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S1 In-depth technical description of the models

S1.1 Predictive model

The predictive model is based on our BonDNet' graph neural network (GNN) model for
predicting bond dissociation energies. Fach molecule in a reaction is represented as a graph
G = (E,V,u). In the molecular graph, E = {(ey, Tk, Sx) }x=1.n¢ is the set of bond edges,
where N€ is the total number of bonds in the molecule, and (e, 71, sx) holds the information
of the kth bond: ey is a vector of bond features (e.g. whether the bond is in a ring), and ry
and s are the indices of the two atoms forming the bond. Similarly, V' = {v;};—1.nv is the
set of atom nodes, where NV is the total number of atoms in the molecule, and v; is a vector
of features for atom ¢ (e.g. chemical specie of the atom). Finally, u is a global feature vector
of molecule-level information such as the total molecular charge.

BonDNet updates the bond, atom, and global features based on the connectivity of the
molecular graph. First, each bond feature vector e is updated from the feature vectors of

the two atoms forming in the bond, v,, and v, , the global feature vector u, and the current
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bond feature vector:

€}, = e + ReLU[01 (Ve +vs,) + d2(ex) + ¢3(w)], (1)

where ReLLU is the rectified linear unit activation function, and each of ¢y, @5, and ¢3 is a
two-layer perceptron of the form Wy(ReLU(Wja+ by)) 4 by, in which W1, Wy, by, and by
are trainable parameters (a represents v,, + v, , €x, and u for ¢y, ¢, and ¢3, respectively).
Multilayer perceptrons (MLPs) like ¢, ¢2, and ¢3 are used in various places below. They
are all of this form except that different number of W’s and b’s can be used and they take
different values. The feature vector v; of each atom ¢ is similarly updated based on the
features of the atom itself, all neighboring atoms N that form bonds with the atom, the

formed bonds, and the global state:

Vi =vi+ReLU |¢4(vi) + Y &, © d5(v;) + ¢6(u) |, (2)
JEN;
&; = o(e;;) (3)

> jren, 0l€5) + €
where each of ¢4, ¢5, and ¢g is a two-layer perceptron, ® denotes the elementwise Hadamard
product, o is the sigmoid function, € is a small constant for numerical stability, and ef; is
another way to denote the bond feature e}, such that atoms i and j form bond k, i.e. i = ry,
and j = sg. Finally, the global feature vector u is updated based on all atoms, all bonds,

and itself:

u =u+ ReLU

o1 (Ni Z v;) + ¢ (Ni ; e;) + %(u)] : (4)

where, again, each of ¢7, ¢g, and ¢g is a two-layer perceptron.
The feature update mechanism in Eq. (1) to Eq. (4) is applied separately to each reactant

and product molecule in the reaction, and it is applied iteratively for multiple steps to get a



better representation of each molecule.

We then take the difference of the atom features between the products and the reactants:

Avi=v;, —V, (5)

7,00

where v;  denotes the feature vector of atom 7 in the products and v;, the feature vector
of the same atom in the reactants. The final representation (fingerprint) of a reaction is
obtained by aggregating the set of difference atom feature vectors {Av}} to a single vector

using the attentive pooling function,

Ny
h=>"a;Av]. (6)

The attention score a; for Av! is obtained via the softmax function,

_ expllin(Av})]
Z,iv“ exp[lin(Av})] ’

(7)

i

where lin(a) = wTla + b is a linear layer that converts a feature vector to a scalar (w
and b are learnable parameters). Note that this part is slightly different from the original
BonDNet model, where all atom, bond, and global difference features are aggregated into
the final representation via concatenation after set2set poolings. These modifications are
made because we found they improve the performance of the BonDNet model. To classify

the reactions, we input the fingerprint h to an MLP to obtain a class score,

s = MLP(h), (8)

and then minimize a cross-entropy loss function over the score and the true label.
For later discussion, let us name the above process to obtain the fingerprint h of a reaction

x as the reaction encoder, h = f(x).



