine 1 was prepared based on the reported procedures^[1]

Step 1

A two necked round bottomed flask was charged with CuI (10 mol%) and THF (0.4 M), trimethylamine (2.0 equiv), S1 alkyne(1.0 equiv) and ethyl 2 –chloro-2-oxoacetate (1.5 equiv) were added sequentially and the resulting mixture was stirred at room temperature for 24 hours. The reaction was quenched by saturated NaHCO₃ aqueous solution and the aqueous phase was extracted with ethyl acetate. The organic phases were combined, dried over Na₂SO₄ and concentrated under vacuum. The crude product was purified by silica gel chromatography (PE/ ethyl acetate 95:5) to give the S2. Step 2

An oven-dried round bottom two necks flask was added ketoesters S2 (1.0 equiv), N-Boc-triphenyliminophosphorane and toluene. The mixture was heated to 120 $^{\circ}$ C and stirred for 24h - 72h. After cooling to room temperature, the mixture was concentrated under vacuum. The residue was purified by silica gel chromatography (PE/ ethyl acetate 10:1 - 6:1) to give the Imine **1c-1m**.

2.2 The general procedures for synthesis phenylacetic acid ester 2

Phenylacetic acid ester 2 was prepared based on the reported procedures^[2].

The specified phenylacetic acid (5 mmol, 1.0 equiv.), the specified phenol (0.75 g, 5.5 mmol, 1.1 equiv.) and dry CH₂Cl₂ (60mL) were added sequentially to a dry round-bottom flask at room temperature under an atmosphere of nitrogen. The reaction was cooled to 0 $^{\circ}$ C using an ice bath and DCC (1.11 g, 5.5 mmol, 1.1 equiv.) and DMAP (60 mg, 0.5 mmol, 0.1 equiv.) added sequentially. The reaction was allowed to slowly warm to room temperature and further stirred for 12 hours. Thereafter, aq. HCl (3N, 6 mL) was added and the reaction placed in a freezer (-20 $^{\circ}$ C) for a minimum of 6 h The resulting suspension was filtered over celite and the residue washed with ice-cold CH₂Cl₂. The combined filtrates were successively washed with sat. aq. NaHCO₃ and water before being dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (PE/ ethyl acetate 20:1) to give the phenylacetic acid ester **2**.

3 Condition optimization

3.1 The attempt of Lewis acid and Lewis base cooperative catalysis

Table S1. The initial experiments

Entry[^{a]}	Loading of Cat.	solvent	[Cu] ^[b]	L	Yield ^[c]	dr	Ee ^[d]
1	20%	DCM	-	-	53	-	90
2	20%	DCM	10%	11%(S)	25	-	90
3	-	DCM	10%	11%	/	/	/
4	20%	DCM	10%	11%(R)	25-27	-	90

Conditions: [a] Reactions performed with 0.1 mmol 1c, 0.1 mmol 2a, catalyst (20 mol%) in DCM(1 mL) at 15°C for 24h. [b] [Cu]: Cu(CH₃CN)₄PF₆ [c] Isolated yield. [d] Determined by chiral-phase HPLC analysis

3.2 The optimization of catalyst (Table S2)

3.3 The detailed optimization of solvents (Table S3)

NBoc CO ₂ Et	cat. (20)	mol%) ht Ph BocN CO ₂ E 3ca	Ph Ph Ph COOMe	N = N Cat.
entry	solvent	\mathbf{dr}^{d}	yield ^c	ee ^e
a 1	DCM	10:1	49%	90
2 ^{a,b}	DCM	3:1	53%	90
3 ^{a,b}	CHCl ₃	3:1	56%	88
а, о 4	Acetone	3:1	72%	85
5 ^{a,o}	Et_2O or toluene	-	trace	-
6 6	CH ₃ CN	3:1	70%	90
7 ^{a,o}	MeOH	4:1	75%	0
8. 8	EtOH	5:1	72%	92

Conditions: ^aReactions performed with 0.1 mmol **1c**, 0.1 mmol **2a**, catalyst (20% mol) in solvent(1 mL) at 15°C for 24h. ^b1 equiv i-Pr₂EtN was added. ^cIsolated yield. ^dDetermined by ¹H NMR analysis of the crude products. ^eDetermined by chiral-phase HPLC analysis of major isomer.

3.4 Optimization of the loading of base(Table S4)

Conditions: ^aReactions performed with 0.1 mmol **1c**, 0.1 mmol **2a**, catalyst(20% mol) and x equiv base in CH₃CN(1 mL) at 15-20°C for 24h. ^bIsolated yield. ^cDetermined by ¹H NMR analysis of the crude products. ^dDetermined by chiral-phase HPLC analysis of major isomer.

3.5 Further optimization of stereoselectivity(Table S5)

	CO ₂ Et + OPfp 2a	cat. (20 mol%) i-Pr₂EtN (1 eq.) CH₃CN	Ph 3ca	$N \rightarrow Ph$ cat.
Entry ^a	t/°C	dr	ee/% ^d	yield
1	15-20°C	3:1	90	85%
2	0	3:1	90	85%
3	-10	3:1	91	85%
4	-20	3:1	90	85%
5	-30	-	93	85%
6	-40	6:1	99	84%
9 ^e	-50	8:1	99	85%

Conditions: ^aReactions performed with 0.1 mmol **1c**, 0.1 mmol **2a**, catalyst(20% mol) and 1 equiv base in CH₃CN(1 mL) at t ^oC for 24h. ^bIsolated yield. ^cDetermined by ¹H NMR analysis of the crude products. ^dDetermined by chiral-phase HPLC analysis of major isomer. ^eCH₃CN/DCM=3:1, 0.12 mmol **2a**.

3.6 Optimization of the conditions of synthesis α-amino acid derivatives(Table S6)

NBoc CO ₂ Et	+ OPfp - cat i-Pi 2a	t. (20 mol%) r ₂ EtN (1 eq.) EtOH Ph Aca	N N $Phcat.$
Entry ^a	dr	Ee/%°	Yield/% ^d
1	5:1	91	72
2 ^e	20:1	99	75
3 ^{f,e}	20:1	99	79
4 ^{g,e}	20:1	99	81

Conditions: ^aReactions performed with 0.1 mmol **1c**, 0.1 mmol **2a**, 1 equiv i-Pr₂EtN, catalyst (20 mol%) in EtOH(1 mL) at 15-30°C for 24h. ^bDetermined by ¹H NMR analysis of the crude products. ^cDetermined by chiral-phase HPLC analysis. ^dIsolated yield. ^eat 0°C. ^f0.12eq. **1c** was used. ^g0.12eq. **2a** was used.

3.7 The testing to the others nucleophile

4 General procedures

4.1 General procedures for the synthesis β -lactam derivatives

Figure 4.1

In a 10 ml tube with a stirring imine **1** (0.1 mmol), phenyl ester **2**(0.12 mmol), **Cat.** (0.02 mmol) and 18μ L **i-Pr₂EtN** were successively added, then 1 mL solvent (CH₃CN/DCM _{volume} =3:1) that precooled at -50°C was added by syringe, after that the device was put into low-temperature reactor which controled the temperature at -50°C(**Figure 4.1**). When TLC analysis showed imine **1** was mainly consumed, 1 mL 10% HCl was added to quench the

reaction, then the mixture will be extracted three times by DCM(1mL*3), the combined organic phases were washed by NaCl(aq), dried over Na₂SO₄, filtered, and concentrated under reduced pressure, then this mixture was used to test d.r. value and purify. The product **3** was purified by flash column chromatography(PE/EA=20:1 to 10:1).

4.2 General procedures for the synthesis α-amino acids derivatives

In a 10 ml tube with a stirring imine 1 (0.1 mmol), phenyl ester 2(0.12 mmol), Cat. (0.02 mmol) and 18μ L i-Pr₂EtN were successively added, then 1 mL EtOH (HPLC) that precooled at -0°C was added by syringe, after that the device was put into low-temperature reactor which controled the temperature at -0°C(Figure 4.2). When TLC analysis showed imine 1 was mainly consumed, the reaction was concentrated under reduced pressure with silica gel and have a mixture, then this mixture was loaded on column chromatography to access the product 4 (PE/EA=20:1).

4.3 The synthesis of racemic product

In a 10 mL tube with stir bar imine 1 (0.1 mmol), phenyl ester 2(0.12 mmol), Cat. (0.02 mmol) and $18\mu\text{L}$ i-Pr₂EtN were successively added, then the 1mL corresponding solvent (DCM or EtOH) was added by syringe. The reaction mixture was stirred 24 hours at room temperature, then the reaction was concentrated under reduced pressure with silica gel and have a mixture, this mixture was loaded on column chromatography, after a flash column chromatography by solvent (PE/EA=20:1), the racemic product would be accessed (Figure 4.3).

5 The Mechanism exploration

5.1 Isotope labeling experiments

Isotope tracing $\begin{array}{c}
 & NBoc \\
 & CO_2Et + OPfp \\
 & CO_3OD, 0^{\circ}C \\
 & CD_3OD, 0^{\circ}C \\
\end{array}$ $\begin{array}{c}
 & BocHN & CO_2Et \\
 & Ph & OPfp \\
 & CD_3OD, 0^{\circ}C \\
\end{array}$ $\begin{array}{c}
 & BocHN & CO_2Et \\
 & Ph & OPfp \\
 & CD_3OD, 0^{\circ}C \\
\end{array}$ $\begin{array}{c}
 & Fr \\
 & Fr \\$

In a 10 ml tube with a stirring imine 1c (0.1 mmol), phenyl ester 2a(0.12 mmol), Cat. (0.02 mmol) and $18\mu\text{L}$ i-Pr₂EtN were successively added, then 1 mL CD₃OD that precooled at -0°C was added by syringe, after that the device was putinto low-temperature reactor which controled the temperature at -0°C(Figure 5.1). When TLC analysis showed imine 1 was mainly consumed, the reaction was concentrated under reduced pressure with silica gel and have a mixture, then this mixture was loaded on column chromatography to access the product.

5.2 The identification of divergent synthesis

Figure 5.2

So in order to exclude the machanism which α -amino acid derivatives **4** would come from the ring opening of β -lactam **3** at the conditions of model reaction, the enantiomerically pure **3ca** was used as *starting material* or

additive in another reaction of another substrate at the optimal reaction conditions for accessing amino acid derivatives. But only the diastereoisomer of **3ca** was observed(**Figure 5.2**).

5.3 The mixed solvent experiment

Figure 5.3

In a 10 ml tube with a stirring imine 1c (0.1 mmol, 30.1mg), phenyl ester 2a(0.12 mmol, 36mg), Cat. (0.02 mmol, 5mg) and $18\mu\text{L}$ i-Pr₂EtN were successively added, then 1 mL solvent (CH₃CN/EtOH _{volume} =1:1) that precooled at -50°C was added by syringe, after that the device was putinto low-temperature reactor which controled the temperature at -50°C. (Figure 5.3) When TLC analysis showed imine 1 was mainly consumed, 1 mL 10% HCl was added to quench the reaction, then the mixture will be extracted three times by DCM(1mL*3), the combined organic phases were washed by NaCl(aq), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product 4ca was purified by flash column chromatography.

5.4 Ths studies to the others species that might influenced the epimerization of product 3.

In the conditions of optimal conditions for synthesis lactam, we studied the role of the $iPr_2EtN(Equation A)$, isothiouera(Equation B), pentafluorophenol(Equation C) and the corresponding pentafluorophenolate (Equation D) in the epimerisation process(Figure 5.4). At -50°C, the obvious epimerization only in the presence of iPr_2EtN was observed.

5.5 Non-linear effects experiments

In order to have a deeper interpretation to mechanism of this protocol, a non-liner effects experiment was conducted (Figure 5.5). At -50° C, to a 10-mL tube charged with a solution of the catalyst (R)-BTM(5.0 mg, 20mol%) with different enantiopurity(1st run: 0% ee, 2nd run: 20% ee; 3rd run: 40% ee; 4th run: 60% ee; 5th run: 80% ee; 6th run: 100% ee)in DCM (0.25 mL) was added a solution of **1c** (30.2 mg, 0.1mmol) and **2a**(36 mg, 0.12 mmol) in CH₃CN(0.75mL). The reaction mixture was stirred at -50° C for 48h. After that, the reaction was quenched by HCl and extracted with DCM, the combined organic phases were washed by NaCl(aq), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product **3ca** was purified by flash column chromatography. The ee values of the product **3ca** were determined by HPLC.

entry	ee of cat	ee of 3ca
1	0	0
2	17	15
3	38	38
4	59	58
5	80	79

Figure 5.5 This results showed there is one catalyst was involved in a catalytic cycle.

5.6 The exploration competitive process of acyl ammonium ion pair

The phenylacetic acid ethylester was detected by HRMS in reaction mixture of the synthesis 4ca but never observed in TLC analysis or separated on column chromatography.

Some control experiments were conducted to explore the process of the Pfp ester transesterified in the presence of EtOH, the results showed base and catalyst all could contribute to this process, so we can't exclude the competitive process between deprotonation and acylated by EtOH when acyl ammonium ion pair is formed. In the control experiments, at the conditions of no ITU catalyst, the phenylacetic acid ethyl ester only can be detected by GC-MS as a weak peak, it cannot be observed by HNMR or separated, so the conversion cannot be quantified. In the presence of ITU catalyst, we analyzed the reaction mixture by HNMR and observed the signal of phenylacetic acid ethyl ester, the conversion of the starting material is 100% and the isolated yield of phenylacetic acid ethyl ester is 88%.

