Supporting information for:

Metal-free, Visible-light Induced Enantioselective Three-component Dicarbofunctionalization and Oxytrifluoromethylation of Enamines via Chiral Phosphoric Acid Catalysis Hui Liang, Dong-Sheng Ji, Guo-Qiang Xu, Yong-Chun Luo, Hai-Xue Zheng* and Peng-Fei Xu* State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China. Corresponding author: <u>xupf@lzu.edu.cn</u>, <u>zhenghaixue@caas.cn</u>

Contents

1. General Information	2
2. Synthesis of substrate	3
3. General Procedure	4
4. Screening of Reaction Conditions	6
5. Experimental and Characterization Data of Products	11
6. Mechanistic Studies	50
7. Synthetic applications	56
8. References	56
9. X-Ray Crystallographic Data of Products	57
10. Enantioselectivities as Determined by Chiral HPLC	
11. NMR Spectra of New Compounds	

1. General Information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III 400 (400 MHz) and Bruker AVANCE NEO 600 (600 MHz). The spectra were recorded in CDCl₃ CD₃OD and d_6 -DMSO as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.00$ ppm; d_6 -DMSO: $\delta_{\rm H} = 2.50$ ppm, $\delta_{\rm C} = 39.60$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q=quartet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on a Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with Daicel Chirapak IA column on Agilent 1260 series with i-PrOH and n-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]D$ values reported in degrees. Concentration (c) is in 0.1g/100 mL.

2. Synthesis of Substrates

Synthesis of *tert*-butyl vinylcarbamate¹:

 $\bigwedge_{H}^{N} O + Boc_2 O \xrightarrow{DMAP} NHBoc$

To a solution of N-vinylformamide (1.4 mL, 20 mmol) in THF (60 mL) were added $Boc_2O(5.24 \text{ g}, 24 \text{ mmol})$ and DMAP (0.24 g, 2 mmol). The reaction mixture was stirred for 22 h under N₂ at room temperature, and the solvent was removed under reduced pressure. The residue was dissolved in THF (10 mL), and the mixture was added 2N NaOH (10 mL) at 0 °C for 20 min. the reaction mixture was left at 0 °C for 10 min and then stirred at room temperature for 5 h. the reaction mixture was diluted with water (20 mL) and extracted with MTBE (30 mL×3). The combined organic phase were washed with water and brine, and concentrated under reduced pressure. The crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product.

Synthesis of *tert*-butyl methyl(vinyl)carbamate:

A flask was charged with NaH (2.4 mmol) under N₂. Dry THF (15 mL) was added and cooled to 0 \mathbb{C} . A solution of *tert*-butyl vinylcarbamate (286 mg, 2 mmol) dissolved in THF (5 mL) was added slowly and stirred for 20 min at 0 \mathbb{C} . MeI (0.19 mL, 3 mmol) was added slowly dropwise. The reaction was warmed to room temperature and stirred for 16 h. upon completion, the reaction was quenched with NH₄Cl aq. and extracted with EA. The combined organic layers were washed with brine and dried over Na₂SO₄. The crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product.

3. General Procedure

3.1 General procedure for the synthesis of product 4

A dried 10 mL reaction tube was charged with the catalyst C1 (5 mol%, 3.8 mg), activated 3 Å molecular sieves (50 mg), 1 (0.1 mmol, 1.0 equiv), Togni-II 2 (0.15 mmol, 49.5 mg) and indole 3 (0.2 mmol, 2.0 equiv). Then THF (1.0 mL) was added via a syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was then irradiated at -20 °C under blue LEDs. After completion of the reaction, the crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product 4.

3.2 General procedure for the synthesis of product 6

A dried 10 mL reaction tube was charged with the catalyst **C1** (5 mol%, 3.8 mg), activated 3 Å molecular sieves (50 mg), **1a** (0.1 mmol, 17.7 mg, 1.0 equiv), Togni-II **2** (0.15 mmol, 49.5 mg) and alcohols **3** (0.1 mmol, 1.0 equiv). Then THF (1.0 mL) was added via a syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was then irradiated at 0 \mathbb{C} under blue LEDs. After completion of the reaction, the crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product **6**.

3.3 General procedure for the synthesis of product 8

A dried 10 mL reaction tube was charged with the catalyst **C1** (5 mol%, 3.8 mg), cat-CF₃Ph (1 mmol, 0.4 mg), activated 3 Å molecular sieves (100 mg), enamine **1c** (0.2 mmol, 28.6 mg), **7** (0.1 mmol), indole **3** (0.15 mmol, 1.5 equiv) and K₃PO₄ (0.1 mmol, 21.2 mg, 1.0 equiv). Then THF (0.5 mL) was added via a syringe. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the reaction was then irradiated at room temperature under blue LEDs. After completion of the reaction, the crude mixture was purified by flash chromatography (silica gel, mixtures of petroleum/ethyl acetate) to afford the pure product **8**.

4. Screening of Reaction Conditions

Table S1. Screening of the solvent and catalyst^a

THF

16

94

21

C9

22	C10	THF	18	91
23	C11	THF	16	40
24	C12	THF	36	87
25	C13	THF	20	90
26	C14	THF	0	
27	C15	THF	0	
28	C16	THF	31	89

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.12 mmol), **3a** (0.15 mmol), 4 Å MS (25 mg) and (*R*)-CPA (5 mol%) in a solvent (1.0 mL) at r.t. under irradiation of blue LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*} Determined by HPLC on a chiral stationary phase. ^{*d*}In the dark. ^{*e*}No 4 Å MS.

Table S2. Screening of the reaction ratio^{*a*}

A Ar	O N H = 4-MeOPh	+ + CF ₃ +		(R)-CPA (5 mol%) 4 Å MS (25 mg) solvent (0.1 M) rt, blue LEDs	$\rightarrow \qquad \begin{array}{c} HN - \\ O \\ Ar - \\ H \\$
			Ja		
	Entry	Reacti	on ratio	Yield $(\%)^b$	ee (%) ^c
	1	1:1.	2:1.5	42	94
	2	1:1	.2:2	41	94
	3	1:1.	5: 1.5	42	94
	4	1:1	.5:2	44	94
	5	1:2	: 1.5	42	94
	6	1:	2:2	44	94
	7	2 :	1:2	39	94
	8	1.5:	1.5:1	37	94
	9	2:	2:1	39	94

^{*a*}Reaction conditions: **1a** (x mmol), **2** (y mmol), **3a** (z mmol), 4 Å MS (25 mg) and C1 (5 mol%) in THF (1.0 mL) at r.t. under irradiation of blue LEDs. ^{*b*}Isolated yield after chromatography. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S3. Screening of the concentration and the second	he loading of the catalyst ^a
--	---

Entry	THF	Yield $(\%)^b$	ee (%) ^c
1	0.5 ml	44	94
2	2 ml	36	94
3	3 ml	32	95
4	4 ml	23	94
Entry	СРА	Yield $(\%)^b$	ee (%) ^c
5	7.5	44	94
6	10	43	94
7	15	43	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), **3a** (0.2 mmol), 4 Å MS (25 mg) and C1 in THF at r.t. under irradiation of blue LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*}Determined by HPLC

on a chiral stationary phase.

1 able 54. Screening of the M	Table S4	. Screenin	g of the	MS
-------------------------------	----------	------------	----------	----

Entry	change	Yield $(\%)^b$	ee (%) ^c
1	3Å MS	47	94
2	5Å MS	36	94
3	Mg_2SO_4	45	94
4	3Å MS (50 mg)	50	94
5	3Å MS (100 mg)	50	94

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), **3a** (0.2 mmol), MS and C1 (5 mol%) in THF (1 mL) at r.t. under irradiation of blue LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*}Determined by HPLC on a chiral stationary phase.

Table S5	. Screening	of the	additive an	d reaction	temperature ^a
					· · · · · · · · · · · · · · · · · · ·

Entry	change	Yield $(\%)^b$	ee (%) ^c
1	NaHCO ₃ (1 eq.)	42	94
2	K ₃ PO ₄ (1 eq.)	0	
3	$K_2CO_3(1 \text{ eq.})$	0	
4	PMPCO ₂ H (1 eq.)	48	94
5	DIPEA (1 eq.)	0	
6	2,6-lutidine (1 eq.)	tarce	
7	-20 °C	54	96
8	-30 °C	48	95

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), **3a** (0.2 mmol), 3Å MS (50 mg) and C1 (5 mol%) in THF (1 mL) under irradiation of blue LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*}Determined by HPLC on a chiral stationary phase.

Table S6. Further optimization^a

4	K ₃ PO ₄ (1 equiv.)	0	
5	K ₂ CO ₃ (1 equiv.)	0	
6	NaOAc (1 equiv.)	0	
7	AcOH (1 equiv.)	48	95
8	propanoic acid (1 equiv.)	50	93
9	TFA (1 equiv.)	50	80
10	Cat-I (20 mol%)	49	84
11	Al ₂ O ₃ instead of 3 Å MS	49	95
12	390 nm kessil LED	46	96

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), **3a** (0.2 mmol), 3Å MS (50 mg) and C1 (5 mol%) in THF (1 mL) under irradiation of 427 nm kessil LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*}Determined by HPLC on a chiral stationary phase.

Under the standard conditions, the side products were determined as BP1 in 6% yield, BP2 in 10% yield and BP3 in less than 5% yield. In addition, the enamine could decomposed under acidic conditions to generate the amide which could be detected by GCMS. In order to increase the yield, we carried out a series of reactions for condition optimization. We first added anhydrides and acyl chloride to the reaction mixture to remove the alcohol generated from Togni-II, but no change in yield was observed. (Entries 1-3) Then different bases were added and no products were obtained, probably because the hydrogen bond was destroyed. (Entries 4-6) Similarly, the addition of acids did not increase the yield, either, and the strong acids reduced the enantioselectivity of the product. (Entries 7-9) Furthermore, when thiourea was used as the co-catalyst, there was no promotion for the yield and lower enantioselectivity was observed (Entry 10). Finally, when we tested the 390 nm LED, no obvious change in yield was observed (Entry 12).

Ar N + + 1a, Ar = 4-MeOPh	CF ₃ +	МеОН —— 5а	C6 (5 mol%) 3 Å MS (50 mg) THF (0.1 M) blue LEDs	$Ar \xrightarrow{O}_{H} \underbrace{N}_{H} \underbrace{CF_{3}}_{\mathbf{6a}} CF_{3}$
Entry	5a	Т	Yield $(\%)^b$	ee (%) ^c
1	0.5 mmol	r.t.	69	83
2	0.2 mmol	r.t.	67	86
3	0.1 mmol	r.t.	69	89
4	1 ml (solvent)	r.t.	72	0
5	0.1 mmol	0 °C	69	89
6	0.1 mmol	-20 °C	0	

Table S7. Optimization of oxytrifluoromethylation reaction^a

^{*a*}Reaction conditions: **1a** (0.1 mmol), **2** (0.15 mmol), **5a** (n mmol), 3Å MS (50 mg) and C1 (5 mol%) in THF (1 mL) under irradiation of blue LEDs for 3 h. ^{*b*}Isolated yield after chromatography. ^{*c*} Determined by HPLC on a chiral stationary phase.

Table S8. Optimization for the synthesis chiral γ-amino acid derivatives^a

Pro Pro	G + O Br + (PC (C1 (5 base slo N2, rt, b	1 mol%) 5 mol%) F e, MS vent lue LEDs	Ph	NHPG
1	/a	3		R	8	a
PMP	0 NHR H 1b, R = Ac 1a 1c, R = Boc	Ph	NHAc		PC1: R = 4 PC2: R = 4 PC3: R = 1 PC4: R = 4 PC5: R = 1	4CF₃Ph 4OMePh Ph 4tBuPh ≘t
Entry	PC	1	base	Solvent	Yield $(\%)^b$	ee (%) ^c
1		1a	K ₃ PO ₄	THF (0.1 M)	0	0
2	4CzIPN	1a	K_3PO_4	THF	34	91
3	4CzIPN	1b	K ₃ PO ₄	THF	0	
4	4CzIPN	1c	K_3PO_4	THF	37	96
5	4CzIPN	1e	K_3PO_4	THF	0	
6	4CzIPN	1c	K ₂ CO ₃	THF	30	94
7	4CzIPN	1c	NaHCO ₃	THF	45	94
8	$Ir(ppy)_2(dtbbpy)PF_6$	1c	K_3PO_4	THF	24	96
9	<i>fac</i> -Ir(ppy) ₃	1c	K ₃ PO ₄	THF	11	96
10	$Ru(bpy)_3(PF_6)_2$	1c	K_3PO_4	THF	23	96
11	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	THF	49	96
12	Cat-PMP (PC2)	1c	K ₃ PO ₄	THF	42	96
13	Cat-Ph (PC3)	1c	K_3PO_4	THF	38	95
14	Cat-tBuPh (PC4)	1c	K ₃ PO ₄	THF	42	96
15	Cat-Et (PC5)	1c	K_3PO_4	THF	17	95
16	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	CH_2Cl_2	0	
17	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	DCE	0	
18	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	toluene	0	
19	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	MeCN	0	
20	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	1,4-dioxane	35	96
21	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	DMF	0	
22	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	THF (0.05 M)	trace	
23	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	THF (0.2 M)	60	96
24^{d}	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	THF (0.2 M)	29	87
25 ^e	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	THF (0.2 M)	41	96
26 ^f	Cat-CF ₃ Ph (PC1)	1c	K_3PO_4	THF (0.2 M)	34	93
27^{g}	Cat-CF ₃ Ph (PC1)	1c	K ₃ PO ₄	THF (0.2 M)	65	96

^{*a*}Reaction conditions: **1** (0.2 mmol), **7a** (0.1 mmol), **3a** (0.15 mmol), 3Å MS (25 mg) and C1 (5 mol%) in solvent under irradiation of blue LEDs for 12 h. ^{*b*}Isolated yield after chromatography. ^{*c*}Determined by HPLC on a chiral stationary phase. ^{*d*}under 0 °C. ^{*e*}10 mol% C6 was used. ^{*f*}C9 was used. ^{*g*}100 mg 3Å MS was used.

5. Experimental and Characterization Data of Products

(R)-4-methoxy-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4a)

Following the general procedure, compound **4a** was obtained as a white solid (19.6 mg, yield: 54%); mp = 220-222°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.04 (s, 1H), 8.68 (d, *J* = 8.8 Hz, 1H), 7.86-7.84 (m, 2H), 7.66-7.64 (m, 1H), 7.40-7.36 (m, 2H), 7.11-7.07 (m, 1H), 7.00-6.97 (m, 3H), 5.85 (dt, *J* = 2.8 Hz, 8.0 Hz, 1H), 3.79 (s, 3H), 3.20-2.95 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.7, 161.7, 136.4, 129.2, 128.4, 126.83 (q, *J* = 276 Hz), 126.76, 125.7, 122.9, 122.7, 121.4, 118.9, 118.7, 115.3, 113.5, 111.7, 55.4, 40.1 (d, *J* = 3 Hz), 37.6 (q, *J* = 26 Hz); HRMS (ESI) for C₁₉H₁₈F₃N₂O₂ [M+H]⁺ calcd. 363.1242, found 363.1316; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 96% (HPLC: IA, 230 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.5 min, t_r (minor) = 22.6 min.) [α]D²⁵ = -6.00 (*c* 1.0, MeOH).

(R)-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4b)

Following the general procedure, compound **4b** was obtained as a white solid (17.1 mg, yield: 51%); mp = 168-170°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.05 (s, 1H), 8.85 (d, *J* = 8.4 Hz, 1H), 7.87-7.85 (m, 2H), 7.68-7.66 (m, 1H), 7.53-7.49 (m, 1H), 7.47-7.42 (m, 3H), 7.40-7.38 (m, 1H), 7.12-7.08 (m, 1H), 7.02-6.98 (m, 1H), 5.87 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.22-2.96 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR

(100 MHz, DMSO- d_6): δ 165.4, 136.4, 134.6, 128.3, 127.3, 126.8(q, J = 276 Hz), 125.7, 122.9, 121.4, 118.9, 118.7, 115.2, 111.7, 37.6 (q, J = 26 Hz); HRMS (ESI) for C₁₈H₁₆F₃N₂O [M+H]⁺ calcd. 333.1209, found 333.1209;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 98% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 14.9 min, t_r (minor) = 24.8 min.) [α]_D²⁵ = 16.00 (*c* 1.0, MeOH).

