Electronic Supplementary Information

A structure determination protocol based on combined analysis of 3D-ED data, powder XRD data, solid-state NMR data and DFT-D calculations reveals the structure of a new polymorph of L-tyrosine

Christopher J. H. Smalley,¹ Harriet E. Hoskyns,¹ Colan E. Hughes,¹ Duncan N. Johnstone,² Tom Willhammar,³ Mark T. Young,⁴ Christopher J. Pickard,^{2,5} Andrew J. Logsdail,⁶ Paul A. Midgley,² Kenneth D. M. Harris¹*

- 1 School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
- 2 Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, England, U.K.
- 3 Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
- 4 School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, U.K.
- 5 Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
- 6 Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, Wales, U.K.
- * Author for correspondence: HarrisKDM@cardiff.ac.uk

Figure S1. Schematic of the experimental apparatus for crystallization from the gas phase: (a) the experimental set up before sublimation of the original solid sample, and (b) the experimental set-up after sublimation of the original solid sample, with crystallization occurring both on the cold finger and on the outer glass tube.

2

Figure S2. Powder XRD pattern of the initial biphasic sample containing the new β polymorph of L-tyrosine. Following successful unit cell determination of the β polymorph from 3D-ED data, it was clear from the powder XRD data that the biphasic sample comprised predominantly the β polymorph together with a small amount of a second phase, identified as the α polymorph of L-tyrosine (the main peaks due to the α polymorph are indicated by red asterisks).

Figure S3. Powder XRD data recorded for the monophasic sample of the β polymorph of L-tyrosine using a two-dimensional detector, showing a non-uniform distribution of intensities on the Debye-Scherrer rings.

Figure S4. Evolutionary progress in the GA structure solution calculations using (a) the 3D-ED data and (b) the powder XRD data for the original biphasic sample. In each case, the evolution is shown for 40 independent GA calculations (each starting from a different random initial population of trial structures). Each continuous line represents the evolution of one of the 40 independent GA calculations and shows the lowest value of *R*-factor among all 100 trial structures in the population as a function of generation number. The *R*-factors used in the analysis of the 3D-ED data (R_F) and the powder XRD data (R_{wp}) are defined in Section S3 (note that that the absolute values of R_F and R_{wp} cannot be compared directly). After 100 generations, the success rate in finding the correct structure solution is significantly higher for the powder XRD data than the 3D-ED data. For the 3D-ED data, 7 of the 40 independent GA calculations generated essentially the same structure solution with low *R*-factor; these 7 structures are among those with R_F in the range 41.8% – 43.2% shown in (a). For the powder XRD data, 38 of the 40 independent GA calculations generated essentially the same structure solution with lowest *R*-factor, corresponding to those with $R_{wp} \approx 23.5\%$ shown in (b).

Figure S5. Overlay of the crystal structures (viewed along the *b*-axis) of the β polymorph of L-tyrosine obtained by Rietveld refinement from the powder XRD data (magenta) and by refinement from the 3D-ED data (cyan).

Figure S6. Overlay of the crystal structure of the β polymorph of L-tyrosine obtained in the final Rietveld refinement (magenta) and the crystal structure obtained after subjecting this structure to periodic DFT-D geometry optimization using PBE-TS with fixed unit cell (cyan).

Figure S7. Overlay of the crystal structure of the β polymorph of L-tyrosine from the final Rietveld refinement (magenta; unit cell shown by the solid black lines) and the predicted crystal structure corresponding to the β polymorph generated by AIRSS followed by "precise" geometry optimization including unit cell relaxation (cyan; unit cell shown by the dashed black lines).

6

Figure S8. Crystal structure of the α polymorph of L-tyrosine (determined previously: A. Mostad, H. M. Nissen, C. Romming, *Acta Chem. Scand.* **1972**, *26*, 3819-3833) viewed along the *c*-axis. The structure comprises alternating hydrophilic and hydrophobic layers parallel to the *ac*-plane. Hydrogen bonds are indicated by green dashed lines.