	0.1 111110		
i-Pr ₂ EtN	Cat.1	phenylacetic acid ethylester	Observed by HNMR?
-	-	Detected by GC-MS	No
		detected by GC-MS	Yes
		detected by GC-MS	No

Additional, we found when phenylacetic acid ethylester was used as starting material there any desirable product was detected.

6. The model of stereochemistry of reaction

Figure 6.1

The stereochemical outcome of the reaction is determined in the step of the Mannich reaction, where ammonium enolate II adopts a Z-conformation aided by the 1,5-O S interaction (chalcogen-bonding catalysis) between the enolate oxygen anion and the S atom of the catalyst, which forms a conformational lock. The phenyl group shields the Si face of ammonium enolate, and the Re face is open for the imine approaching from the least hindered Re face. There are two orientations when imine approaches the enolate which affords two diastereomers, at the favored transition state, 1,5-O S interaction and π - π stacking interaction all contribute to induce the formation of the favored transition state; at the unfavored transition state, there is no π - π stacking interaction. Whatever orientation it takes when imine approaches the Re face of enolate, the configuration of the products at C3 is definite. When imine approaches the Re

face of enolate from different orientations, it will affect the configuration of the products at C2 as shown below. This rational is consistent with single X-ray crystal structure of 3ca and 4cm. (**Figure 6.2**)

. In the reaction, the absolute configuration of the isothiourea catalyst is R configuration, therefore, according to our rational, the absolute configuration of the major product is (2S, 3S), and the minor is (2R, 3S), the relationship between them is diastereoisomer. At the same time, in the reaction, once β -lactam products were formed there would be the epimerization of carbonyl α -site, which afforded (2S, 3R) lactam as another diastereoisomer of (2S, 3S), it is the enantiomer of compound (2R, 3S) (Figure 6.3). Therefore the ee value of the minor product is lower. In another word, the minor diastereoisomers in one pot reaction with our protocol were derived from two pathways.

Figure 6.3 The rational for the stereochemistry and diastereoselectivity This assumption was proved by experiments(**Figure 6.4**):

In order to as much as possible obtained the amount of 3cj' obtained the single crystal we performed the reaction at -30°C (**Figure 6.4**). After stiring 4 days at the above conditions, we obtained two diastereoisomers by column chromatography, the ee value of **major product** (blue) is 91%, the ee value of **minor product**(orange) is 26%, then the **pure major product** was dissolved in DCM(1M) and stirred at 20°C in the presence of. iPr₂EtN(1 eq.), after 48h, we separated the **product 3cj**^{**} that derived from epimerization by column chromatography, the ee value of **this product**(red) is -93% (compared with **3cj**^{*}). But because the lower ee value **3cj**^{*} afforded the racemic single crystal. This results indicated the minor diastereoisomers in one pot reaction with our protocol were derived from two pathways.

3cj' racemic CCDC 2118205

7 The gram scale synthesis and further transformation of product

7.1 The gram scale synthesis

To a 100 mL round-bottom flask equipped with a magnetic stir bar was successively added **1c** (1.2g, 4mmol), **2a**(1.56g, 4.8mmol), cat(0.2g, 0.8mmol) and 0.32 mL i-Pr₂EtN, 40 mL precooled solvent($V_{CH3CN}/V_{DCM}=3/1$), immediately the flask was put on low-temperature reactor. When TLC analysis showed the imine has been compeletly consumed, 40 mL 10% HCl was added to quench the reaction, then the mixture will be extracted three times by DCM (20mL*3), the combined organic phases were washed by NaCl(aq), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The product **3ca** was purified by flash column chromatography. **4ca** was obtained by the similar procedurde.

7.2 The synthesis of 5

AgOTf(0.25mg, 0.01 mmol) and AgClPPh₃(0.49mg, 0.01mmol) was added in a 10 ml reaction tube equipped with a magnetic stir bar, 0.5 mL toluene was added and the mixture was stirred 10 minutes at room temperature. Later, **4ca** (47mg, 0.1 mmol) was added into reaction tube as well as another 0.5 mL. This mixture was stirred 24 hours at room temperature, after that this mixture was directly subjected to column chromatography on silica gel (9:1~3:1, PE/ EA) to afford the desired product **5**.

7.3 The synthesis of 6

AgOTf(0.25mg, 0.01 mmol) and AgClPPh₃(0.49mg, 0.01mmol) was added in a 10 ml reaction tube equipped with a magnetic stir bar, 0.5 mL toluene was added and the mixture was stirred 10 minutes at

room temperature. Later, **3ca** (42mg, 0.1 mmol) was added into reaction tube as well as another 0.5 mL. This mixture was stirred 24 hours at room temperature, after that this mixture was directly subjected to column chromatography on silica gel (9:1 PE/ EA) to afford the desired product **6**.

7.4 The synthesis of 7 and 8

To a 10 mL reaction tube equipped with a magnetic stir bar was successively added Pd/CaCO₃(20mg, 50% wt), **4ca**(42mg, 0.1mmol) and 1mL THF, a hydrogen balloon was linked to the tube, then repeat the procudure evacuation and inflation three times, then stired overnight, after this, the reaction mixture was added silica gel and concentrated under reduced pressure, this mixture subjected to column chromatography on silica gel (10:1, PE/EA) to afford the desired product **7**.

To a 10 mL reaction tube equipped with a magnetic stir bar was successively added Pd/CaCO₃ (6mg,), **4ca**(42mg, 0.1mmol) and 1mL THF, a hydrogen balloon was linked to the tube, then repeat the procudure evacuation and inflation three times, then stired overnight, after this, the reaction mixture was added silica gel and concentrated under reduced pressure, this mixture subjected to column chromatography on silica gel (10:1, PE/ EA) to afford the desired product **8**.

8 Crystal information

X-ray Crystallographic Data of Compound 3cj

		\bigcirc	BocN H CO ₂ E CO ₂ E CCDC 2077824	
Bond precision:	C-C = 0.0047 A	Wave	elength=1.54184	
Cell:	a = 8.3138(4)	b = 11.6732(4)	c = 25.1129(10)	
	Alpha = 90	Beta = 90	Gamma = 90	
Temperature:	292 K			
	Calculated	Repor	rted	
Volume	2437.94(17)	2437.	94(18)	
Space group	P 21 21 21	P 21 2	21 21	
Hall group	P 2ac 2ab	P 2ac	2ab	
Moiety formula	$C_{26}H_{27}NO_5$	$C_{26}H_2$	27 NO 5	
Sum formula	C ₂₆ H ₂₇ NO ₅	$C_{26}H_{2}$	27 NO 5	
Mr	433.49	433.4	8	
Dx,g cm ⁻³	1.181	1.181		
Z	4	4		
$Mu (mm^{-1})$	0.664	0.664		
F000	920.0	920.0)	
F000'	922.87			
h, k, lmax	10, 14, 30	9, 13,	30	
Nref	4608[2640]	3876		
Tmin,Tmax	0.911, 0.936	0.827	, 1.000	
Tmin'	0.911			
Correction method = # Reported T Limits: Tmin = 0.827 Tmax = 1.000				
AbsCorr = MULTI-SCAN				
Data completeness $= 1.47$ /	0.84	Theta(max) = 69.736		
R(reflections) = 0.0457(3241)		wR2(reflections) = 0.1204(3876)		
S = 1.059		Npar= 313		
Displacement ellipsoids are drawn at 50% probability level				

Attention: The pure compouds (30 mg) of 3cj was dissolved in CDCl₃ and was removed in NMR tube. After the NMR experiments were finished, the tube was placed in the lab for about 20 days, during which the crystal was formed. The X-ray was detected after the crystal was formed.

X-ray Crystallographic Data of Compound 3cj'

No syntax errors found. CIF dictionary Interpreting this report

Datablock: jidongsheng_1014_auto

Bond precision	C-C = 0.0027 A	Wavele	ngth=1.54184
Cell:	a=8.76363(11)	b=11.32074(14)	c=13.30299(13)
	alpha=97.5000(9)	beta=93.5092(9)	gamma=110.6596(12)
Temperature:	293 К		
	Calculated	Repor	ted
Volume	1216.15(3)	1216.	15(3)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formula	C26 H27 N O5	С26 Н	27 N 05
Sum formula	C26 H27 N O5	С26 Н	27 N 05
Mr	433.49	433.4	8
Dx,g cm-3	1.184	1.184	
Z	2	2	
Mu (mm-1)	0.666	0.666	
F000	460.0	460.0	
F000'	461.44		
h,k,lmax	11,14,16	10,14	,16
Nref	5107	4883	
Tmin,Tmax	0.916,0.948	0.549	,1.000
Tmin'	0.905		
Correction met AbsCorr = MULT	hod= # Reported T I-SCAN	Limits: Tmin=0.54	9 Tmax=1.000
Data completene	ess= 0.956	Theta $(max) = 7$	6.385
R(reflections)	= 0.0467(4026)		wR2(reflections)=
S = 1.092	Npar=	304	3.1100(1000)

Attention: The pure compouds (20 mg) of 3cj[•] was dissolved in EA as a saturated solution, then 0.1-0.2 mL hexane was added, then this solution was placed at the refrigerator(-5 °C) after volatilize of solvents in 3 days the crystal was formed. The X-ray was detected after the crystal was formed.

X-ray Crystallographic Data of Compound 4cm

No syntax errors found. CIF dictionary Inf

ry Interpreting this report

Datablock: jidongs-0923-1_auto

Bond precision: C-C = 0.0044 A Wavelength=1.54184 Cell: a=10.34486(14) b=10.19459(12) c=12.07537(18) beta=105.0474(15) alpha=90 gamma=90 303 K Temperature: Calculated Reported Volume 1229.82(3) 1229.82(3) Space group P 1 21 1 P 21 Hall group P 2yb P 2yb Moiety formula C25 H28 N O6 S C25 H28 N O6 S C25 H28 N 06 S Sum formula C25 H28 N O6 S 470.54 470.54 Mr 1.271 1.271 Dx,g cm-3 Ζ 2 2 Mu (mm-1) 1.501 1.501 498.0 498.0 F000 F000' 500.17 h,k,lmax 13,12,15 13,12,15 5139[2721] 4877 Nref Tmin,Tmax 0.820,0.900 0.796,1.000 Tmin' 0.810 Correction method= # Reported T Limits: Tmin=0.796 Tmax=1.000 AbsCorr = MULTI-SCAN Data completeness= 1.79/0.95 Theta(max) = 76.245wR2(reflections) = R(reflections) = 0.0357(4501)0.1001(4877) S = 1.065Npar= 304

Attention: The pure compouds (150 mg) of 4cm was dissolved in EA as a saturated solution, then 0.1mL hexane was added, then this solution was placed refrigerator (temperature approximately -5°C) after 7 days the crystal was formed. The X-ray was detected after the crystal was formed.

9 The characterization data of product

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-3-phenyl-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3ca)

An coloress liquid, 85% yield (36 mg). $[\alpha]_D^{23} = -19$ (c 1.0, CH₂Cl₂, 99% ee); ¹H NMR (400 MHz, Chloroform-d) δ 7.43-

7.33(m, 5H), 7.24-7.29(m, 1H), 7.22-7.17(m, 2H), 7.04-6.99(m, 2H), 4.75(s, 1H), 4.47-4.33(m, 2H), 1.56(m, 9H), 1.38(t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.6, 146.2, 131.7, 130.6, 129.2, 128.9, 128.7, 128.5, 128.0, 121.3, 89.9, 84.3, 80.7, 66.0, 63.1, 61.1, 27.9, 14.1. HPLC : Chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 13.98 min, minor enantiomer t_R = 17.34 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₅H₂₅NO₅Na]:442.1625,

found:442.1626.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(4-chlorophenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3cb)

An coloress liquid, 80% yield (36 mg). $[\alpha]_D^{23} = 16$ (*c* 1.0, CH₂Cl₂, 98% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41-7.36(m, 2H), 7.33-7.28(m, 3H), 7.27-7.22(m, 2H), 7.08-7.03(m, 2H), 7.72(s, 1H), 4.47-4.43(m, 2H), 1.56(s, 9H), 1.39(t, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.4, 163.0, 146.1, 134.8, 131.8, 130.6, 129.2, 129.1, 128.7, 128.2, 121.1, 90.3, 84.5, 80.5, 65.1, 63.3, 60.9, 27.9, 14.1. HPLC : chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major

enantiomer $t_R = 12.90$ min, minor enantiomer $t_R = 14.87$ min. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{25}H_{24}ClNO_5Na]$:476.1235, found:476.1229.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-2-(phenylethynyl)-3-(p-tolyl)azetidine-1,2-dicarboxylate (3cc)

An coloress liquid, 80% yield (35 mg). $[\alpha]_D^{23} = 17 (c \ 1.0, CH_2Cl_2, >99\% ee);^1H NMR (600 MHz, Chloroform-$ *d* $) <math>\delta 7.29 - 7.25 (m, 1H), 7.25 - 7.19 (m, 6H), 7.05 - 7.02 (m, 2H), 4.71 (s, 1H), 4.47 - 4.31 (m, 2H), 2.37 (s, 3H), 1.55 (s, 9H), 1.38 (t, J = 7.2)$

Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 167.6, 163.6, 146.3, 138.6, 131.8, 129.2, 129.1, 128.8, 128.1, 127.7, 121.6, 89.9, 84.2, 81.2, 66.1, 63.0, 61.3, 28.0, 21.2, 14.1. HPLC : chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 14.14 min, minor enantiomer t_R = 16.30 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₆H₂₇NO₅Na]:456.1781, found:456.1775.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(4-ethoxyphenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3cd)

An coloress liquid, 78% yield (36 mg). $[\alpha]_D^{23} = 6$ (*c* 1.0, CH₂Cl₂, >99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.26 (m, 3H), 7.21 (m, 2H), 7.09 (d, *J* = 7.8 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.70 (s, 1H), 4.45 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.70 (s, 1H), 4.45 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.70 (s, 1H), 4.45 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 4.70 (s, 1H), 4.45 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.70 (s, 1H), 4.85 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.70 (s, 1H), 4.85 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.70 (s, 1H), 4.85 - 4.34 (m, 2H), 4.04 (q, *J* = 7.2 Hz, 2H), 4.85 - 4.84 (m, 2H), 4.85 - 4.84 (m, 2H), 4.84 (m,

2H), 1.55 (s, 9H), 1.40 (m, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.7, 163.9, 159.3, 146.3, 131.8, 130.6, 128.9, 128.0, 122.5, 114.6, 89.9, 84.3, 81.1, 65.9, 63.6, 63.0, 61.5, 28.0, 14.7, 14.1. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 12.25 min, minor enantiomer t_R = 20.78 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₂₉NO₆Na]:486.1887, found:486.1882.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(3-methoxyphenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3ce)

An coloress liquid, 81% yield (37 mg). $[\alpha]_D^{23} = 11 (c \ 1.0, CH_2Cl_2, 99\% ee); {}^{1}H NMR (400 MHz, Chloroform-$ *d* $) {}^{1}H NMR (100 MHz, Chloroform-$ *d* $) {}^{0} 7.34-7.26(m, 2H), 9.25-9.19(m, 2H), 7.09-7.01(m, 2H), 6.95 (m, 1H), 6.92(m, 1H), 6.89(m, 1H), 4.73(s ,1H), 4.47-4.33(m, 2H), 3.78(s, 3H), 1.56(s, 9H), 1.39(t,$ *J* $= 7.2Hz, 3H); {}^{13}C NMR (100 MHz, Chloroform-$ *d* $) {}^{0} 8167.6, 163.3, 159.6, 146.2, 131.8, 131.8, 129.5, 128.9, 128.1, 121.7, 121.4, 114.6, 114.5, 89.9, 84.4, 100 MHz, 10$

80.7, 66.0, 63.2, 61.0, 55.3, 28.0, 14.1. HPLC : chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; major enantiomer t_R = 17.56 min, minor enantiomer t_R = 22.67 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₆H₂₇NO₆Na]:472.1731, found:472.1726.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-2-(phenylethynyl)-3-(m-tolyl)azetidine-1,2-dicarboxylate (3cf)

An coloress liquid, 73% yield (32 mg). $[\alpha]_D{}^{20} = 22 (c \ 1.0, CH_2Cl_2, 99\% ee);{}^1H NMR (600 MHz, Chloroform-$ *d* $) <math>\delta$ 7.31 (m, 1H), 7.27 (m, 1H), 7.21 (m, 2H), 7.07 (d, J = 7.8 Hz, 2H), 6.93 (m, 2H), 6.89 (s, 1H), 4.72 (s, 1H), 4.46 – 4.34 (m, 2H), 3.78 (s, 3H), 1.56 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ${}^{13}C$ NMR (151 MHz, Chloroform-*d*) δ 167.6, 163.2, 159.7, 146.2, 132.0, 131.8, 129.5, 128.9, 128.1, 121.7, 121.6, 114.6, 90.0, 84.3, 81.0, 66.1, 63.1, 61.1, 55.3, 28.0, 14.1. HPLC:

chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 13.33$ min, minor enantiomer $t_R = 16.88$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₆H₂₇NO₅Na]: 456.1781, found: 456.1774.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(3-chlorophenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate(3cg)

An coloress liquid, 65% yield (31 mg). $[\alpha]_D^{24} = 6 (c \ 1.0, CH_2Cl_2, 95\% ee)$; ¹H NMR (400 MHz, Chloroform-*d*) ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41-7.38(m, 1H), 7.38-7.34(m, 1H), 7.34-7.31(m, 1H), 7.30-7.27(m, 1H), 7.27-7.20(m, 3H), 7.14-7.08(m, 2H), 4.71(s, 1H), 4.47-4.34(m, 2H), 1.56(s, 9H), 1.39(t, J = 7.2Hz, 3H); ¹³C NMR (100MHz, Chloroform-*d*) δ 167.3, 162.7, 146.0, 134.4, 132.5, 131.8, 129.8, 129.4, 129.1, 129.0, 128.2, 127.5, 121.1, 90.5, 84.6,

80.4, 65.1, 63.3, 60.8, 27.9, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 11.67$

min, minor enantiomer $t_R = 14.1$ min. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{25}H_{24}CINO_5Na]$:476.1235, found:476.1231.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(2-bromophenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3ch

major enantiomer seprated by preparative liquid chromatography)

An coloress liquid, 78% yield (39 mg). $[\alpha]_{D}^{27.2} = 62$ (c 0.5, CH₂Cl₂, 99% ee); ¹H NMR (400 MHz, Chloroform-d) δ 7.63(d, J

= 8 Hz, 1H), 7.55-7.52(m, 1H), 7.39-7.35(m, 1H), 7.28-7.24(m, 2H), 7.21-7.17(m, 2H), 6.98(d, J = 7.2 Hz, 2H), 5.22(s, 1H), 4.48-4.38(m, 2H), 1.55(s, 9H), 1.39(t, J = 7.2 Hz,3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 163.1, 146.1, 132.7, 131.8, 131.5, 130.4, 130.2, 128.8, 128.0, 127.5, 125.5, 121.5, 89.5, 84.6, 80.5, 66.1, 63.1, 61.0, 28.0, 14.2. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 11.38 min, minor enantiomer t_R =

12.96 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₆H₂₅BrNO₅Na]: 520.0730, 522.0710, found: 520.0725, 522.0704.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(2-chlorophenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate(3ci major enantiomer major enantiomer seprated by preparative liquid chromatography)

An coloress liquid, 80% yield (35 mg). $[\alpha]_{D}^{27.2} = 35 (c \ 0.5, CH_2Cl_2, 99\% ee); {}^{1}H NMR (400 MHz, Chloroform-d) \delta 7.55 (d, J Chloroform-d) \delta 7$

Chemical Formula: C₂₅H₂₄CINO₅

found:476.1233.

= 6.6 Hz, 1H), 7.44 (d, J = 7.2 Hz, 1H), 7.33 (m, 2H), 7.25 (m, 1H), 7.18 (m, 2H), 6.98 (d, J = 7.2 Hz, 2H), 5.20 (s, 1H), 4.49 – 4.35 (m, 2H), 1.55 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 167.4, 163.0, 146.1, 134.9, 131.8, 130.2, 130.0, 129.6, 129.4, 128.9, 128.0, 126.9, 121.4, 89.3, 84.5, 80.4, 63.9, 63.1, 60.9, 28.0, 14.1HPLC: chiral If column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 8.857 min, minor enantiomer t_R =9.976 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₅H₂₄ClNO₅Na]: 476.1235,

(2S,3S)-4-oxo-2-(phenylethynyl)-3-(o-tolyl)azetidine-1,2-dicarboxylate (3cj)

An coloress liquid, 80% yield (35 mg). $[\alpha]_{D}^{27.2} = 56 (c \ 0.5, CH_2Cl_2, 90\% \text{ ee});^{1} \text{ H NMR}$ (600 MHz, Chloroform-d) δ 7.43 (d, J

= 7.2 Hz, 1H), 7.30 (m, 1H), 7.27 – 7.22 (m, 3H), 7.18 (t, J = 7.8 Hz, 2H), 6.93 (d, J = 7.2Hz, 2H), 4.92 (s, 1H), 4.49 – 4.34 (m, 2H), 2.24 (s, 3H), 1.55(s, 3H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 167.9, 163.9, 146.2, 137.4, 131.9, 130.3, 129.8, 128.8, 128.7, 128.0, 126.1, 121.5, 89.3, 84.4, 80.4, 64.3, 63.1, 61.1, 28.0, 19.6, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; major enantiomer t_R = 23.86 min, minor

enantiomer $t_R = 26.12$ min. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{26}H_{27}NO_5Na]$: 456.1775, found: 456.1781.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(naphthalen-1-yl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3ck)

An coloress liquid, 85% yield (41 mg). $[\alpha]_D^{27.1} = 384$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.89 (m, 2H), 7.69 (m, 2H), 7.54 – 7.48 (m, 3H), 7.14 (m, 1H), 7.04 (m, 2H), 6.58 (d, *J* = 7.8 Hz, 2H), 5.47 (s, 1H), 4.57 (m, 1H), 4.44 (m, 1H), 1.57 (s, 9H), 1.45 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 168.0, 163.8, 146.3, 133.8, 131.9, 131.6, 129.4, 128.9, 128.6, 127.8, 127.4, 127.0, 126.6, 126.0, 125.3, 123.0, 121.3, 89.3, 84.4, 80.7, 63.7, 63.2, 61.5, 28.0, 14.2. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min;

minor enantiomer $t_R = 32.54$ min, major enantiomer $t_R = 42.9$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₉H₂₇NO₅Na]: 492.1781, found: 492.1773.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-2-(phenylethynyl)-3-(thiophen-2-yl)azetidine-1,2-dicarboxylate (3cl)

An coloress liquid, 69% yield (30 mg). $[\alpha]_{D}^{20} = 4$ (*c* 0.5, CH₂Cl₂, >99% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.40 (s, 1H), 7.37 (m, 1H), 7.30 (m, 1H), 7.26 (d, *J* = 3.0 Hz, 1H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.14 (d, *J* = 7.8 Hz, 2H), 7.10 (d, *J* = 4.8 Hz, 1H), 4.78 (s, 1H), 4.45 – 4.34 (m, 2H), 1.55 (s, 9H), 1.38 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.5, 163.3, 146.3, 131.9, 130.5, 129.0,

128.2, 127.8, 125.9, 125.4, 121.6, 89.7, 84.4, 80.8, 63.1, 61.6, 61.0, 28.0, 14.2. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 15.27$ min, minor enantiomer $t_R = 19.86$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₃H₂₃NO₅SNa]: 448.1189, found: 448.1184.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(3,4-dimethoxyphenyl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3cm)

An coloress liquid, 79% yield (38 mg). $[\alpha]_D^{27.2} = -12$ (c 1.0, CH₂Cl₂, >99% ee); ¹H NMR (600 MHz, Chloroform-d) δ 7.31 –

7.26 (m, 1H), 7.23 (m, 2H), 7.09 (m, 2H), 6.92 – 6.85 (m, 3H), 4.71 (s, 1H), 4.46 – 4.34 (m, 2H), 3.89 (s, 3H), 3.84 (s, 3H), 1.56 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.6, 163.7, 149.6, 149.0, 146.2, 131.7, 128.9, 128.1, 123.0, 122.2, 121.5, 112.4, 111.3, 89.9, 84.2, 81.1, 66.1, 63.0, 61.4, 56.07, 56.02, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 39.81min, minor enantiomer t_R = 36.72 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₂₉NO₇Na]:502.1836, found:502.1829.

1-(tert-butyl)2-ethyl(2S,3S)-3-(benzo[d][1,3]dioxol-5-yl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3cn)

An coloress liquid, 82% yield (38 mg). $[\alpha]_D^{23.8} = 14$ (c 1.0, CH₂Cl₂, 99% ee); ¹H NMR (600 MHz, Chloroform-d) δ 7.30 (m,

1H), 7.24 (m, 2H), 7.15 (d, J = 7.8 Hz, 2H), 6.83 (s, 3H), 5.95 (s, 2H), 4.66 (s, 1H), 4.44 – 4.34 (m, 2H), 1.55 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-d) δ 167.5, 163.4, 148.1, 147.8, 146.2, 131.8, 129.0, 128.2, 124.1, 123.2, 121.6, 109.7, 108.3, 101.3, 90.0, 84.3, 81.0, 66.1, 63.1, 61.4, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 22.04 min, minor major enantiomer t_R = 27.11 min. HRMS (ESI): [M+Na]⁺ calcd

for [C₂₆H₂₅NO₇Na]: 486.1817, found: 486.1523.