(R)-4-chloro-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4c)

Following the general procedure, compound **4c** was obtained as a white solid (19.6 mg, yield: 53%); mp = 196-198°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.04 (s, 1H), 8.91 (d, *J* = 8.8 Hz, 1H), 7.88-7.84 (m, 2H), 7.63-7.62 (m, 1H), 7.55-7.51 (m, 2H), 7.42-7.41 (m, 1H), 7.38-7.36 (m, 1H), 7.11-7.07 (m, 1H), 7.01-6.97 (m, 1H), 5.82 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.19-2.95 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -63.4; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.4, 136.4, 136.1, 133.2, 129.3, 128.4, 126.7(q, *J* = 276 Hz), 125.6, 123.0, 121.4, 118.9, 118.6, 114.9, 111.7, 40.3 (d, *J* = 3 Hz), 37.4 (q, *J* = 26 Hz); HRMS (ESI) for C₁₈H₁₅F₃CIN₂O [M+H]⁺ calcd. 367.0820, found 367.0822; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 97% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 12.9 min, t_r (minor) = 1.93 min.) [α]p²⁵ = 2.00 (*c* 1.0, MeOH).

(R)-4-fluoro-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4d)

Following the general procedure, compound 4d was obtained as a white solid (16.7 mg,

yield: 47%); mp = 201-203°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.06 (s, 1H), 8.88 (d, *J* = 8.8 Hz, 1H), 7.95-7.91 (m, 2H), 7.66-7.64 (m, 1H), 7.43 (d, *J* = 2.0 Hz,, 1H), 7.39-7.37 (m, 1H), 7.31-7.27 (m, 2H), 7.11-7.08 (m, 1H), 7.01-6.98 (m, 1H), 5.85 (dt, *J* = 3.6 Hz, 9.2 Hz, 1H), 3.21-2.96 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7, -109.4; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.4, 164.0 (d, *J* = 247 Hz), 136.4, 131.0 (d, *J* = 3 Hz), 130.0 (d, *J* = 9 Hz), 126.8 (q, *J* = 276 Hz), 125.7, 123.0, 121.4, 118.9, 118.6, 115.3 (d, *J* = 22 Hz), 115.0, 111.7, 40.3 (d, *J* = 3 Hz), 37.5 (q, *J* = 25 Hz); HRMS (ESI) for C₁₈H₁₅F₄N₂O [M+H]⁺ calcd. 351.1115, found 351.1116;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 97% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.8 min, t_r (minor) = 17.6 min.) $[\alpha]_D^{25} = 20.00$ (*c* 1.0, CH₂Cl₂).

(R)-4-bromo-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4e)

Following the general procedure, compound **4e** was obtained as a white solid (16.8 mg, yield: 41%); mp = 166-168°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.07 (s, 1H), 8.94 (d, *J* = 8.8 Hz, 1H), 7.81-7.79 (m, 2H), 7.69-7.66 (m, 2H), 7.64-7.62 (m, 1H), 7.43-7.42 (m, 1H), 7.39-7.37 (m, 1H), 7.11-7.07 (m, 1H), 7.01-6.97 (m, 1H), 5.84 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.20-2.96 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.5, 136.4, 133.6, 131.4, 129.5, 126.8 (q, *J* = 276 Hz), 125.7, 125.1, 123.0, 121.4, 118.9, 118.6, 114.9, 111.7, 40.3 (d, *J* = 3 Hz), 37.4 (q, *J* = 26 Hz); HRMS (ESI) for C₁₈H₁₅F₃BrN₂O [M+H]⁺ calcd. 411.0314, found 411.0315; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 14.8 min, t_r (minor) = 22.8 min.) [α]p²⁵ = -3.00 (*c* 1.0, MeOH).

(R)-4-methyl-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4f)

Following the general procedure, compound **4f** was obtained as a white solid (14.9 mg, yield: 43%); mp = 222-224°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.04 (s, 1H), 8.75 (d, *J* = 8.8 Hz, 1H), 7.77-7.75 (m, 2H), 7.66-7.64 (m, 1H), 7.41-7.36 (m, 2H), 7.26-7.24 (m, 2H), 7.11-7.07 (m, 1H), 7.01-6.97 (m, 1H), 5.85 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.21-2.94 (m, 2H), 2.33 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.3, 141.2, 136.4, 131.8, 128.9, 127.4, 126.8 (q, *J* = 276 Hz), 125.7, 122.9, 121.4, 118.9, 118.7, 115.3, 111.7, 40.2 (d, *J* = 3 Hz), 37.6 (q, *J* = 26 Hz), 21.0; HRMS (ESI) for C₁₉H₁₈F₃N₂O [M+H]⁺ calcd. 347.1366, found 347.1367; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_f (major) = 18.7 min, t_f (minor) = 37.0 min.) [α] $_{0}^{25}$ = 6.00 (*c* 1.0, MeOH).

(*R*)-*N*-(3,3,3-trifluoro-1-(1*H*-indol-3-yl)propyl)-[1,1'-biphenyl]-4-carboxamide (4g) Following the general procedure, compound 4g was obtained as a white solid (14.8 mg, yield: 36%); mp = 196-198°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.06 (s, 1H), 8.90 (d, *J* = 8.8 Hz, 1H), 7.98-7.95 (m, 2H), 7.77-7.75 (m, 2H), 7.72-7.67 (m, 3H), 7.50-7.46 (m, 2H), 7.44-7.43 (m, 1H), 7.41-7.38 (m, 2H), 7.12-7.08 (m, 1H), 7.02-6.99 (m, 1H), 5.89 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.24-2.97 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.5, 143.3, 139.7, 136.8, 133.7, 129.5, 128.5, 128.4, 127.3, 127.2 (q, *J* = 276 Hz), 127.0, 126.1, 123.3, 121.8, 119.3, 119.1, 115.6, 112.1, 37.9 (q, *J* = 26 Hz); HRMS (ESI) for C₂₄H₂₀F₃N₂O [M+H]⁺ calcd.

409.1522, found 409.1524;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 23.9 min, t_r (minor) = 49.3 min.) $[\alpha]_D^{25} = -27.00$ (*c* 1.0, MeOH).

(R)-3-chloro-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4h)

Following the general procedure, compound **4h** was obtained as a white solid (12.0 mg, yield: 33%); mp = 154-156°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.07 (s, 1H), 8.98 (d, *J* = 8.8 Hz, 1H), 7.89-7.88 (m, 1H), 7.83-7.81 (m, 1H), 7.64-7.62 (m, 1H), 7.60-7.58 (m, 1H), 7.51-7.48 (m, 1H), 7.44-7.43 (m, 1H), 7.39-7.37 (m, 1H), 7.11-7.07 (m, 1H), 7.01-6.98 (m, 1H), 5.83 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.20-2.97 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 163.9, 136.44, 136.38, 133.3, 131.2, 130.4, 127.0, 126.8 (q, *J* = 276 Hz), 126.2, 125.6, 123.0, 121.4, 118.9, 118.6, 114.8, 111.7, 40.4 (d, *J* = 3 Hz), 37.4 (q, *J* = 26 Hz); HRMS (ESI) for C₁₈H₁₅F₃ClN₂O [M+H]⁺ calcd. 367.0820, found 367.0818;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.8 min, t_r (minor) = 14.8 min.) $[\alpha]_D^{25} = 10.00$ (*c* 1.0, MeOH).

(R)-3-methyl-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4i)

Following the general procedure, compound 4i was obtained as a white solid (18.0 mg,

yield: 52%); mp = 137-139°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.06 (s, 1H), 8.80 (d, *J* = 8.8 Hz, 1H), 7.68-7.65 (m, 3H), 7.43-7.42 (m, 1H), 7.40-7.38 (m, 1H), 7.34-7.31 (m, 2H), 7.12-7.08 (m, 1H), 7.02-6.98 (m, 1H), 5.88 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.22-2.96 (m, 2H), 2.34 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.5, 137.6, 136.4, 134.6, 131.8, 128.2, 127.8, 126.8 (q, *J* = 276 Hz), 125.7, 124.6, 122.9, 121.4, 118.9, 118.7, 115.2, 116.7, 40.2 (d, *J* = 3 Hz), 37.5 (q, *J* = 26 Hz), 21.0; HRMS (ESI) for C₁₉H₁₈F₃N₂O [M+H]⁺ calcd. 347.1366, found 3647.1366;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 94% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.3 min, t_r (minor) = 20.6 min.) $[\alpha]_D^{25}$ = -17.00 (*c* 1.0, MeOH).

(R)-2-methyl-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4j)

Following the general procedure, compound **4j** was obtained as a white solid (18.0 mg, yield: 52%); mp = 191-193°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.03 (s, 1H), 8.72 (d, *J* = 8.8 Hz, 1H), 7.70-7.69 (m, 1H), 7.40-7.38 (m, 2H), 7.32-7.28 (m, 1H), 7.22-7.21 (m, 3H), 7.13-7.10 (m, 1H), 7.05-7.01 (m, 1H), 5.80 (dt, *J* = 4.4 Hz, 8.8 Hz, 1H), 3.06-2.96 (m, 2H), 2.28 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 168.1, 137.2, 136.4, 135.3, 130.4, 129.3, 127.8, 126.9, 126.8 (q, *J* = 276 Hz), 125.6, 125.5, 122.7, 121.5, 118.8, 118.7, 115.2, 111.7, 37.6 (q, *J* = 26 Hz), 19.2; HRMS (ESI) for C₁₉H₁₈F₃N₂O [M+H]⁺ calcd. 347.1366, found 347.1367; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 97% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 22.1 min, t_r (minor) = 20.7 min.) [α] $_D^{25}$ = 5.00 (*c* 1.0, MeOH).

(R)-2-chloro-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4k)

Following the general procedure, compound **4k** was obtained as a white solid (10.4 mg, yield: 28%); mp = 190-192°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.03 (s, 1H), 8.93 (d, *J* = 8.4 Hz, 1H), 7.70-7.68 (m, 1H), 7.48-7.44 (m, 1H), 7.43-7.35 (m, 4H), 7.32-7.29 (m, 1H), 7.14-7.10 (m, 1H), 7.05-7.01 (m, 1H), 5.76 (dt, *J* = 5.6 Hz, 8.4 Hz, 1H), 3.05-2.93 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.3, 136.9, 136.4, 130.8, 130.0, 129.7, 128.7, 127.1, 126.7 (q, *J* = 276 Hz), 122.9, 121.5, 118.82, 118.76, 114.6, 111.6, 37.6 (q, *J* = 26 Hz); HRMS (ESI) for C₁₈H₁₅ClF₃N₂O [M+H]⁺ calcd. 367.0820, found 367.0822;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 19.3 min, t_r (minor) = 22.3 min.) $[\alpha]_D^{25} = 4.00$ (*c* 1.0, MeOH).

(R)-3,5-dimethyl-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)benzamide (4l)

Following the general procedure, compound **41** was obtained as a white solid (21.3 mg, yield: 59%); mp = 178-180°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.05 (s, 1H), 8.73 (d, *J* = 8.4 Hz, 1H), 7.66-7.64 (m, 1H), 7.47 (s, 1H), 7.42-7.37 (m, 2H), 7.13-7.08 (m, 2H), 7.01-6.97 (m, 1H), 5.86 (dt, *J* = 2.4 Hz, 5.6 Hz, 1H), 3.21-2.96 (m, 2H), 2.30 (s, 6H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.6, 137.4, 136.4, 134.6, 132.5, 126.8 (q, *J* = 276 Hz), 125.7, 125.1, 122.9, 121.4, 118.9, 118.7, 115.6, 111.6, 37.5 (q, *J* = 26 Hz), 20.9; HRMS (ESI) for C₂₀H₂₀F₃N₂O

[M+H]⁺ calcd. 361.1522, found 361.1523;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 93% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 9.9 min, t_r (minor) = 14.6 min.) $[\alpha]_D^{25} = 10.00$ (*c* 1.0, MeOH).

(*R*)-*N*-(3,3,3-trifluoro-1-(1*H*-indol-3-yl)propyl)thiophene-2-carboxamide (4m) Following the general procedure, compound 4m was obtained as a colorless oil (15.0 mg, yield: 45%); mp = 132-134°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.07 (s, 1H), 8.83 (d, *J* = 8.8 Hz, 1H), 7.76-7.73 (m, 2H), 7.64-7.62 (m, 1H), 7.43-7.42 (m, 1H), 7.39-7.37 (m, 1H), 7.13-7.07 (m, 2H), 7.01-6.97 (m, 1H), 5.78 (dt, *J* = 4.4 Hz, 8.8 Hz, 1H), 3.18-2.97 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 160.2, 139.3, 136.4, 131.1, 128.2, 127.9, 126.8 (q, *J* = 276 Hz), 125.7, 123.0, 121.5, 118.9, 118.7, 114.9, 111.7, 40.1 (d, *J* = 3 Hz), 37.4 (q, *J* = 26 Hz); HRMS (ESI) for C₁₆H₁₃F₃N₂OSNa [M+Na]⁺ calcd. 361.0593, found 361.0593; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 93% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.6 min, t_r (minor) = 22.2 min.) $[\alpha]_D^{25} = 5.00$ (*c* 1.0, MeOH).

(R)-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)furan-2-carboxamide (4n)

Following the general procedure, compound **4n** was obtained as a colorless oil (19.3 mg, yield: 66%); mp = 96-98 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 11.04 (s, 1H), 8.73 (d, J = 8.8 Hz, 1H), 7.81-7.80 (m, 1H), 7.63-7.61 (m, 1H), 7.39-7.35 (m, 2H), 7.11-7.06

(m, 2H), 7.00-6.96 (m, 1H), 6.60 (dd, J = 1.6 Hz, 3.2Hz, H), 5.77 (dt, J = 3.6 Hz, 8.8 Hz, 1H), 3.23-3.09 (), 3.06-2.93 (m, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6): δ -62.7; ¹³C NMR (100 MHz, DMSO- d_6): δ 156.8, 147.8, 145.0, 136.3, 126.7 (q, J = 276 Hz), 125.6, 123.0, 121.4, 118.9, 118.6, 114.9, 113.7, 111.9, 111.6, 37.3 (q, J = 26 Hz); HRMS (ESI) for C₁₆H₁₃F₃N₂O₂Na [M+Na]⁺ calcd. 345.0821, found 345.0824; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 96% (HPLC: IF-3, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.6 min, t_r (minor) = 22.9 min.) [α]_D²⁵ = 3.00 (*c* 1.0, MeOH).

(R)-N-(3,3,3-trifluoro-1-(1H-indol-3-yl)propyl)cinnamamide (40)

Following the general procedure, compound **40** was obtained as a colorless oil (10.6 mg, yield: 30%); mp = 95-97°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.06 (s, 1H), 8.51 (d, *J* = 8.4 Hz, 1H), 7.60-7.58 (m, 1H), 7.55-7.54 (m, 2H), 7.48 (m, *J* = 15.6 Hz, 1H), 7.43-7.36 (m, 5H), 7.12-7.08 (m, 1H), 7.02-6.98 (m, 1H), 6.63 (d, *J* = 15.6 Hz, 1H), 5.70 (dt, *J* = 5.6 Hz, 8.8 Hz, 1H), 3.09-2.89 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.5; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.0, 139.2, 136.4, 134.9, 129.5, 129.0, 127.6, 126.6 (q, *J* = 276 Hz), 125.6, 122.9, 122.1, 121.5, 118.9, 118.7, 114.7, 111.7, 37.7 (q, *J* = 26 Hz); HRMS (ESI) for C₂₀H₁₇F₃N₂ONa [M+Na]⁺ calcd. 381.1185, found 381.1183;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 91% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 7.9 min, t_r (minor) = 12.9 min.) [α]_D²⁵ = 13.00 (*c* 1.0, MeOH).

(*R*)-4-methoxy-*N*-(3,3,3-trifluoro-1-(4-methyl-1*H*-indol-3-yl)propyl)benzamide (4p)

Following the general procedure, compound **4p** was obtained as a white solid (19.0 mg, yield: 51%); mp = 230-232°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.07 (d, *J* = 2.0 Hz, 1H), 8.68 (d, *J* = 8.4 Hz, 1H), 7.85-7.82 (m, 2H), 7.48-7.47 (m, 1H), 7.21-7.19 (m, 1H), 7.00-6.93 (m, 3H), 6.75-6.74 (m, 1H), 6.08 (dt, *J* = 5.6 Hz, 8.0 Hz, 1H), 3.80 (s, 3H), 3.04-2.85 (m, 2H), 2.66 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.5; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.6, 161.7, 136.2, 129.2, 126.7, 126.4 (q, *J* = 276 Hz), 124.2, 123.6, 121.2, 120.7, 116.4, 113.5, 109.7, 55.4, 41.1 (d, *J* = 3 Hz), 20.1; HRMS (ESI) for C₂₀H₂₀F₃N₂O₂ [M+H]⁺ calcd. 377.1471, found 377.1472;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 9.0 min, t_r (minor) = 11.0 min.) $[\alpha]_D^{25}$ = -40.00 (*c* 1.0, MeOH).