Figure S9. The two-dimensional hydrogen-bonding arrangement in the hydrophilic layer of the crystal structure of the α polymorph of L-tyrosine (determined previously: A. Mostad, H. M. Nissen, C. Romming, *Acta Chem. Scand.* **1972**, *26*, 3819-3833) viewed along the *b*-axis, showing: (a) only the amino acid head-groups, and (b) both the amino acid head-groups and the OH groups of the side-chains. For clarity, only the CCH(NH₃⁺)CO₂⁻ unit of each head-group and the COH unit of each side-chain are shown. Hydrogen bonds are indicated by green dashed lines.

7

Figure S10. Experimental high-resolution solid-state ¹³C NMR spectrum recorded for the α polymorph of L-tyrosine together with the values of isotropic ¹³C NMR chemical shifts calculated for the published crystal structure of the α polymorph (indicated by the red lines above the spectrum). The specific ¹³C site corresponding to each calculated value is indicated. Spinning sidebands in the experimental spectrum are marked by red asterisks.

Figure S11. Predicted structure A of L-tyrosine (generated by AIRSS, followed by "precise" geometry optimization) viewed along the *a*-axis. Hydrogen bonds are indicated by green dashed lines.

Figure S12. Predicted structure B of L-tyrosine (generated by AIRSS, followed by "precise" geometry optimization) viewed along the *a*-axis. Hydrogen bonds are indicated by green dashed lines.

Figure S13. Predicted structure C of L-tyrosine (generated by AIRSS, followed by "precise" geometry optimization) viewed along the *a*-axis. Hydrogen bonds are indicated by green dashed lines.

S9

Section S2 Detailed Description on the Crystal Structure of the β Polymorph of L-Tyrosine, and Comparison to the α Polymorph

The β polymorph of L-tyrosine (Figure 6) may be described as a bilayer structure, comprising alternate hydrophobic and hydrophilic layers parallel to the *ab*-plane. The hydrophilic region contains the amino acid head-groups and the OH groups of the side-chains, while the hydrophobic region contains the phenyl rings of the side-chains. The hydrogen-bonding involving the amino acid head-groups comprises a ribbon motif (Figure 7), propagating along the *b*-axis, and constructed from two strands of L-tyrosine molecules. Within a given strand, adjacent molecules are related by translation along the *b*-axis, while the two strands are related to each other by the 2_1 screw along the *b*-axis. In each molecule, the atoms of the N–C(α)–CO₂ unit are essentially co-planar, and this plane is essentially parallel to the crystallographic *ab*-plane. Within a given hydrogen-bonded ribbon, the planes of the N–C(α)–CO₂ units of the molecules in each strand are parallel to each other, but displaced slightly along the c-axis (Figure 8). The hydrogen-bonded ribbon (Figure 7) is constructed from short and relatively linear N-H…O hydrogen bonds, both between adjacent molecules in a given strand (N…O, 2.70 Å; N-H···O, 178.4°) and between molecules in the two strands (N···O, 2.79 Å; N-H···O, 159.1°), giving rise to a cyclic hydrogen-bonded array described as $R_3^{3}(11)$ in graph set notation. Significantly, a given hydrogen-bonded ribbon is not engaged in hydrogen bonding with any other ribbon. However, the hydrogen-bonded ribbon is involved in additional hydrogen bonding with the OH groups of the side-chains of the molecules that form the hydrogen-bonded ribbons in the layers "above" and "below" along the *c*-axis. As shown in Figure 8, each OH group serves as the donor in an O-H…O hydrogen bond (O···O, 2.62 Å; O–H···O, 165.2°) and as the acceptor in an N–H···O hydrogen bond (N···O, 2.86 Å; N-H···O, 129.7°) with carboxylate and ammonium groups, respectively, in the hydrogen-bonded ribbon, giving a cyclic motif described as $R_3^{3}(8)$ in graph set notation.

