Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information for

Synthesis, Aromatization and Cavitates of an Oxanorbornene-Fused Dibenzo[de, qr]tetracene Nanobox

Han Chen, Zeming Xia, Qian Miao*

Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, China * miaoqian@cuhk.edu.hk

Table of Contents

1.	Synthesis	2
2.	X-ray crystallography	5
3.	Photophysical properties and fluorescence titration experiments	6
4.	Density Function Theory (DFT) Calculations	12
5.	High resolution MALDI-TOF mass spectra	14
6.	NMR spectra	17
7.	Reference	23

1. Synthesis

General: The reagents and starting materials employed were commercially available and used without any further purification or made following reported methods as indicated. Unless otherwise noted, all reactions were performed with dry solvents under an atmosphere of nitrogen in dried glassware with standard vacuum-line techniques. Anhydrous and oxygenfree CH₃CN, THF and CH₂Cl₂ were purified by an Innovative Technology Pure-Solv PS-MD-4 system. Gel permeation chromatography (GPC) were performed on a JAI LC-9160 II NEXT automatic recycling preparative HPLC system with a UV/VIS detector. NMR spectra were recorded on a Bruker AVANCE III 400MHz spectrometer (¹H NMR: 400 MHz, ¹³C NMR: 100 MHz). Abbreviations: s = singlet, d = doublet, t = triplet, m = multiplet. Chemical shift values (δ) are expressed in parts per million using residual solvent protons (¹H NMR, $\delta_{\rm H}$ = 5.32 for CD₂Cl₂, $\delta_{\rm H}$ = 7.26 for CDCl₃, $\delta_{\rm H}$ = 7.14 and 7.40 for *o*-C₆D₄Cl₂, ¹³C NMR, $\delta_{\rm C}$ = 77.16 for CDCl₃) as internal standard. Mass spectra were recorded on Thermo Q Exactive Focus Orbitrap Mass spectrometer or a Bruker Autoflex speed MALDI-TOF spectrometer. Unless otherwise noted, melting points, without correction, were measured using a Nikon Polarized Light Microscope ECLIPSE 50i POL equipped with an INTEC HCS302 heating stage.

Trifluormethanesulfonic acid, 2,5-bis(trimethylsilyl)-1,4-phenylene ester (5) was synthesized following the reported procedures.¹

2,7-di-tert-butylpyreno[**4,5-c:9,10-c']difuran** (6) was synthesized following the reported procedures.²

A mixture of **5** (289mg, 0.55mmol), **6** (200 mg, 0.51 mmol) and caesium fluoride (92 mg, 0.6 mmol) was dissolved in a mixed solvent of acetonitrile (10 mL) and THF (2 mL), and the resulting mixture was stirred at room temperature overnight (about 12h). Then the reaction mixture was concentrated under a reduced pressure, and the crude product was purified by column chromatography on silica gel with hexane/CH₂Cl₂ 2/1 (V/V) as eluent to afford 143 mg of **7** as white solid (41% based on **5** and 54% based on reacted **6**) together with 50 mg of **6** recovered. mp: decomposed upon heating to 250 °C. ¹H-NMR (400MHz, CDCl₃) δ (ppm): 8.42 (s, 2H), 8.25-8.24 (m, 2H), 8.03 (d, ⁴J=1.6 Hz, 1H), 7.99 (d, ⁴J=2 Hz, 1H), 7.49 (s, 1H),

7.42 (s, 1H), 6.78 (s, 1H),7.77 (s, 1H) 1.59 (s, 9H), 1.58 (s, 9H), 0.27 (s, 9H). ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 153.57, 152.57, 149.86, 149.72, 148.22, 145.93, 145.56, 136.94, 136.91, 129.19, 126.34, 126.00, 125.93, 125.86, 122.39, 122.28, 121.82, 119.58, 119.53, 117.37, 117.33, 112.64, 82.36, 82.15, 35.33, 31.86, 31.82, -0.76. HRMS(APCI): calcd. for C₃₈H₃₇F₃O₅SSi ([M+H]⁺): 691.2156, found: 691.2138.