S1.2 Contrastive self-supervised model

The contrastive model starts by modifying an input reaction using one or more augmentation
methods discussed in the main text. The algorithms to find functional groups in molecules
participating in a reaction and to augment reactions using the subgraph method are given
in Algorithm 1 and Algorithm 2, respectively. Given a reaction x, we create two augmented
versions of it,

x; = Aug(x) and x; = Aug(x), (9)

where Aug denotes a reaction augmentation. Using the reaction encoder discussed in Sec-

tion S1.1, we obtain a fingerprint for each of the two augmented reactions,

The fingerprints are then passed through a projection head g (chosen to be an MLP) to get

a final vector representations of the reaction,

z; =g(h;) and z; = g(h,). (11)

Finally, we train the model by minimizing the NT-Xent loss function given in Eq. (1) of the

mailn text.

S1.3 Other GNN molecule encoders

The molecule encoder described in Section S1.1 (specifically Eq. (1) to Eq. (4)) is based on
the GatedGCN? graph neural network (GNN). Our pretrain-fine-tuning strategy is flexible
and can be applied to other GNNs. To confirm its wide applicability, we tested on two other
widely used GNNs: the graph isomorphism network (GIN)? and the graph attention network
(GAT)..* The original GIN and GAT GNNs do not support bond and global features; we

extended them in a similar way as we do for GatedGCN in BonDNet.



Algorithm 1 Find the functional group in a molecule participating in a reaction
Input: m - molecule
S - set of predefined functional groups via SMARTS
Output: f - functional group in the molecule participating in the reaction

1: function FINDFUNCTIONALGROUP

2 a = FindAltered Atom() > find atoms in broken and formed bonds
3 f = None

4 for s in S do

5: if s Cm and sNa # () then

6 if f is None then

7 f=s

8 else

9: if size(s) > size(f) then > size() returns the number of atoms
10: f=s
11: end if
12: end if
13: end if
14: end for
15: return f

16: end function

Algorithm 2 Subgraph reaction augmentation method
Input: m, - reactant molecules
m,, - product molecules
r - ratio of atoms outside reaction center to keep
Output: m{ - augmented reactant molecules
m;, - augmented product molecules

1: function SUBGRAPH

2 N = int(r * Noyt) > Nout: # out-center atoms, N: # out-center atoms to keep
3 ai, = FindReactionCenter() > get all atoms in center, e.g. via Algorithm 1
4: g = Qi > initial subgraph, containing all atoms in center
5: for ¢ in range(N) do

6 neigh = FindNeigh(g) > get one-hop neighbors of atoms in the subgraph
7 neigh = {a in neigh not in g} > remove neighbors already in the subgraph
8 Aselected = RandomSelect(neigh) > randomly select a neighbor atom
9: g = g U Gselected > add the selected atom to the subgraph
10: end for
11: m¢ = AugmentMolecule(m,., g) > augment the reactant molecules: keep atoms in g
12: my = AugmentMolecule(m,, g) > augment the product molecules: keep atoms in g
13: return my;, m,

14: end function




GIN. The bond feature vector is updated by concatenating the atom, bond, and and

global feature vectors and then putting it through an MLP,
e}, = e + MLP[(v,, + v, )|lex||u], (12)

where || denotes vector concatenation. The atom feature vector is updated in a similar
manner,

v; = v; + MLP [v;[|&]|u] , (13)

where €; = >\ €}; is the sum of the features of bonds formed with atom i. Finally, the

global feature vector is updated via

u = u+ MLP [v|é]u], (14)

N
%

where v = % > ’ v, is the mean of all atom features in a molecule and é = % Z,jje e}, is
the mean of all bond features in a molecule. Each of the MLPs in the GIN model has two
layers.

GAT. The GAT bond feature update function is the same as that for GatedGCN (i.e.
Eq. (2)),

¢} = e + ReLU[1 (v, +vs,) + daler) + da(u)]. (15)

The atom feature is updated from all neighboring atoms, all bonds that the atom form, and

the global feature,

V; =V;+ ReLU Z @Vj¢4<vj) + Z aeij¢5(e;j) + au¢6(u) ’ (16)

JENY JENF
where N denotes the set of atoms with which atom ¢ forms a bond, N¢ denotes the set of
formed bonds, ay; is the attention score for neighboring atom j, ae,; is the attention score

for bond i-j, and ay is the attention score for the global state. The attention scores are



computed as,
v, = By,/A and  ae, =B, /A and ay = Bu/A,
in which
By, = exp (LeakyReLU(a, - [¢4(v;)[|6(v)]))
Be,; = exp (LeakyReLU(a. - [¢5(e};)[[¢4(v:)]))
Bu = exp (LeakyReLU(a, - [¢s(w)||¢4(vi)]))