1-(tert-butyl) 2-ethyl (2S,3S)-3-(1H-indol-3-yl)-4-oxo-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3co)

An coloress liquid, 82% yield (37 mg). $[\alpha]_D^{23.4} = -4$ (*c* 0.5, CH₂Cl₂, >99% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54(br,

1H), 7.60(d, J = 8 Hz, 1H), 7.40(d, J = 8.4 Hz, 1H),7.23-7.21(m, 1H), 7.21-7.09(m, 3H), 7.08-7.02(m, 2H), 6.64(d, J = 7.2 Hz, 2H), 4.98(s, 1H), 4.51-4.35(m, 2H), 1.57(s, 9H), 1.40(t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 167.9, 164.6, 146.5, 136.2, 128.6, 127.9, 126.8, 124.8, 122.4, 121.4, 120.1, 119.3, 111.4, 105.2, 89.1, 84.3, 81.1, 63.1, 61.5, 59.8, 28.0, 14.2. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 21.25

min, minor enantiomer t_R = 19.80 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₂₆N₂O₅Na]: 481.1734, found: 481.1739

tert-butyl-(2S,3S)-3-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-4-oxo-2-(phenylethynyl)-2-(propionyloxy)azetidine-1-carboxylate (3cp)

An coloress liquid, 66% yield (43 mg). $[\alpha]_D^{23.4} = -16$ (*c* 1.0, CH₂Cl₂, 85% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53(d, *J* = 8 Hz, 2H), 7.34(d, *J* = 8 Hz, 2H), 7.29-7.24(m, 1H), 7.20-7.11(m, 2H), 6.98(s, 1H), 6.86-6.80(m, 2H), 6.72-3.67(m, 1H), 4.93(s, 1H), 4.49-4.36(m, 2H), 3.77(s, 3H), 2.39(m, 3H), 1.58(s, 9H), 1.40(t, *J* = 7.8 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) 168.2, 167.6, 163.5, 156.0, 146.2, 139.7, 138.7, 133.2, 131.7, 131.3, 130.8, 129.1, 129.0, 128.1, 121.3, 114.7, 111.8, 108.6, 89.5, 84.5, 80.8, 63.2, 60.8, 58.9, 55.6, 28.0, 14.2. HPLC:

chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 0.8 mL/min; major enantiomer $t_R = 57.60$ min, minor enantiomer $t_R = 74.16$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₃₆H₃₃N₂O₇ClNa]: 663.1869, found: 663.1871.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-3-phenyl-2-(p-tolylethynyl)azetidine-1,2-dicarboxylate (3da)

An coloress liquid, 80% yield (35 mg). $[\alpha]_D^{23.4} = 35 (c \ 1.0, CH_2Cl_2, >99\% ee); ^1H NMR (600 MHz, Chloroform-d) \delta 7.42 - 0.000 MHz$

Chemical Formula: C₂₆H₂₇NO₅

7.36 (m, 3H), 7.35-7.33(m, 2H), 7.00 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 7.8 Hz, 2H), 4.74 (s, 1H), 4.49 – 4.31 (m, 3H), 2.29 (s, 3H), 1.55 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 167.7, 163.5, 146.3, 139.2, 131.7, 130.8, 129.3, 128.8, 128.7, 128.5, 118.4, 97.0, 90.3, 84.3, 80.2, 66.1, 63.1, 61.3, 28.0, 21.4, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 14.61 min, minor enantiomer t_R = 18.10 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₆H₂₇NO₅Na]: 456.1775, found: 456.1781.

1-(tert-butyl) 2-ethyl (2S,3S)-2-((4-(tert-butyl)phenyl)ethynyl)-4-oxo-3-phenylazetidine-1,2-dicarboxylate (3ea)

An coloress liquid, 80% yield (38 mg). $[\alpha]_D^{24} = 31$ (*c* 1.0, CH₂Cl₂, 98% ee); ¹H NMR (400 MHz, Chloroform-d) δ 7.40 (m, , 3H), 7.34 (m, , 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.95 (d, *J* = 8.4 Hz, 2H), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.40 (m, 2H), 1.56 (s, 9H), 1.38 (t, *J* = 7.2 Hz), 4.74 (s, 1H), 4.84 (

Chemical Formula: C₂₉H₃₃NO₅

Hz, 3H), 1.26 (s, 9H).¹³C NMR (151 MHz, Chloroform-d) δ 167.7, 163.5, 152.4, 146.3, 131.6, 130.8, 129.3, 128.7, 128.5, 125.1, 118.4, 90.2, 84.4, 80.1, 66.1, 63.1, 61.3, 34.8, 31.0, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 13.13 min, minor enantiomer t_R = 16.12 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₉H₃₃NO₅Na]:498.2251, found:498.2256.

1-(tert-butyl) 2-ethyl (2S,3S)-2-((4-bromophenyl)ethynyl)-4-oxo-3-phenylazetidine-1,2-dicarboxylate (3fa)

An coloress liquid, 82% yield (47 mg). $[\alpha]_D^{23.3} = 58$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.39 (m, 3H), 7.36 – 7.32 (m, 4H), 6.86 (d, *J* = 8.4 Hz, 2H), 4.75 (s, 1H), 4.47 – 4.34 (m, 2H), 1.56 (s, 9H), 1.39 (t, *J* = 7.2 Hz, 3H). ¹³C

Chemical Formula: C25H24BrNO5

$$\begin{split} \text{NMR} & (151 \text{ MHz}, \text{cdcl}_3) \, \delta \, 167.4, \, 163.1, \, 146.3, \, 133.2, \, 131.5, \, 130.8, \, 129.3, \, 128.8, \, 128.6, \, 123.4, \\ & 120.4, \, 88.9, \, 84.5, \, 82.2, \, 66.1, \, 63.2, \, 61.1, \, 28.0, \, 14.2. \ \text{HPLC: chiral IF column.} \ (\textit{n-hexane:i-PrOH} = 90:10), \, 1 \ \text{mL/min; minor enantiomer } t_R = 20.11 \ \text{min, major enantiomer } t_R = 15.96 \\ & \text{min.} \ \text{HRMS} \ (\text{ESI}): \ [\text{M+Na}]^+ \ \text{calcd} \ \text{for} \ [\text{C}_{25}\text{H}_{24}\text{BrNO}_5\text{Na}]:522.0710, \ 520.0730, \\ & \text{found:} 522.0714, \, 520.0725. \end{split}$$

1-(tert-butyl) 2-ethyl (2S,3S)-2-((4-chlorophenyl)ethynyl)-4-oxo-3-phenylazetidine-1,2-dicarboxylate (3ga)

An coloress liquid, 69% yield (39 mg). $[\alpha]_D^{22.6} = 41$ (c 1.0, CH₂Cl₂, 96% ee);¹H NMR (600 MHz, Chloroform-d) δ 7.42-7.37

(m, 3H), 7.36 – 7.31 (m, 2H), 7.18 (d, J = 8.4 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 4.75 (s, 1H), 4.47 – 4.34 (m, 2H), 1.56 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.5, 163.1, 146.3, 135.1, 133.0, 130.8, 129.3, 128.8, 128.6, 128.5, 120.0, 88.9, 84.4, 82.1, 66.2, 63.2, 61.0, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 12.4 min, minor enantiomer t_R = 14.19 min.

HRMS (ESI): $[M+Na]^+$ calcd for $[C_{25}H_{24}CINO_5Na]$:476.1235, found:476.1231.

1-(tert-butyl) 2-ethyl (2S,3S)-2-((4-fluorophenyl)ethynyl)-4-oxo-3-phenylazetidine-1,2-dicarboxylate (3ha)

An coloress liquid, 91% yield (39 mg). $[\alpha]_D^{23} = 27$ (*c* 1.0, CH₂Cl₂, 98% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (m, 3H), 7.34 (m, 2H), 6.98 (m, 2H), 6.89 (t, *J* = 8.6 Hz, 2H), 4.75 (s, 1H), 4.49 – 4.33 (m, 2H), 1.56 (s, 9H), 1.39 (t, *J* = 7.2 Hz, 3H).¹³C NMR (151 MHz, Chloroform-*d*) δ 167.5, 163.2, 163.0(d, *J*_{C-F}= 250.6 Hz), 162.0, 146.2, 133.8(d, *J*_{C-F}= 9.1 Hz), 130.7,

129.2, 128.7, 128.5, 117.5 (d, $J_{C-F} = 3.0$ Hz), 115.5(d, $J_{C-F} = 22.6$ Hz), 89.0, 84.4, 80.7, 66.1, 63.1, 61.1, 28.0, 14.1.HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 12.3 min, minor enantiomer t_R = 15.4 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₅H₂₄FNO₅Na]:460.1531, found:460.1526.

Chemical Formula: C₂₅H₂₄FNO₅

1-(tert-butyl) 2-ethyl (2S,3S)-2-((3-chlorophenyl)ethynyl)-4-oxo-3-phenylazetidine-1,2-dicarboxylate (3ia)

An coloress liquid, 65% yield (29 mg). $[\alpha]_D^{24} = 29 (c \ 1.0, CH_2Cl_2, 98\% ee); H NMR (600 MHz, Chloroform-d) \delta 7.41 (s, 3H),$

7.8 Hz, 1H), 4.76 (s, 1H), 4.46 – 4.36 (m, 2H), 1.56 (s, 9H), 1.39 (t, J = 6.6 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 163.0, 146.2, 134.0, 131.8, 130.7, 129.8, 129.4, 129.2, 128.9, 128.6, 123.2, 88.5, 84.5, 82.3, 66.2, 63.2, 61.0, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 21.21 min, minor enantiomer t_R =

7.36 - 7.32 (m, 2H), 7.28 - 7.23 (m, 1H), 7.13 (t, J = 7.8 Hz, 1H), 6.95 (s, 1H), 6.89 (d, J = 7.36 Hz, 1H), 7.28 - 7.23 (m, 1H), 7.13 (t, J = 7.8 Hz, 1H), 7.13 (t

Chemical Formula: C₂₅H₂₄CINO₅

13.15 min. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{25}H_{24}ClNO_5Na]$:476.1235, found:476.1229.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-3-phenyl-2-(m-tolylethynyl)azetidine-1,2-dicarboxylate (3ja)

Chemical Formula: C₂₆H₂₇NO₅

An coloress liquid, 77% yield (33 mg). $[\alpha]_D^{24} = 34$ (*c* 1.0, CH₂Cl₂, 98% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.43-7.38 (m, 3H), 7.37-7.33 (m, 2H), 7.11-7.06 (m, 2H), 6.82 (s, 2H), 4.75 (s, 1H), 4.47 – 4.34 (m, 2H), 2.24 (s, 3H), 1.56 (s, 9H), 1.39 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, cdcl₃) δ 167.7, 163.4, 146.3, 137.8, 132.4, 130.8, 129.8, 129.3, 128.8, 128.7, 128.5, 128.0, 121.3, 90.2, 84.3, 80.6, 66.2, 63.1, 61.2, 28.0, 21.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 13.76 min, major enantiomer t_R = 11.41 min. HRMS

(ESI): $[M+Na]^+$ calcd for $[C_{26}H_{27}NO_5Na]$:456.1181, found:456.1176.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-3-phenyl-2-(thiophen-2-ylethynyl)azetidine-1,2-dicarboxylate (3ka)

An coloress liquid, 69% yield (29 mg). $[\alpha]_D^{24} = 25 (c \ 1.0, CH_2Cl_2, 98\% ee); H NMR (600 MHz, Chloroform-d) \delta 7.43-7.37(m, c$

Chemical Formula: C₂₃H₂₃NO₅S

3H), 7.36 – 7.31 (m, 2H), 7.22 – 7.18 (m, 1H), 6.90 – 6.85 (m, 2H), 4.75 (s, 1H), 4.46 – 4.34 (m, 2H), 1.55 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 167.4, 163.2, 146.2, 133.1, 130.5, 129.2, 128.8, 128.6, 128.1, 126.8, 121.3, 84.9, 84.5, 83.5, 66.3, 63.2, 61.4, 28.0, 14.1. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 10.59 min, major enantiomer t_R = 13.18 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₃H₂₃NO₅SNa]:448.1189, found:448.1183.

1-(tert-butyl) 2-methyl (28,38)-4-oxo-3-phenyl-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3la)

An coloress liquid, 82% yield (33 mg). $[\alpha]_D{}^{23} = 16 (c \ 1.0, CH_2Cl_2, 95\% ee); {}^1H NMR (400 MHz, Chloroform-$ *d* $) <math>\delta$ 7.43-7.39(m, 3H), 7.37-7.33(m, 2H), 7.29-7.24(m, 1H), 7.23-7.17(m, 2H), 7.04-6.99(m, 2H), 4.77(s, 1H), 3.95(s, 3H), 1.56(s, 9H); {}^{13}C NMR (100 MHz, Chloroform-*d*) δ 168.2, 163.3, 146.2, 131.8, 130.6, 129.3, 129.0, 128.8, 128.5, 128.1, 121.2, 90.0, 84.5, 80.6, 66.1, 60.9,

53.9, 28.0. HPLC : chiral IF column. (n-hexane:i-PrOH = 90:10), 1 mL/min; major enantiomer

Chemical Formula: C₂₄H₂₃NO₅

 $t_R = 13.2 \text{ min}$, minor enantiomer $t_R = 19.6 \text{ min}$. HRMS (ESI): [M+Na]⁺ calcd for [C₂₄H₂₃NO₅Na]:428.1468, found:428.1472.

1-(tert-butyl) 2-ethyl (2S,3S)-4-oxo-3-phenyl-2-(phenylethynyl)azetidine-1,2-dicarboxylate (3ma)

An coloress liquid, 87% yield (42 mg). $[\alpha]_D^{24} = 20 (c \ 1.0, CH_2Cl_2, 95\% ee); {}^{1}H NMR (400 MHz, Chloroform-$ *d* $) <math>\delta$ 7.45-7.40(m, 2H), 7.41-7.34(m, 6H), 7.33-7.28(m, 2H), 7.28-7.24(m, 1H), 7.23-7.17(m, 2H), 7.03-6.98(m, 2H), 5.42(d, *J* = 12Hz, 1H), 5.32(d, *J* = 12Hz 1H), 4.70(s, 1H), 1.47(s, 9H); {}^{13}C NMR (100 MHz, Chloroform-*d*) δ 167.4, 163.3, 146.1, 134.8, 131.8, 130.5, 129.3, 129.0, 128.8, 128.7, 128.5, 128.3, 128.1, 121.3, 90.0, 84.4, 80.6, 68.4, 66.1, 61.1, 27.8.

