Supplementary Information

Manganese (I)-Catalyzed Access to 1,2-Bisphosphine Ligands

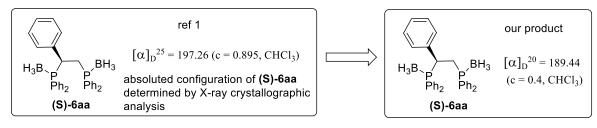
Luo Ge, Syuzanna R. Harutyunyan*

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.

Correspondence and requests for materials should be addressed to S.R.H. (e-mail: s.harutyunyan@rug.nl)

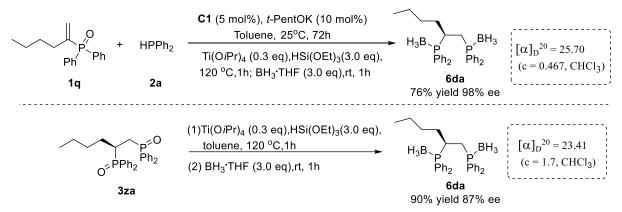
Table of contents

- 1. General experimental information
- 2. Determination of absolute configuration and NMR spectroscopic studies
- 3. Manganese (I)-Catalyzed Asymmetric Hydrophosphination of α, β-unsaturated Phosphine Oxides
- 4. Application of **7ca** in the catalytic asymmetric hydrophosphination of **1a** and **8**.
- 5. Substrate Synthesis
- 6. References
- 7. NMR spectra


1. General experimental information

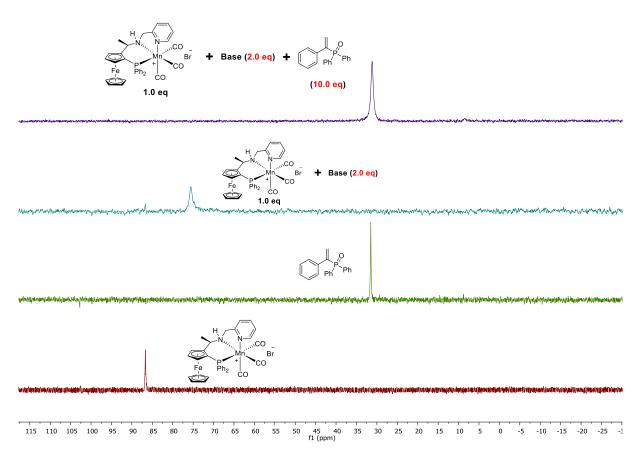
All reactions using oxygen- and/or moisture-sensitive materials were carried out with anhydrous and deoxygenated solvents under a nitrogen atmosphere using oven dried glassware and standard Schlenk techniques. Reactions of hydrophosphination using toluene as solvent were carried out using the glovebox. Reactions were monitored by ¹H NMR and ³¹P NMR. Purification of the products was performed by flash-column chromatography using Merck 60 Å 230-400 mesh silica gel. NMR data was collected on Varian VXR400 (¹H at 400 MHz; ¹³C at 100.58 MHz) equipped with a 5 mm *z*-gradient broadband probe. Chemical shifts are reported in parts per million (ppm) relative to residual solvent peak (CDCl₃, ¹H: 7.26 ppm, ¹³C: 77.16 ppm; Toluene-*d*₈, ¹H: 7.09 7.00 6.98 2.06 ppm, ¹³C: 129.2 128.3 125.49 20.4 ppm). Coupling constants are reported in Hertz. Multiplicity is reported with the usual abbreviations (s: singlet, d: doublet, br s: broad singlet, dd: doublet of doublets, t: triplet, m: multiplet). Exact mass spectra were recorded on a LTQ Orbitrap XL apparatus with ESI ionization. Enantiomeric excess (*ee*) of all compounds was determined by Chiral HPLC analysis using a Shimadzu LC-10ADVP HPLC equipped with a Shimadzu SPD-M10AVP diode array detector.

Unless otherwise indicated, reagents and substrates were purchased from commercial sources and used as received. Solvents not required to be dry were purchased as technical grade and used as received. Dry solvents were freshly collected from a dry solvent purification system prior to use. Inert atmosphere experiments were performed with standard Schlenk techniques with dried (P₂O₅) nitrogen gas or inside the glovebox (the levels of O₂ and H₂O were maintained under 0.1ppm). Acetylene derivatives (**S1**), diarylphosphine oxides (**S2**), diphenyl(vinyl) phosphine oxide (**1'b**), Phosphine reagents (**R**₂**PH**) were purchased from Sigma-Aldrich, TCI and ABCR. Unless otherwise noted substrates were prepared by literature reported methods (*vide infra*). All new compounds were fully characterized by ¹H, ¹³C and ³¹P NMR, HPLC and HRMS techniques.


2. Determination of absolute configuration and NMR studies

2.1 Determination of the absolute configuration of 6aa

The absolute configuration of the product **6aa** has been determined by X-ray crystallographic analysis in Yin's work (*Angew. Chem., Int. Ed.* **2020**, *59*, 7057–7062).¹ In their report, the optical rotation of (S)-**6aa** is $[\alpha]_D^{25} = 197.26$ (c = 0.895, CHCl₃). For our product **6aa**, the optical rotation is $[\alpha]_D^{20} = 189.44$ (c = 0.4, CHCl₃). Thus, the product **6aa** obtained via our protocol with (**R**_c, **S**_p)-**C1** as the catalyst is S configuration. The absolute configuration of other products was assigned accordingly.


2.2 Determination of the absolute configuration of 3za

3za was transformed to **6da** through reduction, which led to the determination of the absolute configuration of **3za**.

2.3 NMR spectroscopic studies

NMR spectroscopic studies were performed to understand interactions between activated Mncomplex and phosphine oxide substrate. 31P NMR spectroscopy at rt temperature was used for this purpose. All the NMR tube samples were prepared in glove box using young valve NMR tubes and deuterated toluene as a solvent. As it can be seen from the figure below upon addition of 2.0 eq. of base to **Mn(I)-L** new compound, namely activated Mn-catalyst is being formed as it can be deduced by the disappearance of the original peak and the appearance of a new one. Upon addition of10 eq. of phosphine oxide **1a** which is completely soluble in toluene, the only peak that can be observed is from the oxide itself, while activated complex disappears. This process is also accompanied by large amount of precipitate formed which could not be characterized since it was decomposed upon attempts to isolate. This precipitate doesn't form under reaction conditions when diphenylphosphine is also present and therefore it cannt be related to some intermediate that is involved in the reaction path. Further detailed studies are required to get clear mechanistic picture of this transformation.

Scheme S1: 31 P NMR in d-toluene from the bottom to the top: Mn(I)-L, 1a, Mn(I)-L + 2.0 equiv. of tPentOK, Mn(I)-L + 2.0 eq. of tPentOK + 10.0 eq. of 1a

3. Manganese (I)-Catalyzed Asymmetric Hydrophosphination/Protonation of α , β -unsaturated Phosphine Oxides

3.1 General procedure A

All the reactions performed with toluene as solvent were carried out inside the glovebox in order to ensure inert reaction conditions. In an oven-dried 4 mL vial equipped with a magnetic stirring bar, Mn(I)-L (0.0025 mmol, 2.5 mol%) was dissolved in 0.5 mL of deoxygenated toluene and stirred for 1 min. Then, a commercially available solution of *t*PentOK 1.7 M in dry, deoxygenated toluene (0.005 mmol, 5 mol%) or Barton's base (0.005 mmol, 5 mol%) was added and the mixture was stirred during 5 min, observing complete solubility of the catalyst and a change in color of the solution due to the activation of the catalyst. When toluene is used as solvent and tPentOK as a base, a color change of the solution from yellow to dark red is observed. This color change is indicative of the catalyst activation.* After 5 min stirring, the substrate 1 (0.1 mmol, 1.0 equiv) (dissolved in 0.5 mL of deoxygenated toluene) was added at once followed by the addition of the phosphine 2 (0.105 mmol, 1.05 equiv).** (when the reaction was carried out at 60 °C, after the addition of substrate 1 and phosphine 2, the reaction mixture was taken out of the glovebox and heated to 60 °C). The reaction was monitored by analysing aliquots of the reaction mixture by ³¹P NMR spectroscopy. After observing full consumption of the starting materials, the reaction mixture was loaded directly onto a column packed with silica gel, and eluted with pentane/ethyl acetate/methanol to give the desired product.

* If there is no colour change observed when toluene and tPentOK are used as the solvent and base, respectively, the catalyst has either decomposed or not enough base has been added to activate the catalyst. As a result, the reaction will not occur.

** High purity of the starting materials, catalyst and solvents used in the hydrophosphination reaction is of great importance for the reaction to work.

3.2 General procedure B: One-pot synthesis of chiral 1,2-bisphosphine boranes (6aa-6da)

All the reactions performed with toluene as solvent were carried out inside the glovebox in order to ensure inert reaction conditions. In an oven-dried 25 mL Schlenk tube equipped with a magnetic stirring bar, **Mn(I)-L** (0.005 mmol, 2.5 mol%) was dissolved in 0.5 mL of deoxygenated toluene and stirred for 1 min. Then, a commercially available solution of *t*PentOK 1.7 M in dry, deoxygenated toluene (0.01 mmol, 5 mol%) was added and the mixture was stirred during 5 min, observing complete solubility of the catalyst and a change in color of the solution due to the activation of the catalyst. When toluene is used as solvent and *t*PentOK as a base, a color change of the solution from yellow to dark red is observed. This color change is indicative of the catalyst activation. After 5 min stirring, the substrate **1** (0.2 mmol, 1.0 equiv) (dissolved in 1 mL of deoxygenated toluene) was added at once followed by the addition of phosphine **2** (0.21 mmol, 1.05 equiv). The reaction was monitored by analysing aliquots of the reaction mixture by ³¹P NMR spectroscopy. After observing full consumption of the starting materials, HSi(OEt)₃ (0.6 mmol, 3.0 equiv) and Ti(OiPr)₄ (0.06 mmol, 30 mol%) were added sequentially via syringe. The reaction mixture was taken out of the glovebox and heated to 120 °C for an hour. After that, the reaction was cooled to room temperature and BH₃ (1 M in THF)

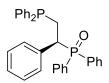
(0.8 mmol, 4.0 equiv) was added via syringe under N₂ atmosphere. The resulting reaction mixture was stirred at room temperature for an hour. After removal of the volatiles under reduced pressure, the crude was purified by silica gel column chromatography (pentane/dichloromethane = 2/1) to afford the desired product **6**.

3.3 General procedure C: Synthesis of chiral 1,2-bisphosphines (7aa-7da)*

A dried 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with chiral phosphine boranes **6** (0.10 mmol, 1.0 equiv), DABCO (0.40 mmol, 4.0 equiv) and degassed toluene (2.5 mL) under N₂ atmosphere. The reaction mixture was stirred at 50 °C for 12h. After that, the reaction was cooled to room temperature and the reaction mixture was washed with degassed water (5 x 2 mL) N₂ atmosphere. The organic phase was dried by MgSO₄, and then filtered under N₂ atmosphere. After removal of the volatiles in high vacuum (0.1mm Hg), the desired product **7** was obtained as a solid.

* Degassed toluene, water and N_2 atmosphere are of great importance for obtaining the pure product.

3.4 Procedure for the synthesis of racemic product


All the racemic hydrophosphination reactions were performed inside the glovebox to ensure inert reaction conditions. In an oven-dried 4 mL vial equipped with a magnetic stirring bar the substrate **1** (0.1 mmol, 1.0 equiv) were dissolved in toluene (1 mL). Then, a commercially available solution of *t*PentOK (1.7 M in toluene, 30 mol%) was added followed by the addition of HPPh₂ (0.105 mmol, 1.05 equiv). After stirring overnight at room temperature, the reaction mixture was loaded directly onto a column packed with silica gel, and eluted with pentane/ethyl acetate/methanol to give the desired product.

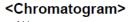
3.5 Procedure for the preparative scale (3 mmol, 1.0g) reaction

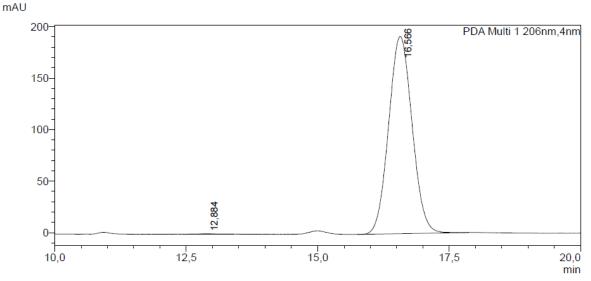
In an oven-dried round bottom flask, located inside the glovebox and equipped with a septum and a magnetic stirring bar, **Mn(I)-L** (0.015 mmol, 0.5 mol%) was added and it was dissolved in dry, deoxygenated toluene (15 mL). The mixture was stirred inside the glovebox for 5 min. Then, a commercially available solution of *t*PentOK 1.7 M in toluene (0.03 mmol, 1 mol%) was added and the mixture was stirred for 10 min to activate the catalyst. Upon activation of the catalyst, a change in the color of the solution from yellow to dark red was observed. The substrate **1b** (3.0 mmol, 1.0 equiv) was added at once, followed by the drop-wise addition of HPPh₂ (3.15 mmol, 1.05 equiv) over a period of 2 min. After stirring at room temperature for 48 h, the resulting mixture was evaporated and the residue was purified by column chromatography using pentane/ethyl acetate/methanol (1:1:0.05) to afford the desired product **3ba** with 91% yield and 98% ee.