A= By, + Y Beyy + Bu,

je/\/i” je/\/’f

(17)

where a,, a., and a, are trainable parameter vectors. Finally, the global feature is updated

from via

Nv Ne
u’ = u+ RelLU Z ay, O7(Vi) + Z Qe Ps(€}) + audo(u) | |
i K

(19)

where NV and N¢ are the total number of atoms and bonds in a molecule. The attention

scores are computed in a similar way as in the atom feature update, i.e.
v, = W, /A and e, = e, /A and  ay = /A,

in which

v, = exp (LeakyReLU(a, - [¢7(v;)[|¢o(u)]))
Ve = exp (LeakyReLU(a. - [¢s(e},)[|do(u)]))

Yu = exp (LeakyReLU(ay, - [¢o(u)|do(u)]))

NV N¢
A= Z’le +27ek + Yu,
i k

(20)

(21)

where a,, a., and a, are trainable parameter vectors (note that they take different values

from those in Eq. (18)). In the GAT model, ¢1, ¢, ..., ¢g are two-layer perceptrons.



S2 In-depth technical description of model training

S2.1 Input features

Table S1: Input atom, bond, and global features for the GNN models.

Feature type

Feature name

Description

Atom

Bond

Global

atom type
degree

# hydrogens
ring status
ring size

valence
aromatic

# radical
hybridization
ring status
ring size

conjugated
bond type
# atoms

# bonds
weight

chemical specie of an atom (one-hot)

number of bonds an atom forms (one-hot)

number of hydrogens connected to an atom (integer)
whether an atom is in a ring (binary)

number of atoms in the ring (3-7), “null” if the atom is not
in a ring (one-hot or null)

valence of an atom (one-hot)

whether an atom forms aromatic bond (binary)

number of radical electrons (one-hot)

s, sp', sp?, or sp® (one-hot or null)

whether a bond is in a ring (binary)

number of atoms in the ring (3-7), “null” if the bond is not
in a ring (one-hot or null)

whether it is a conjugated bond (binary)

single, double, triple, or aromatic (one-hot or null)

number of atoms in a molecule (integer)

number of bonds in a molecule (integer)

weight of a molecule (integer)

S2.2 Hyperparameters

The GNN model hyperparameters (Table S2) are obtained using a grid search on the super-

vised classification task to ensure their best performance. Some hyperparameters need more

explanation:

e # graph to graph modules. Number of iterations the molecule encoder is applied

to update the atom, bond, and global features.

(Eq. (1)~Eq. (4) for GatedGCN;

Eq. (12)~Eq. (14) for GIN; and Eq. (15)~Eq. (21) for GAT.)

e graph to graph layer size. Layer sizes of the two-layer MLPs used in the feature

update equations. Specifically, ¢q, ¢o, ...

, 09 in Eq. (1)~Eq. (4) for GatedGCN; the



three MLPs in Eq. (12)~Eq. (14) for GIN; and ¢4, ¢o, ..., ¢g in Eq. (15)~Eq. (21) for
GAT.

e # MLP layers. Number of hidden layers in the MLP in Eq. (8).
e MLP layer sizes. Hidden layer sizes in the MLP in Eq. (8).
e batch size. Mini-batch size for training the model.

The hyperparameters for the contrastive model are listed in Table S3. The contrastive
models use the same reaction encoder as the predictive models, so “# graph to graph mod-
ules” and “graph to graph layer size” are exactly the same as those in Table S2. Explanation

for some hyperparameters:

e # MLP layers in projection head. Number of layers of the MLP projection head
in Eq. (11).

e MLP layer sizes in projection head. Layer sizes of the MLP projection head in
Eq. (11).