(*R*)-4-methoxy-*N*-(3,3,3-trifluoro-1-(4-methoxy-1*H*-indol-3-yl)propyl)benzamide (4q)

Following the general procedure, compound **4q** was obtained as a white solid (16.6 mg, yield: 42%); mp = 210-212 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.96 (d, *J* = 2.0 Hz, 1H), 8.56 (d, *J* = 8.8 Hz, 1H), 7.87-7.84 (m, 2H), 7.14-7.13 (m, 1H), 7.04-6.96 (m, 4H), 6.54-6.52 (m, 1H), 5.96 (q, *J* = 7.2 Hz, 1H), 3.91 (s, 3H), 3.81 (s, 3H), 2.90-2.80 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -63.1; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.8, 161.7, 153.2, 138.2, 129.1, 126.9, 126.6 (q, *J* = 276 Hz), 122.4, 121.2, 115.9, 115.2, 113.7, 105.3, 99.3, 55.5, 55.1, 42.0 (d, *J* = 3 Hz); HRMS (ESI) for C₂₀H₂₀F₃N₂O₃ [M+H]⁺ calcd. 393.1421, found 393.1422;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 97% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25

°C, t_r (major) = 16.6 min, t_r (minor) = 29.7 min.) [α]_D²⁵ = 78.00 (*c* 1.0, MeOH).

(*R*)-*N*-(1-(4-chloro-1*H*-indol-3-yl)-3,3,3-trifluoropropyl)-4-methoxybenzamide (4r) Following the general procedure, compound 4r was obtained as a white solid (12.4 mg, yield: 31%); mp = 190-192°C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.40 (d, *J* = 2.0 Hz, 1H), 8.74 (d, *J* = 8.4 Hz, 1H), 7.87-7.85 (m, 2H), 7.50 (d, *J* = 2.4 Hz, 1H), 7.38-7.36 (m, 1H), 7.10-7.00 (m, 4H), 6.29-6.23 (m, 1H), 3.81 (s, 3H), 2.96-2.86 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.5; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.9, 161.7, 137.9, 129.2, 126.8, 126.3 (q, *J* = 276 Hz), 125.0, 124.1, 122.11, 122.07, 119.8, 115.7, 113.6, 111.1, 55.4, 41.0; HRMS (ESI) for C₁₉H₁₇ClF₃N₂O₂ [M+H]⁺ calcd. 397.0925, found 397.0927;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee =>99% (HPLC: IA, 290 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 8.7 min) [α]_D²⁵ = -61.00 (*c* 1.0, MeOH).

Methyl (*R*)-3-(3,3,3-trifluoro-1-(4-methoxybenzamido)propyl)-1H-indole-4-carb oxylate (4s)

Following the general procedure, compound **4s** was obtained as a white solid (20.0 mg, yield: 48%); mp = 195-197 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 11.50 (d, J = 2.0 Hz, 1H), 8.64 (d, J = 8.4 Hz, 1H), 7.85-7.83 (m, 2H), 7.66-7.62 (m, 2H), 7.56-7.54 (m, 1H), 7.20-7.16 (m, 1H), 7.02-7.00 (m, 1H), 6.20 (dt, J = 4.0 Hz, 9.2 Hz, 1H), 3.88 (s, 3H), 3.80 (s, 3H), 2.91-2.67 (m, 2H); ¹⁹F NMR (376 MHz, DMSO- d_6): δ -62.0; ¹³C NMR

(100 MHz, DMSO-*d*₆): δ 168.5, 164.9, 161.7, 138.2, 137.6, 129.2, 127.0, 126.5, 126.4 (q, *J* = 277 Hz), 122.9, 122.3, 122.2, 120.3, 116.46, 116.41, 113.6, 55.4, 52.1, 41.7 (d, *J* = 3 Hz); HRMS (ESI) for C₂₁H₂₀F₃N₂O₄ [M+H]⁺ calcd. 421.1370, found 421.1373; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 97% (HPLC: IF-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 6.1 min, t_r (minor) = 25.2 min.) [α]_D²⁵ = -83 (*c* 1.0, MeOH).

(*R*)-4-methoxy-N-(3,3,3-trifluoro-1-(5-methyl-1H-indol-3-yl)propyl)benzamide (4t)

Following the general procedure, compound **4t** was obtained as a white solid (18.5 mg, yield: 49%); mp = 195-197 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.89 (s, 1H), 8.66 (d, *J* = 8.8 Hz, 1H), 7.86-7.82 (m, 2H), 7.43 (s, 2H), 7.34-7.33 (m, 1H), 7.26-7.24 (m, 1H), 7.01-6.97 (m, 1H), 6.92-6.90 (m, 1H), 5.79 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.17-2.90 (m, 2H), 2.35 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.9, 161.7, 134.7, 129.2, 127.2, 126.85, 126.80 (q, *J* = 276 Hz), 123.0, 118.3, 114.8, 113.5, 111.4, 55.4, 37.8 (q, *J* = 26 Hz), 21.5; HRMS (ESI) for C₂₀H₂₀F₃N₂O₂ [M+H]⁺ calcd. 377.1471, found 377.1472; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 92% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, tr (major) = 9.6 min, tr (minor) = 15.1 min.) [α]D²⁵ = -31.00 (*c* 1.0, MeOH).

(R)-4-methoxy-N-(3,3,3-trifluoro-1-(5-methoxy-1H-indol-3-yl)propyl)benzamide

(4u)

Following the general procedure, compound **4u** was obtained as a white solid (12.5 mg, yield: 32%); mp = 173-175 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.87 (d, *J* = 1.6 Hz, 1H), 8.67 (d, *J* = 8.4 Hz, 1H), 7.85-7.82 (m, 2H), 7.35-7.34 (m, 1H), 7.26-7.24 (m, 1H), 7.18-7.17 (m, 1H), 7.00-6.98 (m, 1H), 6.73 (dd, *J* = 2.4 Hz, 8.8 Hz, 1H), 5.79 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.70 (s, 3H), 3.20-2.93 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.0, 161.7, 153.2, 131.5, 129.2, 126.9 (q, *J* = 276 Hz), 126.8, 126.1, 123.4, 115.1, 113.6, 112.3, 111.4, 100.8, 55.4, 55.3, 37.3 (q, *J* = 26 Hz); HRMS (ESI) for C₂₀H₂₀F₃N₂O₃ [M+H]⁺ calcd. 393.1421, found 393.1420;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 90% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.0 min, t_r (minor) = 25.5 min.) $[\alpha]_D^{25}$ = -28.00 (*c* 1.0, MeOH).

(*R*)-*N*-(1-(5-chloro-1*H*-indol-3-yl)-3,3,3-trifluoropropyl)-4-methoxybenzamide (4 v)

Following the general procedure, compound **4v** was obtained as a white solid (13.4 mg, yield: 34%); mp = 140-142 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.2 (s, 1H), 8.72 (d, *J* = 8.4 Hz, 1H), 7.84-7.80 (m, 2H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.49 (d, *J* = 2.4 Hz, 1H), 7.39-7.37 (m, 1H), 7.09-7.07 (m, 1H), 7.01-6.97 (m, 2H), 5.76 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.22-2.93 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.0, 161.7, 134.8, 129.2, 126.8, 126.7 (q, *J* = 276 Hz), 126.6, 124.9, 123.6, 121.3, 118.1, 115.3, 113.6, 113.2, 55.4, 37.3 (q, *J* = 26 Hz); HRMS (ESI) for C₁₉H₁₇ClF₃N₂O₂ [M+H]⁺ calcd. 397.0925, found 397.0928;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 98% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r

(major) = 9.0 min, t_r (minor) = 12.2 min.) $[\alpha]_D^{25}$ = -40.00 (*c* 1.0, MeOH).

(*R*)-*N*-(1-(5-bromo-1*H*-indol-3-yl)-3,3,3-trifluoropropyl)-4-methoxybenzamide (4 w)

Following the general procedure, compound **4w** was obtained as a white solid (16.1 mg, yield: 37%); mp = 171-173 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.25 (s, 1H), 8.72 (d, *J* = 8.4 Hz, 1H), 7.86-7.81 (m, 3H), 7.48-7.47 (m, 1H), 7.35-7.33 (m, 1H), 7.20-7.18 (m, 1H), 7.00-6.98 (m, 1H), 5.75 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.22-2.93 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.0, 161.7, 135.0, 129.1, 127.5, 126.7 (q, *J* = 276 Hz), 126.6, 124.7, 123.8, 111.2, 115.2, 113.7, 113.6, 111.6, 55.4, 37.3 (q, *J* = 26 Hz); HRMS (ESI) for C₁₉H₁₇BrF₃N₂O₂ [M+H]⁺ calcd. 441.0420, 443.0400, found 441.0421, 443.0401;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 98% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 8.9 min, t_r (minor) = 12.3 min.) $[\alpha]_D^{25}$ = -49.00 (*c* 1.0, MeOH).

(*R*)-4-methoxy-N-(3,3,3-trifluoro-1-(6-methyl-1H-indol-3-yl)propyl)benzamide (4x)

Following the general procedure, compound **4x** was obtained as a white solid (16.5 mg, yield: 44%); mp = 181-183 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 10.85 (s, 1H), 8.63 (d, J = 8.8 Hz, 1H), 7.84-7.82 (m, 2H), 7.52-7.50 (m, 1H), 7.29 (d, J = 2.0 Hz, 1H), 7.15 (s, 1H), 6.99-6.97 (m, 2H), 6.82-6.80 (m, 1H), 5.80 (dt, J = 4.0 Hz, 9.2 Hz, 1H),

3.79 (s, 3H), 3.17-2.91 (m, 2H), 2.36 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -57.9; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.8, 161.6, 136.8, 130.4, 129.2, 126.78, 126.82 (q, *J* = 276 Hz), 123.6, 122.1, 120.6, 118.4, 115.2, 113.5, 111.4, 55.4, 37.5 (q, *J* = 26 Hz), 21.4; HRMS (ESI) for C₂₀H₂₀F₃N₂O₂ [M+H]⁺ calcd. 377.1471, found 377.1472; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 93% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.5 min, t_r (minor) = 19.4 min.) [α]_D²⁵ = -9.00 (*c* 1.0, MeOH).

(*R*)-N-(1-(6-chloro-1H-indol-3-yl)-3,3,3-trifluoropropyl)-4-methoxybenzamide (4 y)

Following the general procedure, compound **4y** was obtained as a white solid (15.7 mg, yield: 40%); mp = 178-180 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.18 (s, 1H), 8.70 (d, *J* = 8.4 Hz, 1H), 7.84-7.82 (m, 2H), 7.67-7.64 (m, 1H), 7.46-7.42 (m, 2H), 7.03-6.97 (m, 3H), 5.81 (dt, *J* = 3.6 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.20-2.94 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.6; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.9, 161.7, 136.8, 129.2, 126.8 (q, *J* = 276 Hz), 126.6, 126.2, 124.5, 124.1, 120.1 119.2, 115.7, 113.6, 111.3, 55.4, 37.4 (q, *J* = 26 Hz); HRMS (ESI) for C₁₉H₁₇ClF₃N₂O₂ [M+H]⁺ calcd. 397.0925, found 397.0927;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 99% (HPLC: IA, 290 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.8 min, t_r (minor) = 14.4 min.) $[\alpha]_D^{25}$ = -18.00 (*c* 1.0, MeOH).

(*R*)-4-methoxy-*N*-(3,3,3-trifluoro-1-(7-methyl-1*H*-indol-3-yl)propyl)benzamide (4z)

Following the general procedure, compound **4z** was obtained as a white solid (18.6 mg, yield: 49%); mp = 191-193 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.99 (s, 1H), 8.65 (d, *J* = 8.8 Hz, 1H), 7.85-7.83 (m, 2H), 7.49-7.47 (m, 1H), 7.39 (d, *J* = 2.0 Hz, 1H), 7.15 (s, 1H), 6.99-6.97 (m, 2H), 6.92-6.88 (m, 2H), 5.83 (dt, *J* = 4.0 Hz, 9.2 Hz, 1H), 3.79 (s, 3H), 3.20-2.93 (m, 2H), 2.45 (s, 3H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.7; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 164.9, 161.7, 135.9, 129.2, 126.81 (q, *J* = 276 Hz), 126.78, 125.4, 122.6, 121.8, 120.8, 119.1, 116.3, 115.7, 113.5, 55.4, 37.7 (q, *J* = 26 Hz), 16.8; HRMS (ESI) for C₂₀H₂₀F₃N₂O₂ [M+H]⁺ calcd. 377.1471, found 377.1472; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 91% (HPLC: IA, 280 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, tr (major) = 12.5 min, tr (minor) = 30.5 min.) [α]D²⁵ = 7.00 (*c* 1.0, MeOH).

(*R*)-4-methoxy-*N*-(3,3,3-trifluoro-1-(7-methoxy-1*H*-indol-3-yl)propyl)benzamide (4aa)

Following the general procedure, compound **4aa** was obtained as a white solid (11.0 mg, yield: 28%); mp = 193-195 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 11.11 (s, 1H), 8.63 (d, J = 8.8 Hz, 1H), 7.84-7.80 (m, 2H), 7.29-7.28 (m, 1H), 7.22-7.20 (m, 1H), 7.15 (s, 1H), 7.00-6.96 (m, 2H), 6.92-6.88 (m, 1H), 6.66-6.64 (m, 1H), 5.79 (dt, J = 4.0 Hz,

9.2 Hz, 1H), 3.89 (s, 3H), 3.79 (s, 3H), 3.16-2.91 (m, 2H); ¹⁹F NMR (376 MHz, DMSO d_6): δ -62.7; ¹³C NMR (100 MHz, DMSO- d_6): δ 164.8, 161.6, 146.2, 129.2, 127.2, 126.8 (q, J = 276 Hz), 126.7, 126.4, 122.4, 119.5, 115.8, 113.5, 111.5, 101.9, 55.4, 55.2, 37.6 (q, J = 26 Hz); HRMS (ESI) for C₂₀H₂₀F₃N₂O₃ [M+H]⁺ calcd. 393.1421, found 393.1421;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 93% (HPLC: IA, 280 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 6.0 min, t_r (minor) = 8.7 min.) $[\alpha]_D^{25} = 2.00$ (*c* 1.0, MeOH).

(*R*)-4-methoxy-*N*-(3,3,3-trifluoro-1-(2-hydroxy-4,6-dimethoxyphenyl)propyl)benz amide (4ab)

Following the general procedure, compound **4ab** was obtained as a white solid (17.3 mg, yield: 43%); mp = 91-93 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.11 (s, 1H), 7.72-7.69 (m, 2H), 7.54 (s, 1H), 6.86-6.84 (m, 2H), 6.24-6.20 (m, 1H), 6.08-6.02 (m, 2H), 3.79 (s, 3H), 3.78 (s, 3H), 3.67 (s, 3H), 3.12-2.99 (m, 1H), 2.72-2.58 (m, 1H); ¹⁹F NMR (376 MHz, CDCl₃): δ -64.6; ¹³C NMR (100 MHz, CDCl₃): δ 167.3, 162.5, 160.9, 158.6, 156.5, 128.9, 126.1 (q, *J* = 276 Hz), 126.0, 113.8, 107.4, 94.8, 91.6, 55.6, 55.3, 55.2, 40.4, 37.9 (q, *J* = 26 Hz); HRMS (ESI) for C₁₉H₂₁F₃NO₅ [M+H]⁺ calcd. 400.1366, found 400.1366;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 81% (HPLC: IF-3, 230 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 23.1 min, t_r (minor) = 10.3 min.) $[\alpha]_D^{25} = 22.00$ (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-methoxypropyl)benzamide (6a)

Following the general procedure, compound **6a** was obtained as a white solid (18.4 mg, yield: 66%); mp = 108-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78 (d, *J* = 8.8 Hz, 2H), 6.92 (d, *J* = 8.8 Hz, 2H), 6.70 (d, *J* = 9.2 Hz, 1H), 5.68 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 3.85 (s, 3H), 3.41 (s, 3H), 2.70-2.48 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.8; ¹³C NMR (100 MHz, CDCl₃): δ 166.9, 162.7, 129.0, 125.5, 125.0 (q, *J* = 275 Hz), 113.9, 76.5 (q, *J* = 4 Hz), 56.0, 55.4, 39.5 (q, *J* = 28 Hz); HRMS (ESI) for C₁₂H₁₄F₃NO₃Na [M+Na]⁺ calcd. 300.0818, found 300.0821;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 89% (HPLC: IF-3, 250 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 8.7 min, t_r (minor) = 18.7 min.) [α]_D²⁰ = 19.00 (*c* 1.0, CH₂Cl₂).