Specific experimental details and product characterization

(S)-(2-(diphenylphosphaneyl)-1-phenylethyl)diphenylphosphine oxide (3aa)

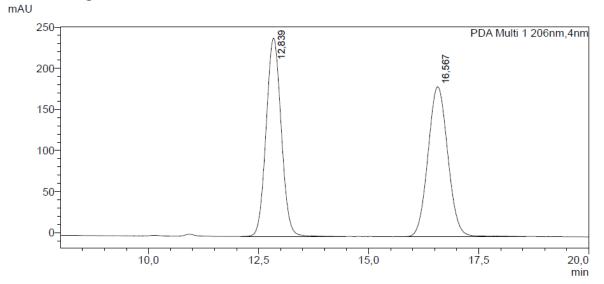
Following general procedure A: The reaction was performed with 1a (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25 °C for 16 h. Product 3aa was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [96% yield, >99% ee].

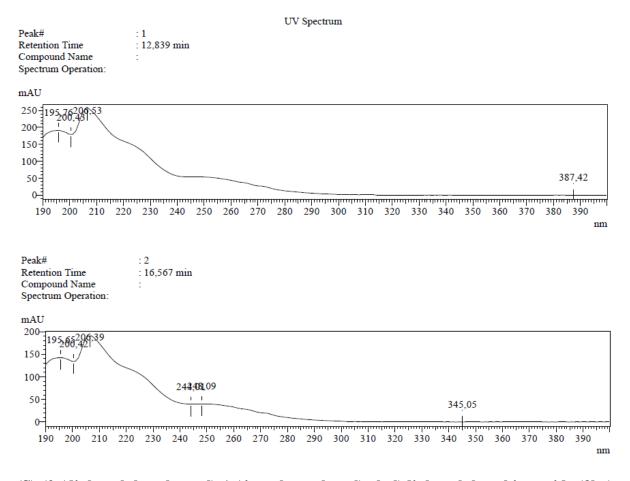

¹**H NMR (CDCl₃, 400 MHz):** δ 7.61-7.52 (m, 3H, CH_{Ar}), 7.47-7.42 (m, 3H, CH_{Ar}), 7.38-7.30 (m, 4H, CH_{Ar}), 7.27-7.14 (m, 15H, CH_{Ar}), 3.30-3.25 (m, 1H, P(O)Ph₂CH), 2.90-2.85 (m, 1H, PPh₂CHH), 2.59-2.56 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 138.8, 138.7, 137.3, 137.2, 135.3, 134.5, 134.4, 131.9, 131.7, 131.4, 131.3, 131.0, 130.1, 129.6, 128.8, 128.8, 128.7, 128.4, 128.3, 128.3, 128.1, 128.0, 128.0, 127.4, 43.6, 43.2, 29.0, 28.9. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

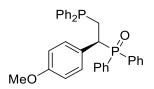
³¹**P** NMR (162 MHz, CDCl₃): δ 33.5 (d, J = 31.5 Hz), -19.7 (d, J = 31.5 Hz).

HRMS (ESI, m/Z): calcd. for C₃₂H₂₉OP₂ [M+H]⁺: 491.1688, found: 491.1686.


HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 12.9 (minor) and 16.6 (major).



<Peak Table>

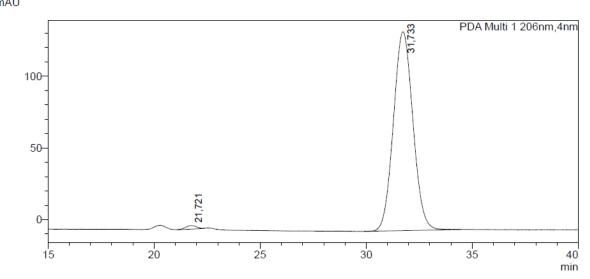

PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%		
1	12,884	10503	464	0,176		
2	16,566	5942806	191401	99,824		
Tota		5953309	191866	100,000		

PDA Ch1 206nm					
Peak#	Ret. Time	Area	Height	Area%	
1	12,839	5752588	241197	50,190	
2	16,567	5709111	182401	49,810	
Tota		11461699	423597	100,000	

(S)-(2-(diphenylphosphaneyl)-1-(4-methoxyphenyl)ethyl)diphenylphosphine oxide (3ba)

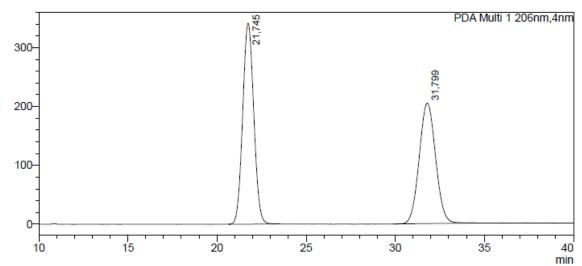
Following general procedure A: The reaction was performed with 1b (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3ba** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [90% yield, 98% ee].

¹**H NMR** (**CDCl**₃, **400 MHz**): δ 7.63 – 7.48 (m, 3H, C*H*_{Ar}), 7.46 – 7.20 (m, 10H, C*H*_{Ar}), 7.20 – 7.09 (m, 9H, C*H*_{Ar}), 6.71 (d, *J* = 8.2 Hz, 2H, C*H*_{Ar}), 3.73 (s, 3H, OC*H*₃), 3.32 – 3.16 (m, 1H, P(O)Ph₂C*H*), 2.87 – 2.78 (m, 1H, PPh₂CH*H*), 2.61 – 2.45 (m, 1H, PPh₂CH*H*).

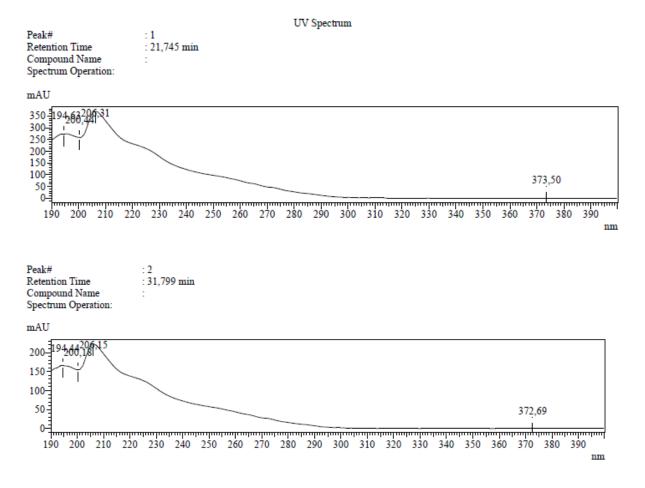

¹³C NMR (CDCl₃, 101 MHz): δ 158.9, 158.9, 138.7, 138.5, 137.2, 137.0, 134.5, 134.3, 132.6, 131.9, 131.9, 131.8, 131.8, 131.6, 131.5, 131.4, 131.3, 131.3, 131.1, 131.1, 131.0, 130.9, 129.7, 128.9, 128.8, 128.7, 128.3, 128.3, 128.1, 128.0, 127.1, 127.1, 127.1, 127.0, 114.0, 113.9, 55.2, 42.8, 42.7, 42.2, 42.0, 29.2, 29.0. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

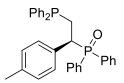
³¹**P NMR** (**CDCl**₃, **162 MHz**): δ 30.6 (d, *J* = 31.6 Hz), -22.5 (d, *J* = 31.6 Hz).

HRMS (ESI, m/Z): calcd. for $C_{33}H_{31}O_2P_2$ [M+H]⁺: 521.1794, found: 521.1794.


HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 21.7 (minor) and 31.7 (major).

<Chromatogram> mAU


PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%		
1	21,721	89701	2528	1,001		
2	31,733	8872799	138558	98,999		
Tota	l	8962499	141086	100,000		

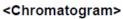


<Peak Table>

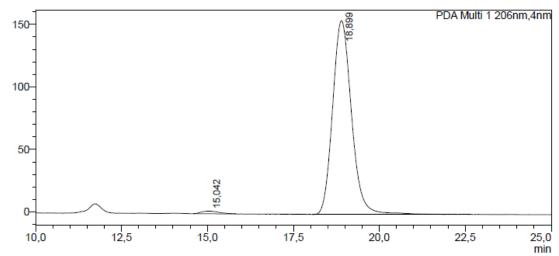
PDA C	PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%			
1	21,745	14721136	341380	52,937			
2	31,799	13087496	204716	47,063			
Total		27808632	546096	100,000			

(S)-(2-(diphenylphosphaneyl)-1-(p-tolyl)ethyl)diphenylphosphine oxide (3ca)

Following general procedure A: The reaction was performed with 1c (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3ca was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [88% yield, 98% ee].

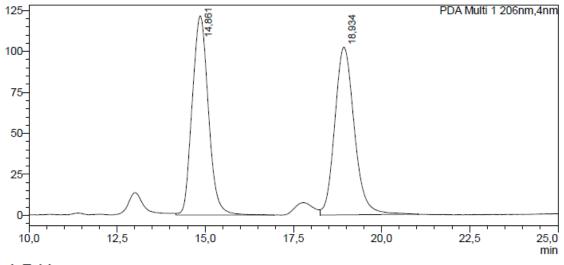

¹H NMR (CDCl₃, 400 MHz): δ 7.62 – 7.05 (m, 22H, CH_{Ar}), 6.99 – 6.97 (m, 2H, CH_{Ar}), 3.26 – 3.19 (m, 1H, P(O)Ph₂CH), 2.85 – 2.76 (m, 1H, PPh₂CHH), 2.56 – 2.50 (m, 1H, PPh₂CHH), 2.25 (s, 3H, CH₃).

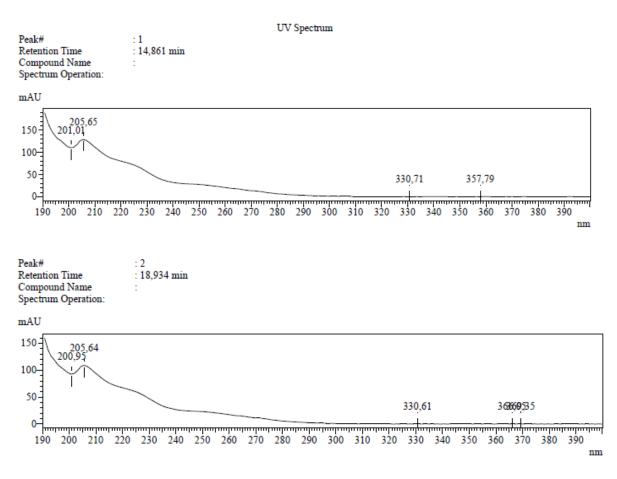
¹³C NMR (CDCl₃, 101 MHz): δ 141.4, 141.3, 141.1, 139.9, 139.7, 139.6, 137.1, 136.9, 135.2, 134.4, 134.3, 134.0, 133.9, 133.8, 133.6, 132.4, 132.2, 131.8, 131.4, 131.3, 130.8, 130.6, 130.5, 45.7, 45.2, 31.7, 31.5, 23.8. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P** NMR (CDCl₃, 162 MHz) δ 30.3 (d, J = 31.2 Hz), -22.9 (d, J = 31.2 Hz).

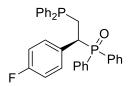
HRMS (ESI, m/Z): calcd. for C₃₃H₃₁OP₂ [M+H]⁺: 505.1845, found: 505.1846.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 15.0 (minor) and 18.9 (major).





PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	15,042	76544	2171	1,277
2	18,899	5916451	154844	98,723
Total		5992995	157015	100,000



PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%		
1	14,861	3878597	121572	49,517		
2	18,934	3954318	102409	50,483		
Total		7832915	223982	100,000		

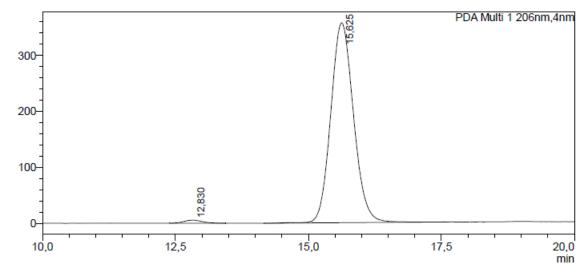
(S)-(2-(diphenylphosphaneyl)-1-(4-fluorophenyl)ethyl)diphenylphosphine oxide (3da)

Following general procedure A: The reaction was performed with 1d (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3da was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [98% yield, 98% ee].