Chemical Formula: C₃₀H₂₇NO₅

$$\begin{split} \text{HPLC}: \text{chiral IF column.} & (\textit{n}\text{-hexane:}\textit{i}\text{-PrOH} = 90\text{:}10), 1 \text{ mL/min}; \text{ major enantiomer } t_R = 20.12 \text{ min}, \text{ minor enantiomer } t_R = 25.88 \text{ min}. \text{ HRMS (ESI): } [\text{M}\text{+}\text{Na}]^+ \text{ calcd for } [\text{C}_{30}\text{H}_{27}\text{NO}_5\text{Na}]\text{:}504.1781, \text{ found:}504.1786. \end{split}$$

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(phenylethynyl)succinate (4ca)

An coloress liquid, 81% yield (41 mg). $[\alpha]_D{}^{20} = -17$ (*c* 1.0, CH₂Cl₂, 99% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.60 – 7.54 (m, 2H), 7.43 – 7.37 (m, 2H), 7.35 – 7.27 (m, 6H), 6.32 (s, 1H), 4.37 (s, 1H), 4.28 – 4.14 (m, 2H), 4.10 (q, *J* = 7.2 Hz, 2H), 1.44 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.12 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 170.5, 168.29, 154.2, 132.7, 131.7, 130.5, 128.4, 128.3, 128.1, 127.9, 80.5, 62.4, 61.6, 60.8, 57.3, 28.20, 14.0, 13.7.

HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer $t_R = 29.83$ min, major enantiomer $t_R = 31.98$ min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H₃₁NO₆Na]:488.2044 found:488.2048.

diethyl (2S,3S)-3-(4-bromophenyl)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)succinate (4cb)

An coloress liquid, 75% yield (41 mg). $[\alpha]_D^{20} = -2$ (*c* 1.0, CH₂Cl₂, 98% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.48-7.44(m, 4H), 7.42-7.39(m, 2H), 7.35-7.29(m, 3H), 6.19(br, 1H), 4.40(s, 1H), 4.19-4.16(m, 2H), 4.12(q, 2H), 1.44(s, 9H), 1.24(t, *J* = 7.2 Hz, 3H), 1.16(t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.2, 168.1, 154.1, 132.3, 132.0, 131.7, 131.1, 128.7, 128.2, 122.7, 122.2, 87.2, 84.5, 80.7, 62.6, 61.8, 60.5, 56.6, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer t_R = 9.83

min, major enantiomer $t_R = 10.99$ min. HRMS (ESI): $[M+Na]^+$ calcd $[C_{27}H_{30}BrNO_6Na]$:566.1149, 568.1128 found:566.1149, 568.1126.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(4-chlorophenyl)-2-(phenylethynyl)succinate (4cc)

An coloress liquid, 73% yield (37 mg). $[\alpha]_D{}^{20} = 22$ (*c* 1.0, CH₂Cl₂, >99% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.55 – 7.51 (m, 2H), 7.35 – 7.30 (m, 5H), 7.28 – 7.25 (m, 2H), 6.33 (s, 1H), 4.34 (s, 1H), 4.20 (m, 2H), 4.11 (m, 2H), 1.43 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (151 MHz, Chloroform-d)170.3, 168.0, 154.1, 134.4, 131.9, 131.7, 131.4, 28.7, 128.2, 128.1, 122.2, 87.1, 84.5, 80.7, 62.6, 61.8, 60.6, 56.5, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 15.25 min,

major enantiomer $t_R = 16.87$ min, HRMS (ESI): $[M+Na]^+$ calcd $[C_{27}H_{30}CINO_6Na]$:474.1887 found:474.1884.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)-3-(p-tolyl)succinate (4cd)

An coloress liquid, 79% yield (38 mg). $[\alpha]_D{}^{20} = -11$ (*c* 1.0, CH₂Cl₂, 90% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.44(d, *J* = 7.8 Hz, 2H), 7.42-7.39(m, 2H), 7.31-7.27(m, 3H), 7.13(m, 2H), 6.28(br, 1H), 4.34(s, 3H), 4.24-4.15(m, 2H), 4.14-4.07(m, 2H), 2.33(s, 3H), 1.43(s, 9H), 1.23(t, *J* = 7.2 Hz, 3H), 1.14(t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.8, 168.3, 154.3, 138.1, 131.8, 130.4, 129.7, 128.7, 128.4, 128.1, 122.6, 86.6, 85.1, 80.4, 62.4, 61.6, 60.9, 57.0, 28.2, 21.1, 14.1, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10),

1 mL/min; minor enantiomer $t_R = 24.16$ min, major enantiomer $t_R = 16.39$ min. HRMS (ESI): [M+Na]⁺ calcd [C₂₈H₃₃NO₆Na]:502.2200, found:502.2195.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(4-ethoxyphenyl)-2-(phenylethynyl)succinate (4ce)

An coloress liquid, 80% yield (41 mg). $[\alpha]_D{}^{20} = -11$ (*c* 1.0, CH₂Cl₂, 98% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 8.4 Hz, 2H), 7.41 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.2 Hz, 3H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.28 (s, 1H), 4.31 (s, 1H), 4.24 - 4.16 (m, 2H), 4.10 (q, *J* = 6.6 Hz, 2H), 4.02 (q, *J* = 7.2 Hz, 2H), 1.44 (s, 9H), 1.40 (t, *J* = 7.2 Hz, 3H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.8, 168.4, 159.1, 154.3, 131.8, 131.7, 128.4, 128.1, 124.7, 114.0, 86.7, 85.2, 80.5, 63.4, 62.4, 61.6, 61.0, 56.7, 28.3,

14.8, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 15.03$ min, major enantiomer $t_R = 16.67$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₉H₃₅NO₇Na]:532.2306, found:532.2303.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(3-chlorophenyl)-2-(phenylethynyl)succinate (4cf)

An coloress liquid, 71% yield (35 mg). $[\alpha]_D{}^{20} = -6 (c \ 1.0, CH_2Cl_2, 99\% ee); {}^{1}H NMR (600 MHz, Chloroform-$ *d* $) <math>\delta$ 7.64 (s, 1H), 7.45 (m, 3H), 7.37 – 7.21 (m, 5H), 6.19 (s, 1H), 4.43 (s, 1H), 4.27 – 4.10 (m, 4H), 1.44 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.16 (t, *J* = 7.2 Hz, 3H). {}^{13}C NMR (151 MHz, Chloroform-*d*) δ 170.1, 168.0, 154.1, 134.8, 133.6, 131.8, 130.8, 129.1, 128.9, 128.7, 128.5, 128.2, 122.2, 87.3, 84.3, 80.7, 62.6, 61.8, 60.5, 56.6, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 9.61 min, major enantiomer t_R = 11.08 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H₃₀ClNO₆Na]:522.1654

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(3-methoxyphenyl)-2-(phenylethynyl)succinate (4cg)

An coloress liquid, 80% yield (39 mg). $[\alpha]_D^{20} = -10$ (*c* 1.0, CH₂Cl₂, 98% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.42 (d, *J* = 6.6 Hz, 2H), 7.29 (d, *J* = 6.6 Hz, 3H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.18 (s, 1H), 7.11 (d, *J* = 7.4 Hz, 1H), 6.88 (d, *J* = 7.8 Hz, 1H), 6.29 (s, 1H), 4.35 (s, 1H), 4.21 (m 2H), 4.15 – 4.08 (m, 2H), 3.74 (s, 3H), 1.44 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.14 (t, *J*

= 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.5, 168.2, 159.0, 154.2, 134.0, 131.7, 128.8, 128.5, 122.9, 122.5, 116.1, 114.1, 86.7, 85.0, 80.5, 62.5, 61.7, 60.7, 57.2, 55.1, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 13.96 min, major enantiomer t_R = 17.86 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₈H₃₃NO₇Na]:518.2149 found:518.2147.

diethyl (2S,3S)-3-(2-bromophenyl)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)succinate (4ch)

An coloress liquid, 68% yield (37 mg). $[\alpha]_D{}^{20} = -49$ (*c* 1.0, CH₂Cl₂, 99% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.41 (d, *J* = 6.6 Hz, 2H), 7.31 (m, 4H), 7.17 (t, *J* = 7.2 Hz, 1H), 6.45 (s, 1H), 5.11 (s, 1H), 4.27 - 4.17 (m, 2H), 4.17 - 4.11 (m, 1H), 4.11 - 4.04 (m, 1H), 1.44 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 1Hz, 1Hz), 6.45 (s, 1Hz), 5.20 (t, *J* = 7.2 Hz, 2Hz), 7.21 (t, *J* = 7.2 Hz), 7.21 (t, J = 7.2 Hz), 7.21 (

3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.0, 167.6, 154.1, 132.9, 132.7, 131.8, 131.3, 129.6, 128.5, 128.1, 127.1, 126.5, 122.4, 86.7, 84.9, 80.6, 62.5, 62.0, 60.4, 55.1, 28.2, 14.0, 13.7. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 13.93 min, minor enantiomer t_R = 16.51 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H₃₀BrNO₆Na]:566.1149, 568.1128 found:566.1149, 568.1125.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(2-chlorophenyl)-2-(phenylethynyl)succinate (4ci)

An coloress liquid, 75% yield (37 mg). $[\alpha]_D{}^{20} = 48$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 8.03-7.99(m, 1H), 7.43-7.37(m, 3H), 7.33-7.27(m, 3H), 7.25-7.22(m, 2H), 6.40(br, 1H), 5.12(s, 1H), 4.26-4.05(m, 2H), 1.44(s, 9H), 1.23(t, *J* = 7.2 Hz, 3H), 1.14(t, *J* = 7.2 Hz 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.1, 167.7, 154.1, 135.3, 131.8, 131.3,

131.1, 129.3, 128.5, 128.1, 126.5, 122.4, 86.6, 84.8, 80.6, 62.5, 62.0, 60.4, 52.4, 28.2, 14.0, 13.7. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 13.47$ min, minor enantiomer $t_R = 14.93$ min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H₃₀ClNO₆Na]:522.1654 found:522.1650.

diethyl (2S,3S)-3-(4-bromo-2-fluorophenyl)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)succinate (4cj)

An coloress liquid, 64% yield (36 mg). $[\alpha]_D^{20} = -10$ (*c* 1.0, CH₂Cl₂, 96% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.72 (t, *J* = 8.0 Hz, 1H), 7.41 (d, *J* = 7.6 Hz, 2H), 7.34 – 7.24 (m, 5H), 6.15 (s, 1H), 4.84 (s, 1H), 4.25 – 4.13 (m, 4H), 1.43 (s, 9H), 1.22 (dt, *J* = 13.2, 7.2Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 169.7, 167.8, 166.1, 161.7, 154.0, 132.7, 131.7, 128.7, 128.2, 127.1, 122.2, 120.3, 118.9, 118.7, 87.0, 84.3, 80.7, 62.7, 61.9, 60.2, 49.1, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 10.42

min, major enantiomer $t_R = 11.49$ min. HRMS (ESI): $[M+Na]^+$ calcd for $[C_{27}H_{29}BrFNO_6Na]$:584.1054 586.1034 , found:584.1058, 586.1035.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-(3,4-dimethoxyphenyl)-2-(phenylethynyl)succinate (4ck)

An coloress liquid, 70% yield (37 mg). $[\alpha]_D{}^{20} = 7$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.2 Hz, 2H), 7.30 (m, 3H), 7.21 (s, 1H), 7.05 (d, *J* = 8.4 Hz, 1H), 6.81 (d, *J* = 7.8 Hz, 1H), 6.25 (s, 1H), 4.31 (s, 1H), 4.26 - 4.18 (m, 2H), 4.11 (q, *J* = 7.2 Hz, 2H), 3.86 (s, 3H), 3.75 (s, 3H), 1.44 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H), 1.15 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 168.3, 154.2, 149.3, 148.4, 131.7, 128.5, 128.2, 125.1, 122.6, 123.1, 114.0, 110.6, 97.0, 86.8, 85.3, 80.6, 62.4, 61.6, 60.9, 56.9, 55.8, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 22.05$ min, major enantiomer $t_R = 31.15$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₉H₃₅NO₈Na]:548.2255, found:548.2254.

diethyl (2S,3S)-3-(benzo[d][1,3]dioxol-5-yl)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)succinate (4cl)

An coloress liquid, 74% yield (38 mg). $[\alpha]_D{}^{20} = -20 (c \ 1.0, CH_2Cl_2, 99\% ee)^1H NMR (600 MHz, Chloroform-$ *d* $) <math>\delta$ 7.42 (d, J = 7.8 Hz, 2H), 7.30 (m, 3H), 7.18 (s, 1H), 6.93 (d, J = 7.8 Hz, 1H), 6.75 (d, J = 7.8 Hz, 1H), 6.25 (s, 1H), 5.96 – 5.94 (m, 2H), 4.30 (s, 1H), 4.26 – 4.11 (m, 4H), 1.44 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H), 1.18 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-

d) δ 170.6, 168.3, 154.2, 147.8, 147.3, 131.8, 128.5, 128.2, 126.4, 124.5, 122.6, 110.7, 107.6, 101.1, 86.9, 85.0, 80.5, 62.5,

61.7, 60.9, 57.0, 28.3, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 15.01$ min, major enantiomer $t_R = 18.81$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₈H₃₁NO₈Na]:532.1942, found:532.1939.

diethyl (2S,3R)-2-((tert-butoxycarbonyl)amino)-2-(phenylethynyl)-3-(thiophen-2-yl)succinate (4cm)

An coloress liquid, 70% yield (33 mg). $[\alpha]_D{}^{20} = 4 (c \ 1.0, CH_2Cl_2, 99\% ee); {}^1H \ NMR (600 \ MHz, Chloroform-$ *d* $) <math>\delta$ 7.44(d, $J = 7.6 \ Hz, 1H$), 7.43-7.40(m, 2H), 7.34-7.32(m, 1H), 7.32-7.28(m, 3H), 7.27-7.24(m, 1H), 6.25(br, 1H), 4.54(s, 1H), 4.26-4.18(m, 2H), 4.12(q, $J = 7.2 \ Hz, 2H$), 1.45(s, 9H), 1.26(t, $J = 7.2 \ Hz, 3H$), 1.17(t, $J = 7.2 \ Hz, 3H$); ${}^{13}C \ NMR (151 \ MHz, Chloroform-$

d) δ 170.1, 168.2, 154.2, 132.6, 132.0, 131.8, 129.3, 128.5, 128.3, 125.8, 124.5, 122.4, 86.4, 85.0, 80.6, 62.5, 61.8, 52.9, 28.2, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 8.63 min, minor enantiomer t_R = 7.55 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₅H₂₉NO₆SNa]:494.1608 found:494.1606.

