## **Electronic Supplementary Information for:**

## Direct measurement of the genuine efficiency of the thermogalvanic heat flux-to-electricity conversion in thermocells

Maria A. Trosheva,<sup>a</sup> Mark A. Buckingham,<sup>a,b</sup> and Leigh Aldous<sup>a</sup>\*

<sup>a</sup> Department of Chemistry, Britannia House, King's College London, London, SE1 1DB, UK

<sup>b</sup> Present address: Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK

\* Corresponding author: <a href="mailto:leigh.aldous@kcl.ac.uk">leigh.aldous@kcl.ac.uk</a>

## **Table of Contents:**

**Table S1:** Summary of experimental data for thermogalvanic cells

 without the heat flux sensor (page 3)

**Table S2:** Summary of experimental data for thermogalvanic cells withthe heat flux sensor thermally in-series (page 4)

**Figure S1:** Plots of absolute efficiency and power to support Figures 5 and 6 (page 5)

**Figure S2:** Plots of the power generated as a function of electrode separation, plotting gelled vs ungelled and with vs without the heat flux sensor thermally in-series (page 6)

**Table S3:** Summary of experimental data for thermogalvanic cells with and without the heat flux sensor thermally in-series, as a function of gelation and electrode separation (page 7)

| Exp           | perimental Conditi | ions                          | Thermogalvanic Measurement Results |                           |                                         |                                       |  |  |  |
|---------------|--------------------|-------------------------------|------------------------------------|---------------------------|-----------------------------------------|---------------------------------------|--|--|--|
| <i>d</i> / mm | $T_{ m h}$ / °C    | <i>T</i> <sub>c</sub><br>/ °C | $\Delta T_{\rm exp}$ / K           | -V <sub>ocp</sub><br>/ mV | $-\dot{j}_{\rm sc}$ / A m <sup>-2</sup> | $P_{\rm max}$<br>/ mW m <sup>-2</sup> |  |  |  |
| 4.4           |                    |                               | 17.8                               | 24.9                      | 15.4                                    | 96                                    |  |  |  |
| 9.5           |                    |                               | 18.0 (± 0.6)                       | 25.3 (± 0.1)              | 12.3 (± 0.5)                            | 78 (± 5)                              |  |  |  |
| 18.9          | 40                 | 20                            | 18.3                               | 25.6                      | 9.1                                     | 58                                    |  |  |  |
| 29.3          |                    |                               | 18.2 (± 0.2)                       | 25.4 (± 0.3)              | 5.8 (± 1.3)                             | 37 (± 8)                              |  |  |  |
| 39.9          |                    |                               | 18.2                               | 25.5                      | 4.2                                     | 27                                    |  |  |  |
|               | 40                 | 20                            | 18.3                               | 25.6                      | 12.2                                    | 78                                    |  |  |  |
|               | 45                 | 20                            | 22.9                               | 32.1                      | 14.3                                    | 115                                   |  |  |  |
| 29.3          | 50                 | 20                            | 27.4                               | 38.3                      | 18.9                                    | 181                                   |  |  |  |
|               | 55                 | 20                            | 31.8                               | 44.5                      | 25.0                                    | 278                                   |  |  |  |
|               | 60                 | 20                            | 36.2                               | 50.7                      | 29.3                                    | 371                                   |  |  |  |

**Table S1.** Summary of the thermogalvanic power measured as a function of electrode separation distance (top) and applied temperature difference (bottom) for the thermogalvanic cell **without** the heat flux sensor in-series; all other details are as per Figure 1.