(S)-N-(1-ethoxy-3,3,3-trifluoropropyl)-4-methoxybenzamide (6b)

Following the general procedure, compound **6b** was obtained as a white solid (19.4 mg, yield: 67%); mp = 102-104 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.77-7.75 (m, 2H), 6.94-6.92 (m, 2H), 6.51-6.49 (m, 1H), 5.78 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 3.85 (s, 3H), 3.74-3.69 (m, 1H), 3.62-3.57 (m, 1H), 2.67-2.50 (m, 2H), 1.20 (t, *J* = 7.2 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.9; ¹³C NMR (150 MHz, CDCl₃): δ 166.6, 162.7, 128.9, 125.6, 125.0 (q, *J* = 275 Hz), 113.9, 75.0 (q, *J* = 3 Hz), 64.2, 55.4, 39.8 (q, *J* = 28 Hz), 14.9; HRMS (ESI) for C₁₃H₁₆F₃NO₃Na [M+Na]⁺ calcd. 314.0974, found 314.0975; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 91% (HPLC: IF-3, 250 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.1 min, t_r (minor) = 21.3 min.) [α]_D²⁵ = 27.00 (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-isopropoxypropyl)benzamide (6c)

Following the general procedure, compound **6c** was obtained as a white solid (17.6 mg, yield: 58%); mp = 98-100 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.76-7.74 (m, 2H), 6.94-6.93 (m, 2H), 6.46-6.45 (m, 1H), 5.86 (dt, *J* = 6.6 Hz, 9.2 Hz, 1H), 3.94-3.88 (m, 1H), 3.85 (s, 3H), 2.63-2.48 (m, 2H), 1.22 (d, *J* = 6.0 Hz, 3H), 1.16 (d, *J* = 6.0 Hz, 3H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.9; ¹³C NMR (150 MHz, CDCl₃): δ 166.3, 162.7, 128.9, 125.7, 125.0 (q, *J* = 275 Hz), 113.9, 73.2 (q, *J* = 3 Hz), 70.0, 40.3 (q, *J* = 28 Hz), 23.3, 21.3; HRMS (ESI) for C₁₄H₁₈F₃NO₃Na [M+Na]⁺ calcd. 328.1131, found 328.1131; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 92% (HPLC: IF-3, 254 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.2 min, t_r (minor) = 12.8 min.) [α]_D²⁵ = 50.00 (*c* 1.0, CH₂Cl₂).

(S)-N-(1-(tert-butoxy)-3,3,3-trifluoropropyl)-4-methoxybenzamide (6d)

Following the general procedure, compound **6d** was obtained as a white solid (13.3 mg, yield: 42%); mp = 90-92 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.73-7.71 (m, 2H), 6.94-6.93 (m, 2H), 6.31-6.30 (m, 1H), 5.95 (dt, *J* = 6.0 Hz, 8.4 Hz, 1H), 3.85 (s, 3H), 2.54-2.48 (m, 2H), 1.26 (s, 9H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.7; ¹³C NMR (150 MHz, CDCl₃): δ 165.1, 162.6, 128.7, 126.0, 125.0 (q, *J* = 275 Hz), 113.9, 75.9, 70.5 (q, *J* = 3 Hz), 55.4, 41.4 (q, *J* = 28 Hz), 28.2; HRMS (ESI) for C₁₅H₂₀F₃NO₃Na [M+Na]⁺ calcd. 342.1287, found 342.1289;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 250 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.2 min, t_r (minor) = 14.6 min.) $[\alpha]_D^{25} = 21.00$ (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-(methoxy-d₃)propyl)benzamide (6e)

Following the general procedure, compound **6e** was obtained as a white solid (13.5 mg, yield: 48%); mp = 107-109 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.77-7.76 (m, 2H), 6.96-6.93 (m, 2H), 6.38 (d, *J* = 9.0 Hz, 1H), 5.69 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 3.86 (s, 3H), 2.67-2.51 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.8; ¹³C NMR (150 MHz, CDCl₃): δ 166.7, 162.8, 128.9, 125.5, 125.0 (q, *J* = 275 Hz), 114.0, 76.5, 55.5, 39.7 (q, *J* = 28 Hz); HRMS (ESI) for C₁₂H₁₁D₃F₃NO₃Na [M+Na]⁺ calcd. 303.1006, found 303.1007; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 93% (HPLC: IF-3, 254 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, tr (major) = 8.6 min, tr (minor) = 16.4 min.) [α]D²⁵ = 19.00 (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-((4-methoxybenzyl)oxy)propyl)benzamide (6 f)

Following the general procedure, compound **6f** was obtained as a white solid (16.0 mg, yield: 42%); mp = 102-104 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.75-7.72 (m, 2H), 7.26-7.24 (m, 2H), 6.92-6.90 (m, 2H), 6.87-6.83 (m, 2H), 6.62-6.58 (m, 1H), 5.88 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 4.63-4.55 (m, 2H), 3.84 (s, 3H), 3.77 (s, 3H), 2.72-2.49 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.7; ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 162.7, 159.3, 129.44, 129.39, 129.0, 125.5, 125.0 (q, *J* = 275 Hz), 113.9, 113.8, 74.8 (q, *J* = 4 Hz), 70.4, 55.4, 55.2, 39.8 (q, *J* = 33 Hz); HRMS (ESI) for C₁₉H₂₀F₃NO₄Na [M+Na]⁺ calcd. 406.1237, found 406.1240;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 90% (HPLC: IF-3, 250 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 27.8 min, t_r (minor) = 32.1 min.) $[\alpha]_D^{25}$ = 32.00 (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-(thiophen-2-ylmethoxy)propyl)benzamide (6 g)

Following the general procedure, compound **6g** was obtained as a white solid (15.0 mg, yield: 45%); mp = 60-62 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.75-7.73 (m, 2H), 7.28-7.26 (m, 1H), 7.04-7.03 (m, 1H), 6.95-6.93 (m, 3H), 6.54-6.52 (m, 1H), 5.92 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 4.86-4.81 (m, 2H), 3.86 (s, 3H), 2.71-2.52 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -62.8; ¹³C NMR (150 MHz, CDCl₃): δ 166.7, 162.8, 139.8, 129.0, 127.0, 126.8, 126.1, 125.4, 124.9 (q, *J* = 275 Hz), 113.9, 74.9 (q, *J* = 3 Hz), 65.2, 55.4, 39.7 (q, *J* = 33 Hz); HRMS (ESI) for C₁₆H₁₆F₃NO₃Na [M+Na]⁺ calcd. 382.0695, found 382.0697;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 91% (HPLC: IF-3, 290 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 7.9 min, t_r (minor) = 21.1 min.) $[\alpha]_D^{25}$ = 34.00 (*c* 1.0, CH₂Cl₂).

(*S*)-*N*-(1-(cyclobutylmethoxy)-3,3,3-trifluoropropyl)-4-methoxybenzamide (6h) Following the general procedure, compound 6h was obtained as a white solid (16.9 mg, yield: 51%); mp = 88-90 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.76 (m, 2H), 6.95-6.91 (m, 2H), 6.57-6.55 (m, 1H), 5.76 (dt, *J* = 6.0 Hz, 9.6 Hz, 1H), 3.86 (s, 3H), 3.65-

3.61 (m, 1H), 3.53-3.49 (m, 1H), 2.69-2.48 (m, 2H), 2.09-1.97 (m, 2H), 1.92-1.80 (m, 2H), 1.79-1.66 (m, 2H); ¹⁹F NMR (376 MHz, CDCl₃): δ -63.0; ¹³C NMR (100 MHz, CDCl₃): δ 166.6, 162.7, 128.9, 125.6, 125.0 (q, *J* = 275 Hz), 113.9, 75.4 (q, *J* = 4 Hz), 73.1, 55.4, 39.7 (q, *J* = 33 Hz), 34.7, 24.8, 24.7, 18.4; HRMS (ESI) for C₁₆H₂₀F₃NO₃Na [M+Na]⁺ calcd. 354.1287, found 354.1290;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 84% (HPLC: IA, 250 nm, hexane/isopropanol = 95:5, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.1 min, t_r (minor) = 17.3 min.) $[\alpha]_D^{25}$ = 35.00 (*c* 1.0, CH₂Cl₂).

(S)-4-methoxy-N-(3,3,3-trifluoro-1-hydroxypropyl)benzamide (6i)

Following the general procedure, compound **6i** was obtained as a white solid (15.4 mg, yield: 59%); mp = 100-102 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 8.85 (d, *J* = 8.4 Hz, 1H), 7.87-7.84 (m, 2H), 7.02-6.99 (m, 2H), 6.26 (d, *J* = 4.8 Hz, 1H), 5.78-5.72 (m, 1H), 3.81 (s, 3H), 2.76-2.57 (m, 2H); ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ -62.3; ¹³C NMR (100 MHz, DMSO-*d*₆): δ 165.1, 161.9, 129.4, 126.2, 125.9 (q, *J* = 275 Hz), 113.6, 78.9 (q, *J* = 33 Hz), 68.2 (q, *J* = 4 Hz), 55.4; HRMS (ESI) for C₁₁H₁₂F₃NO₃Na [M+Na]⁺ calcd. 286.0661, found 286.0664;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 80% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 6.8 min, t_r (minor) = 10.1 min.) $[\alpha]_D^{25}$ = -14.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (R)-(1-(1H-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8a)

Following the general procedure, compound **8a** was obtained as a white solid (26.5 mg, yield: 65 %); mp = 112-114 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 10.86 (s, 1H), 7.93-

7.91 (m, 2H), 7.69-7.67 (m, 1H), 7.63-7.59 (m, 1H), 7.51-7.48 (m, 2H), 7.37-7.35 (m, 1H), 7.23 (d, J = 2.0 Hz, 1H), 7.17-7.15 (m, 1H), 7.10-7.06 (m, 1H), 7.01-6.97 (m, 1H), 4.97-4.92 (m, 1H), 3.17-2.98 (m, 2H), 2.32-2.23 (m, 1H), 2.14-2.06 (m, 1H), 1.36 (s, 9H); ¹³C NMR (100 MHz, DMSO- d_6): δ 199.7, 155.4, 136.8, 136.4, 133.1, 128.7, 127.8, 126.0, 122.1, 121.1, 118.9, 118.4, 117.2, 111.5, 77.5, 46.5, 35.1, 29.8, ,28.3; HRMS (ESI) for C₂₃H₂₆N₂O₃Na [M+Na]⁺ calcd. 401.1836, found 401.1835; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 15.5 min, t_r (minor) = 14.1 min.) $[\alpha]_D^{25} = 21.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (R)-(1-(1H-indol-3-yl)-4-oxo-4-(p-tolyl)butyl)carbamate (8b)

Following the general procedure, compound **8b** was obtained as a white solid (18.8 mg, yield: 48 %); mp = 116-118 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.48 (s, 1H), 7.82-7.80 (m, 2H), 7.69 (d, J = 5.2 Hz, 1H), 7.35-7.33 (m, 1H), 7.21-7.17 (m, 3H), 7.12-7.10 (m, 1H), 7.04 (s, 1H), 5.09-5.08 (m, 1H), 4.89-4.88 (m, 1H), 3.13-3.00 (m, 2H), 2.40-2.38 (m, 5H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 199.8, 155.6, 143.7, 136.6, 134.4, 129.2, 128.1, 125.9, 122.3, 121.4, 119.6, 119.3, 117.1, 111.4, 79.2, 47.5, 35.6, 29.7, ,28.3, 21.5; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992, found 415.1987;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 18.8 min, t_r (minor) = 16.2 min.) $[\alpha]_D^{25} = 37.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(1H-indol-3-yl)-4-(4-methoxyphenyl)-4-oxobutyl)carbamate (8c) Following the general procedure, compound 8c was obtained as a white solid (19.2 mg,

yield: 47 %); mp = 152-154 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.48 (s, 1H), 7.90-7.88 (m, 2H), 7.70-7.69 (m, 1H), 7.36-7.34 (m, 1H), 7.20-7.17 (m, 1H), 7.13-7.10 (m, 1H), 7.06 (s, 1H), 6.88-6.87 (m, 1H), 5.10-5.08 (m, 1H), 4.90 (s, 1H), 3.84 (s, 3H), 3.11-2.98 (m, 2H), 2.40-2.39 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 198.7, 163.4, 155.6, 136.6, 130.3, 130.0, 125.9, 122.3, 121.5, 119.6, 119.3, 117.1, 113.6, 111.4, 79.2, 55.4, 47.5, 35.4, 29.8, 28.3; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1938;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 13.1 min, t_r (minor) = 11.4 min.) $[\alpha]_D^{25} = 37.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(4-ethylphenyl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8d) Following the general procedure, compound 8d was obtained as a white solid (18.1 mg, yield: 45 %); mp = 112-114 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.40 (s, 1H), 7.85-7.83 (m, 2H), 7.71-7.69 (m, 1H), 7.36-7.34 (m, 1H), 7.24-7.22 (m, 2H), 7.21-7.17 (m, 1H), 7.14-7.10 (m, 1H), 7.14-7.10 (m, 1H), 7.08-7.07 (m, 1H), 5.10-5.08 (m, 1H), 4.88-4.86 (m, 1H), 3.15-3.00 (m, 2H), 2.68 (q, *J* = 7.6 Hz, 2H), 2.42-2.40 (m, 2H), 1.41 (s, 9H), 1.24 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 155.6, 149.9, 136.6, 134.6, 128.3, 128.0, 125.9, 122.3, 121.4, 119.7, 119.3, 117.2, 111.3, 79.2, 47.5, 35.6, 29.8, 28.9, 28.3, 15.2; HRMS (ESI) for C₂₅H₃₀N₂O₃Na [M+Na]⁺ calcd. 429.2149, found 429.2149;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 18.8 min, t_r (minor) = 16.7 min.) [α]_D²⁵ = 38.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-([1,1'-biphenyl]-4-yl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8e)

Following the general procedure, compound **8e** was obtained as a white solid (19.2 mg, yield: 39 %); mp = 88-90 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 7.98-7.96 (m, 2H), 7.72-7.70 (m, 1H), 7.63-7.58 (m, 5H), 7.47-7.43 (m, 2H), 7.40-7.38 (m, 1H), 7.36-7.34 (m, 1H), 7.21-7.17 (m, 1H), 7.14-7.10 (m, 1H), 7.07 (s, 1H), 5.12-5.10 (m, 1H), 4.90 (s, 1H), 3.19-3.04 (m, 2H), 2.44-2.42 (m, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 199.8, 155.6, 145.6, 139.8, 136.6, 135.6, 128.9, 128.6, 128.1, 127.2, 127.1, 125.9, 122.3, 121.5, 119.7, 119.3, 117.1, 111.4, 79.3, 47.5, 35.8, 29.8, 28.3; HRMS (ESI) for C₂₉H₃₀N₂O₃Na [M+Na]⁺ calcd. 477.2149, found 477.2149; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 93% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 24.8 min, t_r (minor) = 22.5 min.) [α] ρ ²⁵ = 34.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(4-chlorophenyl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8f) Following the general procedure, compound 8f was obtained as a white solid (16.6 mg, yield: 40 %); mp = 118-120 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.31 (s, 1H), 7.84-7.82 (m, 2H), 7.70-7.68 (m, 1H), 7.39-7.35 (m, 3H), 7.22-7.18 (m, 1H), 7.14-7.09 (m, 2H), 5.09-5.07 (m, 1H), 4.86-4.84 (m, 1H), 3.14-2.98 (m, 2H), 2.44-2.38 (m, 2H), 1.41 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 198.8, 155.6, 139.4, 136.6, 135.2, 129.4, 128.8, 125.9, 122.4, 121.4, 119.8, 119.3, 117.1, 111.4, 79.4, 47.5, 35.7, 29.7, 28.4; HRMS (ESI) for C₂₃H₂₅ClN₂O₃Na [M+Na]⁺ calcd. 435.1446, found 435.1444; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 290 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25

°C, t_r (major) = 15.0 min, t_r (minor) = 14.2 min.) $[\alpha]_D^{25} = 47.00$ (c 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(4-bromophenyl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8g) Following the general procedure, compound 8g was obtained as a white solid (17.3 mg, yield: 37 %); mp = 116-118 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.39 (s, 1H), 7.75-7.74 (m, 2H), 7.69-7.67 (m, 1H), 7.54-7.53 (m, 2H), 7.36-7.35 (m, 1H), 7.21-7.18 (m, 1H), 7.13-7.11 (m, 1H), 7.07 (s, 1H), 5.08-5.07 (m, 1H), 4.87-4.86 (m, 1H), 3.09-2.98 (m, 2H), 2.42-2.39 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 199.0, 155.6, 136.5, 135.6, 131.8, 129.5, 128.1, 125.8, 122.4, 121.4, 119.7, 119.3, 117.0, 111.4, 79.3, 47.4, 35.7, 29.6, 28.3; HRMS (ESI) for C₂₃H₂₅BrN₂O₃Na [M+Na]⁺ calcd. 479.0941, found 479.0942;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 16.2 min, t_r (minor) = 15.4 min.) $[\alpha]_D^{25} = 33.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (R)-(1-(1H-indol-3-yl)-4-oxo-4-(m-tolyl)butyl)carbamate (8h)