Compound 8

To a mixture of **7** (300 mg, 0.43 mmol), TiCp₂Cl₂ (202 mg, 0.81 mmol) and activated Zn powder (130 mg, 2 mmol) was added 10 mL of anhydrous THF under an atmosphere of nitrogen, and the reaction mixture was stirred at 60 °C overnight. The resulting mixture was cooled to room temperature and diluted with CH₂Cl₂, and then filtered through a pad of celite to remove unreacted Zn powder. The filtrate was concentrated under a reduced pressure, and the residue was purified by flash chromatography on a short column of silica gel using hexane/CH₂Cl₂ 2/1 (V/V) as eluent to give compound **8** (244mg, 83%) as pale yellow solid. mp: 280-284°C. ¹H-NMR(CDCl₃) δ (ppm): 9.19 (s, 1H), 9.15(s, 1H), 8.86 (s, 2H), 8.43 (s, 2H), 8.33 (s, 1H), 8.24-8.23 (m, 2H), 8.13 (s, 1H), 1.64 (s, 18H), 0.53 (s, 9H). ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 152.8, 149.7, 149.6, 138.1, 136.6, 132.5, 131.4, 130.8, 130.4, 130.1, 129.4, 129.1, 125.5, 125.4, 122.7, 122.6, 122.4, 122.2, 121.7, 120.8, 120.6, 118.8, 118.5, 116.2, 35.45, 31.9, -0.45. HRMS(APCI): calcd. for C₃₈H₃₇F₃O₄SSi ([M+H]⁺): 675.2208, found: 675.2191.

Compound **3** and **9**

Compound **8** (50 mg, 0.074 mmol) and caesium fluoride (56 mg, 0.37 mmol) were dissolved in a mixed solvent of acetonitrile (20 mL) and THF (20 mL). The reaction mixture was stirred at 50°C for 4 days, and then concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel with CH_2Cl_2 as eluent to afford **3** (2.8 mg, 8%) and **9** (3 mg, 9%) as pale yellow solids.

Compound **3** mp: not melt when heated up to 300 °C. ¹H-NMR(CDCl₃) δ (ppm): 8.87(s, 8H), 8.81(s, 8H), 8.20(s,8H), 7.88(s, 8H), 6.97(s,8H), 1.62(s, 8H). Due to the poor solubility in CDCl₃, ¹³C NMR spectrum with acceptable resolution was not obtained after 15000 scans due to the low solubility. HRMS (MALDI-TOF): calcd. for C₁₃₆H₁₁₂O₄ ([M]⁺): 1809.8589, found: 1809.8590.

Compound **9** mp: not melt when heated up to 300 °C. ¹H-NMR(CDCl₃) δ (ppm): 8.60(d, ⁴*J*=1.2 Hz , 6H), 8.47(s, 6H), 8.10(d, ⁴*J*=1.6 Hz, 6H), 7.54(s, 6H), 6.94(s, 6H), 1.57(s, 54H). ¹³C-NMR (100MHz, CDCl₃) δ (ppm): 149.0, 144.7, 144.6, 131.1, 129.6, 129.1, 125.3, 123.4, 122.5, 118.6, 118.3, 117.9, 82.7, 35.5, 32.0. HRMS (MALDI-TOF): calcd. for C₁₀₂H₈₄O₃ ([M]⁺): 1357.6449, found: 1357.6433.

Reductive aromatization of 3

Solution of H₂SnCl₄ in THF was freshly prepared by dissolving anhydrous SnCl₂ (110 mg, 0.6 mmol) in 10 mL of anhydrous THF under an atmosphere of N₂ and adding 0.1 mL of concentrated aqueous hydrochloric acid to the solution. The resulting solution was stirred at room temperature for 20 minutes before use. Compound **3** (1.6 mg, 0.9 µmol) was dissolved in 3 mL of toluene under an atmosphere of N₂. To the resulting solution was added 0.1 mL of the freshly prepared solution of H₂SnCl₄ in THF (6 µmol of H₂SnCl₄). After being stirred at 120°C under the same atmosphere of N₂ for 18 hours, this solution changed from colorless to yellowish. The crude product was characterized with MALDI-TOF mass spectroscopy. HRMS (MALDI-TOF): calcd. for C₁₃₆H₁₁₂ ([M]⁺): 1745.8792, found: 1745.8791.