Table S2: Hyperparameters of the predictive models for the three datasets

Schneider TPL100 Grambow

# graph to graph modules 3 3 3
graph to graph layer size 128 256 128
# MLP layers 2 2 2
MLP layer sizes 128,64 256, 128 128, 64
batch size 100 100 64

Table S3: Hyperparameters of the contrastive models for the three datasets

Schneider TPL100 Grambow

# graph to graph modules 3 3 3
graph to graph layer size 128 256 128
# MLP layers in projection head 2 2 2
MLP layer sizes in projection head 128, 128 256, 256 128, 128
batch size 1000 1000 1000




S2.3 Augmentation probability

The reaction augmentations in the contrastive model are discarded when fine-tuning the
model for reaction classification. Therefore, after the model is fine-tuned and then used for
prediction, no augmentation is applied to a reaction. To respect this, one of the two aug-
mentations (e.g. augmentation i without loss of generality) has a 50% probability of being
applied. We denote this with the “+” symbol. As a concrete example, assume a pair of
augmentations “drop atom™” and “subgroup” are selected. This means, for augmentation
1, drop atom has a 50% chance of being applied and there is a 50% chance that no augmen-
tation is applied; for augmentation j, subgraph is always applied. In cases where the same
augmentation method is applied to both ¢ and j, we simplify the notation by not using the
“+” symbol and only say that e.g. “drop atom” is applied as the augmentation. This is the

case in the main text.

S2.4 Training loss
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1.0

Contrastive training loss

0.8

Figure S1: A typical training loss versus epoch curve for the contrastive model. The training
loss plateaus quickly with the epoch and thus we terminate the training at epoch 100. The
shown curve is for the Schneider dataset; similar curves are observed for the TPL100 and
Grambow datasets.
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S3 Extra results

S3.1 Effectiveness of augmentation strategies
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Figure S2: Fj score obtained using 16 labelled reactions per class in the Schneider training
set, for different augmentation method, reaction center mode, and augmentation magnitude
(i.e. the percentage of atoms (bonds) outside the reaction center selected for augmentation).
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Figure S3: Improvement of the F} score of the fine-tuned model over the supervised model.
Each value in the matrix gives the improvement (i.e. the score difference between the fine-
tuned model and the supervised model) when using the row label as augmentation i and
the column label as augmentation j to train the contrastive model. “Identity” means no
augmentation is applied. The superscript “+” denotes using both the augmentation method
specified before it and the identity, each with a 50% probability (see Section S2.3 for more
on the “+” notation). The supervised model has an Fj score of 0.64.
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S3.2 Prediction confusion matrix

Using only 8 labelled reactions per class, the fine-tuned model achieves a prediction F} score
of 0.861. Looking closer at the confusion matrix (Fig. S4), we see the incorrect predictions
are mainly from a few difficult classes where the reactions are closely related. For example, 20
and 16 “Eschweiller-Clarke methylation” reactions are misclassified as “lodo N-alkylation”
and “Methylation” reactions, respectively. It is easy to see that “Eschweiller-Clarke methy-
lation” and “Methylation” are closely related, both of which involve a methylation process.
We have noticed that in some of the “lodo N-alkylation” reactions, the alkyl group is methyl
(see Fig. S5 for an example); therefore, these reactions can also be regarded as a methyla-
tion reaction. For the same reason, 14 and 13 “lodo N-alkylation” reactions are misclassified
as “Eschweiller-Clarke methylation” and “Methylation” reactions, respectively. As another
example, both being esterification reactions, 13 “Methyl esterification” reactions are mis-
classified as “Fischer-Speier esterification” and 42 reactions are misclassified vice versa.

We emphasize that the results shown in Fig. S4 are obtained using a model trained on
only 8 labelled reactions per class. When more labelled data are used, the model performs

much better, achieving an Fj score of 0.928 with 32 reactions per class for example.
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Figure S4: Prediction confusion matrix for the Schneider test set by the fine-tuned model
Figure S5: An exmaple iodo N-alklylation reaction, where the alkyl group is methyl.

that is trained using 8 labelled reactions per class.



S3.3 Comparison with other reaction fingerprints

Fig. S6 shows the F} score using various fixed reaction fingerprints. In general, our RxnRep
fingerprint performs quite well among the tested reaction fingerprints, although it under-
performs some other reaction fingerprints in the extremely small data region for the TPL100
dataset. The data for the left panel is listed in Table 1 in the main text, for the middle and

right panels are listed in Table S5 and Table S6, respectively.