We now compare the structural properties of the α and β polymorphs of L-tyrosine, firstly noting that the molecular conformations (defined by torsion angles τ_1 , τ_2 and τ_3 ; see Figure 1) are similar in each case: τ_1 (O–C–C–C) = –71.06° (α), –62.78° (β); τ_2 (C–C–C–C)= –53.08° (α), –53.99° (β); τ_3 (C–C–C–C) = 95.51° (α), 99.96° (β). However, in contrast to the one-dimensional hydrogenbonded ribbons propagating along the *b*-axis in the β polymorph, the hydrophilic region of the α polymorph is a two-dimensional hydrogen-bonded array (parallel to the *ac*-plane; see Figures S8 and S9) involving the amino acid head-groups and the OH groups of the side-chains of L-tyrosine molecules. As a consequence, the α polymorph is a three-dimensionally connected hydrogen-bonded structure, whereas the contiguous hydrogen-bonded network in the β polymorph comprises corrugated slabs with a mean plane parallel to the *bc*-plane (Figure 6), constructed from the hydrogen-bonded ribbons parallel to the *b*-axis and hydrogen-bonded linkages (involving the OH groups) to the adjacent ribbons along the *c*-axis. Adjacent corrugated slabs in the β polymorph are related by translation along the *a*-axis and "nestle" into each other through van der Waals interactions, with no hydrogen-bonding interactions between adjacent corrugated slabs.

<u>Section S3</u> Tables of Results from AIRSS Calculations for Crystal Structure Prediction of L-Tyrosine

Table S1. Relative energy (ΔE , expressed per mole of L-tyrosine molecules) for the seven predicted crystal structures of L-tyrosine generated by AIRSS. For each crystal structure generated by AIRSS, the single-point PBE-TS energy was calculated using FHI-aims. The values of ΔE are given relative to crystal structure 1 (the structure of lowest energy generated by AIRSS).

Structure from AIRSS	ΔE (PBE-TS) / kJ mol ⁻¹ (single-point calculation)
1	0.00
2	6.03
3	6.64
4	14.58
5	15.79
6	18.65
7	17.92

Table S2. Relative energy (ΔE , expressed per mole of L-tyrosine molecules) after subjecting the crystal structures of L-tyrosine generated by AIRSS to "precise" geometry optimization (including relaxation of unit cell parameters and nuclear coordinates) using PBE-TS in FHI-aims. After geometry optimization, structures 1 and 3 converge on an equivalent structure corresponding to the experimentally observed α polymorph, and structures 2 and 6 converge on an equivalent structure corresponding to the experimentally observed β polymorph. In the manuscript, results are presented for the *more stable* of these structures for each polymorph (i.e., structure 3 for the α polymorph and structure 6 for the β polymorph). Values of ΔE are expressed relative to the α polymorph (i.e., structure 3). The single-point PBE0-MBD energy was also calculated using FHI-aims for each structure following the "precise" geometry optimization, giving the high-accuracy relative energies reported in the manuscript. The crystal structures of the α polymorph (structure 3), β polymorph (structure 6), predicted structure A (structure 4), predicted structure B (structure 5) and predicted structure C (structure 7) following the "precise" geometry optimization are included as cif files in Electronic Supplementary Information.

Structure from AIRSS	Assignment	$\Delta E (PBE-TS) / kJ mol^{-1}$ (after geometry optimization)	ΔE (PBE0-MBD) / kJ mol ⁻¹ (single-point calculation)
3	α polymorph	0.00	0.00
1	α polymorph	0.02	0.04
6	β polymorph	4.38	4.10
2	β polymorph	4.41	4.16
4	Predicted structure A	11.69	11.11
5	Predicted structure B	13.28	11.83
7	Predicted structure C	16.07	27.56

Table S3. Crystallographic data for the five distinct structures of L-tyrosine generated from the AIRSS structure prediction calculations, following "precise" geometry optimization (including relaxation of unit cell parameters). The structures labelled as the α polymorph and β polymorph correspond to the experimentally determined crystal structures of these polymorphs. The structures labelled as the predicted structures A, B and C have not been observed in experimental studies.