¹**H** NMR (CDCl₃, 400 MHz): δ 7.66 – 7.55 (m, 3H, CH_{Ar}), 7.49 – 7.45 (m, 3H, CH_{Ar}), 7.43 – 7.37 (m, 2H, CH_{Ar}), 7.36 – 7.27 (m, 5H, CH_{Ar}), 7.24 – 7.17 (m, 9H, CH_{Ar}), 6.92 – 6.88 (m, 2H, CH_{Ar}), 3.35 – 3.27 (m, 1H, P(O)Ph₂CH), 2.90 – 2.80 (m, 1H, PPh₂CHH), 2.62 – 2.55 (m, 1H, PPh₂CHH).

¹³C NMR (101 MHz, CDCl₃): δ 163.3, 163.3, 160.8, 160.8, 138.4, 138.3, 137.1, 136.9, 134.3, 134.1, 132.3, 132.3, 131.9, 131.9, 131.8, 131.7, 131.5, 131.4, 131.4, 131.3, 131.3, 131.2, 131.1, 131.0, 131.0, 131.0, 131.0, 130.8, 130.7, 130.5, 130.2, 130.2, 129.6, 129.2, 129.1, 128.8, 128.8, 128.7, 128.7, 128.6, 128.3, 128.2, 128.1, 128.1, 128.0, 127.9, 115.4, 115.4, 115.2, 115.2, 43.0, 42.9, 42.4, 42.2, 29.0, 28.9. (Due to C–P and C-F coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

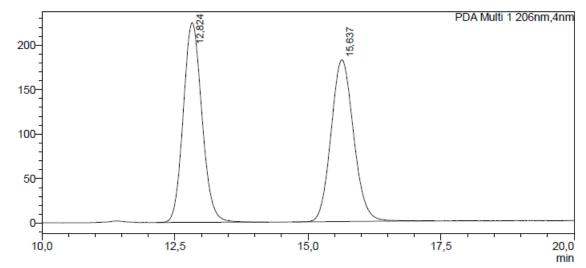
¹⁹F NMR (**376** MHz, CDCl₃): δ -115.0.

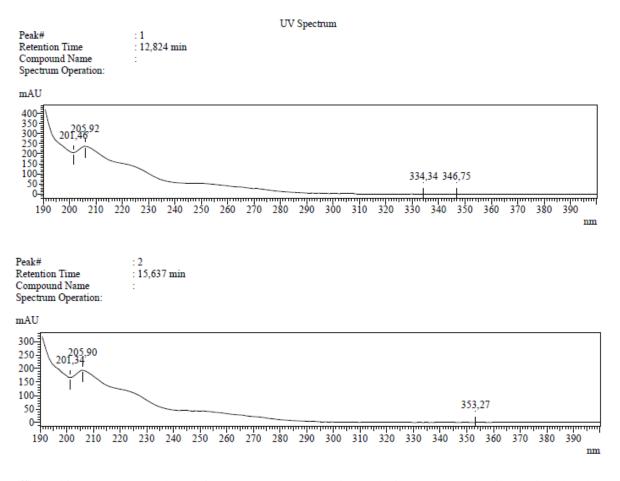

³¹**P** NMR (162 MHz, CDCl₃): δ 30.6 (d, J = 31.6 Hz), -22.0 (d, J = 31.6 Hz).

HRMS (ESI, m/Z): calcd. for C₃₂H₂₈FOP₂ [M+H]⁺: 509.1594, found: 509.1595.

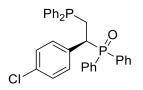
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 254 nm. Retention time (min): 12.8 (minor) and 15.6 (major).

<Chromatogram>


mAU


PDA Ch1 206nm						
Pea	k#	Ret. Time	Area	Height	Area%	
	1	12,830	129313	5417	1,202	
	2	15,625	10627413	356864	98,798	
To	tal		10756726	362281	100,000	

<Chromatogram>



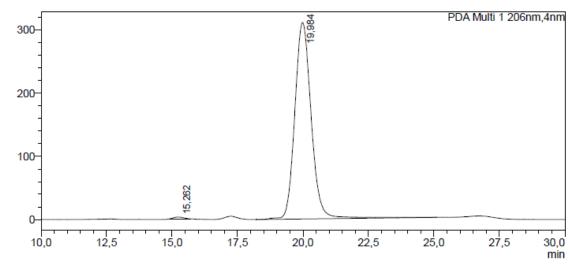
PDA C	PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%			
1	12,824	5479354	224566	50,567			
2	15,637	5356499	181813	49,433			
Total		10835853	406378	100,000			

(S)-(1-(4-chlorophenyl)-2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide (3ea)

Following general procedure A: The reaction was performed with 1e (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3ea was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [93% yield, 99% ee].

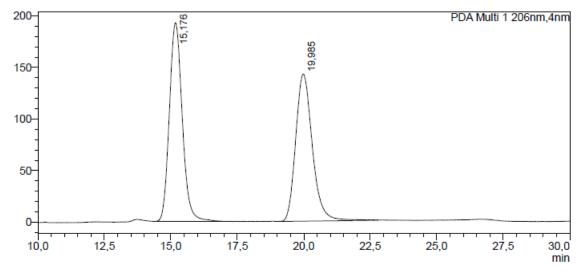
¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.66 – 7.50 (m, 3H, C*H*_{Ar}), 7.49 – 7.41 (m, 3H, C*H*_{Ar}), 7.41 – 7.33 (m, 2H, C*H*_{Ar}), 7.32 – 7.23 (m, 5H, C*H*_{Ar}), 7.22 – 7.09 (m, 11H, C*H*_{Ar}), 3.34 – 3.20 (m, 1H, P(O)Ph₂C*H*), 2.91 – 2.69 (m, 1H, PPh₂CH*H*), 2.64 – 2.45 (m, 1H, PPh₂CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 138.4, 138.3, 137.2, 137.0, 134.4, 134.2, 133.3, 133.3, 132.3, 132.0, 131.8, 131.5, 131.4, 131.4, 130.9, 130.8, 130.6, 129.7, 129.0, 128.9, 128.8, 128.6, 128.4, 128.4, 128.3, 128.2, 43.4, 43.3, 42.8, 42.6, 29.1, 28.9. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

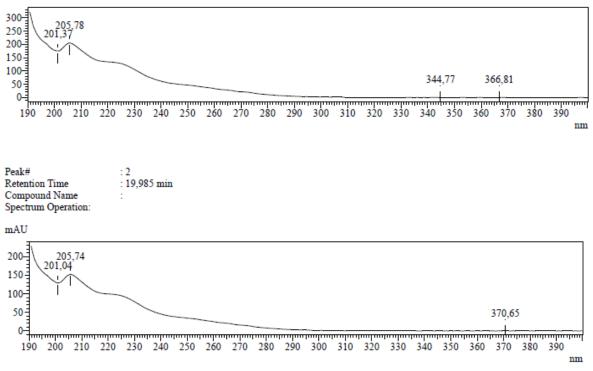

³¹P NMR (CDCl₃, 162 MHz): δ 33.0 (d, *J* = 31.2 Hz), -19.7 (d, *J* = 31.2 Hz).

HRMS (ESI, m/Z): calcd. for C₃₂H₂₈ClOP₂ [M+H]⁺: 525.1298, found: 525.1300.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 15.3 (minor) and 20.0 (major).

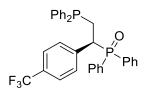

<Chromatogram>

PDA Ch1 206nm						
Peak#	Ret. Time	Area	Height	Area%		
1	15,262	79508	2995	0,581		
2	19,984	13596642	311115	99,419		
Total		13676150	314109	100,000		


<Peak Table>

PDA Ch1 206nm

Peak#	Ret. Time	Area	Height	Area%
1	15,176	6515547	192614	51,124
2	19,985	6229099	142709	48,876
Tota		12744646	335322	100,000


Peak# : 1 Retention Time : 15,176 min Compound Name : Spectrum Operation:

mAU

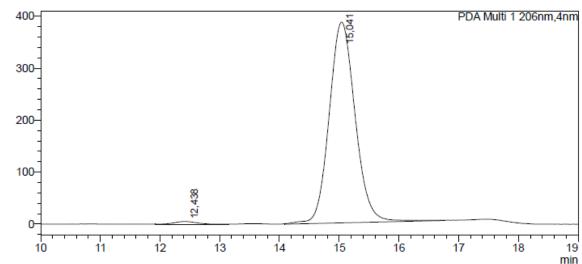
UV Spectrum

(S)-(2-(diphenylphosphaneyl)-1-(4-(trifluoromethyl)phenyl)ethyl)diphenylphosphine oxide (3fa)

Following general procedure A: The reaction was performed with 1f (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3fa was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [79% yield, 98% ee].

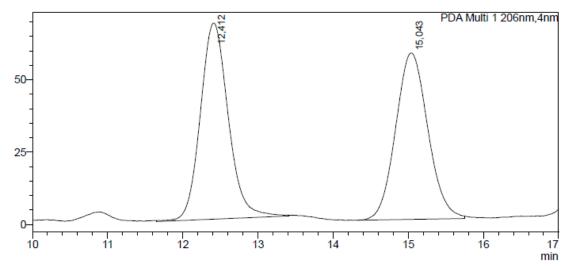
¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.66 – 7.58 (m, 2H, CH_{Ar}), 7.59 – 7.51 (m, 1H, CH_{Ar}), 7.49 – 7.40 (m, 3H, CH_{Ar}), 7.41 – 7.33 (m, 4H, CH_{Ar}), 7.33 – 7.19 (m, 7H, CH_{Ar}), 7.19 – 7.11 (m, 7H, CH_{Ar}), 3.43 – 3.30 (m, 1H, P(O)Ph₂CH), 2.91 – 2.81 (m, 1H, PPh₂CHH), 2.60 – 2.53 (m, 1H, PPh₂CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 139.8, 138.2, 138.0, 137.1, 136.9, 134.3, 134.1, 132.2, 132.2, 132.1, 131.9, 131.7, 131.6, 131.4, 131.4, 131.3, 131.1, 131.1, 130.8, 130.8, 130.4, 130.3, 129.8, 129.6, 129.6, 129.3, 129.3, 129.1, 128.9, 128.9, 128.4, 128.4, 128.4, 128.3, 128.2, 125.6, 125.3, 125.3, 125.3, 125.2, 125.2, 122.9, 44.1, 44.0, 43.5, 43.3, 28.9, 28.7. (Due to C–P and C-F coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹P NMR (CDCl₃, 162 MHz): δ 33.0 (dd, J = 31.9, 2.3 Hz), -19.2 (d, J = 31.9 Hz). ¹⁹F NMR (CDCl₃, 376 MHz): δ -62.5.

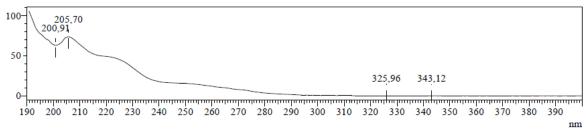
HRMS (ESI, m/Z): calcd. for C₃₃H₂₈F₃OP₂ [M+H]⁺: 559.1562, found: 559.1559.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 254 nm. Retention time (min): 12.4 (minor) and 15.0 (major).


<Chromatogram>

mAU

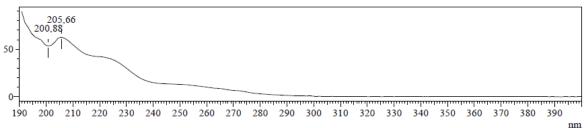
PDAC	n1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	12,438	140156	5315	1,184
2	15,041	11695299	386342	98,816
Total		11835455	391657	100,000

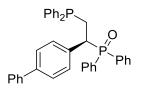

<Peak Table>

DI		Ch	1 0	06	0.000
	JA		12	UO	

Peak#	Ret. Time	Area	Height	Area%
1	12,412	1753010	67795	50,522
2	15,043	1716814	57535	49,478
Total		3469824	125330	100,000

Peak# : 1 Retention Time : 12,409 min Compound Name : Spectrum Operation:


mAU


UV Spectrum

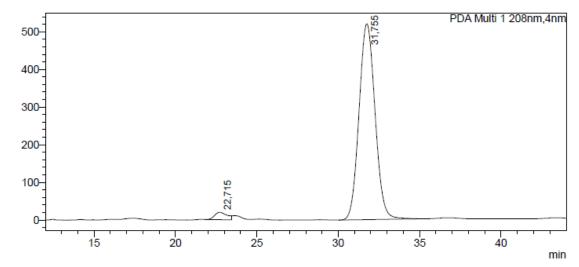
Peak#: 2Retention Time: 15,042 minCompound Name:Spectrum Operation::

mAU

(S)-(1-([1,1'-biphenyl]-4-yl)-2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide (3ga)

Following general procedure A: The reaction was performed with 1g (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3ga was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [95% yield, 94% ee].