Following the general procedure, compound **8h** was obtained as a white solid (19.4 mg, yield: 49 %); mp = 124-126 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.43 (s, 1H), 7.72-7.69 (m, 3H), 7.36-7.33 (m, 2H), 7.31-7.28 (m, 1H), 7.20-7.18 (m, 1H), 7.13-7.11 (m, 1H), 7.06 (s, 1H), 5.10-5.09 (m, 1H), 4.89-4.87 (m, 1H), 3.14-3.02 (m, 2H), 2.42-2.37 (m, 5H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.4, 155.6, 138.2, 136.9, 136.6, 133.7, 128.6, 128.4, 125.9, 125.2, 122.3, 121.4, 119.7, 119.3, 117.1, 111.4, 79.2, 47.5, 35.8, 29.7, 28.3, 21.3; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992; found 415.1992;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 230 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25
°C, t_r (major) = 19.0 min, t_r (minor) = 18.0 min.) $[\alpha]_D^{25} = 47.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(1H-indol-3-yl)-4-(3-methoxyphenyl)-4-oxobutyl)carbamate (8i) Following the general procedure, compound 8i was obtained as a white solid (19.1 mg, yield: 47 %); mp = 60-62 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.38 (s, 1H), 7.70-7.69 (m, 1H), 7.48-7.47 (m, 1H), 7.45 (s, 1H), 7.36-7.34 (m, 1H), 7.32-7.30 (m, 1H), 7.20-7.18 (m, 1H), 7.13-7.11 (m, 1H), 7.08-7.06 (m, 2H), 5.10-5.09 (m, 1H), 4.88 (s, 1H), 3.81 (s, 3H), 3.14-3.02 (m, 2H), 2.43-2.41 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 199.9, 159.7, 155.6, 138.3, 136.6, 129.5, 125.9, 122.3, 121.4, 120.7, 119.7, 119.5, 119.3, 117.1, 112.2, 111.4, 79.2, 55.3, 47.5, 35.9, 29.7, 28.3; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1942;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 93% (HPLC: IF-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 14.7 min, t_r (minor) = 22.2 min.) $[\alpha]_D^{25} = 37.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(3-chlorophenyl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8j) Following the general procedure, compound 8j was obtained as a white solid (18.2 mg, yield: 44 %); mp = 50-52 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.33 (s, 1H), 7.87 (s, 1H), 7.77-7.75 (m, 1H), 7.69-7.68 (m, 1H), 7.50-7.48 (m, 1H), 7.38-7.33 (m, 2H), 7.21-7.19 (m, 1H), 7.14-7.11 (m, 1H), 7.08 (s, 1H), 5.09-5.08 (m, 1H), 4.86 (s, 1H), 3.11-3.01 (m, 2H), 2.44-2.40 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 198.7, 155.6, 138.4, 136.6, 134.8, 132.9, 129.8, 128.1, 126.1, 125.8, 122.4, 121.4, 119.8, 119.3, 117.0, 111.4, 79.3, 47.4, 35.8, 29.5, 28.3; HRMS (ESI) for C₂₃H₂₅ClN₂O₃Na [M+Na]⁺ calcd. 435.1446, found 435.1447;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 95% (HPLC: IF-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.1 min, t_r (minor) = 15.8 min.) [α]_D²⁵ = 35.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(1H-indol-3-yl)-4-oxo-4-(thiophen-2-yl)butyl)carbamate (8k) Following the general procedure, compound 8k was obtained as a white solid (12.5 mg, yield: 33 %); mp = 132-134 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.39 (s, 1H), 7.70-7.68 (m, 1H), 7.64-7.63 (m, 1H), 7.60-7.59 (m, 1H), 7.37-7.35 (m, 1H), 7.21-7.18 (m, 1H), 7.13-7.11 (m, 1H), 7.08-7.06 (m, 2H), 5.09-5.08 (m, 1H), 4.86-4.85 (m, 1H), 3.11-2.97 (m, 2H), 2.42-2.41 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 193.0, 155.6, 144.2, 136.6, 133.5, 131.9, 128.0, 125.9, 122.4, 121.4, 119.7, 119.3, 117.1, 111.4, 79.2, 47.5, 36.4, 29.9, 28.3; HRMS (ESI) for C₂₁H₂₄N₂O₃SNa [M+Na]⁺ calcd. 407.1400, found 407.1400;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 90% (HPLC: IF-3, 260 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 16.1 min, t_r (minor) = 14.7 min.) $[\alpha]_D^{25} = 41.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(3,4-dimethoxyphenyl)-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (81)

Following the general procedure, compound **8l** was obtained as a white solid (18.5 mg, yield: 42 %); mp = 132-134 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.60 (s, 1H), 7.71-7.69 (m, 1H), 7.52-7.50 (m, 2H), 7.36-7.34 (m, 1H), 7.19-7.17 (m, 1H), 7.13-7.10 (m, 1H), 7.05 (s, 1H), 6.82-6.80 (m, 1H), 5.10-5.09 (m, 1H), 4.92-4.91 (m, 1H), 3.91 (s, 3H), 3.89 (s, 3H), 3.12-3.00 (m, 2H), 2.41-2.40 (m, 2H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 198.8, 155.6, 153.1, 148.8, 136.6, 130.0, 125.9, 122.7, 122.2, 121.5, 119.6, 119.2, 117.0, 111.4, 110.0, 109.9, 79.2, 56.0, 55.8, 47.5, 35.2, 30.0, 28.3; HRMS (ESI)

for C₂₅H₃₀N₂O₅Na [M+Na]⁺ calcd. 461.2047, found 461.2046;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 96% (HPLC: IA, 280 nm, hexane/isopropanol = 80:20, flow rate 1.0 mL/min, 25 °C, t_r (major) = 15.7 min, t_r (minor) = 19.4 min.) $[\alpha]_D^{25}$ = 39.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-cyclopropyl-1-(1H-indol-3-yl)-4-oxobutyl)carbamate (8m) Following the general procedure, compound 8m was obtained as a colorless oil (17.5 mg, yield: 51 %); ; ¹H NMR (600 MHz, CDCl₃): δ 8.62 (s, 1H), 7.67-7.65 (m, 1H), 7.34-7.33 (m, 1H), 7.19-7.16 (m, 1H), 7.11-7.09 (m, 1H), 6.98 (s, 1H), 4.99-4.97 (m, 1H), 4.89 (s, 1H), 2.73-2.61 (m, 2H), 2.25-2.24 (m, 2H), 1.89-1.85 (m, 1H), 1.42 (s, 9H), 1.00-0.99 (m, 2H), 0.84-0.82 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 211.0, 155.6, 136.6, 125.8, 122.2, 121.5, 119.5, 119.2, 116.9, 111.4, 79.2, 47.5, 40.4, 29.2, 28.4, 20.5, 10.8, 10.7; HRMS (ESI) for C₂₀H₂₆N₂O₃Na [M+Na]⁺ calcd. 365.1836, found 365.1833;

Enantiomeric excess established by HPLC analysis using a Chiralpak IC-3 column, ee = 94% (HPLC: IC-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.6 min, t_r (minor) = 13.5 min.) $[\alpha]_D^{25} = 37.00$ (*c* 1.0, CH₂Cl₂).

methyl (R)-4-((tert-butoxycarbonyl)amino)-4-(1H-indol-3-yl)butanoate (8n)

Following the general procedure, compound **8n** was obtained as a colorless oil (15.9 mg, yield: 48 %); ¹H NMR (600 MHz, CDCl₃): δ 8.47 (s, 1H), 7.67-7.65 (m, 1H), 7.35-7.34 (m, 1H), 7.20-7.18 (m, 1H), 7.12-7.10 (m, 1H), 7.02 (s, 1H), 5.01-5.00 (m, 1H), 4.87-4.86 (m, 1H), 3.64 (s, 3H), 2.48-2.38 (m, 2H), 2.33-2.27 (m, 2H), 1.44 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 174.0, 155.5, 136.6, 125.7, 122.3, 121.5, 119.6, 119.2, 116.7, 111.4, 79.3, 51.6, 47.4, 31.2, 30.5, 28.4; HRMS (ESI) for C₁₈H₂₄N₂O₄Na

[M+Na]⁺ calcd. 355.1628, found 355.1628;

Enantiomeric excess established by HPLC analysis using a Chiralpak IC-3 column, ee = 92% (HPLC: IC-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.2 min, t_r (minor) = 12.1 min.) $[\alpha]_D^{25} = 38.00$ (*c* 1.0, CH₂Cl₂).

benzyl (*R*)-4-((tert-butoxycarbonyl)amino)-4-(1H-indol-3-yl)butanoate (80) Following the general procedure, compound 80 was obtained as a white solid (26.0 mg, yield: 64 %); mp = 120-122 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.48-8.45 (m, 1H), 7.64-7.63 (m, 1H), 7.35-7.30 (m, 6H), 7.18-7.16 (m, 1H), 7.10-7.08 (m, 1H), 6.95 (s, 1H), 5.11-5.05 (m, 2H), 5.01-5.00 (m, 1H), 4.88 (s, 1H), 2.51-2.41 (m, 2H), 2.33-2.27 (m, 2H), 1.44 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 173.3, 155.5, 136.5, 135.8, 128.5, 128.1, 125.7, 122.2, 121.5, 119.6, 119.2, 116.5, 111.4, 79.3, 66.2, 47.4, 31.4, 30.4, 28.4; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1938; Enantiomeric excess established by HPLC analysis using a Chiralpak IC-3 column, ee = 87% (HPLC: IC-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 9.3 min, t_r (minor) = 11.5 min.) [α]p²⁵ = 35.00 (*c* 1.0, CH₂Cl₂).

diethyl (*R*)-2-(2-((tert-butoxycarbonyl)amino)-2-(1H-indol-3-yl)ethyl)malonate (8p)

Following the general procedure, compound **8p** was obtained as a white solid (29.2 mg, yield: 70 %); mp = 98-100 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.60 (s, 1H), 7.68-7.66 (m, 1H), 7.35-7.33 (m, 1H), 7.18-7.16 (m, 1H), 7.11-7.09 (m, 1H), 7.00 (s, 1H), 5.12-5.11 (m, 2H), 4.87-4.85 (m, 1H), 4.24-4.16 (m, 2H), 4.15-4.11 (m, 2H), 3.54 (t, *J* = 7.2 Hz, 1H), 2.63-2.58 (m, 1H), 2.54-2.52 (m, 1H), 1.43 (s, 9H), 1.26 (t, *J* = 7.2 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 169.7, 169.2, 155.4, 136.5,

125.6, 122.2, 121.5, 119.6, 119.2, 116.3, 111.4, 79.3, 61.53, 61.45, 49.6, 46.3, 34.2, 28.4, 28.3, 14.0, 13.9; HRMS (ESI) for $C_{22}H_{30}N_2O_6Na$ [M+Na]⁺ calcd. 441.1996, found 441.1997;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 92% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 9.4 min, t_r (minor) = 10.8 min.) [α]_D²⁵ = 34.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(4-methyl-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8q) Following the general procedure, compound 8q was obtained as a white solid (23.2 mg, yield: 59 %); mp = 106-108 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.50 (s, 1H), 7.93-7.92 (m, 2H), 7.53-7.51 (m, 1H), 7.42-7.40 (m, 2H), 7.20-7.19 (m, 1H), 7.10-7.05 (m, 2H), 6.87-6.86 (m, 1H), 5.31-5.30 (m, 1H), 4.81-4.80 (m, 1H), 3.22-3.09 (m, 2H), 2.69 (s, 3H), 2.39-2.36 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 155.0, 136.9, 133.0, 130.9, 128.5, 128.0, 124.9, 122.4, 121.6, 117.4, 109.2, 79.2, 47.4, 36.1, 30.6, 28.3, 20.1; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992, found 415.1990;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 94% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 15.3 min, t_r (minor) = 13.1 min.) $[\alpha]_D^{25} = 42.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(4-methoxy-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8r) Following the general procedure, compound 8r was obtained as a white solid (20.1 mg, yield: 49 %); mp = 92-94 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.45 (s, 1H), 7.87-7.85 (m, 2H), 7.51-7.49 (m, 1H), 7.40-7.37 (m, 2H), 7.12-7.09 (m, 1H), 7.00-6.99 (m, 1H), 6.95 (s, 1H), 6.54-6.53 (m, 1H), 5.84-5.83 (m, 1H), 5.05-5.01 (m, 1H), 3.98 (s, 3H), 3.06-2.88 (m, 2H), 2.42-2.36 (m, 1H), 2.26-2.20 (m, 1H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.3, 155.6, 153.0, 138.7, 137.0, 132.7, 128.4, 128.0, 122.9, 122.4, 121.2, 116.8, 115.6, 105.0, 99.7, 78.8, 55.2, 48.6, 36.3, 32.0, 28.4; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1941;

Enantiomeric excess established by HPLC analysis using a Chiralpak IC-3 column, ee = 94% (HPLC: IC-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 18.0 min, t_r (minor) = 11.7 min.) $[\alpha]_D^{25} = 43.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(4-chloro-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8s) Following the general procedure, compound 8s was obtained as a white solid (14.5 mg, yield: 35 %); mp = 96-98 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.59 (s, 1H), 7.93-7.92 (m, 2H), 7.54-7.52 (m, 1H), 7.44-7.41 (m, 2H), 7.26-7.24 (m, 1H), 7.12-7.05 (m, 3H), 5.44-5.43 (m, 1H), 5.18 (s, 1H), 3.20-3.06 (m, 2H), 2.41-2.39 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.4, 155.4, 138.2, 136.9, 133.0, 128.5, 128.1, 125.7, 123.2, 123.1, 122.7, 120.9, 117.5, 110.2, 79.2, 47.9, 36.1, 31.4, 28.4; HRMS (ESI) for C₂₃H₂₅ClN₂O₃Na [M+Na]⁺ calcd. 435.1446, found 435.1443;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.6 min, t_r (minor) = 8.9 min.) [α]_D²⁵ = 25.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(5-methyl-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8t) Following the general procedure, compound 8t was obtained as a white solid (26.5 mg, yield: 68 %); mp = 128-130 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.20 (s, 1H), 7.92-7.91 (m, 2H), 7.54-7.51 (m, 1H), 7.47 (s, 1H), 7.43-7.40 (m, 2H), 7.26-7.24 (m, 1H), 7.06-7.02 (m, 2H), 5.07-5.06 (m, 1H), 4.84 (s, 1H), 3.16-3.03 (m, 2H), 2.44-2.41 (m, 5H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 155.6, 136.9, 134.9, 132.9, 129.0, 128.5, 128.0, 126.1, 124.0, 121.5, 119.0, 116.7, 111.0, 79.2, 47.5, 35.8, 29.6, 28.4, 21.5; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992, found 415.1992; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 95% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.9 min, t_r (minor) = 22.1 min.) [α]_D²⁵ = 25.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(5-methoxy-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8u) Following the general procedure, compound 8u was obtained as a white solid (24.0 mg, yield: 59 %); mp = 118-120 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.26 (s, 1H), 7.93-7.92 (m, 2H), 7.55-7.52 (m, 1H), 7.44-7.41 (m, 2H), 7.25-7.24 (m, 1H), 7.15 (s, 1H), 7.06 (s, 1H), 6.87-6.85 (m, 1H), 5.10-5.08 (m, 1H), 4.82-4.81 (m, 1H), 3.83 (s, 3H), 3.18-3.06 (m, 2H), 2.42-2.41 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 155.7, 154.1, 136.9, 133.0, 131.6, 128.5, 128.0, 126.5, 121.9, 117.0, 112.9, 112.1, 100.8, 79.2, 55.7, 47.2, 35.7, 29.3, 28.3; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1943;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee

= 91% (HPLC: IF-3, 230 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 10.0 min, t_r (minor) = 11.8 min.) [α]_D²⁵ = 30.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(5-(benzyloxy)-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8v)