Structure	Space Group	Z	a / Å	<i>b</i> / Å	c / Å	α / °	β/°	γ/°	V / Å ³
a polymorph	P212121	4	5.86	21.13	6.80	90	90	90	841.99
β polymorph	P21	2	7.41	5.90	9.87	90	95.15	90	429.76
Predicted structure A	P2 ₁ 2 ₁ 2 ₁	4	5.90	9.75	15.39	90	90	90	885.31
Predicted structure B	P2 ₁ 2 ₁ 2 ₁	4	5.92	12.08	11.88	90	90	90	849.58
Predicted structure C	P2 ₁ 2 ₁ 2 ₁	4	5.87	11.80	12.13	90	90	90	840.20

Section S4 Definition of *R*-factors used in Direct-Space Structure Solution from 3D-ED data and Powder XRD Data

For powder XRD data, the weighted profile *R*-factor (R_{wp}) and the unweighted profile *R*-factor (R_p) are defined as follows:

$$R_{wp} = 100 \times \left(\frac{\sum_{i}^{i} w_{i}(y_{o,i} - y_{c,i})^{2}}{\sum_{i}^{i} w_{i}(y_{o,i})^{2}}\right)^{\frac{1}{2}}$$
(S1)
$$R_{p} = 100 \times \left(\frac{\sum_{i}^{i} (y_{o,i} - y_{c,i})^{2}}{\sum_{i}^{i} (y_{o,i})^{2}}\right)^{\frac{1}{2}}$$
(S2)

where $y_{o,i}$ is the intensity of the *i*th data point in the digitized experimental powder XRD pattern, $y_{c,i}$ is the intensity of the *i*th data point in the digitized powder XRD pattern calculated for the structural model, and w_i is a weighting factor for the *i*th data point, given by $w_i = 1/y_{o,i}$.

For 3D-ED data, the *R*-factor (R_F) is defined as:

$$R_F = 100 \times \left(\frac{\sum_{i} \left\|F_{o,i}\right| - \left|F_{c,i}\right\|}{\sum_{i} \left|F_{o,i}\right|}\right)$$
(S3)

where $|F_{o,i}|$ is the structure factor amplitude (the square-root of the measured intensity) for the *i*th reflection in the experimental 3D-ED dataset and $|F_{c,i}|$ is the structure factor amplitude for the corresponding reflection calculated for the structural model.

S14

Section S5 3D-ED Data Statistics

Crystal system	Monoclinic
Space group	<i>P</i> 2 ₁ (no. 4)
<i>a</i> / Å	7.92
b / Å	6.13
<i>c</i> / Å	9.90
α/ο	90
β/°	94.82
γ/°	90
V / Å ³	478.9
λ / Å	0.0251
Exposure time per frame / s	0.5
Tilt speed / o s ⁻¹	0.2321
Completeness / %	49.0
Resolution / Å	0.85
R _{int}	0.112
No. of symmetry independent reflections	702
No. of refined parameters	53
No. of restraints	12
Refinement R-value	0.251

Table S4: 3D electron diffraction (3D-ED) data for the β polymorph of L-tyrosine.

Section S6 High-resolution Solid-state ¹³C NMR Spectroscopy

Table S5. Isotropic ¹³C NMR chemical shifts (δ_{calc}) calculated for the crystal structures of the α and β polymorphs of L-tyrosine, with the numbering of the ¹³C sites defined in the figure below. Figure 5 of the main text shows the experimental high-resolution solid-state ¹³C NMR spectrum for the β polymorph and Figure S10 shows the experimental high-resolution solid-state ¹³C NMR spectrum for the α polymorph. In each figure, the calculated values of the isotropic ¹³C NMR chemical shifts (given in this table) are shown above the experimental spectrum for comparison.

¹³ C site	$\delta_{ m calc}$ / ppm			
	β polymorph	α polymorph		
1	177.93	179.47		
2	54.45	55.99		
3	36.95	38.49		
4	124.65	126.19		
5	132.05	133.59		
6	117.91	119.45		
7	157.89	159.43		
8	113.41	114.95		
9	131.43	132.97		