Schneider dataset _ TPL100 dataset Grambow dataset

[ .
= 0.6 — - Model:
Q
2 / —— Fine-tuned
o 0.4 . - —— AP3 +LR
—— AP3 + MLP
0.2 4 . - RxnRep + MLP
RXNFP + MLP
0.0 - T T T T T T T T T T T T T T T T T DRFP + MLP
4 8 16 32 64 128 4 8 16 32 64 128 4 8 16 32 64 128
Number of training data per class Number of training data per class Number of training data per class

Figure S6: Classification F} score using various fixed reaction fingerprints, including our
RxnRep fingerprint, as well as the AP3,> RXNFP,% and DRFP7 fingerprints. As a reference,
the result from the fine-tuned model is also included. LR: logistic regression; MLP: multilayer
perceptron.

S3.4 Performance with different molecule encoders

Table S4: Classification Fj score of the supervised and fine-tuned models using the Gat-
edGCN, GIN, and GAT molecule encoders. The scores are obtained using 4,8, ...,128
labelled reactions per class from the Schneider dataset. Values outside and inside the paren-
theses are the mean and standard deviation of the score, respectively. The standard deviation
is computed from five runs, each with a different resampling of the training set. Trainset
size “all” means a model is trained on all labelled reactions in the training set (thus no stan-
dard deviation is provided). Results on various reaction fingerprints, e.g., RxnRep, AP3,°
RXNFP,® and DRFP,” are given in the main text.

Training data size GatedGCN GIN GAT

(reactions per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned
4 0.469 (0.013) 0.725 (0.015) 0.406 (0.009) 0.673 (0.017) 0.504 (0.033) 0.633 (0.038)
8 0.637 (0.013) 0.861 (0.007) 0.594 (0.010) 0.836 (0.012) 0.672 (0.014) 0.821 (0.012)
16 0.841 (0.002) 0.905 (0.003) 0.817 (0.009) 0.899 (0.002) 0.855 (0.006) 0.907 (0.005)
32 0.907 (0.004) 0.928 (0.002) 0.906 (0.003) 0.930 (0.004) 0.908 (0.008) 0.929 (0.004)
64 0.931 (0.004) 0.944 (0.003) 0.933 (0.003) 0.943 (0.003) 0.936 (0.002) 0.942 (0.002)
128 0.942 (0.002) 0.950 (0.001) 0.946 (0.004) 0.949 (0.003) 0.945 (0.004) 0.947 (0.002)
all 0.961 0.959 0.958 0.958 0.955 0.956
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Table S5: Fj score for the TPL100 dataset using the GatedGCN, GIN, and GAT molecule
encoders. Also included are the scores using logistic regression (LR) and multilayer per-

ceptron (MLP) classifiers on our pretrained RxnRep and some other reaction fingerprints
(AP3,> RXNFP,® and DRFP7).

Training data size GatedGCN GIN GAT
(reactions per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned
4 0.499 (0.008)  0.769 (0.018) 0.492 (0.011) 0.746 (0.003) 0.529 (0.025) 0.716 (0.009)
8 0.799 (0.022)  0.888 (0.005) 0.817 (0.005) 0.879 (0.005) 0.824 (0.015) 0.883 (0.005)
16 0.938 (0.002)  0.947 (0.005) 0.929 (0.003) 0.949 (0.006) 0.924 (0.001) 0.962 (0.009)
32 0.974 (0.001)  0.978 (0.000) 0.973 (0.003) 0.980 (0.002) 0.966 (0.010) 0.980 (0.001)
64 0.984 (0.001)  0.985 (0.000) 0.984 (0.001) 0.986 (0.002) 0.970 (0.015) 0.985 (0.001)
128 0.989 (0.001)  0.990 (0.001) 0.989 (0.001) 0.989 (0.001) 0.970 (0.007) 0.988 (0.001)
all 0.993 0.993 0.993 0.993 0.984 0.992
Training data size AP34+LR AP3+MLP  RxnRep+MLP RXNFP+MLP DRFP+MLP
(reactions per class)
4 0.587 (0.002)  0.567 (0.006) 0.095 (0.017) 0.248 (0.007) 0.090 (0.008)
8 0.678 (0.002)  0.680 (0.009)  0.166 (0.013) 0.319 (0.005)  0.147 (0.004)
16 0.758 (0.004)  0.774 (0.003) 0.276 (0.008) 0.387 (0.009) 0.205 (0.005)
32 0.813 (0.004)  0.826 (0.001) 0.390 (0.024) 0.459 (0.005) 0.268 (0.003)
64 0.855 (0.002)  0.862 (0.003) 0.565 (0.013) 0.520 (0.005) 0.339 (0.005)
128 0.882 (0.001)  0.888 (0.003) 0.709 (0.001) 0.579 (0.005) 0.419 (0.005)

Table S6: F} score for the Grambow dataset using the GatedGCN, GIN, and GAT molecule
encoders. Also included are the scores using logistic regression (LR) and multilayer per-
ceptron (MLP) classifiers on our pretrained RxnRep and some other reaction fingerprints

(AP3,> RXNFP,® and DRFP7).