2. X-ray crystallography

X-ray crystallography data were collected on a Bruker AXS Kappa ApexII Duo Diffractometer.

compound	$3 \cdot 5(C_2H_4Cl_2) \cdot 2(CH_2Cl_2)$	$C_{60} \subset 3 \cdot 2(C_2H_4Cl_2) \cdot 2(C_7H_8)$
Empirical formula	$C_{136}H_{112}O_4{\cdot}5(C_2H_4Cl_2){\cdot}2(CH_2Cl_2)$	$C_{136}H_{112}O_4 \cdot C_{60} \cdot 2(C_2H_4Cl_2) \cdot 2(C_7H_8)$
Formula weight	2474.86	2913.02
Temperature	173(2) K	162(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Monoclinic
Space group	P-1	P2/c
Unit Cell Lengths (Å)	a = 14.1531(19) Å	a = 16.9220(15) Å
	b = 17.009(3) Å	b = 17.1293(18) Å
	c = 17.275(3) Å	c = 27.104(3) Å
Unit Cell Angle (°)	$a = 93.079(7)^{\circ}$.	a= 90°.
	b= 100.115(6)°.	$b = 100.952(4)^{\circ}$.
	$g = 110.482(6)^{\circ}.$	$g = 90^{\circ}$.
Volume	3805.2(10) Å ³	7713.3(14) Å ³
Z	1	2
Density (calculated)	1.080 Mg/m ³	1.254 Mg/m ³
Absorption coefficient	0.300 mm ⁻¹	0.140 mm ⁻¹
F(000)	1294	3040
Crystal size	0.500 x 0.400 x 0.300 mm ³	0.400 x 0.300 x 0.200 mm ³
Theta range for data collection	2.368 to 25.250°.	2.378 to 25.250°.
Reflections collected	77111	118035
Independent reflections	13553 [R(int) = 0.1409]	13958 [R(int) = 0.1774]
Completeness to theta = 25.242°	98.50%	99.70%
Absorption correction	multi-scan	multi-scan
Max. and min. transmission	0.7456 and 0.5806	0.7456 and 0.6687
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	13553 / 13 / 761	13958 / 94 / 1000
Goodness-of-fit on F2	1.36	1.05
Final R indices [I>2sigma(I)]	R1 = 0.1522, wR2 = 0.3929	R1 = 0.1808, wR2 = 0.4293
R indices (all data)	R1 = 0.2498, wR2 = 0.4503	R1 = 0.2620, wR2 = 0.4849
Extinction coefficient	n/a	n/a
Largest diff. peak and hole	0.775 and -0.846 e.Å ⁻³	0.929 and -0.829 e.Å ⁻³

Table S1. Crystal data and structure refinement for **3** and C_{60}

Figure S1. Crystallographic analysis by Hirshfeld surfaces of C₆₀ \subset **3.** Color mappings are shown for (b) d_e (minimum distance: 1.15 Å in red, maximum distance: 3.36 Å in blue), (c) shape index (minimum value: -1 in red, maximum value: 1 in blue) (d) and curvedness (minimum value: -3.4 in red, maximum value: 0.25 in blue).³

3. Photophysical properties and fluorescence titration experiments

UV-vis absorption spectra were recorded on a Shimadzu UV-3600 plus UV-VIS-NIR spectrophotometer. Fluorescence spectra were recorded on a Hitachi F-4500 spectrofluorometer.

Figure S2. Absorption spectra and photoluminescence spectra of **3** (solid line) and **9** (dashed line) in CH₂Cl₂ (1×10^{-5} mol/L). (The photoluminescence spectra of **3** and **9** were measured with excitation at 360 nm)

Fluorescence titration experiments

Job's plot

A solution of nanobox **3** in toluene and another solution of fullerene (C₆₀, C₇₀, PCBM or ICBA) in toluene were mixed in different ratios to prepare 10 samples with a fixed total concentration (C₆₀ and **3**: 4.4×10^{-6} mol/L; ICBA and **3**: 1.0×10^{-5} mol/L; PCBM and **3**: 1.0×10^{-5} mol/L; C₇₀ and **3**: 1.0×10^{-7} mol/L). The fluorescence of each sample was measured, and the changes of fluorescence intensity (at 420 nm) were monitored for Job's plot analysis. Results indicate that each fullerene adopts a 1:1 binding stoichiometry with **3** in toluene.

Determination of binding constant

The binding constant was determined from multiple fluorescence titration experiments, in which a solution of host molecule (3) was titrated with a variable amount of fullerenes in toluene. Three independent titration experiments were conducted for the host, and the initial concentration of 3 included 5.0×10^{-7} mol/L (for C₆₀, ICBA and PCBM) and 1.0×10^{-7} mol/L (for C₇₀). The change in the fluorescence (ΔF) of the hosts (at 420 nm) was plotted against the concentration of fullerenes. On the basis of 1:1 complex model, association constant K_a is calculated by non-linear curve fitting using the following equation:

$$F/F_0 = (1 + (kf/k_s)K_a[L])/(1 + K_a[L])$$

where F, F₀, kf, ks, [L] and K_a are fluorescence intensity, fluorescence intensity of the nanobox before the addition of fullerenes, proportionality constant of the complex, proportionality constant of the host, the concentration of the guest, and the binding constant, respectively.⁴

Figure S3. Job's plot based on the fluorescence change at 420 nm for **3** with C_{60} , indicating a 1:1 binding stoichiometry between **3** and C_{60} in toluene.