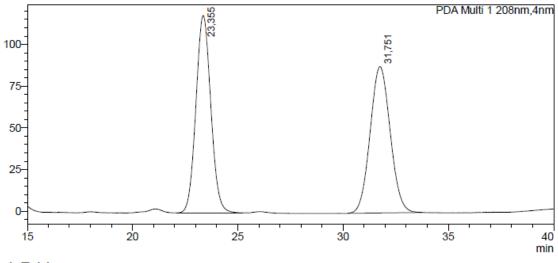
¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.66 – 7.57 (m, 2H, CH_{Ar}), 7.56 – 7.50 (m, 3H, CH_{Ar}), 7.49 – 7.09 (m, 24H, CH_{Ar}), 3.43 – 3.26 (m, 1H, P(O)Ph₂CH), 2.99 – 2.82 (m, 1H, PPh₂CHH), 2.67 – 2.51 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 143.4, 142.6, 142.6, 141.2, 141.1, 140.0, 139.8, 137.0, 137.0, 137.0, 136.9, 136.9, 136.8, 135.1, 135.1, 134.6, 134.5, 134.4, 134.4, 134.3, 134.1, 134.1, 134.0, 134.0, 133.9, 133.9, 133.6, 133.5, 133.4, 133.0, 133.0, 132.2, 131.4, 131.4, 131.3, 131.3, 130.9, 130.8, 130.7, 130.6, 130.5, 129.8, 129.6, 46.2, 46.1, 45.6, 45.4, 31.6, 31.4. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 30.4 (d, J = 32.2 Hz), -22.3 (d, J = 32.2 Hz).

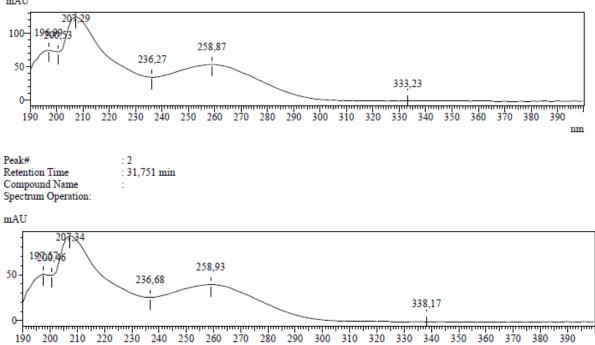
HRMS (ESI, m/Z): calcd. for C₃₂H₂₈ClOP₂ [M+H]⁺: 567.2001, found: 567.2001.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 208 nm. Retention time (min): 22.7 (minor) and 31.8 (major).

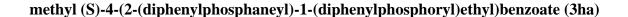

<Chromatogram> mAU

PDA Ch1 208nm					
Peak#	Ret. Time	Area	Height	Area%	
1	22,715	1038027	19500	2,832	
2	31,755	35611992	519888	97,168	
Total		36650019	539388	100,000	

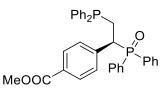
<Chromatogram>



<Peak Table>


PDA C	h1 208nm			
Peak#	Ret. Time	Area	Height	Area%
1	23,355	5827516	118274	49,970
2	31,751	5834400	87708	50,030
Total		11661916	205982	100,000

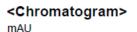
Peak# : 1 Retention Time : 23,355 min Compound Name : Spectrum Operation:

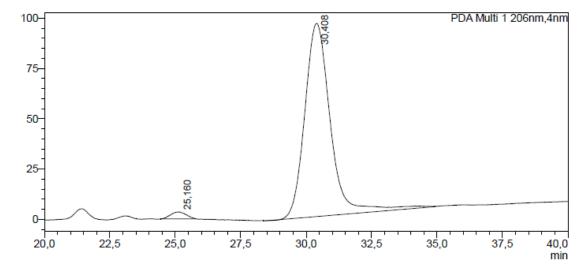

mAU

UV Spectrum

nm

Following general procedure A: The reaction was performed with 1h (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3ha** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [91% yield, 96% ee].

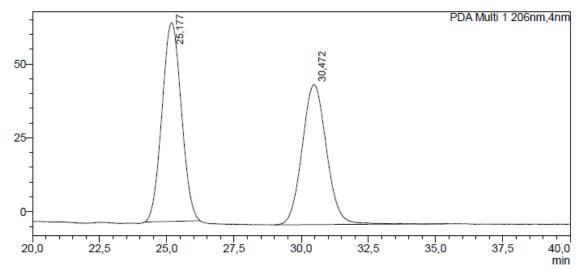

¹**H** NMR (CDCl₃, 400 MHz): δ 7.83 (d, *J* = 8.1 Hz, 2H, CH_{Ar}), 7.65 – 7.56 (m, 2H, CH_{Ar}), 7.55 – 7.49 (m, 1H, CH_{Ar}), 7.47 – 7.39 (m, 3H, CH_{Ar}), 7.39 – 7.32 (m, 2H, CH_{Ar}), 7.31 – 7.20 (m, 7H, CH_{Ar}), 7.18 – 7.07 (m, 7H, CH_{Ar}), 3.86 (s, 3H, COOCH₃), 3.44 – 3.25 (m, 1H, P(O)Ph₂CH), 2.95 – 2.76 (m, 1H, PPh₂CHH), 2.64 – 2.46 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 166.9, 141.0, 141.0, 141.0, 141.0, 138.3, 138.2, 136.9, 136.7, 134.3, 134.1, 132.0, 131.9, 131.8, 131.6, 131.5, 131.4, 131.3, 131.2, 131.0, 131.0, 130.8, 130.7, 130.4, 130.0, 130.0, 129.7, 129.6, 129.5, 129.0, 129.0, 128.9, 128.8, 128.8, 128.7, 128.3, 128.2, 128.1, 128.1, 128.0, 52.0, 44.0, 43.9, 43.4, 43.3, 29.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P NMR** (**CDCl**₃, **162 MHz**): δ 29.8 (d, J = 30.7 Hz), -22.6 (d, J = 30.7 Hz).

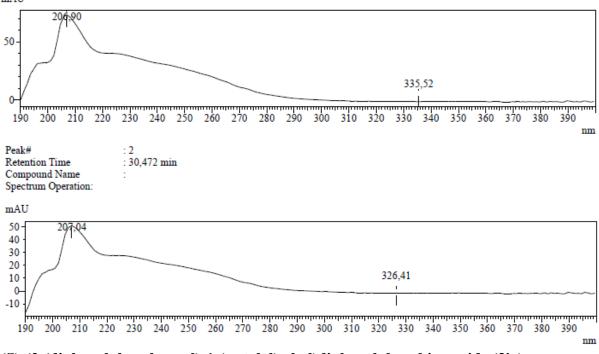
HRMS (**ESI, m/Z**): calcd. for C₃₄H₃₁O₃P₂ [M+H]⁺: 549.1743, found: 549.1743.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 25.2 (minor) and 30.5 (major).



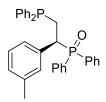
<Peak Table>

PDA C	PDA Ch1 206nm					
Peak#	Ret. Time	Area	Height	Area%		
1	25,160	142695	3407	2,135		
2	30,408	6542425	95983	97,865		
Tota		6685120	99390	100,000		



<Peak Table>

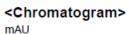
PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	25,177	3366953	67260	52,908
2	30,472	2996800	47467	47,092
Total		6363753	114726	100,000

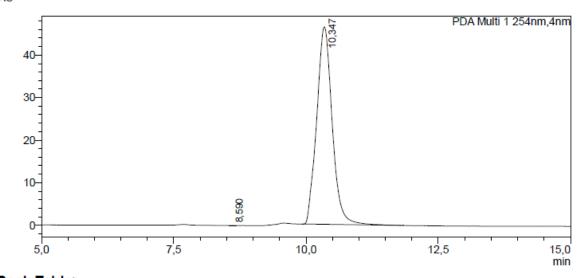

Peak#	:1
Retention Time	: 25,177 min
Compound Name	:
Spectrum Operation:	

mAU

UV Spectrum

(S)-(2-(diphenylphosphaneyl)-1-(m-tolyl)ethyl)diphenylphosphine oxide (3ia)

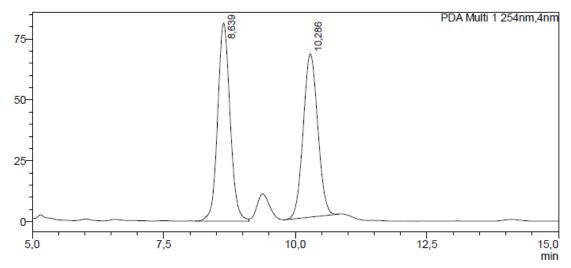

Following general procedure A: The reaction was performed with 1i (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3ia** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [81% yield, >99% ee].


¹H NMR (CDCl₃, 400 MHz): δ 7.62 – 7.51 (m, 3H, CH_{Ar}), 7.46 – 7.15 (m, 17H, CH_{Ar}), 7.09 – 6.96 (m, 4H, CH_{Ar}), 3.29 – 3.22 (m, 1H, P(O)Ph₂CH), 2.92 – 2.82 (m, 1H, PPh₂CHH), 2.59 – 2.53 (m, 1H, PPh₂CHH), 2.23 (s, 3H, PhCH₃).

¹³C NMR (CDCl₃, 100 MHz): δ 138.8, 138.7, 137.9, 137.4, 137.3, 135.0, 134.5, 134.3, 132.6, 132.0, 131.8, 131.5, 131.4, 131.2, 131.1, 131.0, 130.7, 129.6, 128.8, 128.8, 128.7, 128.3, 128.2, 128.1, 128.0, 127.8, 127.2, 43.8, 43.0, 28.9, 28.7, 21.5. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets) ³¹P NMR (162 MHz, CDCl₃): δ 30.5 (d, *J* = 32.2 Hz), -22.6 (d, *J* = 32.2 Hz).

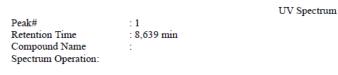
HRMS (ESI, m/Z): calcd. for C₃₃H₃₁OP₂ [M+H]⁺: 505.1845, found: 505.1845.

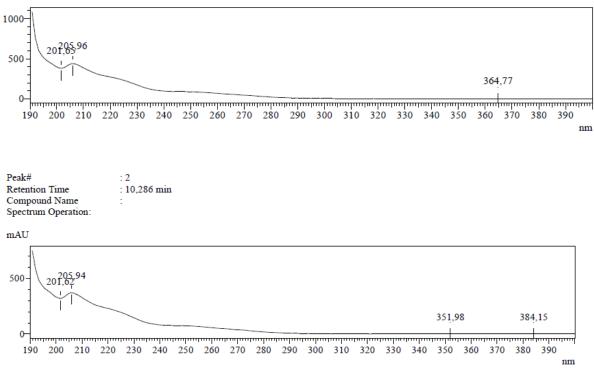
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 254 nm. Retention time (min): 8.6 (minor) and 10.3 (major).