Training data size GatedGCN GIN GAT
(reactions per class) supervised fine-tuned supervised fine-tuned supervised fine-tuned
1 0.688 (0.074) _ 0.740 (0.036) _ 0.712 (0.048) 0.728 (0.072) _ 0.708 (0.043) _ 0.724 (0.052)
8 0.712 (0.052)  0.764 (0.061)  0.744 (0.041) 0.752 (0.091)  0.736 (0.061)  0.784 (0.029)
16 0.816 (0.034) 0.844 (0.032) 0.774 (0.032) 0.804 (0.056) 0.784 (0.028) 0.820 (0.070)
32 0.876 (0.023)  0.916 (0.032)  0.840 (0.039) 0.876 (0.031)  0.860 (0.022)  0.876 (0.029)
64 0.920 (0.018)  0.944 (0.015)  0.868 (0.027) 0.892 (0.055)  0.864 (0.015)  0.896 (0.043)
all 0.980 0.960 0.960 0.940 0.920 0.940
Training data size AP3+LR AP3+MLP  RxnRep+MLP RXNFP+MLP DRFP-+MLP
(reactions per class)
1 0.536 (0.078) _ 0.540 (0.069) __ 0.659 (0.037) 0.688 (0.037) __ 0.360 (0.052)
8 0.584 (0.070)  0.588 (0.072)  0.714 (0.046) 0.708 (0.030)  0.444 (0.071)
16 0.560 (0.044)  0.600 (0.057)  0.766 (0.056) 0.748 (0.020)  0.484 (0.050)
32 0.604 (0.020)  0.684 (0.027)  0.852 (0.053) 0.784 (0.023)  0.524 (0.061)
64 0.608 (0.020)  0.676 (0.046)  0.871 (0.060) 0.832 (0.030)  0.580 (0.036)

S3.5 Performance on regression tasks

To verify the general applicability of the pretraining approach, in addition to reaction clas-
sification, we further test it on two regression datasets: one with reaction rate constants
(the log(k) rate dataset)® and the other with reaction energies (the Rad-6-RE dataset),’

1‘10

where in both cases we utilize the cleaned version provided by Heid et al."” The contrastive

pretraining is exactly the same as done for the classification; namely, we use the subgraph
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reaction augmentation method with the altered bonds reaction center mode, as well as an
augmentation magnitude of 0.8. For the supervised training and fine-tuning, instead of
mapping the learned reaction fingerprint to a family score as in the classification, we use the
MLP (Eq. (8)) to convert it to the regression target (log(k) and reaction energy for the two
datasets, respectively), and then minimize a mean-squared-error (MSE) loss function. The
performance of the supervised and fine-tuned models is shown in Fig. S7. The fine-tuned
model yields smaller mean absolute error (MAE) than the supervised model trained from
scratch for the test sets of both datasets, meaning that the regression tasks also benefit from

the pretraining.

1.8 2.0
log(k) rate dataset Rad-6-RE dataset
1.6 1.8 1
1.4 1.6
1.2+ 1.4 4
# E Model:
= 104 = 12 Supervised
084 10- —— Fine-tuned
0.6 0.8
0.4 - T T T T T 0.6 - T T T T T
2 4 8 16 32 64 x1072 2 4 8 16 32 64 x107*
Training data size (ratio of entire training set) Training data size (ratio of entire training set)

Figure S7: Model performance on regression tasks. Mean absolute error (MAE) versus
training data size for the supervised and fine-tuned GNN models. The vertical bar denotes
the uncertainty, obtained as the standard deviation from five different runs, each with a
different resampling of the training data.
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S3.6 Search similar reactions

Query: .
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Figure S8: Extra retrieved reactions when querying for the Fischer—Speier esterification
reaction.
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