Following the general procedure, compound **8v** was obtained as a white solid (26.5 mg, yield: 55 %); mp = 116-118 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.33-8.31 (m, 1H), 7.92-7.91 (m, 2H), 7.53-7.51 (m, 1H), 7.46-7.45 (m, 2H), 7.42-7.40 (m, 2H), 7.38-7.35 (m, 2H), 7.31-7.28 (m, 1H), 7.25-7.22 (m, 2H), 7.02 (s, 1H), 6.93-6.91 (m, 1H), 5.08-5.04 (m, 3H), 4.84 (s, 1H), 3.15-3.13 (m, 2H), 2.39-2.38 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 155.7, 153.2, 137.5, 136.9, 133.0, 131.8, 128.5, 128.4, 128.0, 127.75, 127.66, 126.4, 122.0, 116.9, 113.4, 112.1, 102.5, 79.2, 70.7, 47.3, 35.7, 29.4, 28.3; HRMS (ESI) for C₃₀H₃₂N₂O₄Na [M+Na]⁺ calcd. 507.2254, found 507.2258;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 75:25, flow rate 1.0 mL/min, 25 °C, t_r (major) = 20.0 min, t_r (minor) = 33.5 min.) $[\alpha]_D^{25} = 24.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(5-bromo-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8w) Following the general procedure, compound 8w was obtained as a white solid (14.4 mg, yield: 32 %); mp = 72-74 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.37 (s, 1H), 7.93-7.92 (m, 2H), 7.82-7.81 (m, 1H), 7.56-7.53 (m, 1H), 7.45-7.42 (m, 2H), 7.28-7.26 (m, 1H), 7.23-7.21 (m, 1H), 7.09 (s, 1H), 5.04-5.03 (m, 1H), 4.83 (s, 1H), 3.17-3.05 (m, 2H), 2.41-2.39 (m, 2H), 1.42 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.3, 155.6, 136.8, 135.2, 133.1, 128.6, 128.0, 127.7, 125.3, 122.6, 122.0, 117.2, 113.1, 112.8, 79.6, 47.4, 35.6, 29.4, 28.4; HRMS (ESI) for C₂₃H₂₅BrN₂O₃Na [M+Na]⁺ calcd. 479.0941, found 479.0944;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.3 min, t_r (minor) = 10.2 min.) $[\alpha]_D^{25} = 26.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(6-methyl-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8x) Following the general procedure, compound 8x was obtained as a white solid (27.0 mg, yield: 69 %); mp = 102-104 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.68 (s, 1H), 7.92-7.90 (m, 2H), 7.63-7.59 (m, 1H), 7.55-7.48 (m, 3H), 7.14-7.12 (m, 3H), 6.83-6.81 (m, 1H), 4.93-4.87 (m, 1H), 3.15-2.96 (m, 2H), 2.38 (s, 3H), 2.30-2.21 (m, 1H), 2.12-2.03 (m, 1H), 1.36 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 199.8, 155.4, 136.9, 133.0, 130.0, 128.7, 127.8, 123.9, 121.3, 120.2, 118.7, 117.0, 111.3, 77.5, 46.6, 35.1, 29.8, 28.3, 21.4; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992, found 415.1992; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 96% (HPLC: IA, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 21.7 min, t_r (minor) = 25.4 min.) [α]_D²⁵ = 12.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (R)-(1-(6-methoxy-1H-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8y)

Following the general procedure, compound **8y** was obtained as a white solid (20.7 mg, yield: 51 %); mp = 100-102 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.30 (s, 1H), 7.91-7.90 (m, 2H), 7.57-7.55 (m, 1H), 7.53-7.51 (m, 1H), 6.95 (s, 1H), 6.83 (s, 1H), 6.80-6.78 (m, 1H), 5.05-5.04 (m, 1H), 4.87-4.86 (m, 1H), 3.80 (s, 3H), 3.14-3.02 (m, 2H), 2.39-2.38 (m, 2H), 1.41 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.2, 156.6, 155.6, 137.4, 136.9, 132.9, 128.5, 128.0, 120.3, 119.7, 117.1, 109.7, 94.8, 79.2, 55.6, 47.5, 35.7, 29.6, 28.3; HRMS (ESI) for C₂₄H₂₈N₂O₄Na [M+Na]⁺ calcd. 431.1941, found 431.1941; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 96% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 19.4 min, t_r (minor) = 33.8 min.) [α]_D²⁰ = 40.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(6-chloro-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8z) Following the general procedure, compound 8z was obtained as a white solid (19.8 mg, yield: 48 %); mp = 174-176 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.44 (s, 1H), 7.92-7.91 (m, 2H), 7.60-7.59 (m, 1H), 7.55-7.53 (m, 1H), 7.44-7.42 (m, 2H), 7.33 (s, 1H), 7.09-7.06 (m, 2H), 5.07-5.06 (m, 1H), 4.85-4.84 (m, 1H), 3.16-3.06 (m, 2H), 2.41-2.37 (m, 2H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.1, 155.6, 136.9, 136.8, 133.1, 128.5, 128.3, 124.5, 121.9, 120.4, 120.2, 117.6, 111.2, 79.4, 47.3, 35.6, 29.5, 28.3; HRMS (ESI) for C₂₃H₂₅CIN₂O₃Na [M+Na]⁺ calcd. 435.1446, found 435.1448; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 98% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 11.6 min, t_r (minor) = 10.6 min.) [α]p²⁵ = 28.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(7-methyl-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8aa) Following the general procedure, compound 8aa was obtained as a white solid (27.4 mg, yield: 70 %); mp = 102-104 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 10.82 (s, 1H), 7.92-7.90 (m, 2H), 7.63-7.59 (m, 1H), 7.51-7.48 (m, 3H), 7.21-7.20 (m, 1H), 7.15-7.13 (m, 1H), 6.91-6.86 (m, 2H), 4.95-4.89 (m, 1H), 3.15-2.97 (m, 2H), 2.44 (s, 3H), 2.30-2.22 (m, 1H), 2.13-2.04 (m, 1H), 1.36 (s, 9H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 199.6, 155.3, 136.8, 135.9, 133.1, 128.7, 127.8, 125.6, 121.8, 121.6, 120.5, 118.7, 117.6, 116.6, 77.5, 46.6, 35.1, 29.9, 28.3, 16.8; HRMS (ESI) for C₂₄H₂₈N₂O₃Na [M+Na]⁺ calcd. 415.1992, found 415.1992;

Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 97% (HPLC: IA, 280 nm, hexane/isopropanol = 90:10, flow rate 1.0 mL/min, 25 °C, t_r (major) = 23.2 min, t_r (minor) = 29.3 min.) $[\alpha]_D^{25} = 15.00$ (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(1-(7-methoxy-1*H*-indol-3-yl)-4-oxo-4-phenylbutyl)carbamate (8a b)

Following the general procedure, compound **8ab** was obtained as a white solid (16.9 mg, yield: 41 %); mp = 105-107 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.36 (s, 1H), 7.92-7.91 (m, 2H), 7.54-7.51 (m, 1H), 7.43-7.40 (m, 2H), 7.06-7.04 (m, 1H), 6.66-6.65 (m, 1H), 5.08-5.07 (m, 1H), 4.86-4.85 (m, 1H), 3.94 (s, 3H), 2.43-2.42 (m, 2H), 1.40 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 200.0, 155.5, 146.2, 136.9, 132.9, 128.5, 128.0,

127.2, 127.1, 121.0, 120.2, 117.7, 112.1, 102.2, 79.2, 55.3, 47.6, 35.8, 29.7, 28.3; HRMS (ESI) for $C_{24}H_{28}N_2O_4Na$ [M+Na]⁺ calcd. 431.1941, found 431.1941; Enantiomeric excess established by HPLC analysis using a Chiralpak IA column, ee = 95% (HPLC: IA, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 29.7 min, t_r (minor) = 25.6 min.) [α]_D²⁵ = 35.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (*R*)-(4-(hydroxyimino)-1-(1*H*-indol-3-yl)-4-phenylbutyl)carbamate (9) Following the general procedure, compound 9 was obtained as a white solid (36.4 mg, yield: 92 %); mp = 182-184 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ 11.18 (s, 1H), 10.85 (s, 1H), 7.59-7.58 (m, 3H), 7.35-7.33 (m, 4H), 7.23-7.21 (m, 2H), 7.08-7.06 (m, 1H), 6.97-6.95 (m, 1H), 4.92-4.88 (m, 1H), 2.78-2.70 (m, 2H), 2.08-2.02 (m, 1H), 1.98-1.92 (m, 1H), 1.39 (s, 9H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 156.5, 155.3, 136.4, 136.2, 128.6, 128.5, 126.0, 125.8, 122.2, 121.1, 118.9, 118.4, 116.9, 111.5, 77.5, 47.5, 31.8, 28.4, 22.9; HRMS (ESI) for C₂₃H₂₇N₃O₃Na [M+Na]⁺ calcd. 416.1945, found 416.1946; Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 99% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 8.3 min, t_r (minor) = 10.5 min.) [α]_D²⁵ = 21.00 (*c* 1.0, CH₂Cl₂).

tert-butyl (R)-(1-(1H-indol-3-yl)-4-phenylpent-4-en-1-yl)carbamate (10)

Following the general procedure, compound **10** was obtained as a colorless oil (37.1 mg, yield: 99 %); ¹H NMR (600 MHz, CDCl₃): δ 8.19 (s, 1H), 7.60-7.59 (m, 1H), 7.35-7.31 (m, 3H), 7.29-7.22 (m, 3H), 7.19-7.16 (m, 1H), 7.10-7.07 (m, 1H), 6.959-6.956 (m, 1H), 5.28 (s, 1H), 5.09 (s, 1H), 5.03 (s, 1H), 4.80 (s, 1H), 2.65-2.52 (m, 2H), 2.15-2.04 (m, 2H), 1.45 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 155.5, 147.8, 141.0, 136.6, 128.2, 127.3, 126.1, 125.8, 122.2, 121.3, 119.6, 117.5, 112.5, 111.3, 79.2, 47.8, 34.3, 32.3, 28.4; HRMS (ESI) for C₂₄H₂₈N₂O₂Na [M+Na]⁺ calcd. 399.2043, found 399.2045;

Enantiomeric excess established by HPLC analysis using a Chiralpak IF-3 column, ee = 99% (HPLC: IF-3, 280 nm, hexane/isopropanol = 85:15, flow rate 1.0 mL/min, 25 °C, t_r (major) = 8.3 min, t_r (minor) = 10.5 min.) [α]_D²⁵ = 41.00 (*c* 1.0, CH₂Cl₂).

6. Mechanistic Studies

6.1 Trapping Experiments with TEMPO

As shown in eqs 1-2, the radical scavenger 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) was added into the reaction mixture. After 12 h, no desired products were observed by TLC, indicating that the reaction might involve a radical process.

6.2 Control Experiments

The *pre*-prepared trifluoromethylated enamine **11** generated from the reaction of **1a** and Togni-II was employ as the substrate to react with indole under the action of chiral phosphoric acid. After 12 h, only trace amount of the product was detected by TLC, indicating that the reaction proceed *via* the imine intermediate instead of enamine.

When N-Me protected enamine or/and indole were used as the substrates to engage the reaction under the standard conditions, the reaction was completely inhibited, indicating that the generated imine and indole might both interact with chiral phosphoric acid through the hydrogen-bonding to provide the product.

As shown in eq 5, when Togni-II 2 react with 1a under the standard conditions for 3 h, full conversion of 2 was observed, accompanied by the generation of trifluoromethylated enamine 8 and oxytrifluoromethylated product 9.

As shown in eq 6, when Togni-II **2** react with **3a** under the standard conditions for 3 h, full conversion of **2** was observed, accompanied by the detection of trifluoromethylated indole.

As shown in eq 7, when only Togni-II was treated with the standard conditions for 3 h, the full conversion of **2** was also observed, accompanied by the formation of alcohol 10 and acetal 11 which might be obtained by a HAT and radical-radical coupling process.

In addition, without the addition of chiral phosphoric acid, Togni-II need more time to be completely transformed.

In summary, under the irradiation of visible-light, the Togni-II could decompose to form the trifluoromethyl radical. And chiral phosphoric acid could accelerate this process.

6.3 UV-Vis absorption spectra

UV/vis absorption spectra based on Togni-II 2 (0.1 M in THF), C1 (0.01 M in THF) and the mixture of 2 and C1 (2:C1 = 1:1) were recorded respectively in 1 cm path quartz cuvettes using a U-3900H spectrometer

UV/vis absorption spectrometry showed a bathochromic shift by mixing Togni-II 2 with 10 mol% C1 in THF.

6.4	$^{1}\mathrm{H}$	NMR	d of To	gni-II	with	C1	in	CD ₃	3Cl
-----	------------------	-----	---------	--------	------	-----------	----	------------------------	-----

With the increase of the loading of C1, the change of the chemical shift of the CH_3 in Togni-II indicates that there is an interaction between the Togni-II and C1.

6.5 Linear Effect Experiments

The relationship between the ee of CPA and the ee of product 4c was evaluated and the linear correlation result strongly suggests that only a single molecule of the chiral phosphate is included in the second C–C bond-forming step.

ee(C1)

Entry	C1	ee (%) ^c
1	0% ee	0
2	20% ee	20
3	40% ee	45
4	60% ee	58
5	80% ee	76
6	>99% ee	96

The relationship between the ee of CPA and the ee of product 8a was evaluated and the linear correlation result strongly suggests that only a single molecule of the chiral phosphate is included in the second C–C bond-forming step.

7. Synthetic applications

7a (0.1 mmol, 37.8 mg, 1.0 eq), Hydroxylamine hydrochloride (0.16 mmol, 11.2 mg, 1.6 eq) and sodium acetate (0.2 mmol, 16.4 mg, 2.0 eq) were added to a dry reaction tube equipped with a magnetic stir bar. Then 80% aq. EtOH (1 ml) was added and the mixture was stirred at 80 °C for 1.5 h. The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to give oxime (36.4 mg, 92% yield, 99% ee).

To a solution of Methyltriphenylphosphonium bromide (0.2 mmol, 71.4 mg, 2.0 eq) in THF (0.5 mL) was added potassium *t*-butoxide (0.2 mmol, 22.4 mg, 2.0 eq) under N₂. After stirred at room temperature for 30 min, the solution of 7a (0.1 mmol, 37.8 mg, 1.0 eq) in THF (0.5 mL) was added slowly to the reaction mixture. The reaction mixture was heated to reflux overnight and then was cooled to room temperature. The solvent was removed under reduced pressure and the residue was purified by flash column chromatography to give alkene (37.1 mg, 99% yield, 99% ee).

8. References:

(1) A. J. Boyington, C. P. Seath; A. M. Zearfoss, Z.Xu, N. T. C. Jui, *J. Am. Chem. Soc.* **2019**, *141*, 4147.

9. X-Ray Crystallographic Data

9.1 X-Ray Crystallographic Data of Product 8a (CCDC: 2108166):

Bond precision:	C-C = 0.0036 A		Waveleng	zth=1.54184
Cell:	a=9.4239(1)	b=10.0699(1)	c=11.2350(1)
	alpha=90	beta=103.71	12(1)	gamma=90
Temperature:	298 K			C
1	Calculated]	Reported	
Volume	1035.789(18)		1035.789	(18)
Space group	P 21	J	P 1 21 1	
Hall group	P 2yb	J	P 2yb	
Moiety formula	C23 H26 N2 O3	(C23 H26	N2 O3
Sum formula	C23 H26 N2 O3	(C23 H26	N2 O3
Mr	378.46		378.46	
Dx,g cm-3	1.214		1.213	
Z	2		2	
Mu (mm-1)	0.645	(0.645	
F000	404.0	2	404.0	
F000'	405.19			
h,k,lmax	11,12,14		11,12,14	
Nref	4402[2330]	2	4103	
Tmin,Tmax	0.918,0.950	(0.709,1.0	00
Tmin'	0.914			
Correction method= # Re	ported T Limits: T	min=0.709 Tm	ax=1.000)
AbsCorr = MULTI-SCAN	Ν			
Data completeness= 1.76/	/0.93	Theta(max)= 7	7.509	
R(reflections) = 0.0331(3)	994)	wR2(reflection	ns) = 0.083	84(4103)
S = 1.094		Npar $= 270$		

10. Enantioselectivities as Determined by Chiral HPLC

Figure S1. HPLC traces of *rac*-4a (reference) and (*R*)-4a.

Реак	RetTime	Area	Height	wiath	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.884	8007.6	196.5	0.6124	0.49	50.237
2	22.316	7932.1	151.3	0.8036	0.474	49.763

2	24.813	175.1	2.8	1.0524	0.643	1.099

Figure S2. HPLC traces of *rac*-4b (reference) and (*R*)-4b.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.056	5769.5	156	0.5775	0.63	49.555
2	19.126	5873.1	129.8	0.6877	0.575	50.445

5

0.7541

0.881

1.504

2

19.338

226.4

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.998	3045.9	64.5	0.6429	0.95	50.531
2	17.513	2981.8	57	0.8266	0.833	49.469

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.785	9952.8	247.1	0.6379	0.76	98.267
2	17.632	175.5	3.8	0.5834	0.957	1.733

Figure S4. HPLC traces of *rac*-4d (reference) and (*R*)-4d.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.973	6406.5	142.7	0.6999	0.691	49.895
2	22.499	6433.5	119.7	0.8231	0.615	50.105

Figure S5.HPLC traces of *rac*-4e (reference) and (*R*)-4e.