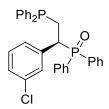
<pe< th=""><th>ak 🛛</th><th>rab</th><th>le></th></pe<>	ak 🛛	rab	le>
	OF 4	004	

PDI	<u> </u>	n i 254nm			
Pea	ak#	Ret. Time	Area	Height	Area%
	1	8,590	63	21	0,007
	2	10,347	946115	46379	99,993
T	otal		946177	46400	100,000

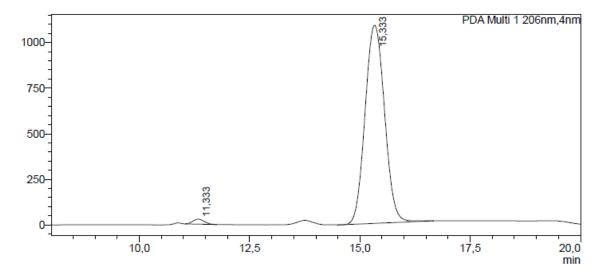



Area%

PDA C	h1 254nm		
Peak#	Ret. Time	Area	Height
1	8.639	1334281	81263


	0,000	1004201	01205	30,000
2	10,286	1287818	66900	49,114
Total		2622098	148162	100,000

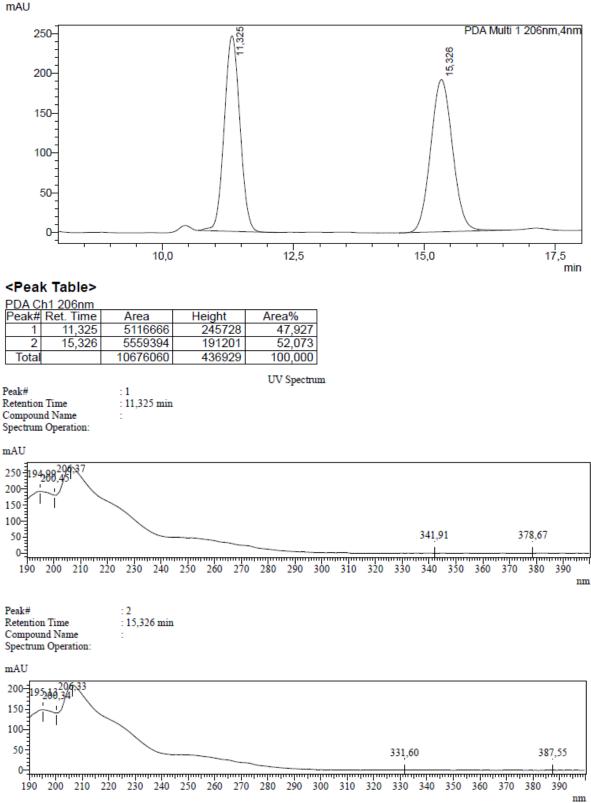
Following general procedure A: The reaction was performed with 1j (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 3ja was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [90% yield, 97% ee].

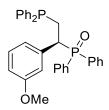

¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.63 – 7.49 (m, 3H, C*H*_{Ar}), 7.47 – 7.40 (m, 3H, C*H*_{Ar}), 7.39 – 7.32 (m, 2H, C*H*_{Ar}), 7.31 – 7.21 (m, 5H, C*H*_{Ar}), 7.21 – 7.07 (m, 11H, C*H*_{Ar}), 3.36 – 3.11 (m, 1H, P(O)Ph₂C*H*), 2.88 – 2.72 (m, 1H, PPh₂CH*H*), 2.61 – 2.44 (m, 1H, PPh₂CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 138.4, 138.3, 137.7, 137.6, 137.6, 137.6, 137.2, 137.0, 134.4, 134.2, 132.2, 132.2, 132.1, 132.0, 132.0, 131.8, 131.6, 131.6, 131.4, 131.4, 131.2, 131.2, 130.9, 130.9, 130.5, 130.2, 130.2, 129.7, 129.6, 129.6, 129.0, 128.9, 128.9, 128.8, 128.4, 128.3, 128.2, 128.2, 128.1, 127.6, 127.6, 43.8, 43.7, 43.2, 43.0, 28.9, 28.9, 28.7, 28.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets) ³¹P NMR (CDCl₃, 162 MHz): δ 30.1 (d, J = 31.3Hz), -22.5 (d, J = 31.3 Hz).

HRMS (ESI, m/Z): calcd. for C₃₂H₂₈ClOP₂ [M+H]⁺: 525.1298, found: 525.1295.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 11.3 (minor) and 15.3 (major).


<Chromatogram> mAU


PDA C	PDA Ch1 206nm					
Peak#	Peak# Ret. Time Area		Height	Area%		
1	11,333	490156	27016	1,442		
2	15,333	33497677	1086535	98,558		
Tota		33987832	1113551	100,000		

<Chromatogram>

(S)-(2-(diphenylphosphaneyl)-1-(3-methoxyphenyl)ethyl)diphenylphosphine oxide (3ka)

Following general procedure A: The reaction was performed with 1k (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), barton's base (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 48 h. Product 3ka was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [82% yield, 97% ee].

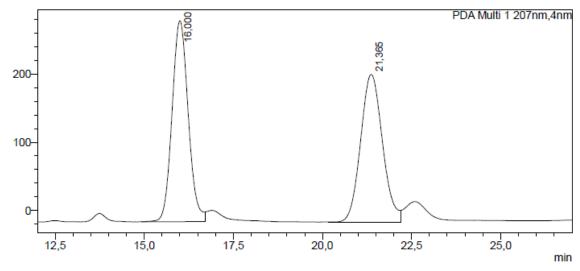
¹H NMR (CDCl₃, 400 MHz): δ 7.64 – 7.49 (m, 3H, CH_{Ar}), 7.49 – 7.38 (m, 3H, CH_{Ar}), 7.39 – 7.24 (m, 7H, CH_{Ar}), 7.21 – 7.13 (m, 7H, CH_{Ar}), 7.12 – 7.08 (m, 1H, CH_{Ar}), 6.85 – 6.67 (m, 3H, CH_{Ar}), 3.69 (s, 3H, OCH₃), 3.32 – 3.16 (m, 1H, P(O)Ph₂CH), 2.92 – 2.78 (m, 1H, PPh₂CHH), 2.61 – 2.48 (m, 1H, PPh₂CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 159.4, 138.7, 138.6, 137.3, 137.2, 136.8, 136.8, 136.7, 136.7, 134.4, 134.4, 134.2, 132.4, 132.4, 131.8, 131.7, 131.7, 131.5, 131.4, 131.4, 131.3, 131.2, 131.2, 130.9, 130.8, 130.7, 129.5, 129.2, 129.2, 128.8, 128.7, 128.6, 128.6, 128.2, 128.1, 128.0, 128.0, 127.8, 122.6, 122.5, 115.2, 115.1, 113.4, 113.4, 55.1, 43.9, 43.7, 43.2, 43.1, 28.9, 28.9, 28.8, 28.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

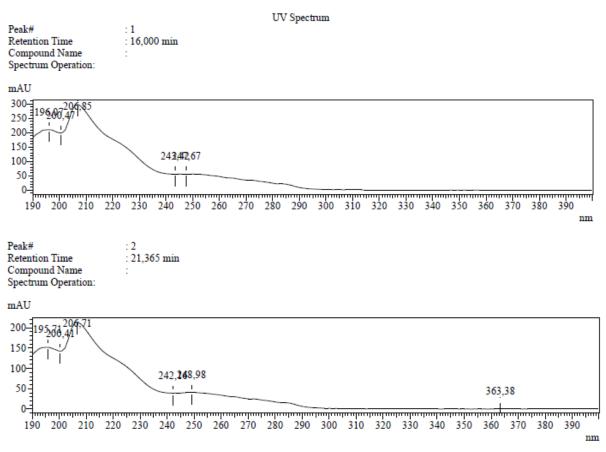
³¹**P** NMR (CDCl₃, 162 MHz): δ 33.3 (d, J = 31.8 Hz), -19.6 (d, J = 31.8 Hz).

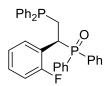
HRMS (ESI, m/Z): calcd. for C₃₃H₃₁O₂P₂ [M+H]⁺: 521.1794, found: 521.1786.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 16.0 (minor) and 21.4 (major).


<Chromatogram>

mAU


PDAC	n1207nm			
Peak# Ret. Time		Area	Height	Area%
1	16,016	196599	6460	1,707
2	21,379	11317547	265676	98,293
Total		11514146	272136	100,000



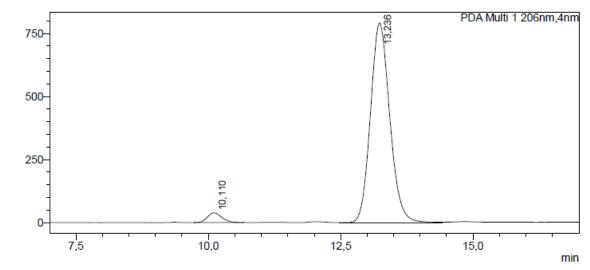
<Peak Table>

PDA C	h1 207nm			
Peak#	Ret. Time	Area	Height	Area%
1	16,000	9264584	294327	50,097
2	21,365	9228832	216349	49,903
Total		18493416	510676	100,000

(S)-(2-(diphenylphosphaneyl)-1-(2-fluorophenyl)ethyl)diphenylphosphine oxide (3la)

Following general procedure A: The reaction was performed with 11 (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3la** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [94% yield, 93% ee].

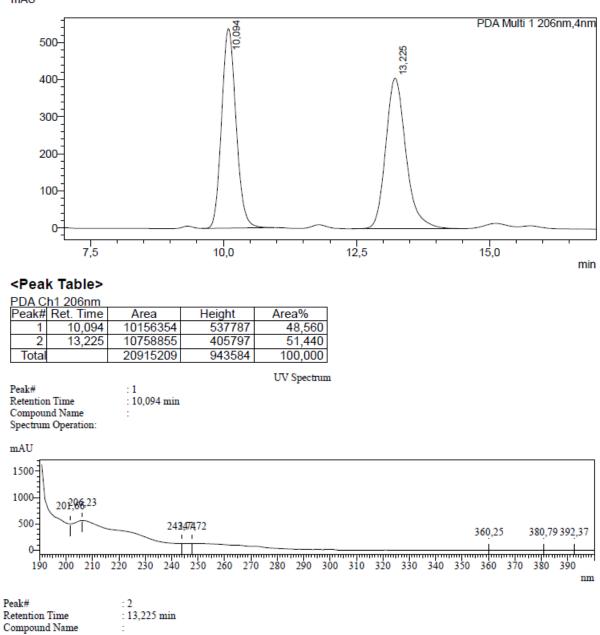
¹H NMR (CDCl₃, 400 MHz): δ 7.94 – 7.72 (m, 1H, CH_{Ar}), 7.62 – 7.48 (m, 3H, CH_{Ar}), 7.49 – 7.07 (m, 19H, CH_{Ar}), 6.85 – 6.71 (m, 1H, CH_{Ar}), 3.92 – 3.74 (m, 1H, P(O)Ph₂CH), 2.92 – 2.73 (m, 1H, PPh₂CHH), 2.63 – 2.45 (m, 1H, PPh₂CHH).

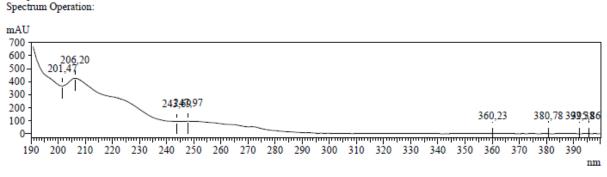

¹³C NMR (CDCl₃, 101 MHz): δ 161.8, 159.3, 138.5, 138.3, 137.4, 137.2, 134.5, 134.3, 132.4, 132.0, 131.8, 131.4, 131.3, 131.2, 130.9, 130.7, 130.6, 130.4, 129.6, 128.9, 128.8, 128.8, 128.7, 128.4, 128.3, 128.2, 128.1, 128.0, 124.7, 123.4, 123.3, 114.9, 114.7, 34.0, 33.3, 29.1, 29.0. (Due to C-P, C-F coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹P NMR (CDCl₃, 162 MHz): δ 33.4 (dd, J = 33.1, 4.2 Hz), -19.1 (dd, J = 33.1, 5.9 Hz). ¹⁹F NMR (CDCl₃, 376 MHz) δ -116.8.

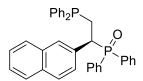
HRMS (ESI, m/Z): calcd. for C₃₂H₂₈FOP₂ [M+H]⁺: 509.1594, found: 509.1592.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 10.1 (minor) and 13.2 (major).


<Chromatogram> mAU



PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	10,110	730368	38502	3,496
2	13,236	20161601	791032	96,504
Total		20891969	829534	100,000

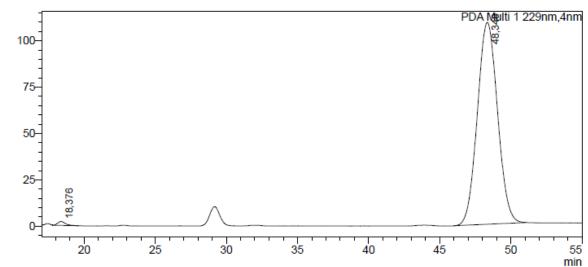

<Chromatogram>

(S)-(2-(diphenylphosphaneyl)-1-(naphthalen-2-yl)ethyl)diphenylphosphine oxide (3ma)

Following general procedure A: The reaction was performed with 1m (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), barton's base (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 48 h. Product **3ma** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [80% yield, 99% ee].