## Key for Tables S1, S2 and S3:

Errors shown as  $(\pm)$  represent the standard deviation of triplicate measurements (Table S1) or between 3 to 5 repeat measurements (Table S2)

d = Electrode separation distance

 $T_{\rm h}$  and  $T_{\rm c}$  = applied temperature to the hot and cold electrodes, respectively

 $\Delta T_{\rm exp}$  = experienced temperature difference, based upon the  $V_{\rm ocp}$ 

 $V_{\text{ocp}}$  = Open circuit potential difference across the hot and cold electrodes

 $j_{sc}$  = Steady state short circuit current density

 $P_{\rm max}$  = Maximum thermogalvanic power density

 $p_{\text{max}}$  = Absolute maximum thermogalvanic power generated by the cell

 $q_{empty}$  = Steady state, absolute heat flux through the empty cell

 $q_{\text{total}}$  = Steady state, absolute heat flux through the cell filled with electrolyte

 $q_{\rm m}$  = Measured heat flux, with  $q_{empty}$  subtracted from  $q_{\rm total}$  to afford the electrolyte-only cell-subtracted heat flux

 $\eta_{\rm m}$  = Absolute efficiency of thermogalvanic conversion, using measured  $p_{\rm max}$  and measured  $q_{\rm m}$  $\eta_{r,m}$  = Carnot cycle relative measured efficiency of thermogalvanic conversion at the

experienced temperatures  $T_s$  and  $T_c$ , where  $T_s = T_h - (T_h - T_c - \Delta T_{exp})$ 

 $q_e$  = Estimated electrolyte-only heat flux using Fourier's Law

 $\eta_e$  = Estimated absolute efficiency of thermogalvanic conversion, using measured  $p_{max}$  and estimated  $q_e$ 

 $\eta_{r,e}$  = Estimated Carnot cycle relative efficiency of thermogalvanic conversion, using estimated heat flux and the experienced temperatures  $T_s$  and  $T_c$ 

**Table S2.** Summary of both the thermogalvanic power and heat flux sensor measurements as a function of electrode separation distance (d, top) and applied temperature difference ( $\Delta T$ , bottom) for the thermogalvanic cell with the heat flux sensor in-series; all other details are as per Figure 1.