(2S,3S) ethyl 3-((tert-butoxycarbonyl)amino)-2-(1-(4-chlorobenzoyl)-1H-indol-3-yl)-5-phenyl-3-(propionyloxy)pent-4-ynoate (4cn)

An coloress liquid, 62% yield (39 mg). $[\alpha]_D^{20} = 21$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.65(s, 2H), 7.40-7.22(m, 7H), 7.15-7.05(m, 2H), 6.68-6.65(m, 1H), 6.23(s, 1H), 4.76(s, 1H), 4.33-4.12(m, 4H), 3.70(s, 3H), 2.39(s, 3H), 1.22(s, 9H), 1.17(t, J = 7.2Hz, 3H); ¹³C NMR (151 MHz, Chloroform-*d*) δ 168.8, 168.6, 155.7,139.3, 137.3, 133.7, 131.7, 131.4, 129.0, 128.6, 128.2, 122.4, 114.3,

112.1, 102.4, 86.2, 85.2, 62., 61.9, 60.4, 55.4, 28.0, 14.1, 13.8 HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 10.39$ min, major enantiomer $t_R = 16.46$ min. HRMS (ESI): [M+Na]⁺ calcd [C₃₈H₃₉ClN₂O₈Na]:709.2287 found:709.2271.

Diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(p-tolylethynyl)succinate (4da)

An coloress liquid, 79% yield (38 mg). $[\alpha]_D{}^{20} = -14$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 (s, 2H), 7.38 – 7.26 (m, 5H), 7.10 (d, *J* = 7.2Hz, 2H), 6.31 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (d, *J* = 6.6 Hz, 2H), 2.33 (s, 3H), 1.43 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.11 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-

d) δ 168.3 , 154.2 , 138.54 , 132.87 , 131.60 , 130.58 , 128.85 , 128.24 , 127.85 , 119.5 , 80.4 , 62.4 , 60.8 , 57.4 , 28.2 , 21.4 , 14.0 , 13.7 . HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer t_R = 28.25 min, major enantiomer t_R = 31.06 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₈H₃₃NO₆Na]:502.2200, found:502.2196.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-2-((4-(tert-butyl)phenyl)ethynyl)-3-phenylsuccinate (4ea)

An coloress liquid, 71% yield (37 mg). $[\alpha]_D{}^{20} = -14$ (*c* 1.0, CH₂Cl₂, 91% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 – 7.56 (m, 2H), 7.33 (q, *J* = 8.4 Hz, 7H), 6.30 (br, 1H), 4.36 (s, 1H), 4.26 – 4.14 (m, 2H), 4.08 (q, *J* = 7.2 Hz, 2H), 1.43 (s, 9H), 1.30 (s, 9H), 1.24 (t, *J* = 7.2 Hz, 3H), 1.11 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 168.4, 154.2, 151.8, 133.0, 131.5, 130.6, 128.3, 127.9, 125.1, 119.6, 97.0, 86.9, 84.4, 80.5, 62.4, 61.6, 60.9, 57.5, 34.8, 31.1, 28.3, 14.0, 13.7. HPLC: chiral IF

column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 10.31$ min, minor enantiomer $t_R = 11.18$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₃₁H₃₉NO₆Na]:544.2670, found:544.2667.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-2-((4fluorophenyl)ethynyl)-3-phenylsuccinate (4fa)

An coloress liquid, 54% yield (26 mg). $[\alpha]_D^{20} = 25.5$ (*c* 1.0, CH₂Cl₂, 99% ee);v¹H NMR (600 MHz, Chloroform-*d*) δ 7.58 – 7.52 (m, 2H), 7.39 – 7.35 (m, 2H), 7.33 (d, *J* = 4.8 Hz, 3H), 6.98 (t, *J* = 8.4 Hz, 2H), 6.31 (s, 1H), 4.35 (s, 1H), 4.25 – 4.16 (m, 2H), 4.14 – 4.08 (m, 2H), 1.44 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR

(151 MHz, Chloroform-*d*) δ 170.5, 168.2, 162.7(d, $J_{C-F} = 250.2 \text{ Hz}$), 154.2, 133.7(d, $J_{C-F} = 8.4 \text{ Hz}$), 132.9, 130.5, 128.4, 128.0, 118.6, 115.4(d, $J_{C-F} = 22.0 \text{ Hz}$), 90.7, 85.8, 84.8, 80.5, 62.5, 61.7, 60.9, 57.4, 28.3, 14.0, 13.8. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer $t_R = 23.63$ min, major enantiomer $t_R = 25.76$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₃₀FNO₆Na]:506.1949, found:506.1948.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-2-((4chlorophenyl)ethynyl)-3-phenylsuccinate (4ga)

An coloress liquid, 69% yield (34 mg). $[\alpha]_D{}^{20} = -8$ (*c* 1.0, CH₂Cl₂, 99% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57-7.49(m, 2H), 7.35-7.29(m, 5H), 7.28-7.24(m, 2H), 6.31(br, 1H), 4.34(s, 1H), 4.25-4.16(m, 2H), 4.11(q, *J* = 7.2 Hz, 2H), 1.43(s, 9H), 1.23(t, *J* = 7.2 Hz, 3H), 1.13(t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.5,

168.2, 154.3, 134.5, 132.9, 132.7, 130.4, 128.5, 128.4, 128.0, 121.0, 86.0, 85.6, 80.6, 62.5, 61.7, 60.8, 57.2, 28.2, 14.0, 13.7. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 11.31$ min, major enantiomer $t_R = 12.25$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₃₀CINO₆Na]:522.1654, found:522.1653.

diethyl

(2S,3S)-2-((4-bromophenyl)ethynyl)-2-((tert-

butoxycarbonyl)amino)-3-phenylsuccinate (4ha)

An coloress liquid, 73% yield (39 mg). $[\alpha]_D{}^{20} = -7$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.53 (m, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.33 (m, 3H), 7.24 (d, *J* = 8.4 Hz, 2H), 6.32 (s, 1H), 4.34 (s, 1H), 4.26 – 4.14 (m, 2H), 4.10 (m 2H), 1.43 (s, 9H), 1.23 (t, *J* = 7.2 Hz, 3H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (151 MHz,

Chloroform-*d*) δ 170.5, 168.2, 154.3, 133.2, 132.8, 131.4, 130.5, 128.4, 128.0, 122.8, 121.6, 86.3, 85.7, 80.6, 62.5, 61.7, 60.9, 57.3, 28.2, 14.0, 13.7. HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 11.67min, major enantiomer t_R = 12.63 min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₇H₃₀BrNO₆Na]:566.1149,568.1128, found:566.1129, 568.1127.

diethyl (2S,3S)-3-((tert-butoxycarbonyl)amino)-2-phenyl-3-

(propionyloxy)-5-(4-(trifluoromethyl)phenyl)pent-4-ynoate (4ia)

An coloress liquid, 55% yield (29 mg). $[\alpha]_D{}^{20} = -10$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.57-5.51(m, 4H), 7.48(d, J = 7.8 Hz, 2H), 7.31-7.37(m, 3H), 6.34(s, 1H), 4.34(s, 1H), 4.26-4.17(m, 2H), 4.15-4.09(m, 2H), 1.44(s, 9H), 1.24(t, J = 7.2Hz, 3H), 1.14(t, J = 7.2Hz, 3H); {}^{13}C NMR (151 MHz, Chloroform-*d*) δ 170.5,

168.1, 154.3, 132.6, 132.0, 130.5, 130.4, 130.1, 129.9, 128.5, 128.1, 126.3(d, $J_{C-F} = 1.68$ Hz), 125.1(q, $J_{C-F} = 3.7$ Hz), 123.9(q, $J_{C-F} = 272.7$ Hz) 123.9, 87.6, 85.3, 80.7, 62.6, 61.8, 60.9, 57.2, 28.2, 14.0, 13.8 HPLC: chiral IF column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer $t_R = 19.99$ min, major enantiomer $t_R = 21.57$ min. HRMS (ESI): [M+Na]⁺ calcd for [C₂₈H₃₀F₃NO₆Na]:556.1917, found:556.1913.

diethyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(mtolylethynyl)succinate (4ja)

An coloress liquid, 80% yield (38 mg). $[\alpha]_D{}^{20} = -9$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.57 (m, 2H), 7.34 – 7.31 (m, 3H), 7.24 – 7.16 (m, 3H), 7.12 (d, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.37 (s, 1H), 4.20 (m, 2H), 4.09 (q, *J* = 7.2 Hz, 1H), 6.29 (s, 1H), 4.20 (s, 1H),

2H), 2.31 (s, 3H), 1.44 (s, 9H), 1.24 (t, J = 7.2 Hz, 3H), 1.12 (t, J = 7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 168.3, 154.2, 137.8, 132.8, 132.3, 130.6, 129.3, 128.8, 128.3, 128.0, 127.9, 122.3, 86.9, 84.5, 80.4, 62.4, 61.7, 60.8, 57.3, 28.2, 21.1, 14.0, 13.7. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 98:2), 1 mL/min; major enantiomer t_R = 26.21 min, minor enantiomer t_R = 33.3 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₈H₃₃NO₆Na]:502.2200, found:502.2196

4-ethyl 1-methyl (2S,3S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(thiophen-2-ylethynyl)succinate (4ka)

An coloress liquid, 71% yield (32.4 mg). $[\alpha]_D^{20} = 14$ (*c* 1.0, CH₂Cl₂, 87% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.57-7.51(m, 2H), 7.36-7.30(m, 3H), 7.26-7.23(m, 1H), 7.18(d, *J* = 2.4 Hz, 1H), 6.99-6.90(m, 1H), 6.30(br, 1H), 4.35(s, 1H), 4.26-4.15(m, 2H), 4.10(q, *J* = 7.2 Hz, 2H), 1.43(s, 9H), 1.24(t, *J* = 7.2 Hz, 3H), 1.13(t, *J* = 7.2 Hz, 3H);

13C NMR (151 MHz, Chloroform-d) δ 168.1, 154.3, 130.5, 128.4, 128.0, 127.3, 126.8, 122.4, 88.8, 80.6, 80.2, 62.6, 61.8, 61.0, 57.3, 28.2, 14.0, 13.7. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 95:5), 0.7 mL/min; minor enantiomer t_R = 38.01 min, major enantiomer t_R = 34.56 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₄H₂₇NO₆SNa]:480.1451 found:480.1452.

4-ethyl 1-methyl (2S,3R)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(phenylethynyl)succinate (4la)

An coloress liquid, 77% yield (35 mg). $[\alpha]_D^{20} = 10$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.58-7.51(m, 2H), 7.42-7.38(m, 2H), 7.35-7.32(m, 3H), 7.31-7.28(m, 2H), 6.31(br, 1H), 4.36(s, 1H), 4.27-4.16(m, 2H), 3.62(s, 3H), 1.44(s, 9H), 1.24(t, *J* = 7.2 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 170.5, 168.9, 154.3, 132.7, 131.8, 130.5, 128.5, 128.4, 128.1, 128.0, 122.4, 86.8, 84.7, 80.7, 61.7, 60.9, 57.4, 53.2, 28.2, 14.0. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer t_R = 13.20 min, minor enantiomer t_R = 15.16 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₆H₂₉NO₆Na]:474.1887 found:474.1887.