4.4

0.7008

0.819

1.801

2

22.753

239.4

			110-8-10	********	Symmetry	1
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	19.564	2982.8	61	0.7446	0.554	50.027
2	37.556	2979.7	40.9	1.0881	0.577	49.973

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	18.669	12270.2	265.8	0.7125	0.456	97.249
2	37.042	347	4.7	0.8804	0.604	2.751

Figure S6.HPLC traces of *rac*-4f (reference) and (*R*)-4f.

Peak	RefTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	22.326	8690.5	155.6	0.9307	0	48.594
2	45.653	9193.5	94.4	1.3936	0.512	51.406

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	23.939	27095.7	437.7	0.9542	0.433	97.312
2	49.267	748.4	7.8	1.1343	0.624	2.688

Figure S7. HPLC traces of *rac*-4g (reference) and (*R*)-4g.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.721	3867.5	97.2	0.624	0.93	49.693
2	14.337	3915.3	88.8	0.6944	0.803	50.307

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.776	8725	214.3	0.6451	0.842	97.813
2	14.803	195.1	4.8	0.5678	0.875	2.187

Figure S8.HPLC traces of *rac*-4h (reference) and (*R*)-4h.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.466	3823.7	94.2	0.6194	0.55	50.239
2	20.316	3787.3	77.6	0.7456	0.496	49.761

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.26	10510.9	271	0.5926	0.472	96.837
2	20.633	343.3	6.8	0.7155	0.696	3.163

Figure S9.HPLC traces of *rac*-4i (reference) and (*R*)-4i.

геак	KetTime	Alea	neigin	vv Iuuii	Symmetry	Alea
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	20.593	1849	36.4	0.7579	0.748	48.823
2	22.375	1938.1	34.6	0.8363	0.641	51.177

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	20.696	75	1.7	0.7347	1.173	1.417
2	22.076	5219.2	97.8	0.8148	0.521	98.583

Figure S10. HPLC traces of *rac*-4j (reference) and (*R*)-4j.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	19.503	3468.6	66.5	0.7747	0.433	48.993
2	21.759	3611.1	62.4	0.8554	0.468	51.007

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	19.293	10022.8	190.7	0.7792	0.378	97.991
2	22.259	205.5	4	0.7076	0.575	2.009

Figure S11. HPLC traces of *rac*-4k (reference) and (*R*)-4k.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.061	12364.6	385.5	0.4882	0.522	49.923
2	14.29	12402.9	303.2	0.6072	0.354	50.077

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.941	11622.4	399	0.4855	0.471	96.783
2	14.639	386.3	10.1	0.5639	0.648	3.217

Figure S12. HPLC traces of *rac*-4l (reference) and (*R*)-4l.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.249	6807.2	144.1	0.703	0.447	49.132
2	20.193	7047.6	124.1	0.8406	0.466	50.868

# [min] [Mau*s] [mAU] [min] factor % 1 13.641 19786.8 390 0.7619 0.346 96.409	
1 13.641 19786.8 390 0.7619 0.346 96.409	
	9
2 22.201 737.1737.1 10.2 1.2082 0.908 3.591	

Figure S13. HPLC traces of *rac*-4m (reference) and (*R*)-4m.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.046	3974.1	96.4	0.6252	0.541	50.053
2	23.152	3965.7	66.6	0.9063	0.378	49.947

I Cak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.557	3453.7	69.5	0.8145	0.788	97.861
2	22.86	77.4	1.2	1.0558	0.836	2.139

Figure S14. HPLC traces of *rac*-4n (reference) and (*R*)-4n.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.182	6739.7	221.5	0.4769	1.118	50.861
2	13.251	6511.5	180.1	0.5577	0.67	49.139

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	7.916	45260.3	1501.7	0.4696	0.973	95.311
2	12.916	2226.9	53.8	0.6353	0.843	4.689

Figure S15. HPLC traces of *rac*-40 (reference) and (*R*)-40.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.08	2996.5	101.9	0.4329	0.539	50.552
2	10.895	2931.1	83.8	0.522	0.477	49.448

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.011	15365.8	520.1	0.4367	0.469	97.664
2	11.029	368	12.9	0.474	0.748	2.339

Figure S16. HPLC traces of *rac*-4p (reference) and (*R*)-4p.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	5.552	5819.5	331.1	0.2929	0.497	48.490
2	57.674	6181.9	33.1	3.1092	0.548	51.510

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	5.516	18113.6	1103.7	0.2375	0.477	96.070
2	59.42	740.9	4.6	2.7083	0.744	3.930

Figure S17. HPLC traces of *rac*-4q (reference) and (*R*)-4q.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.707	4346.4	159.1	0.4048	0.475	51.095
2	30.068	4160.1	45.5	1.2507	0.551	48.905

Figure S18. HPLC traces of *rac*-4r (reference) and (*R*)-4r.

2

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	6.088	5083.4	380.3	0.1999	0.646	48.940
2	25.126	5303.5	120.3	0.6705	0.633	51.060

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	6.069	9729.2	761.3	0.1931	0.589	98.478
2	25.152	150.4	3.2	0.5635	0.797	1.522

Figure S19. HPLC traces of *rac*-4s (reference) and (*R*)-4s.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.68	4231.8	122.8	0.5102	0.453	50.160
2	14.818	4204.7	90.7	0.6706	0.416	49.840

Peak	RetTime	Area	Height	Width	Symmetry	Area	
#	[min]	[Mau*s]	[mAU]	[min]	factor	%	
1	9.639	7529	222.2	0.4913	0.433	95.919	
2	15.071	320.4	6.6	0.6628	0.48	4.081	

Figure S20. HPLC traces of *rac*-4t (reference) and (*R*)-4t.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.238	2571.1	54	0.6871	0.381	49.938
2	25.216	2577.5	32.5	1.0086	0.49	50.062

I Cak	KetTille	Alca	neight	vv IuuII	Symmetry	Alca
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.021	9230.1	185.7	0.7137	0.341	94.972
2	25.518	488.6	5.9	1.0294	0.48	5.028

Figure S21. HPLC traces of *rac*-4u (reference) and (*R*)-4u.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.171	1661.9	48	0.512	0.489	49.858
2	12.007	1671.4	41.7	0.5777	0.536	50.142

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.046	8847.4	264.8	0.5138	0.402	99.004
2	12.209	89	2.3	0.6397	0.6397	0.996

Figure S22. HPLC traces of *rac*-4v (reference) and (*R*)-4v.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.17	1883	53.1	0.5219	0.465	49.830
2	12.008	1895.8	45.6	0.5975	0.476	50.170

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.946	18158	533.6	0.493	0.339	98.841
2	12.278	212.9	4.7	0.593	0.664	1.159

Figure S23. HPLC traces of *rac*-4w (reference) and (*R*)-4w.

Реак	RetTime	Area	Height	w laun	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.64	1578.2	34.4	0.6671	0.477	51.175
2	19.356	1505.7	23.9	0.9223	0.5	48.825

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.489	8092.6	201.9	0.5957	0.409	96.399
2	19.42	302.3	5	0.7538	0.706	3.601

Figure S24. HPLC traces of *rac*-4x (reference) and (*R*)-4x.

Реак	RetTime	Area	Height	w laun	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.743	4179.6	108.5	0.5693	0.483	51.399
2	14.249	3952.1	83.8	0.69	0.526	48.601

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.771	8177.7	228.8	0.513	0.467	99.385
2	14.412	50.6	1.2	0.689	0.719	0.615

Figure S25. HPLC traces of *rac*-4y (reference) and (*R*)-4y.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	12.806	9145.4	196.1	0.6842	0.41	50.366
2	30.819	9012.7	94.6	1.3617	0.496	49.634

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	12.516	29067.5	611.3	0.6987	0.36	95.368
2	30.518	1411.7	15.4	1.1375	0.527	4.632

Figure S26. HPLC traces of *rac*-4z (reference) and (*R*)-4z.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	6.087	12487.8	814.6	0.2269	0.554	50.004
2	9.188	12485.6	514.4	0.3552	0.529	49.996

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	5.948	25139.6	1045.8	0.3545	0.387	97.075
2	8.668	757.5	24.6	0.4514	0.555	2.925

Figure S27. HPLC traces of *rac*-4aa (reference) and (*R*)-4aa.

геак	KetTime	Alea	neigin	vv Iuuii	Symmetry	Alea
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.226	28869.9	1036.9	0.4228	0.56	49.397
2	23.333	29574.5	574.4	0.7567	0.48	50.603

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.254	4351.9	171.5	0.3841	0.612	9.354
2	23.1	42172.9	776	0.86	0.384	90.646

Figure S28. HPLC traces of *rac*-4ab (reference) and (*R*)-4ab.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.617	15588.2	791.4	0.3038	0.872	50.321
2	17.554	15389.1	401.3	0.5794	0.453	49.679

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.746	33694.5	1808.4	0.2934	0.783	94.720
2	18.671	1878.4	53.5	0.5437	0.602	5.280

Figure S29. HPLC traces of *rac*-6a (reference) and (S)-6a.

			•			
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.001	20987.8	681.3	0.4854	0.969	49.911
2	20.495	21063	424	0.7455	0.374	50.089

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.097	47688.6	1446.8	0.5494	0.904	95.301
2	21.282	2351.5	48.8	0.8023	0.684	4.699

Figure S30. HPLC traces of *rac*-6b (reference) and (S)-6b.

Peak	RefTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.006	300696	853.4	0.471	1.922	51.198
2	12.126	28659.2	1122.8	0.3958	1.131	48.802

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.246	88073.1	2459.3	0.5658	1.532	96.138
2	12.785	3538	89.8	0.6175	1.593	3.862

Figure S31. HPLC traces of *rac*-6c (reference) and (*S*)-6c.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.186	8377.7	283.6	0.4626	1.257	50.558
2	14.588	8192.9	247.6	0.522	0.916	49.442

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.178	18230.7	633.7	0.4496	1.198	97.789
2	14.566	412.3	13	0.4909	1.054	2.211

Figure S32. HPLC traces of *rac*-6d (reference) and (S)-6d.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.158	31231.2	1698.4	0.2865	0.774	49.809
2	16.258	31470.6	802.9	0.5933	0.378	50.191

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.603	21695.1	1335.6	0.2515	0.622	96.664
2	16.352	748.7	23.2	0.4999	0.824	3.336

Figure S33. HPLC traces of *rac*-6e (reference) and (*S*)-6e.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	27.198	31039.1	543.8	0.88	0.633	50.112
2	30.318	30900	405	1.1221	0.424	49.888

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	27.758	39255	720.2	0.8479	0.481	94.811
2	32.061	2148.3	32.8	1.0032	0.562	5.189

Figure S34. HPLC traces of *rac*-6f (reference) and (S)-6f.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	7.887	3554	132.5	0.4128	1.549	95.328
2	21.058	174.2	4.6	0.5474	0.571	4.672

Figure S35. HPLC traces of *rac*-6g (reference) and (*S*)-6g.

I Cak	RetTINC	Alca	Incigin	vv IuuII	Symmetry	Alca
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.302	28361.1	699.7	0.6289	1.421	48.690
2	17.081	29887.3	579.9	0.7793	0.607	51.310

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.145	47654.8	1368.4	0.5483	1.053	91.904
2	17.325	4197.9	90.8	0.7234	0.875	8.096

Figure S36. HPLC traces of *rac*-6h (reference) and (*S*)-6h.

Реак	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	6.847	12860	774.3	0.2518	0.732	50.366
2	10.089	12673	577.3	0.3361	0.518	49.634

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	6.788	3321.1	179.4	0.284	0.818	89.850
2	10.057	375.2	16.7	0.3463	0.648	10.150

Figure S37. HPLC traces of *rac*-6i (reference) and (*S*)-6i.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.595	5101.6	178.6	0.4293	0.567	49.523
2	14.951	5199.8	160.3	0.4864	0.496	50.477

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.085	214.2	7.5	0.4393	0.68	1.978
2	15.494	10619.6	329.8	0.4917	0.498	98.022

Figure S38.HPLC traces of *rac*-8a (reference) and (*R*)-8a.

I Cak	KetThie	Alea	neight	vv IuuII	Symmetry	Alta
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	15.593	37707	1083.2	0.5802	0.585	49.936
2	18.148	37803.3	867.4	0.6705	0.465	50.064

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	16.226	157.3	4.6	0.4909	0.676	2.667
2	18.791	5740.1	134	0.6596	0.501	97.333

Figure S39. HPLC traces of *rac*-8b (reference) and (*R*)-8b.

Реак	RetTime	Area	Height	wiath	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.259	19474.2	756.8	0.3882	0.562	49.725
2	12.957	319689.8	617.5	0.474	0.507	50.275

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.448	633.9	23.8	0.387	0.517	2.667
2	13.086	23132.9	697.1	0.5051	0.515	97.333

Figure S40.HPLC traces of *rac*-8c (reference) and (*R*)-8c.

I Cak	KetTille	Alca	neight	vv IuuII	Symmetry	Alca
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	16.538	7418.4	211.9	0.5405	0.579	49.539
2	18.995	7556.4	178.4	0.6341	0.4823	50.461

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	16.738	329.2	9.1	0.5556	0.728	1.998
2	18.821	16146.4	366	0.6587	0.435	98.002

Figure S41. HPLC traces of *rac*-8d (reference) and (*R*)-8d.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	22.552	22458.7	457.4	0.7529	0.53	50.521
2	25.672	21995.9	301.7	1.1186	0.469	49.479

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	22.501	2755.3	57.3	0.7174	0.66	3.443
2	24.807	77277.7	976.9	1.1269	0.363	96.557

Figure S42. HPLC traces of *rac*-8e (reference) and (*R*)-8e.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.067	10199.7	327.3	0.4835	0.523	47.199
2	15.176	11410.4	324.9	0.5337	0.43	52.801

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.176	249.8	8.6	0.4336	0.762	2.531
2	14.985	9619	267.8	0.5411	0.418	97.469

Figure S43. HPLC traces of *rac*-8f (reference) and (*R*)-8f.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	15.342	9835.5	306.4	0.4925	0.555	47.310
2	16.465	10954	290.4	0.5781	0.446	52.690

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	15.438	303.4	10.4	0.4407	0.903	2.335
2	16.197	12689.3	326.6	0.5932	0.408	97.665

Figure S44. HPLC traces of *rac*-8g (reference) and (*R*)-8g.

геак	KetTime	Alea	neigin	vv Iuuii	Symmetry	Alea
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	17.94	7305.2	208.3	0.5391	0.571	47.069
2	19.163	8214.9	199.7	0.6159	0.521	52.931

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	18.028	1319.3	39.2	0.509	0.962	2.919
2	18.988	43884.9	1079	0.6305	0.464	97.081

Figure S45. HPLC traces of *rac*-8h (reference) and (*R*)-8h.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.723	3271.4	68.4	0.6999	0.529	49.482
2	22.069	3339.9	39.9	1.183	0.635	50.518

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.664	20007.6	411.8	0.6968	0.462	96.579
2	22.177	708.6	7.3	1.1738	0.671	3.421

Figure S46. HPLC traces of *rac*-8i (reference) and (*R*)-8i.

			0		5 5	
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.175	18905.8	546.5	0.5036	0.49	51.051
2	15.793	18127.7	303.2	0.8815	0.556	48.949

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.141	10665.7	323.8	0.4803	0.486	97.631
2	15.797	258.8	4.3	0.7155	0.605	2.369

Figure S47. HPLC traces of *rac*-8j (reference) and (*R*)-8j.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.591	3711	122.7	0.4628	0.573	48.824
2	16.187	3889.9	107.1	0.5417	0.493	51.176

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	14.734	1080.5	35.4	0.4602	0.751	4.949
2	16.112	20751.7	559.9	0.5504	0.46	95.051

Figure S48. HPLC traces of *rac*-8k (reference) and (*R*)-8k.

# [min] [Mau*a] [mAII] [min] factor 0/	
1 15.766 16003.2 327.1 0.7508 0.438 49.7	82
2 18.368 16143.5 177.2 1.2332 0.33 50.2	18

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	15.723	35577.5	733.6	0.6918	0.446	97.989
2	19.361	730.1	9.9	0.9265	0.295	2.011

Figure S49. HPLC traces of *rac*-8l (reference) and (*R*)-8l.