Figure S4. Job's plot based on the fluorescence change at 420 nm for 3 with PCBM, indicating a 1:1 binding stoichiometry between 3 and PCBM in toluene.

Figure S5. Job's plot based on the fluorescence change at 420 nm for 3 with ICBA, indicating a 1:1 binding stoichiometry between 3 and ICBA in toluene.

Figure S6. Job's plot based on the fluorescence change at 420 nm for **3** with C_{70} , indicating a 1:1 binding stoichiometry between **3** and C_{70} in toluene.

Figure S7. Fluorescence spectra of 3 (5.0×10^{-7} mol/L) in toluene in the presence of C₆₀ (from 0 to 5.0×10^{-5} mol/L).

Figure S8. Nonlinear curve regression for a titration experiment of **3** with C₆₀ using 1:1 binding model. Based on this data set, K_a is calculated to be 4.2×10^4 M⁻¹.

Figure S9. Fluorescence spectra of **3** (5.0×10⁻⁷ mol/L) in toluene in the presence of PCBM (from 0 to 7.5×10^{-5} mol/L).

Figure S10. Nonlinear curve regression for a titration experiment of **3** with PCBM using 1:1 binding model. Based on this data set, K_a is calculated to be 3.4×10^4 M⁻¹.

Figure S11. Fluorescence spectra of **3** (5.0×10⁻⁷ mol/L) in toluene in the presence of ICBA (from 0 to 7.5×10^{-5} mol/L).

Figure S12. Nonlinear curve regression for a titration experiment of **3** with ICBA using 1:1 binding model. Based on this data set, K_a is calculated to be 3.8×10^4 M⁻¹.

Figure S14. Nonlinear curve regression for a titration experiment of **3** with C₇₀ using 1:1 binding model. Based on this data set, K_a is calculated to be 3.2×10^6 M⁻¹.

Table S2.	Binding constants	(K_a) and energ	y (ΔG) of	carbon	nanobox 3	3 for	different
fullerene d	erivtives						

	$K_a (\mathrm{M}^{-1})$	ΔG (kcal/mol)
C ₆₀ ⊂3	$(3.3 \pm 0.8) \times 10^4$	-6.2 ± 0.1
PCBM⊂3	$(3.3 \pm 0.9) \times 10^4$	-6.1 ± 0.1
ICBA⊂3	$(3.1 \pm 0.7) \times 10^4$	-6.1 ± 0.1
C70⊂3	$(3.2 \pm 0.08) \times 10^{6}$	-8.9 ± 0.01

4. Density Function Theory (DFT) Calculations

All the DFT calculations were done by using Gaussian 09 program.⁵

Calculations of molecular orbitals

The frontier molecular orbitals of **3** and **9** were calculated using simplified model molecules **3'** and **9'**, which have smaller methyl groups replacing *t*-butyl groups to reduce the computational cost. Energy-minimized models of **3'** and **9'** and their molecular orbitals were calculated at the B3LYP /6-31g(d) level of DFT.

Figure S15. DFT calculations (B3LYP/6-31-g(d)) of molecular orbitals of 9'(left) and 3'(right)

Figure S16. Calculated molecular model of (a) $C_{60} \subset 3$ and (b) $C_{70} \subset 3$ based on B3LYP function with empirical D3 dispersion correction (B3LYP-D3/6-31g(d)).

Strain energy

The strain energies of **3** and **9** were estimated on the basis of the following hypothetical homodesmotic reactions. The structures of the reactants and products of these reactions were calculated at the B3LYP level of DFT with the 6-31g(d) basis set, and were confirmed as true minima by vibrational analysis with no imaginary frequency. Based on the enthalpy changes of these hypothetical reactions, the strain energy was calculated as 7.0 kcal/mol for **3**" and 16.0 kcal/mol for and **9**".

Figure S17. Hypothetical homodesmotic reactions with the enthalpy change for calculation for the strain energy of **9**'' and **3**''.