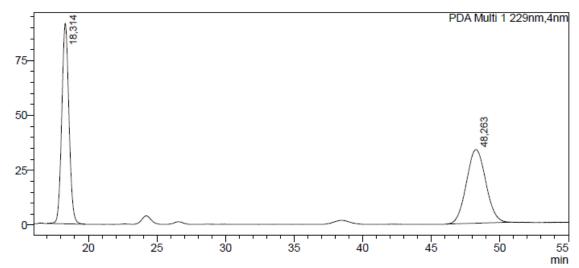
¹H NMR (CDCl₃, 400 MHz): δ 7.82 – 7.61 (m, 7H, CH_{Ar}), 7.61 – 7.51 (m, 1H, CH_{Ar}), 7.48 – 7.06 (m, 19H, CH_{Ar}), 3.67 – 3.31 (m, 1H, P(O)Ph₂CH), 3.07 – 2.87 (m, 1H, PPh₂CHH), 2.74 – 2.48 (m, 1H, PPh₂CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 138.8, 138.6, 137.4, 137.2, 134.5, 134.3, 133.4, 133.4, 133.1, 133.0, 133.0, 132.8, 132.8, 132.5, 132.4, 132.0, 131.9, 131.9, 131.8, 131.5, 131.4, 131.4, 131.4, 131.0, 131.0, 131.0, 129.7, 129.7, 129.4, 129.3, 128.9, 128.9, 128.8, 128.8, 128.3, 128.2, 128.1, 128.1, 128.1, 128.1, 128.0, 127.9, 127.8, 127.7, 127.7, 126.0, 125.8, 125.8, 44.1, 43.9, 43.4, 43.3, 29.3, 29.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P NMR** (**CDCl₃**, **162 MHz**): δ 33.4 (d, *J* = 31.2 Hz), -19.7 (d, *J* = 31.2 Hz).

HRMS (ESI, m/Z): calcd. for C₃₆H₃₁OP₂ [M+H]⁺: 541.1845, found: 541.1838.

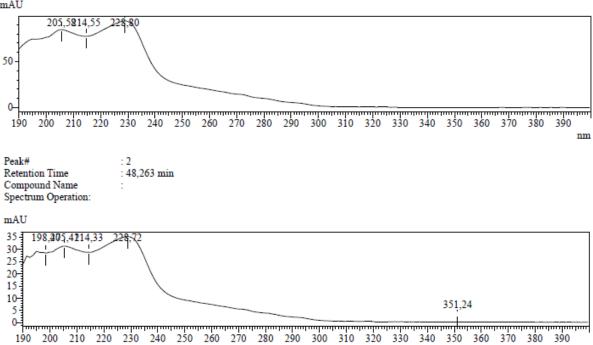
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 229 nm. Retention time (min): 18.4 (minor) and 48.3 (major).


<Chromatogram>

mAU

PDA Ch1 229nm				
Peak#	Ret. Time	Area	Height	Area%
1	18,376	77223	2087	0,713
2	48,348	10754932	108898	99,287
Total		10832155	110985	100,000

PDA Ch1 229nm					
Peak#	Ret. Time	Area	Height	Area%	
1	18,314	3350789	91343	50,346	
2	48,263	3304761	33549	49,654	
Total		6655551	124892	100,000	


Peak# : 1 Retention Time : 18,314 min Compound Name Spectrum Operation:

Ph₂P

Ο Ph

Рh

UV Spectrum

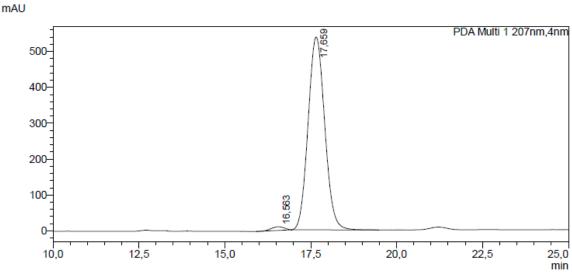
(S)-(2-(diphenylphosphaneyl)-1-(thiophen-3-yl)ethyl)diphenylphosphine oxide (3na)

nm

S33

Following general procedure A: The reaction was performed with 1n (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3na** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [97% yield, 97% ee].

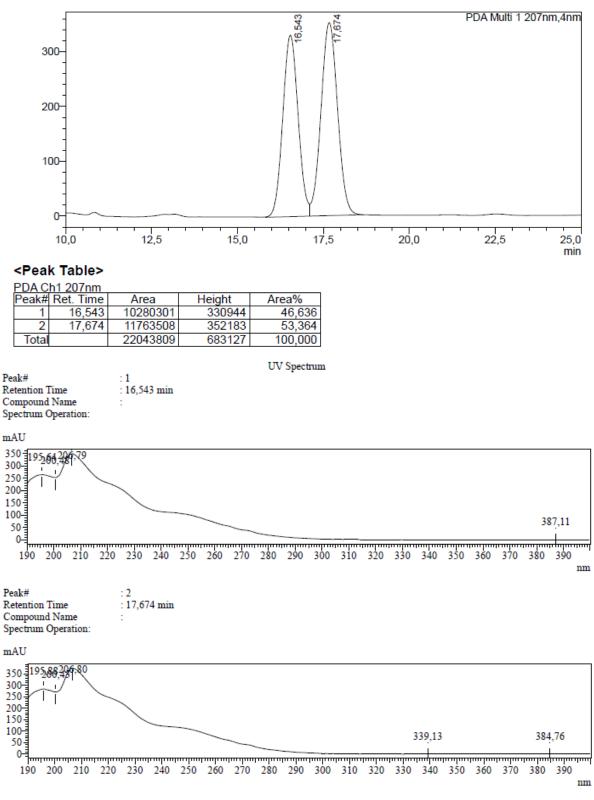

¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.76 – 7.08 (m, 21H, CH_{Ar}), 6.99 (s, 2H, CH_{Ar}), 3.52 – 3.45 (m, 1H, P(O)Ph₂CH), 2.82 – 2.74 (m, , 1H, PPh₂CHH), 2.54 – 2.50 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 138.8, 138.6, 137.4, 137.2, 135.8, 134.4, 134.2, 132.6, 132.0, 131.8, 131.4, 130.9, 129.6, 128.8, 128.3, 128.2, 125.6, 124.2, 39.6, 38.8, 29.2, 29.0. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

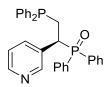
³¹**P** NMR (CDCl₃, 162 MHz): δ 30.0 (d, J = 31.5 Hz), -21.6 (d, J = 31.5 Hz).

HRMS (ESI, m/Z): calcd. for C₃₀H₂₇OP₂S [M+H]⁺: 497.1252, found: 497.1250.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 16.6 (minor) and 17.7 (major).



<Peak Table>


PDA Chi 207nm				
Peak#	Ret. Time	Area	Height	Area%
1	16,563	278459	10345	1,516
2	17,659	18088698	536979	98,484
Total		18367157	547324	100,000

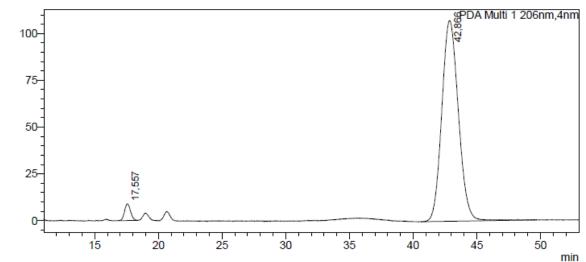
<Chromatogram>

(S)-(2-(diphenylphosphaneyl)-1-(pyridin-3-yl)ethyl)diphenylphosphine oxide (3oa)

Following general procedure A: The reaction was performed with 10 (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **30a** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [80% yield, 94% ee].

¹**H** NMR (CDCl₃, 400 MHz): δ 8.36 (d, J = 4.7 Hz, 1H, CH_{Ar}), 8.08 (s, 1H, CH_{Ar}), 7.83 (d, J = 8.1 Hz, 1H, CH_{Ar}), 7.66 – 7.57 (m, 2H, CH_{Ar}), 7.57 – 7.50 (m, 1H, CH_{Ar}), 7.48 – 7.40 (m, 3H, CH_{Ar}), 7.39 – 7.33 (m, 2H, CH_{Ar}), 7.31 – 7.21 (m, 5H, CH_{Ar}), 7.20 – 7.11 (m, 8H, CH_{Ar}), 3.36 – 3.20 (m, 1H, P(O)Ph₂CH), 2.91 – 2.75 (m, 1H, PPh₂CHH), 2.63 – 2.46 (m, 1H, PPh₂CHH).

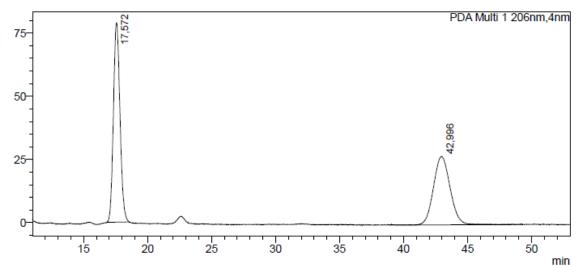
¹³C NMR (CDCl₃, 101 MHz): δ 151.3, 151.2, 148.7, 138.3, 138.1, 136.9, 136.8, 136.8, 136.7, 134.4, 134.2, 132.2, 132.2, 132.0, 131.8, 131.8, 131.7, 131.4, 131.3, 130.8, 130.7, 129.8, 129.1, 129.0, 129.0, 128.9, 128.5, 128.4, 128.4, 128.4, 128.3, 123.6, 41.3, 41.2, 40.7, 40.5, 28.7, 28.5. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P NMR** (**CDCl**₃, **162 MHz**): δ 30.10(d, J = 30.6 Hz), -22.5 (d, J = 30.6 Hz).

HRMS (ESI, m/Z): calcd. for C₃₁H₂₈NOP₂ [M+H]⁺: 492.1641, found: 492.1636.

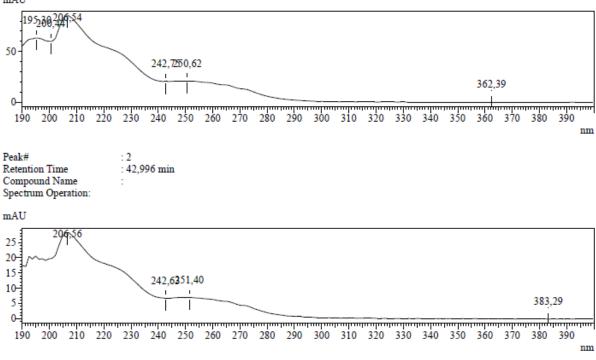
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 17.6 (minor) and 42.9 (major).

<Chromatogram>


mAU

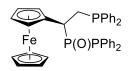
<Peak Table>

	PDA Ch1 206nm				
[Peak#	Ret. Time	Area	Height	Area%
[1	17,557	294681	8999	2,944
[2	42,866	9716073	107295	97,056
[Total		10010755	116294	100,000



<Peak Table>

1 206nm			
Ret. Time	Area	Height	Area%
17,572	2804045	78935	53,236
42,996	2463152	27088	46,764
	5267197	106023	100,000
	Ret. Time 17,572	Ret. Time Area 17,572 2804045 42,996 2463152	Ret. Time Area Height 17,572 2804045 78935 42,996 2463152 27088

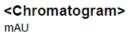

Peak# : 1 Retention Time : 17,572 min Compound Name : Spectrum Operation:

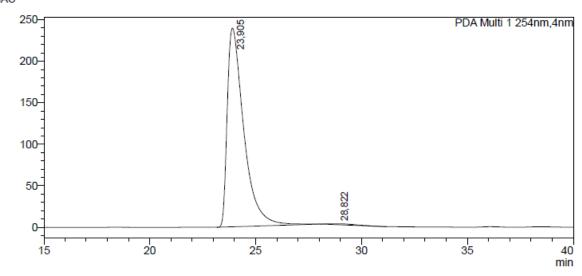
mAU

UV Spectrum

(S)-(2-(diphenylphosphaneyl)-1-ferrocenylethyl)diphenylphosphine oxide (3pa)

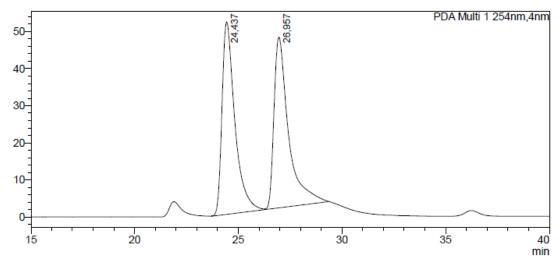
Following general procedure A: The reaction was performed with 1p (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product **3pa** was obtained as an orange solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [92% yield, 98% ee].