1-benzyl4-ethyl(2S,3R)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-(phenylethynyl)succinate (4ma)

An coloress liquid, 86% yield (45 mg). $[\alpha]_D^{20} = -20$ (*c* 1.0, CH₂Cl₂, 99% ee);¹H NMR (600 MHz, Chloroform-*d*) δ 7.55-7.49(m, 2H), 7.36(d, 2H), 7.33-7.23(m, 11H), 6.30(br, 1H), 5.11(d, *J* = 12 Hz, 1H), 5.05(d, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.39(s, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, *J* = 12 Hz, 1H), 4.14, (q, *J* = 7.2 Hz, 2H), 1.40(s, 9H), 1.19(t, J = 12 Hz, 1H), 1.19(t, J = 12 Hz,

7.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 170.6, 168.1, 154.2, 135.1, 132.7, 131.8, 130.5, 128.5, 128.4, 128.3,
128.2, 128.1, 128.1, 128.0, 122.4, 87.0, 84.8, 80.6, 68.0, 61.7, 61.0, 57.3, 28.2, 14.0. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; major enantiomer $t_R = 17.57$ min, minor enantiomer $t_R = 15.6$ min. HRMS (ESI): [M+Na]⁺ calcd [C₃₂H₃₃NO₆Na]:550.2200 found:550.2205.

ethyl (4S)-5-benzylidene-4-(2-ethoxy-2-oxo-1-phenylethyl)-2-oxooxazolidine-4-carboxylate (5)

An coloress liquid, 71% yield (31 mg). $[\alpha]_D^{20} = -477(c \ 1.0, CH_2Cl_2, 99\% ee)$; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 (m, 2H), 7.36 – 7.26 (m, 6H), 7.20 (m, 2H), 6.68 (s, 1H), 5.39 (d, J = 2 Hz, 1H), 4.43 (s, 1H), 4.31 (m, 2H), 4.18 (m, 2H), 1.33 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.2 , 170.9 , 150.6, 148.8 , 130.7 , 129.9 , 129.5 , 128.5 , 128.4 , 128.4 , 124.8 , 95.0 , 65.0 , 62.9 , 61.8 , 57.96 , 14.0 , 13.9 . HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer t_R = 12.03 min, major enantiomer t_R = 18.20 min. HRMS (ESI): [M+Na]⁺ calcd [C₂₃H₂₃NO₆Na]:432.1418 found:432.1418.

1-(tert-butyl) 2-ethyl (2R,3S)-4-oxo-2-(2-oxo-2-phenylethyl)-3-phenylazetidine-1,2-dicarboxylate (6)

An coloress liquid, 91% yield (41 mg). $[\alpha]_D{}^{20} = 52$ (*c* 1.0, CH₂Cl₂, 99% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.62 – 7.55 (m, 2H), 7.45 (d, *J* = 7.2 Hz, 1H), 7.32 (m, 2H), 7.26 – 7.21 (m, 2H), 7.21 – 7.15 (m, 2H), 7.13 – 7.08 (m, 1H), 5.10 (s, 1H), 4.35 (m, 2H), 4.05 (d, *J* = 17.6 Hz, 1H), 3.24 (d, *J* = 17.6Hz, 1H), 1.52 (s, 9H), 1.31 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 195.0, 165.3, 136.2, 133.0, 130.7, 130.2, 128.3,

Chemical Formula: $C_{25}H_{27}NO_6$ 127.4, 84.3, 64.8, 62.9, 62.3, 38.1, 27.9, 14.0. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 18.41$ min, major enantiomer $t_R = 22.9$ min. HRMS (ESI): [M+Na]⁺ calcd [$C_{25}H_{27}NO_6Na$]:460.1731 found: 460.1736.

ethyl (3S)-3-((tert-butoxycarbonyl)amino)-2,5-diphenyl-3-(propionyloxy)pentanoate (7) An coloress liquid, 88% yield (42 mg). $[\alpha]_D^{20} = 56$ (*c* 1.0, CH₂Cl₂, 98% ee); ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30-7.26(m, 5H), 7.25-7.22(m, 2H), 7.17-7.14(m, 1H), 7.12(d, J = 7.2Hz, 2H), 5.74(s, 1H), 4.39(s, 1H), 4.29-4.22(m, 2H), 4.17-4.05(m, 2H), 3.05(t, J = 12Hz, 1H), 2.63-2.51(m, 1H), 2.34-2.24(m, 1H), 2.23-2.15(m, 1H), 1.37(s, 9H), 1.33(t, J = 7.2Hz, 3H), 1.18(t, J = 7.2Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) δ 172.4,171.7, 153.5, 141.5,

134.0, 129.9, 128.5, 128.3, 128.2, 127.9, 125.8, 78.9, 65.4, 62.1, 61.0, 57.8, 35.9, 30.9, 28.3, 14.1,14.0. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 13.74$ min, major enantiomer $t_R = 21.86$ min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H_{.35}NO₆Na]:492.2357 found:492.2359.

diethyl (2R,3S)-2-((tert-butoxycarbonyl)amino)-3-phenyl-2-((Z)styryl)succinatee (8)

An coloress liquid, 75% yield (35 mg). $[\alpha]_D{}^{20} = 45$ (*c* 1.0, CH₂Cl₂, 98% ee); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.26 (m, 2H), 7.32-7.26(m, 2H), 7.22-7.12(m, 3H), 7.00(d, J = 6.8Hz, 2H), 6.66(d, J = 12.8Hz, 1H), 6.28(d, J = 12Hz, 1H)

), 5.73(s, 1H), 4.65(s, 1H), 4.23-4.03(m, 2H), 3.89-3.63(m, 2H), 1.29(s, 9H), 1.26(t, J = 7.2Hz, 3H), 1.08(t, J = 7.2Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ172.3, 171.7, 153.6, 141.5, 134.13, 4, 130.0, 128.5, 128.3, 128.0, 127.9, 125.8, 79.0, 65.45, 62.1, 61.0, 57.9, 35..9, 30.9. 28.3, 14.1, 14.0. HPLC: chiral IA column. (*n*-hexane:*i*-PrOH = 90:10), 1 mL/min; minor enantiomer $t_R = 13.15$ min, major enantiomer $t_R = 22.21$ min. HRMS (ESI): [M+Na]⁺ calcd [C₂₇H_{.33}NO₆Na]:490.2200, found:490.2206.

Novel substrates

perfluorophenyl 2-(4-bromo-2-fluorophenyl)acetate (2j)

Following the general procedure 2.2, 2j was obtained as a white solid, mp 58.0–59.5 °C, in a 5 mmol scale with 75% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ7.31 – 7.26 (m, 2H), 7.23-7.19(m, 1H), 3.97(s, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ166.1, 161.6, 159.9, 142.0-141.7(m, ArCF), 140.6-140.0(m, ArCF), 138.9-138.5(m, ArCF), 137.2-136.8(m, ArCF), 132.3, 132.2, 127.8, 127.7,

125.1-124.7(m, ArCF) 122.3, 122.2, 119.4, 119.2, 118.8, 118.7, 33.0, 32.9. 19 F NMR (376 MHz, CDCl₃): -113.8, -152.6- -153.0(m), -157.7 - -157.9(m), -162.3- -162.5(m) HRMS (ESI): [M+H]⁺ calcd [C₁₄H₅BrF₆O₂]:399.9483, 400.9429, found: 399.9477, 400.9435.

perfluorophenyl 2-(4-ethoxyphenyl)acetate (2e)

Following the general procedure 2.2, 2e was obtained as a white solid, mp56.5–57.5 °C, in a 5 mmol scale with 80% yield. ¹H NMR (600 MHz, Chloroform-*d*) δ 7.22(d, *J* = 8.4 Hz, 2H), 6.89-6.84(m, 2H), 3.99(q, *J* = 6.96 Hz, 2H), 3.85(s, 2H), 1.38(m, *J* = 6.96 Hz, 3H); ¹³C NMR (151 MHz,

Chloroform-*d*) δ 167.7, 158.6, 142.0-141.8(m, ArCF), 140.0-140.3(m, ArCF), 138.8-138.5(m, ArCF), 137.1-136.8(m, ArCF), 130.2, 125.2-125.0(m, ArCF), 123.8, 114.6, 63.3, 39.1, 14.6. ¹⁹F NMR (376 MHz, CDCl₃):-152.82--152.89(m), -158.30(t, J = 22.10 Hz), -162.60--162.78(m). HRMS (ESI): [M+H]⁺ calcd [C₁₆H₁₁F₅O₃]:347.0701, found:347.0710.

perfluorophenyl 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (2n)

Following the general procedure 2.2, 2n was obtained as a white solid, mp 128.0–129.5 °C, in a 5 mmol scale with 55% yield. ¹H NMR (600 MHz, Chloroform-d) δ 7.69-7.63(m, 2H), 7.49-7.45(m, 2H), 6.98-6.95(m, 1H), 6.90-6.87(m, 1H), 6.72-6.68(m, 1H), 4.01(s, 2H), 3.84(s, 3H), 2.43(s, 3H); ¹³C NMR (151 MHz, Chloroform-d) δ 168.2, 166.8, 156.2, 141.9-141.7(m, ArCF), 140.5-140.0(m, ArCF), 139.5, 138.8-138.4(m, ArCF), 137.1-136.8(m, ArCF), 136.5, 133.6, 131.2, 130.8, 130.0, 129.2, 125.2-124.8(m, ArCF), 115.0, 112.1,

110.6, 100.7, 55.6, 29.3, 13.2. ¹⁹F NMR (376 MHz, CDCl3):-152.5- -152.7 (m), -157.52(t, J = 21.72 Hz), -161.90- - 162.01(m). HRMS (ESI): $[M+H]^+$ calcd $[C_{25}H_{15}ClF_5NO_4]$:524.0683, found:524.0685.

ethyl (Z)-2-((tert-butoxycarbonyl)imino)-4-(4-(trifluoromethyl)phenyl)but-3-ynoate (1i)

Following the general procedure 2.1, 1i was obtained as yellow oil, 40% yield in two steps with 10 mmol scale. ¹H NMR (400 MHz, Chloroform-d) δ 7.75-7.63(m, 4H), 4.44(q, 2H, *J* = 7.2Hz), 1.60(s, 9H), 1.43(t, 3H, *J* = 7.2Hz); ¹³C NMR (100 MHz, Chloroform-d) δ 160.6, 159.4, 144.1, 133.5, 132.0(q, *J*_{c-f} = 32.8Hz), 132.7, 127.8, 125.4(q, *J*_{c-f} = 3.7Hz), 123.4, 121.2(q, *J*_{c-f} = 272.2Hz), 98.2, 84.1, 81.9, 63.1, 27.7, 13.7. ¹⁹F NMR (376 MHz, CDCl₃):-

63.3. HRMS (ESI): $[M+H]^+$ calcd $[C_{18}H_{18}F_3NO_4]$:370.1261, found:370.1266.

REFERENCES

Angew Chem. Int. Ed. 2020, 59, 642-647.
J. Am. Chem. Soc. 2016, 138, 5214-5217.
J. Am. Chem. Soc. 2010, 132, 11629-11641.

10 The copy of NMR and HPLC

3ca-13CNMR (100M, CDCl₃)

3cb-¹HNMR (400M, CDCl₃)

3cg-1HNMR (400M, CDCl₃)

3ci-¹HNMR (400M, CDCl₃)

3co-¹³CNMR (100M, CDCl₃)

3cp-¹³CNMR (100M, CDCl₃)

3ea-1HNMR (400M, CDCl3)

56

3la-¹HNMR (400M, CDCl₃)

3ma-¹³CNMR (100M, CDCl₃)

4ca-¹HNMR (400M, CDCl₃)

4ca-¹³CNMR (100M, CDCl₃)

4cb-¹HNMR (600M, CDCl₃)

4cc-¹HNMR (600M, CDCl₃)

4cc-¹³CNMR (151M, CDCl₃)

4cd-¹³CNMR (151M, CDCl₃)

4ci-¹HNMR (600M, CDCl₃)

4ci-¹³CNMR (151M, CDCl₃)

4cl-¹HNMR (600M, CDCl₃)

4cm-¹HNMR (600M, CDCl₃)

4cn-¹³CNMR (150M, CDCl₃)

4ga-¹HNMR (400M, CDCl₃)

4ga-¹³CNMR (100M, CDCl₃)

4,341 4,225 4,226

4ia—¹HNMR (600M, CDCl₃)

4la-¹HNMR(600M, CDCl₃)

4ma-1HNMR (600M, CDCl₃)

4ma-¹³CNMR (151M, CDCl₃)

5-13CNMR (100M, CDCl₃)

6-¹HNMR (400M, CDCl₃)

6-13CNMR (100M, CDCl₃)

7-¹HNMR (600M, CDCl₃)

7-¹³CNMR (151M, CDCl₃)

8-¹HNMR (400M, CDCl₃)

2j ¹HNMR(CDCl₃, 600M)

2j-¹³CNMR(CDCl₃, 151M)

2e-¹HNMR(CDCl₃, 600M)

2e-19FNMR(CDCl₃, 376M)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

2n-¹HNMR(CDCl₃, 600M)

2n-13CNMR(CDCl₃, 151M)

2n-¹⁹FNMR(CDCl₃, 376M)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

1i-¹HNMR(CDCl₃, 400M)

1i-¹³CNMR(CDCl₃, 100M)

1i-¹⁹FNMR(CDCl₃, 376M)

-----63.334

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

t _R	Channel	Area	Height	Area%
13.827	254nm	17160.7	761.3	49.89
16.895	254nm	17232.6	620.7	50.11

t _R	Channel	Area	Height	Area%
13.984	254nm	54782.8	1946.8	99.541
17.344	254nm	545.2	20.7	0.459

Racemic-3cb					
n/U-				8	
				\$	
0					m
					¥
-50-					
-100-					
-150-					
-200					
-251					
<i></i>					
		~			
-30-			<u> </u>	<u>_</u>	
0	2		6 8		14 mij
t _R		Channel	Area	Height	Area%
12	.292	254nm	5790.4	313.8	50.273
14	121	254nm	5727 5	271.5	10 727