5. High resolution MALDI-TOF mass spectra

Figure S18. High resolution MALDI-TOF mass spectrum of **9** (calcd. for $C_{102}H_{84}O_3$ ([M]⁺): 1357.6449, found: 1357.6433)

Figure S19. High resolution MALDI-TOF mass spectrum of 3 (calcd. for $C_{136}H_{112}O_4$ ([M]⁺): 1809.8589, found: 1809.8590)

Figure S20. High resolution MALDI-TOF mass spectrum of C_{60} (calcd. for $C_{196}H_{112}O_4$ ([M]⁺): 2530.8623, found: 2530.8702)

Figure S21. High resolution MALDI-TOF mass spectrum of **PCBM** \subset **3** (calcd. for C₂₀₈H₁₂₆O₆ ([M]⁺): 2720.9616, found: 2720.9606)

Figure S22. High resolution MALDI-TOF mass spectrum of **ICBA** \subset **3** (calcd. for C₂₁₄H₁₁₈O₄ ([M]⁺): 2762.9875, found: 2762.9836)

Figure S23. High resolution MALDI-TOF mass spectrum of C₇₀⊂3 (calcd. for C₂₀₆H₁₁₂O₄ ([M]⁺): 2650.8623, found: 2650.8664).

Figure S24. High resolution MALDI-TOF mass spectrum of the zigzag carbon nanobelt (calcd. for $C_{136}H_{112}$ ([M]⁺): 1745.8792, found: 1745.8791)

6. NMR spectra

Figure S25. ¹H NMR spectrum (400MHz, CDCl₃) of 7

Figure S26. ¹³C NMR spectrum (100MHz, CDCl₃) of 7

Figure S27. ¹H NMR spectrum (400MHz, CDCl₃) of 8

Figure S28. ¹³C NMR spectrum (100MHz, CDCl₃) of 8

Figure S29. ¹H NMR spectrum (400MHz, CDCl₃) of 9

Figure S30. ¹³C NMR spectrum (100MHz, CDCl₃) of 9

Figure S31. ¹H NMR spectrum (400MHz, CDCl₃) of 3

Figure S32. ROESY spectrum of 3 in CDCl3 at 298K (aromatic region)

Figure S33. ROESY spectrum of **3** in CDCl3 at 298K (aromatic region versus aliphatic region)

NMR titration experiments

Figure S34. ¹H NMR spectrum (400MHz, C₆D₄Cl₂) of 3 as the increase of C₆₀

Figure S35. ¹H NMR spectrum (400MHz, C₆D₄Cl₂) of **3** as the increase of C₇₀

The binding constant of $C_{70} \subset 3$ in *o*-dichlorobenzene was determined from NMR titration experiments, in which a solution of host molecule (3) ($8.0 \times 10^{-4} \text{ mol/L}$) was titrated with variable amounts of fullerenes (from 0 to 2 equivalents) in *o*-dichlorobenzene. On the basis of 1:1 complex model, association constant K_a is calculated by linear regression using the following equation:

$$[C] = -\frac{1}{K_a} \times \frac{[C]}{[H]} + [G_0]$$

where [C], [H], [G₀] and K_a are the concentration of complex (C₇₀ \subset **3**), host (**3**), initial concentration of guest (C₇₀) and the binding constant, respectively.

Figure S36. Linear curve regression for a titration experiment of **3** with C₇₀ using 1:1 binding model. Based on the data set, K_a is calculated to be 2.5×10^4 M⁻¹.

7. Reference

- Pavliček, N.; Schuler, B.; Collazos, S.; Moll, N.; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L., On-surface generation and imaging of arynes by atomic force microscopy. *Nat. Chem.* 2015, 7 (8), 623-628.
- (2) Chen, H.; Gui, S.; Zhang, Y.; Liu, Z.; Miao, Q., Synthesis of a Hydrogenated Zigzag Carbon Nanobelt. *CCS Chem.* **2020**, *2*, 613-619.
- (3) Wolff, S. K.; Grimwood, D. J.; McKinnon, J. J.; Turner, M. J.; Jayatilaka D. and Spackman, M. A., *CrystalExplorer, version 3.1.1*, University of Western Australia, **2012**.
- (4) (a) Connors, K. A. *Binding Constants*; John Wiley and Sons: New York, 1987. (b) Iwamoto, T.; Watanabe, Y.; Sadahiro, T.; Haino, T.; Yamago, S., Size-selective encapsulation of C₆₀ by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. *Angew. Chem. Int. Ed.* 2011, *50*, 8342-8344.
- (5) Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.