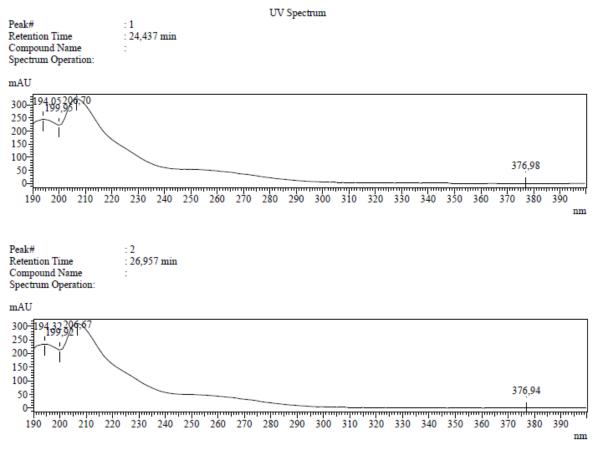

¹H NMR (CDCl₃, 400 MHz): δ 7.61 – 7.56 (m, 2H, CH_{Ar}), 7.47 – 7.38 (m, 7H, CH_{Ar}), 7.37 – 7.24 (m, 11H, CH_{Ar}), 4.25 (d, J = 1.2 Hz, 1H, CH_{Fe}), 4.09 – 4.08 (m, 1H, CH_{Fe}), 4.05 (s, 5H, CH_{Fe}), 3.91 – 3.89 (m, 1H, CH_{Fe}), 3.51 (d, J = 1.3 Hz, 1H, CH_{Fe}), 3.46 – 3.37 (m, 1H, P(O)Ph₂CH), 3.06 – 2.97 (m, 1H, PPh₂CHH), 2.59 – 2.49 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 139.8, 139.7, 138.0, 137.8, 133.6, 133.4, 133.0, 132.8, 132.1, 132.0, 132.0, 131.7, 131.6, 131.6, 131.5, 131.4, 131.4, 130.7, 128.9, 128.7, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.0, 127.9, 86.2, 86.2, 69.3, 69.2, 68.1, 68.1, 67.5, 67.2, 38.4, 38.2, 37.8, 37.6, 28.1, 28.0. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

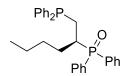
³¹**P** NMR (CDCl₃, 162 MHz): δ 33.5 (d, J = 20.3 Hz), -17.5 (d, J = 20.3 Hz).

HRMS (ESI, m/Z): calcd. for C₃₆H₃₃FeOP₂ [M+H]⁺: 599.1351, found: 599.1354.


HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 95:05, 0.5 mL/min., 40 °C, detection at 254 nm. Retention time (min): 23.9 (major) and 28.8 (minor).



PDA Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area%		
1	23,905	13013279	239216	99,168		
2	28,822	109220	1116	0,832		
Total		13122499	240332	100,000		

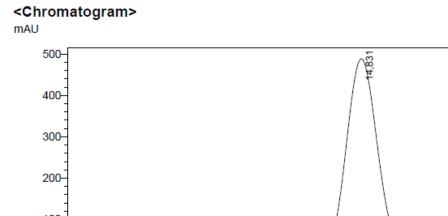


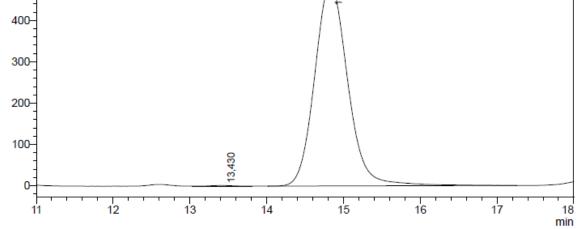
PDA C	h1 254nm			
Peak#	Ret. Time	Area	Height	Area%
1	24,437	2234712	51887	49,871
2	26,957	2246236	46012	50,129
Tota		4480948	97899	100,000

(S)-(1-(diphenylphosphaneyl)hexan-2-yl)diphenylphosphine oxide (3qa)

Following general procedure A: The reaction was performed with 1q (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), tPentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 3ga was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [95% yield, >99% ee].

¹H NMR (CDCl₃, 400 MHz): δ 7.68 – 7.60 (m, 2H, CH_{Ar}), 7.53 – 7.19 (m, 18H, CH_{Ar}), 2.36 -2.22 (m, 2H), 2.22 - 2.08 (m, 1H), 2.07 - 1.86 (m, 1H), 1.79 - 1.60 (m, 1H), 1.55 - 1.35 (m, 1H), 1.22 – 1.00 (m, 3H), 0.70 (t, *J* = 7.1 Hz, 3H, CH₃).

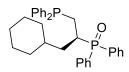

¹³C NMR (CDCl₃, 101 MHz): δ 138.8, 138.6, 137.5, 137.3, 134.3, 134.1, 133.3, 132.7, 132.3, 132.2, 132.0, 131.8, 131.6, 131.6, 131.6, 131.2, 131.1, 131.0, 130.9, 129.5, 128.8, 128.8, 128.7, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 34.5, 34.4, 33.8, 33.7, 30.2, 30.2, 30.2, 30.2, 28.2, 28.2, 28.1, 28.1, 27.4, 27.4, 27.2, 27.2, 22.9, 13.8. (Due to C-P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P NMR (CDCl₃, 162 MHz):** δ 33.4 (d, J = 32.2 Hz), -21.5 (d, J = 32.2 Hz).

HRMS (ESI, m/Z): calcd. for C₃₀H₃₃OP₂ [M+H]⁺: 471.2001, found: 471.1998.

HPLC: Chiracel-ADH, n-heptane/i-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 13.4 (minor) and 14.8 (major).

PDA Multi 1 207nm,4nm


<Peak Table> 014 007

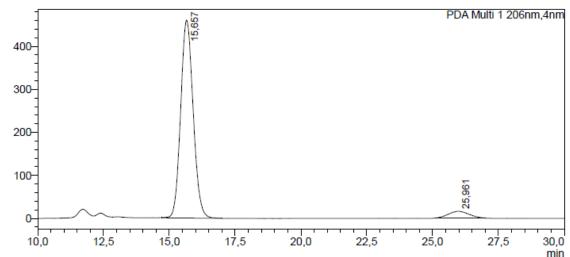
PDA C	h1 207nm			
Peak#	Ret. Time	Area	Height	Area%
1	13,430	33676	1495	0,230
2	14,831	14635416	489316	99,770
Total		14669092	490810	100,000

(S)-(1-(diphenylphosphaneyl)hexan-2-yl)diphenylphosphine oxide (3ra)

Following general procedure A: The reaction was performed with 1r (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 3ra was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [80% yield, 90% ee].

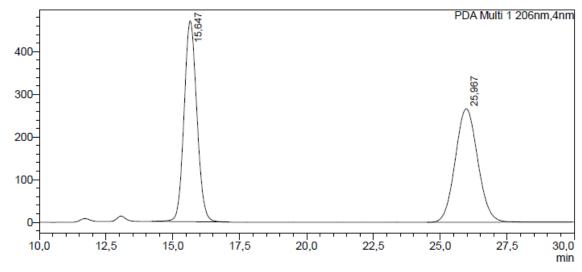
¹**H** NMR (CDCl₃, 400 MHz): δ 7.71 – 7.62 (m, 2H, CH_{Ar}), 7.58 – 7.49 (m, 2H, CH_{Ar}), 7.49 – 7.21 (m, 16H, CH_{Ar}), 2.48 – 2.35 (m, 1H, P(O)Ph₂CH), 2.34 – 2.22 (m, 1H, PPh₂CHH), 2.21 – 2.08 (m, 1H, PPh₂CHH), 1.83 – 1.65 (m, 2H), 1.62 – 1.36 (m, 5H), 1.14 – 0.67 (m, 5H), 0.61 – 0.45 (m, 1H).

¹³C NMR (CDCl₃, 101 MHz): δ 139.0, 138.9, 137.8, 137.6, 134.4, 134.2, 133.5, 132.8, 132.6, 132.2, 132.1, 131.8, 131.6, 131.6, 131.5, 131.2, 131.2, 131.1, 131.0, 129.4, 128.7, 128.7, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 36.9, 36.9, 36.8, 36.8, 36.0, 35.9, 35.9, 35.9, 33.4, 33.1, 31.6, 31.5, 30.9, 30.8, 29.1, 29.1, 28.0, 28.9, 26.5, 26.3, 26.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets) ³¹P NMR (CDCl₃, 162 MHz): δ 36.4 (d, J = 31.0 Hz), -17.3 (d, J = 31.0 Hz).

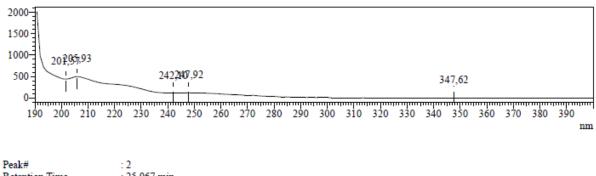

HDMS (FSI m/7); colled for ConHarOD [M | H]⁺; 511 2214 found: 511 2212

HRMS (ESI, m/Z): calcd. for C₃₃H₃₇OP₂ [M+H]⁺: 511.2314, found: 511.2312.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 15.7 (major) and 26.0 (minor).

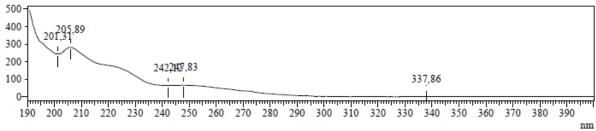

<Chromatogram>

PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	15,657	15177338	459969	94,761
2	25,961	839128	15579	5,239
Total		16016466	475547	100,000

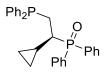


<Peak Table>

PDA Ch1 206nm					
Peak#	Ret. Time	Area	Height	Area%	
1	15,647	15681927	470262	50,178	
2	25,967	15570938	265615	49,822	
Total		31252866	735877	100,000	


Peak# : 1 Retention Time : 15,647 min Compound Name : Spectrum Operation:

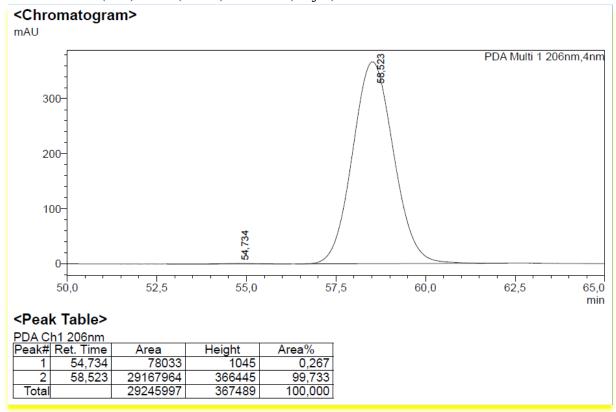
mAU



UV Spectrum

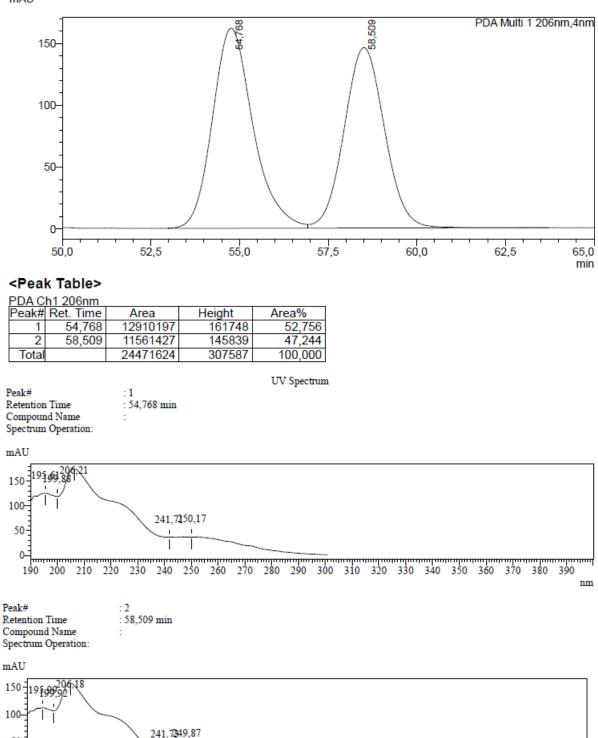
(S)-(1-cyclopropyl-2-(diphenylphosphaneyl)ethyl)diphenylphosphine oxide (3sa)

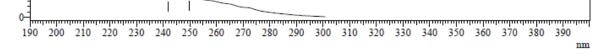
Following general procedure A: The reaction was performed with **1s** (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product **3sa** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [90% yield, >99% ee].

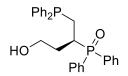

¹H NMR (CDCl₃, 400 MHz): δ 7.77 – 7.62 (m, 2H, CH_{Ar}), 7.62 – 7.51 (m, 2H, CH_{Ar}), 7.51 – 7.20 (m, 16H, CH_{Ar}), 2.55 – 2.37 (m, 2H), 1.75 – 1.50 (m, 1H), 1.11 – 0.91 (m, 1H), 0.60 – 0.46 (m, 1H), 0.42 – 0.27 (m, 1H), 0.19 – 0.04 (m, 1H), 0.37 – 0.54 (m, 1H).