Enantioenriched-3cc

DADIA, Sg=25)4R4=df (JD3HC341/JEA4O	DDAS333/RHaf (LDHS34)EA/OAD				
n#U]			44 24		
1500-					
1230-					
1000-					
750-					
500-					
250-					
0					
t _R	Area	Height	Channel	Area%	
14.141	64697.3	2006.7	254nm	100	
-	-	-	254nm	-	

Enantioenriched-3cd

	DADIA, Sg=250,4R8=df (JD9+C3	sacefaachoo)				
nAU			223			
600-						
500-						
400-						
300-						
200						
100-						
0		~~~				
		5	10	15	20	25 mi
	t _R	Channel	Area	Height	Area%	
	12.254	254nm	23819.8	685.6	100	
	-	254nm	-	-	-	

t _R	Channel	Area	Height	Area%
17.562	254nm	26630.7	935.7	99.604
22.672	254nm	105.8	3.3	0.396

t _R	Channel	Area	Height	Area%
13.149	254nm	24171.2	1058.2	49.98
16.473	254nm	24192.6	860.2	50.02

Enantioenriched-3cg

t _R	Channel	Area	height	Area/%
8.198	254nm	41451.6	2284.8	29.460
9.043	254nm	47585.6	2230.4	33.819

Enantioenriched-3ch

t _R	Channel	Area	height	Area/%
8.225	254nm	18519.9	1355.6	99.547
9.211	254nm	84.2	5.5	0.453

t _R	Channel	Area	height	Area/%
8.932	254nm	19436.9	1322.4	49.718
9.934	254nm	19657.6	1090.5	50.282

Enantioenriched-3ci

t _R	Channel	Area	Height	Area%
24.549	254nm	23973.8	611.8	49.65
26.568	254nm	24310.8	542.8	50.34

Enantioenriched-3cj

t _R	Channel	Area	Height	Area%
23.863	254nm	29918.1	746.5	95.001
26.121	254nm	1800.6	44.3	4.999

t _R	Channel	Area	Height	Area%
32.549	254nm	73586.7	1201.2	100
-	254nm	-	-	-

Enantioenriched-3cl

Enantioenriched-3cm

t _R	Channel	Area	height	Area/%
22.445	254nm	15893.7	436.5	50.062
27.071	254nm	15854.1	365.9	49.938

t _R	Channel	Area	height	Area/%
22.037	254nm	97068.7	2205.1	99.71
27.107	254nm	247.2	8.5	0.29

t _R	Channel	Area	height	Area/%
19.527	254nm	861.2	22.9	49.7
21.86	254nm	871.4	20.7	50.3

Enantioenriched-3co

t _R	Channel	Area	height	Area/%
19.803	254nm	55.4	4.5	0.11
21.253	254nm	50007.3	1026.5	99.89

25

t_R

14.61

-

75

Channel

254nm

254nm

10

Area

76487.8

-

125

15

Height

8272.1

-

20

Area%

100

-

Racemic-3ea

t _R	Channel	Area	Height	Area%
13.21	254nm	13969	627.4	50.091
16.128	254nm	13815.9	480.6	49.909

Enantioenriched-3ea

Racemic-3fa

t _R	Channel	Area	Height	Area%
16.196	254nm	6939	286.2	50.172
20.072	254nm	6891.4	234.3	49.828

t _R	Channel	Area	Height	Area%
15.967	254nm	14107.2	453.2	99.474
20.116	254nm	74.5	2.6	0.526

Enantioenriched-3ga

Enantioenriched-3ha

t _R	Channel	Area	Height	Area%
13.059	254nm	12638.6	478.3	50.21
21.303	254nm	12522.9	281.7	49.79

Enantioenriched-3ia

t _R	Channel	Area	Height	Area%
13.149	254nm	318.6	11.8	1.05
21.212	254nm	29985	654.8	98.95

400-

200-

t _R	Channel	Area	height	Area/%
11.415	254nm	19792.9	1077.1	99.322
13.762	254nm	135.1	6.1	0.678

t _R	Channel	Area	Height	Area%
10.59	254nm	54.5	4.1	1.1
13.18	254nm	4742	292.1	98.9

Racemic-3ma

t _R	Channel	Area	height	Area/%
19.77	254nm	11185.8	371.7	50.469
25.229	254nm	10977.8	288.2	49.531

Racemic-4ca

t _R	Channel	Area	Height	Area%
28.781	254nm	28653.2	589.5	49.81
31.832	254nm	28868	536.3	50.19

Enantioenriched-4ca

t _R	Channel	Area	Height	Area%
29.832	254nm	332.1	7.5	0.498
31.987	254nm	47725.8	861.3	99.502

Racemic-4cb

t _R	Channel	Area	Height	Area%
9.807	254nm	14413	850.1	49.875
10.979	254nm	14485.6	741.6	50.125

Enantioenriched-4cb

t _R	Channel	Area	Height	Area%
15.256	254nm	29478.7	1141.3	50
17.61	254nm	29469.8	935.7	50

Enantioenriched-4cc

t _R	Channel	Area	Height	Area%
-	254nm	-	-	-
16.875	254nm	109713.1	2368.4	100

Racemic-4cd

Enantioenriched-4cd

t _R	Channel	Area	Height	Area%
15.034	254nm	198.7	6	0.8
16.665	254nm	24457.1	763.8	99.2

Enantioenriched-4cf

Racemic-4cg

Enantioenriched-4cg

Enantioenriched-4ch

Racemic-4ci

Enantioenriched-4ci

Racemic-4cj

Enantioenriched-4cj

t _R	Channel	Area	Height	Area%
10.424	254nm	373.5	24.1	1.860
11.489	254nm	19713.2	904.7	98.140

Racemic-4ck

Enantioenriched-4ck

t _R	Channel	Area	Height	Area%
21.68	254nm	-	-	-
31.15	254nm	37151.1	295.4	100

t _R	Channel	Area	Height	Area%
14.966	254nm	18634.3	750.3	50
18.885	254nm	18662.4	587	50

Enantioenriched-4cl

t _R	Channel	Area	Height	Area%
15.014	254nm	63.3	2.3	0.14
18.807	254nm	47465.6	1339.1	99.86

t _R	Channel	Area	height	Area/%
7.517	254nm	16864.5	1406.3	48.866
8.594	254nm	17647	1259.6	53.137

Enantioenriched-4cm

t _R	Channel	Area	height	Area/%
7.55	254nm	67.3	5.6	0.226
8.63	254nm	29744.9	1955.7	99.774
Racemic-4cn

Enantioenriched-4cn

t _R	Channel	Area	height	Area/%
10.393	254nm	37.1	1.6	0.478
16.463	254nm	7720.6	148.4	99.522

t _R	Channel	Area	Height	Area%
28.639	254nm	23681	511.4	50.466
31.569	254nm	23243.4	457.4	49.534

Enantioenriched-4da

t _R	Channel	Area	Height	Area%
28.546	254nm	224.5	6.6	0.275
31.057	254nm	81558.8	1370.2	99.725

t _R	Channel	Area	Height	Area%
9.925	254nm	19387.9	902.3	50.266
10.988	254nm	19182.8	832	49.734
Enantioenriched-4	4ea			
m4U ⁺			8	
			8	
80-				
60-				
40				
20-				
			ы	
	$\wedge \wedge$		Ť	
0				
0 2	4	6 8	10 12	14 mi
t _R	Channel	Area	Height	Area%
10.306	254nm	2138	96.2	95.56
11.185	254nm	123.2	5.5	4.46

Racemic-4fa

t _R	Channel	Area	Height	Area%
23.469	254nm	31813	808.8	50.666
25.767	254nm	30976.5	712.7	49.334

Enantioenriched-4fa

t _R	Channel	Area	Height	Area%
11.767	254nm	61509.3	23524	50.788
12.802	254nm	59601.5	2194.5	49.212

t _R	Channel	Area	Height	Area%
11.307	254nm	58.1	3.2	0.221
12.251	254nm	26187.9	1245.5	99.779

t _R	Channel	Area	Height	Area%
11.78	254nm	16557.8	801.3	50.365
12.768	254nm	14898.9	667.8	49.635

Enantioenriched-4ha

t _R	Channel	Area	Height	Area%
11.67	254nm	97.8	3.8	0.162
12.63	254nm	60316.5	2099.5	99.838

Racemic-4ia

Enantioenriched-4ia

t _R	Channel	Area	Height	Area%
19.99	254nm	420.4	13.3	0.474
21.594	254nm	88205.2	1928.6	99.526

t _R	Channel	Area	Height	Area%
25.96	254nm	14255.4	1418.6	50.821
33.3	254nm	13766.3	1332.6	49.179

t _R	Channel	Area	Height	Area%
26.21	254nm	1022643	1233	100
-	254nm	-	-	-

Racemic-4ka

t _R	Channel	Area	Height	Area%
34.832	254nm	10623.4	199.4	49.53
37.713	254nm	10824.6	184.8	50.47

Enantioenriched-4ka

t _R	Channel	Area	Height	Area%
34.559	254nm	5.7	0.017	0.268
38.016	254nm	2108.2	36.5	99.832

Racemic-4la

t	Channel	Area	height	Area/%
13.574	254nm	16388	732.1	49.908
15.191	254nm	16448.8	643	50.092

Enantioenriched-4la

t	Channel	Area	height	Area/%
13.202	254nm	25024.1	1099.7	99.407
15.162	254nm	149.2	5.4	0.593

Racemic-4ma

t	Channel	Area	height	Area/%
15.072	254nm	22909.7	856.6	49.568
17.204	254nm	23365.2	717.7	50.432

Enantioenriched-4ma

t	Channel	Area	height	Area/%
15.6	254nm	386.7	15.9	0.886
17.569	254nm	43255.2	1247.9	99.114

Enantioenriched-5

t _R	Channel	Area	Height	Area%
12.034	254nm	103.6	4	0.144
18.194	254nm	71750.1	1681.7	99.985

t _R	Channel	Area	Height	Area%
17.596	254nm	14941.2	498.4	50.155
22.91	254nm	14848.9	336.5	49.845

t _R	Channel	Area	Height	Area%
18.405	254nm	56824.4	1384.2	99.498
24.902	254nm	286.7	4.5	0.502

t _R	Channel	Area	Height	Area%
13.645	254nm	31254.3	1113.1	49.93
21.979	254nm	31350.5	643.8	50.07
Enantioenriched-	7			
nAU 100- 			20 B	
600-				
400-				
20-		8852		,
	10	15	20	25 mi
t _R	Channel	Area	Height	Area%
13.74	254nm	631.7	22.9	1
21.86	254nm	31350.5	990.5	99

t _R	Channel	Area	Height	Area%
13.059	254nm	12628.6	478.3	50.2
21.303	254nm	12522,9	281.7	49.8
Enontioenriched 8	2	•		•

naAU∙	
600-	
500-	
400-	
300-	
200-	
100-	Be a construction of the second
0	

t _R	Channel	Area	Height	Area%
13.149	254nm	318.6	11.8	0.95
21.212	254nm	29985	654.8	99.05

	t/h	dr	ee/%	Yield/%
3cg	78h	4:1	93	57
3cb	56h	7:1	93	77
3cl	56h	9:1	94	62
4ce	72h	20:1	93	68
4cg	72h	20:1	98	70
4ci	72h	20:1	99	52
4ch	72h	20:1	98	48

Some example with 10 mol% catalyst loading results:

HPLC

115 12	125 13	135 14 145	in 21	
t _R	Channel	Area	Height	Area%
11.71	254nm	8850.7	479.9	50.534
14.14	254nm	8663.7	409.7	49.466

Enantioriched-3cg

t _R	Channel	Area	Height	Area%
12.346	254nm	50521.0	1780.9	49.628
14.053	254nm	50962.1	1682.2	50.372

Enantioriched-3cb

t _R	Channel	Area	Height	Area%
14.692	254nm	5850.9	207.9	50.551
18.69	254nm	5723.5	164.5	49.449

Enantioriched-3cl

t _R	Channel	Area	Height	Area%
14.497	254nm	1004.9	33.7	97.007
19.359	254nm	26.9	0.0072	2.9929

t _R	Channel	Area	Height	Area%
14.997	254nm	12127.4	487.1	50.075
16.559	254nm	12090.8	406.5	49.925

Enantioriched-4ce

t _R	Channel	Area	Height	Area%
15.438	254nm	16157.2	497.9	96.61
16.795	254nm	566.5	12	3.39

t _R	Channel	Area	Height	Area%
13.029	254nm	43751.1	1463.5	49.71
16.456	254nm	47449.1	1178	50.39

t _R	Channel	Area	Height	Area%
13.155	254nm	148.7	5.8	0.988
16.558	254nm	30941.6	814.4	90.012

t _R	Channel	Area	Height	Area%
13.153	254nm	15811.5	556.1	50.381
14.449	254nm	15572.1	516	49.619

Enantioriched-4ci

t _R	Channel	Area	Height	Area%
13.005	254nm	9579.8	353.5	100
14.449	254nm	-	-	-

t _R	Channel	Area	Height	Area%
13.971	254nm	25142.7	1010.4	50.956
16.265	254nm	24199.4	872.5	49.044

Enantioriched-4ch

t _R	Channel	Area	Height	Area%
13.559	254nm	9424	338.9	99.489
14.449	254nm	48.9	1.9	0.511