Peak	RefTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.565	5949.4	185.5	0.4662	0.565	51.756
2	13.516	5545.4	118.7	0.6809	0.6	48.244

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.55	8994.2	275.9	0.4763	0.553	97.204
2	13.546	258.7	5.6	0.635	0.57	2.796

Figure S50. HPLC traces of *rac*-8m (reference) and (*R*)-8m.

# [min] [Mau*s] [mAU] [min] factor %	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)
2 11.847 10029.6 241.6 0.6023 0.485 50.814	

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.244	8369.7	277.1	0.4404	0.513	95.994
2	12.064	349.3	10.8	0.495	0.705	4.006

Figure S51. HPLC traces of *rac*-8n (reference) and (*R*)-8n.

Реак	RetTime	Area	Height	wiath	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.341	10826.7	380	0.4184	0.526	49.600
2	11.521	11001.5	282.6	0.5762	0.532	50.400

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.303	41594.8	1406.9	0.4369	0.489	93.469
2	11.546	2906.1	71.5	0.5963	0.565	6.531

Figure S52. HPLC traces of *rac*-80 (reference) and (*R*)-80.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.712	2892	149.9	0.2931	0.626	50.225
2	11.076	2866.1	128.3	0.3387	0.658	49.775

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	9.393	13232.1	686.9	0.2947	0.548	96.158
2	10.8	528.7	24	0.3312	0.706	3.842

Figure S53. HPLC traces of *rac*-8p (reference) and (*R*)-8p.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.114	2410.3	78.8	0.4667	0.622	48.898
2	15.902	2519	48.1	0.7855	0.549	51.102

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	13.13	441	14.5	0.4589	0.685	2.391
2	15.292	18000.2	345.9	0.7632	0.394	97.609

Figure S54. HPLC traces of *rac*-8q (reference) and (*R*)-8q.

#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.735	2679.6	64.6	0.6058	0.562	51.340
2	18.019	2539.8	42.7	0.8654	0.542	48.660

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.75	303.6	8.7	0.5265	0.724	2.434
2	18.006	12171.5	205.8	0.8661	0.539	97.566

Figure S55. HPLC traces of *rac*-8r (reference) and (*R*)-8r.

#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	9.033	3054.9	144.3	0.319	0.609	48.608
2	10.858	3229.8	124.3	0.3911	0.603	51.392

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.92	133.1	5.9	0.3338	0.645	1.917
2	10.642	6807.8	277.5	0.3723	0.583	98.083

Figure S56. HPLC traces of *rac*-8s (reference) and (*R*)-8s.

58.1

1.2558

0.523

48.909

2

21.942

5007

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	11.937	8926	231.3	0.5642	0.494	97.404
2	22.13	237.9	2.8	1.4296	0.776	2.596

Figure S57. HPLC traces of *rac*-8t (reference) and (*R*)-8t.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	9.615	8703	342	0.3989	1.288	50.035
2	11.665	8690.8	388.4	0.3451	0.766	49.965

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.02	14478.5	653.2	0.3346	0.531	95.563
2	11.754	672.2	22.7	0.4349	0.671	4.437

Figure S58. HPLC traces of *rac*-8u (reference) and (*R*)-8u.

#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	20.172	8932.8	113.2	1.1587	0.479	51.665
2	33.838	8356.9	61.7	1.6997	0.513	48.335

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	19.95	13653.2	172.1	1.1778	0.48	97.378
2	33.513	367.6	3	2.0508	0.601	2.622

Figure S59. HPLC traces of *rac*-8v (reference) and (*R*)-8v.

		11104	110-8-10	********	<i>S</i> f mine er f	1
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	10.111	5120.9	218.6	0.3553	0.59	51.139
2	11.348	4892.8	189.9	0.3965	0.589	48.861

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.156	131.9	5.9	0.3307	0.651	2.138
2	11.285	6039.6	248.9	0.3691	0.544	97.862

Figure S60. HPLC traces of *rac*-8w (reference) and (*R*)-8w.

геак	KetTime	Alea	neigin	vv Iuuii	Symmetry	Alea
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	22.225	5330.1	66.1	1.1609	0.376	47.800
2	24.657	5820.8	67.2	1.2125	0.403	52.200

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	21.671	13340.3	132.4	1.6791	0.317	97.964
2	25.413	277.3	3.8	1.2266	0.517	2.036

Figure S61. HPLC traces of *rac*-8x (reference) and (*R*)-8x.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	19.874	3556.9	50.4	1.0212	0.484	50.441
2	34.273	3494.7	26.8	1.5719	0.579	49.559

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	19.427	8919	127.1	1.0165	0.455	98.096
2	33.797	173.1	1.6	1.8035	0.969	1.904

Figure S62. HPLC traces of *rac*-8y (reference) and (*R*)-8y.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	10.345	3093.2	140.4	0.333	0.671	52.057
2	11.529	2848.7	114	0.3775	0.572	47.943

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	10.562	132.5	6.6	0.3028	0.654	1.205
2	11.634	10862.8	417.5	0.3936	0.495	98.795

Figure S63. HPLC traces of *rac*-8z (reference) and (*R*)-8z.

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	23.211	16207	225.3	0.9933	0.424	98.630
2	29.341	225.2	2.9	1.2784	0.759	1.370

Figure S64. HPLC traces of *rac*-8aa (reference) and (*R*)-8aa.

#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	25.478	6226.7	112.5	0.8299	0.493	49.964
2	30.082	6235.6	97.2	0.9748	0.47	50.036

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	25.642	286.4	5.6	0.736	0.631	2.252
2	29.677	12433.8	190.2	0.9789	0.434	97.748

Figure S65. HPLC traces of *rac*-8ab (reference) and (*R*)-8ab.

#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	8.187	7307	346.3	0.3222	0.855	50.126
2	10.302	7270.4	295.1	0.3795	0.752	49.874

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	8.331	4851.2	217.5	0.3442	0.871	99.641
2	10.533	17.5	0.73	0.4019	0.654	0.359

Figure S66. HPLC traces of *rac*-9 (reference) and (*R*)-9.

Реак	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min9]	factor	%
1	5.638	2341.4	172.2	0.2086	0.933	49.619
2	6.611	2377.1	155.6	0.2303	0.805	50.381

Peak	RetTime	Area	Height	Width	Symmetry	Area
#	[min]	[Mau*s]	[mAU]	[min]	factor	%
1	5.448	17874.2	1231.6	0.2293	0.919	99.414
2	6.371	105.4	6.4	0.2762	0.96	0.586

Figure S67. HPLC traces of *rac*-10 (reference) and (*R*)-10.

11. NMR Spectra of New Compounds

¹H NMR of 4a in DMSO- d_6 (400 M)

¹H NMR of **4b** in DMSO- d_6 (400 M)

¹³C NMR of **4b** in DMSO- d_6 (100 M)

¹⁹F NMR of **4b** in DMSO- d_6 (376 M)

¹³C NMR of 4c in DMSO- d_6 (100 M)

¹H NMR of 4d in DMSO- d_6 (400 M)

13 C NMR of **4d** in DMSO- d_6 (100 M)

¹⁹F NMR of **4d** in DMSO- d_6 (376 M)

¹H NMR of 4e in DMSO- d_6 (400 M)

¹³C NMR of 4e in DMSO- d_6 (100 M)

¹H NMR of 4f in DMSO- d_6 (400 M)

13 C NMR of **4f** in DMSO- d_6 (100 M)

¹⁹F NMR of **4f** in DMSO- d_6 (376 M)

¹H NMR of 4g in DMSO- d_6 (400 M)

¹³C NMR of **4g** in DMSO-*d*₆ (100 M)

¹H NMR of **4h** in DMSO- d_6 (400 M)

¹³C NMR of **4h** in DMSO- d_6 (100 M)

¹⁹F NMR of **4h** in DMSO- d_6 (376 M)

¹³C NMR of **4i** in DMSO-*d*₆ (100 M)

¹⁹F NMR of **4i** in DMSO-*d*₆ (376 M)

¹H NMR of 4j in DMSO- d_6 (400 M)

13 C NMR of **4j** in DMSO- d_6 (100 M)

¹⁹F NMR of **4j** in DMSO-*d*₆ (376 M)

¹H NMR of **4k** in DMSO- d_6 (400 M)

¹³C NMR of 4k in DMSO- d_6 (100 M)

¹H NMR of **4I** in DMSO- d_6 (400 M)

¹³C NMR of **4l** in DMSO- d_6 (100 M)

¹⁹F NMR of **4l** in DMSO-*d*₆ (376 M)

¹H NMR of $4\mathbf{m}$ in DMSO- d_6 (400 M)

¹³C NMR of 4m in DMSO- d_6 (100 M)

¹H NMR of 4n in DMSO- d_6 (400 M)

¹³C NMR of 4n in DMSO- d_6 (100 M)

¹⁹F NMR of **4n** in DMSO- d_6 (376 M)

1 H NMR of **40** in CDCl₃ (400 M)

¹³C NMR of **40** in CDCl₃ (100 M)

¹H NMR of 4p in DMSO- d_6 (400 M)

¹³C NMR of 4p in DMSO- d_6 (100 M)

¹⁹F NMR of $4\mathbf{p}$ in DMSO- d_6 (376 M)

¹H NMR of 4q in DMSO- d_6 (400 M)

13 C NMR of **4q** in DMSO- d_6 (100 M)

$\begin{array}{c} & -164.84 \\ & -164.84 \\ & -153.22 \\ & -153.22 \\ & -123.136 \\ & -125.97 \\ & -125.97 \\ & -125.97 \\ & -125.136 \\ & -125.136 \\ & -125.28 \\ & -125.28 \\ & -125.28 \\ & -125.28 \\ & -105.2$	C 55.45 55.15 42.04 42.01 42.01 40.23 39.81 39.81 39.39 38.37 38.97
---	---

¹H NMR of $4\mathbf{r}$ in DMSO- d_6 (400 M)

¹³C NMR of $4\mathbf{r}$ in DMSO- $d_6(100 \text{ M})$

¹⁹F NMR of $4\mathbf{r}$ in DMSO- d_6 (376 M)

¹H NMR of **4s** in DMSO- d_6 (400 M)

¹³C NMR of **4s** in DMSO- d_6 (100 M)

¹H NMR of 4t in DMSO- d_6 (400 M)

¹³C NMR of 4t in DMSO- d_6 (100 M)

¹⁹F NMR of 4t in DMSO- d_6 (376 M)

¹H NMR of 4u in DMSO- d_6 (400 M)

¹³C NMR of 4u in DMSO- d_6 (100 M)

.67	.24	51 29 29 20 23 29 23 29 29 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2234 881 930 930 930 930 930 930
165 161	153	131 131 1256 11256 1112 1112 1112 1112 1112 11	301 301 301 301 301 301 301 301 301 301

¹H NMR of 4v in DMSO- d_6 (400 M)

¹³C NMR of 4v in DMSO- d_6 (100 M)

¹⁹F NMR of 4v in DMSO- d_6 (376 M)

¹H NMR of 4w in DMSO- d_6 (400 M)

¹³C NMR of 4w in DMSO- d_6 (100 M)

¹H NMR of 4x in DMSO- d_6 (400 M)

¹³C NMR of 4x in DMSO- d_6 (100 M)

¹⁹F NMR of 4x in DMSO- d_6 (376 M)

¹H NMR of 4y in DMSO- d_6 (400 M)

¹³C NMR of **4y** in DMSO-*d*₆ (100 M)

¹H NMR of 4z in DMSO- d_6 (400 M)

¹³C NMR of 4z in DMSO- d_6 (100 M)

¹⁹F NMR of **4z** in DMSO-*d*₆ (376 M)

¹H NMR of **4aa** in DMSO- d_6 (400 M)

¹³C NMR of 4aa in DMSO-d₆ (100 M)

¹H NMR of **4ab** in DMSO- d_6 (400 M)

13 C NMR of **4ab** in DMSO- d_6 (100 M)

 19 F NMR of **4ab** in DMSO- d_6 (376 M)

¹H NMR of **6a** in CDCl₃ (400 M)

¹³C NMR of **6a** in CDCl₃ (100 M)

¹H NMR of **6b** in CDCl₃ (600 M)

¹³C NMR of **6b** in CDCl₃ (150 M)

¹⁹F NMR of **6b** in CDCl₃ (376 M)

¹H NMR of 6c in CDCl₃ (600 M)

¹³C NMR of 6c in CDCl₃ (150 M)

¹H NMR of **6d** in CDCl₃ (600 M)

¹³C NMR of **6d** in CDCl₃ (150 M)

¹⁹F NMR of **6d** in CDCl₃ (376 M)

¹³C NMR of **6e** in CDCl₃ (150 M)

¹H NMR of **6f** in CDCl₃ (400 M)

¹³C NMR of **6f** in CDCl₃ (100 M)

¹⁹F NMR of **6f** in CDCl₃ (376 M)

¹³C NMR of **6g** in CDCl₃ (150 M)

¹H NMR of **6h** in CDCl₃ (400 M)

¹³C NMR of **6h** in CDCl₃ (100 M)

¹⁹F NMR of **6h** in CDCl₃ (376 M)

¹H NMR of **6i** in DMSO- d_6 (400 M)

¹³C NMR of **6i** in DMSO-*d*₆ (100 M)

¹H NMR of **8a** in DMSO- d_6 (400 M)

¹³C NMR of 8a in CDCl₃ (100 M)

 1 H NMR of **8b** in CDCl₃ (600 M)

¹³C NMR of **8b** in CDCl₃ (150 M)

¹H NMR of 8c in CDCl₃ (600 M)

¹³C NMR of **8c** in CDCl₃ (150 M)

¹H NMR of 8d in CDCl₃ (400 M)

¹³C NMR of 8d in CDCl₃ (100 M)

¹H NMR of 8e in CDCl₃ (400 M)

¹³C NMR of **8e** in CDCl₃ (100 M)

¹H NMR of 8f in CDCl₃ (400 M)

13 C NMR of **8f** in CDCl₃ (100 M)

¹H NMR of 8g in CDCl₃ (600 M)

^{13}C NMR of **8g** in CDCl₃ (150 M)

 1 H NMR of **8h** in CDCl₃ (600 M)

¹³C NMR of 8h in CDCl₃ (150 M)

¹H NMR of **8i** in CDCl₃ (600 M)

¹³C NMR of **8i** in CDCl₃ (150 M)

¹H NMR of **8j** in CDCl₃ (600 M)

¹³C NMR of **8j** in CDCl₃ (150 M)

¹H NMR of 8k in CDCl₃ (600 M)

¹³C NMR of 8k in CDCl₃ (150 M)

¹H NMR of **8l** in CDCl₃ (600 M)

¹³C NMR of **81** in CDCl₃ (150 M)

¹H NMR of 8m in CDCl₃ (600 M)

¹H NMR of **8n** in CDCl₃ (600 M)

¹³C NMR of **8n** in CDCl₃ (150 M)

 1 H NMR of **80** in CDCl₃ (600 M)

¹³C NMR of **80** in CDCl₃ (150 M)

¹H NMR of **8p** in CDCl₃ (600 M)

¹³C NMR of **8p** in CDCl₃ (150 M)

¹H NMR of **8q** in CDCl₃ (600 M)

13 C NMR of **8q** in CDCl₃ (150 M)

¹H NMR of 8r in CDCl₃ (600 M)

¹³C NMR of 8r in CDCl₃ (150 M)

 1 H NMR of **8s** in CDCl₃ (600 M)

¹³C NMR of 8s in CDCl₃ (150 M)

¹H NMR of 8t in CDCl₃ (600 M)

¹³C NMR of 8t in CDCl₃ (150 M)

¹H NMR of 8u in CDCl₃ (600 M)

¹³C NMR of **8u** in CDCl₃ (150 M)

 1 H NMR of **8v** in CDCl₃ (600 M)

¹³C NMR of 8v in CDCl₃ (150 M)

1 H NMR of **8w** in CDCl₃ (600 M)

^{13}C NMR of 8w in CDCl₃ (150 M)

¹H NMR of 8x in DMSO- d_6 (400 M)

13 C NMR of **8x** in DMSO- d_6 (100 M)

¹H NMR of **8y** in CDCl₃ (600 M)

¹³C NMR of 8y in CDCl₃ (150 M)

¹H NMR of 8z in CDCl₃ (600 M)

¹H NMR of **8aa** in DMSO- d_6 (400 M)

¹³C NMR of **8aa** in DMSO- d_6 (100 M)

¹H NMR of **8ab** in CDCl₃ (600 M)

¹³C NMR of 8ab in CDCl₃ (150 M)

¹H NMR of **9** in CDCl₃ (600 M)

¹³C NMR of **9** in CDCl₃ (150 M)

¹H NMR of **10** in CDCl₃ (600 M)

¹³C NMR of **10** in CDCl₃ (150 M)