| Experimental<br>Conditions |                  |                               | Thermogalv               | anic Measure              | ment Results                            |                                      | Heat Flux Sensor Measurement<br>Results |                                  |                            | Measured Efficiencies |                                     | Estimated Heat Flux and<br>Estimated Efficiencies |                    |                                     |                         |
|----------------------------|------------------|-------------------------------|--------------------------|---------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|----------------------------------|----------------------------|-----------------------|-------------------------------------|---------------------------------------------------|--------------------|-------------------------------------|-------------------------|
| <i>d /</i><br>mm           | $T_{\rm h}$ / °C | <i>T</i> <sub>c</sub><br>/ °C | $\Delta T_{\rm exp}$ / K | -V <sub>ocp</sub><br>/ mV | $-\dot{j}_{\rm sc}$ / A m <sup>-2</sup> | $P_{\rm max}$<br>/ mWm <sup>-2</sup> | p <sub>max</sub><br>/μW                 | <i>q<sub>empty</sub></i><br>/ mW | q <sub>total</sub><br>∕ mW | $q_{ m m}$ / mW       | $\eta_{\rm m}$ / 10 <sup>-3</sup> % | η <sub>r,m</sub><br>/ %                           | $q_{ m e}$<br>/ mW | $\eta_{\rm e}$ / 10 <sup>-3</sup> % | η <sub>r,e</sub><br>/ % |
| 4.4                        |                  |                               | 15.3                     | 21.5                      | 14.2                                    | 76                                   | 7.1                                     | 73                               | 312                        | 239                   | 3.0                                 | 0.060                                             | 180                | 4.0                                 | 0.08                    |
| 9.5                        |                  |                               | 16.1<br>(± 0.7)          | 22.5<br>(± 0.9)           | 11.4<br>(± 0.3)                         | 65<br>(± 2)                          | 6.1<br>(± 0.1)                          | 68<br>(± 12)                     | 316<br>(± 21)              | 248<br>(± 24)         | 2.4<br>(± 0.2)                      | 0.047<br>(± 0.005)                                | 87.5<br>(± 3.6)    | 6.9<br>(± 0.3)                      | 0.13<br>(± 0.1)         |
| 18.9                       | 40               | 20                            | 16.3                     | 22.9                      | 7.2                                     | 41                                   | 3.9                                     | 49                               | 317                        | 268                   | 1.4                                 | 0.027                                             | 44.8               | 8.7                                 | 0.16                    |
| 29.3                       |                  |                               | 16.7<br>(± 0.7)          | 23.4<br>(± 0.1)           | 5.6<br>(± 0.4)                          | 33<br>(± 3)                          | 3.1<br>(± 0.3)                          | 36<br>(± 4)                      | 272<br>(± 17)              | 236<br>(± 17)         | 1.3<br>(± 0.2)                      | 0.024<br>(± 0.003)                                | 29.6<br>(± 1.2)    | 10.4<br>(± 0.1)                     | 0.19<br>(± 0.2)         |
| 39.9                       |                  |                               | 16.0                     | 22.3                      | 4.3                                     | 24                                   | 2.3                                     | 22                               | 281                        | 259                   | 0.9                                 | 0.017                                             | 20.7               | 11.0                                | 0.21                    |
|                            | 40               | 20                            | 16.1                     | 22.5                      | 11.4                                    | 65                                   | 6.1                                     | 68                               | 316                        | 248                   | 2.4                                 | 0.047                                             | 87.5               | 6.9                                 | 0.13                    |
|                            | 45               | 20                            | 19.7                     | 27.6                      | 14.7                                    | 101                                  | 9.5                                     | 91                               | 385                        | 295                   | 3.2                                 | 0.051                                             | 107                | 8.9                                 | 0.14                    |
| 9.5                        | 50               | 20                            | 23.5                     | 32.9                      | 17.9                                    | 147                                  | 13.8                                    | 110                              | 478                        | 368                   | 3.7                                 | 0.050                                             | 128                | 10.8                                | 0.15                    |
|                            | 55               | 20                            | 27.3                     | 38.2                      | 20.7                                    | 197                                  | 18.6                                    | 128                              | 567                        | 439                   | 4.2                                 | 0.050                                             | 149                | 12.5                                | 0.15                    |
|                            | 60               | 20                            | 30.1                     | 42.2                      | 26.6                                    | 280                                  | 26.4                                    | 145                              | 729                        | 584                   | 4.5                                 | 0.048                                             | 164                | 16.1                                | 0.17                    |

**Figure S1.** Plots of (a) the absolute thermogalvanic conversion efficiency as a function of electrode separation (Carnot-relative efficiency shown in Figure 5(c)); (b) thermogalvanic power generated with and without the heat flux sensor in-series vs the experienced temperature difference,  $\Delta T_{exp}$  (the same power plotted vs the applied temperature difference,  $\Delta T_{app}$ , is shown in Figure 6(a)), and (c) the absolute thermogalvanic conversion efficiency as a function of  $\Delta T_{app}$  (Carnot-relative efficiency shown in Figure 6(d)). Please refer to Figures 5 and 6 for full experimental details.



**Figure S2.** Plot of the thermogalvanic power generated by the as-prepared 0.4 M  $K_3/K_4[Fe(CN)_6]$  at  $\Delta T_{app} = 20$  K, using partially filled 3-sided cells (see Experimental for full details). They were measured with (purple) and without (grey) the heat flux sensor in-series, either with 3 wt% eq. of sodium acrylate powder added (labelled as gelled; hexagon and diamond) or prior to the addition of the sodium acrylate powder (circle and square). Reported as a function of electrode separation (13.6, 20.9 and 29.2 mm).



**Table S3.** Summary of the thermogalvanic and heat flux sensor measurements, investigated as a function of electrode separation distance (*d*) and the weight percent equivalent of sodium polyacrlytate powder added to the cell as a gelling agent. Measurements were performed with heat flux sensor in series (bottom) or without the heat flux sensor present (top). Measurements were performed in a 3-sided cell with the cell partially filled, as detailed in the Experimental section. All values are the average of between 2 to 4 repeat measurements.

| Experi<br>Cond   | mental<br>itions | Thermogalvanic Measurement Results |                           |                                         |                                        |                         | Heat Flux Sensor Measurement<br>Results |                            |                 | Measured Efficiencies               |                         | Estimated Heat Flux and<br>Estimated Efficiencies |                                     |                         |
|------------------|------------------|------------------------------------|---------------------------|-----------------------------------------|----------------------------------------|-------------------------|-----------------------------------------|----------------------------|-----------------|-------------------------------------|-------------------------|---------------------------------------------------|-------------------------------------|-------------------------|
| <i>d /</i><br>mm | Gel /<br>wt%     | $\Delta T_{\rm exp}$ / K           | -V <sub>ocp</sub><br>/ mV | $-\dot{j}_{\rm sc}$ / A m <sup>-2</sup> | $P_{\max}$<br>/ mW m <sup>-</sup><br>2 | p <sub>max</sub><br>∕μW | q <sub>empty</sub><br>∕ mW              | q <sub>total</sub><br>∕ mW | $q_{ m m}$ / mW | $\eta_{\rm m}$ / 10 <sup>-3</sup> % | η <sub>r,m</sub><br>/ % | $q_{ m e}$ / mW                                   | $\eta_{\rm e}$ / 10 <sup>-3</sup> % | η <sub>r,e</sub><br>/ % |
| 13.6             | 0<br>3           | 18.4<br>19.7                       | 25.7<br>27.6              | 12.3<br>6.5                             | 79<br>42                               | 5.6<br>3.2              | n/a                                     | n/a                        | n/a             | n/a                                 | n/a                     | n/a                                               | n/a                                 | n/a                     |
| 20.9             | 0<br>3           | 18.4<br>19.5                       | 25.8<br>27.3              | 9.9<br>5.9                              | 64<br>40                               | 4.6<br>2.9              | n/a                                     | n/a                        | n/a             | n/a                                 | n/a                     | n/a                                               | n/a                                 | n/a                     |
| 29.2             | 0<br>3           | 18.5<br>19.4                       | 25.9<br>27.2              | 7.4<br>4.5                              | 48<br>31                               | 3.5<br>2.2              | n/a                                     | n/a                        | n/a             | n/a                                 | n/a                     | n/a                                               | n/a                                 | n/a                     |
| 13.6             | 0                | 17.1                               | 23.9                      | 11.4                                    | 67.9                                   | 4.8                     | 72                                      | 186                        | 114             | 4.2                                 | 0.077                   | 49                                                | 9.8                                 | 0.179                   |
|                  | 1.5              | 18.6                               | 26.1                      | 10.1                                    | 65.8                                   | 4.7                     | 72                                      | 101                        | 29              | 16.1                                | 0.269                   | 54                                                | 8.7                                 | 0.146                   |
|                  | 3                | 18.2                               | 25.5                      | 4.5                                     | 28.6                                   | 2.0                     | 72                                      | 90                         | 18              | 11.6                                | 0.197                   | 53                                                | 3.9                                 | 0.066                   |
| 20.9             | 0                | 17.0                               | 23.8                      | 9.0                                     | 53.5                                   | 3.8                     | 73                                      | 197                        | 124             | 3.1                                 | 0.056                   | 32                                                | 11.9                                | 0.218                   |
|                  | 3                | 18.9                               | 26.5                      | 4.4                                     | 28.9                                   | 2.1                     | 73                                      | 97                         | 25              | 8.3                                 | 0.137                   | 35                                                | 5.8                                 | 0.096                   |
| 20.2             | 0                | 16.6                               | 23.2                      | 6.5                                     | 37.8                                   | 2.8                     | 75                                      | 206                        | 131             | 2.1                                 | 0.039                   | 23                                                | 12.1                                | 0.226                   |
| 29.2             | 3                | 18.9                               | 26.4                      | 3.8                                     | 24.8                                   | 1.8                     | 75                                      | 121                        | 46              | 3.9                                 | 0.065                   | 26                                                | 7.0                                 | 0.116                   |