¹³C NMR (CDCl₃, 101 MHz): δ 139.2, 139.1, 138.1, 137.9, 134.1, 133.9, 133.6, 132.7, 132.6, 132.3, 132.1, 131.7, 131.7, 131.5, 131.5, 131.4, 131.3, 131.2, 131.1, 129.3, 128.8, 128.8, 128.7, 128.4, 128.4, 128.4, 128.3, 128.3, 41.0, 40.8, 40.3, 40.2, 29.1, 28.9, 11.0, 7.0, 6.9, 6.9, 6.8, 5.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 32.4 (d, J = 30.3 Hz), -20.4 (d, J = 30.3 Hz).


HRMS (ESI, m/Z): calcd. for C₂₉H₂₉OP₂ [M+H]⁺: 455.1688, found: 455.1684.

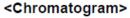

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 206 nm. Retention time (min): 54.7 (minor) and 58.5 (major).



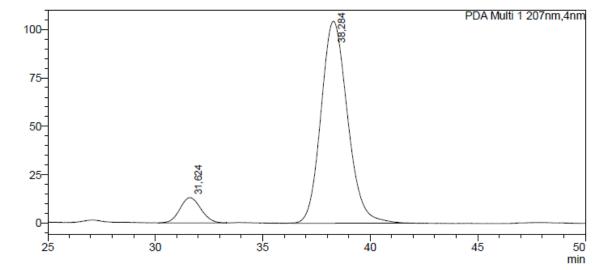
50

(S)-(1-(diphenylphosphaneyl)-5-hydroxypentan-2-yl)diphenylphosphine oxide (3ta)

Following general procedure A: The reaction was performed with **1t** (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 5 days. Product **3ta** was obtained as a white solid after column chromatography (SiO₂, ethyl acetate/methanol =1:0.05) [61% yield, 82% ee].

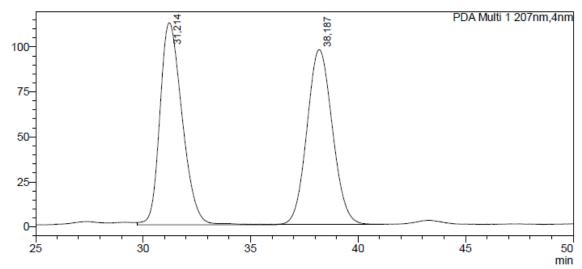

¹**H NMR (CDCl₃, 400 MHz):** δ 7.66 – 7.31 (m, 13H, CH_{Ar}), 7.32 – 7.24 (m, 7H, CH_{Ar}), 4.66 (br s, 1H, OH), 3.97 – 3.80 (m, 1H, OHCH*H*), 3.78 – 3.56 (m, 1H, OHCH*H*), 2.55 – 2.38 (m, 1H, P(O)Ph₂CH), 2.37 – 2.17 (m, 3H), 2.13 – 1.90 (m, 1H).

¹³C NMR (CDCl₃, 101 MHz): δ 138.0, 137.9, 136.6, 136.5, 134.2, 134.0, 131.9, 131.8, 131.7, 131.3, 131.2, 131.0, 130.9, 129.7, 128.8, 128.8, 128.5, 128.4, 58.5, 33.2, 33.1, 32.6, 32.4, 30.4, 30.3, 25.5, 25.3. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P NMR** (**CDCl₃**, **162 MHz**): δ 39.7 (d, *J* = 30.0 Hz), -19.6 (d, *J* = 30.0 Hz).

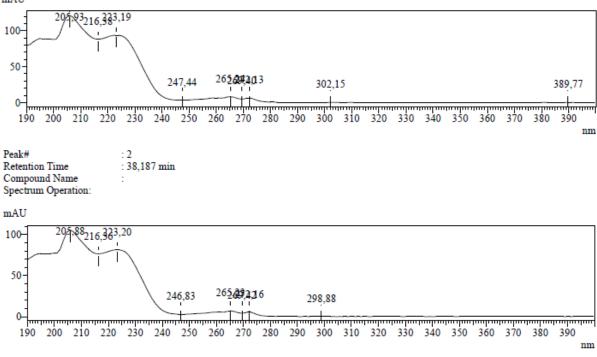
HRMS (ESI, m/Z): calcd. for C₂₈H₂₉O₂P₂ [M+H]⁺: 459.1637, found: 459.1638.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 31.6 (minor) and 38.3 (major). (*Due to the poor separation of the product* **3ta** *in the HPLC, the ee of this compound was determined from the corresponding oxidized derivative.*)



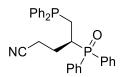
<Peak Table>

PDA C	h1 207nm			
Peak#	Ret. Time	Area	Height	Area%
1	31,624	884925	13047	8,999
2	38,284	8948920	104200	91,001
Tota		9833845	117247	100,000



<Peak Table>

PDA C	h1 207nm			
Peak#	Ret. Time	Area	Height	Area%
1	31,214	8067998	112164	50,305
2	38,187	7970298	97014	49,695
Total		16038296	209178	100,000

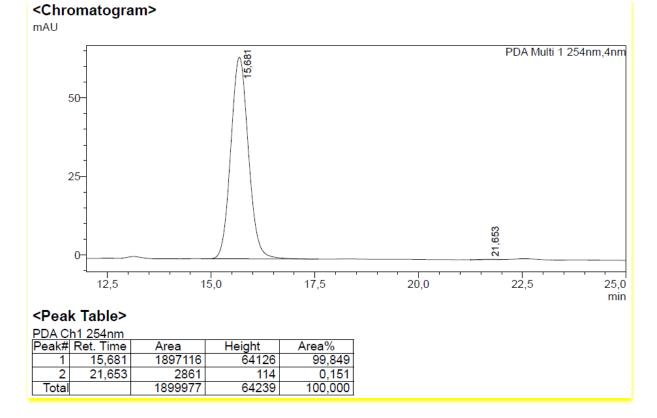

Peak# : 1 Retention Time : 31,214 min Compound Name : Spectrum Operation:

mAU

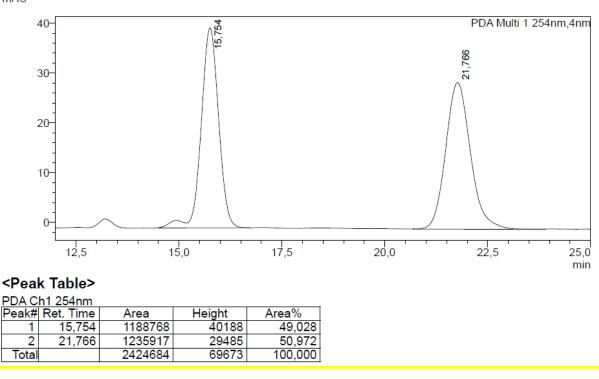
UV Spectrum

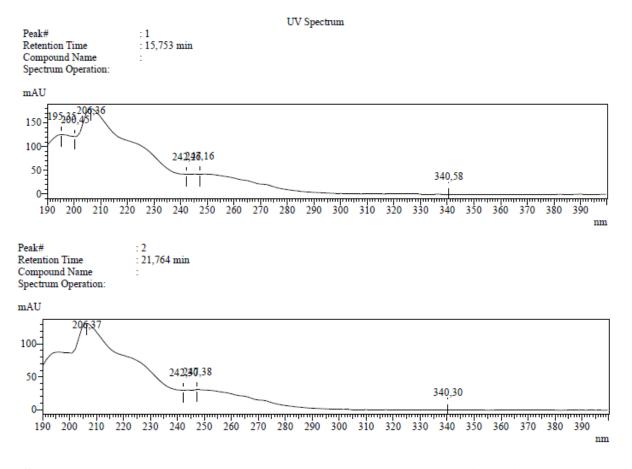
(S)-5-(diphenylphosphaneyl)-4-(diphenylphosphoryl)pentanenitrile (3ua)

Following general procedure A: The reaction was performed with 1u (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product **3ua** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [93% yield, >99% ee].

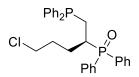

¹**H NMR (CDCl₃, 400 MHz):** δ 7.69 – 7.59 (m, 2H, CH_{Ar}), 7.55 – 7.39 (m, 7H, CH_{Ar}), 7.41 – 7.22 (m, 11H, CH_{Ar}), 2.69 – 2.45 (m, 2H), 2.43 – 2.26 (m, 3H), 2.24 – 2.04 (m, 2H).

¹³C NMR (CDCl₃, 101 MHz): δ 137.7, 137.6, 136.4, 136.2, 134.3, 134.1, 132.2, 132.1, 131.9, 131.9, 131.9, 131.7, 131.4, 131.3, 130.9, 130.8, 130.7, 130.6, 130.4, 129.8, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.6, 128.5, 119.3, 33.1, 33.0, 32.4, 32.3, 26.7, 26.6, 24.6, 24.5, 15.6, 15.6, 15.5. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

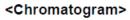

³¹**P** NMR (CDCl₃, 162 MHz): δ 35.5 (d, *J* = 29.3 Hz), -19.9 (d, *J* = 29.3 Hz).


HRMS (ESI, m/Z): calcd. for C₂₉H₂₈NOP₂ [M+H]⁺: 468.1641, found: 468.1640.

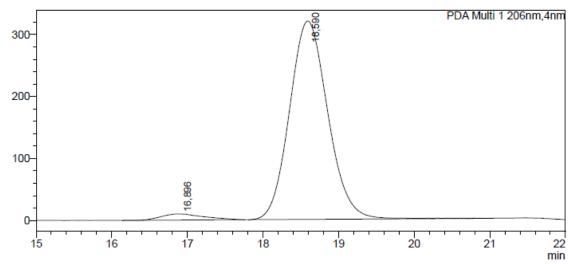
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 15.7 (major) and 21.7 (minor).



(S)-(5-chloro-1-(diphenylphosphaneyl)pentan-2-yl)diphenylphosphine oxide (3va)

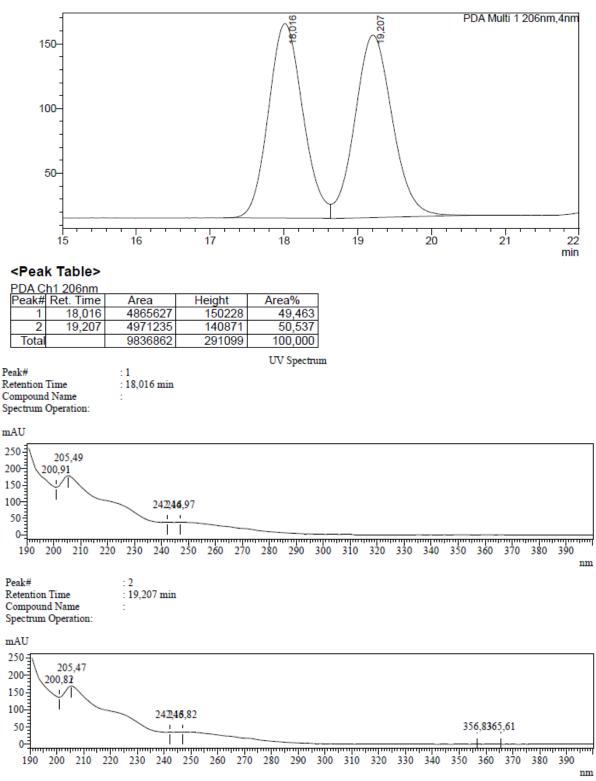

Following general procedure A: The reaction was performed with 1v (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 3va was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [88% yield, 93% ee].

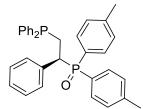
¹H NMR (CDCl₃, 400 MHz): δ 7.70 – 7.59 (m, 2H, CH_{Ar}), 7.56 – 7.21 (m, 18H, CH_{Ar}), 3.34 (t, *J* = 6.2 Hz, 2H,ClCH₂), 2.40 – 1.96 (m, 3H), 1.94 – 1.81 (m, 1H), 1.80 – 1.64 (m, 1H). ¹³C NMR (CDCl₃, 101 MHz): δ 138.4, 138.3, 137.0, 136.8, 134.2, 134.0, 132.8, 132.2, 132.0, 131.8, 131.7, 131.7, 131.6, 131.6, 131.2, 131.0, 130.9, 130.9, 130.8, 129.5, 128.8, 128.7, 128.6, 128.4, 128.4, 128.3, 44.9, 34.0, 33.9, 33.3, 33.2, 30.3, 30.3, 26.8, 26.7, 25.8, 25.7, 25.7, 25.6. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹**P NMR** (**CDCl₃**, **162 MHz**): δ 35.9 (d, *J* = 31.0 Hz), -19.2 (d, *J* = 31.0 Hz).

HRMS (ESI, m/Z): calcd. for C₂₉H₃₀ClOP₂ [M+H]⁺: 491,1455, found: 491,1455.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 16.9 (minor) and 18.6 (major).



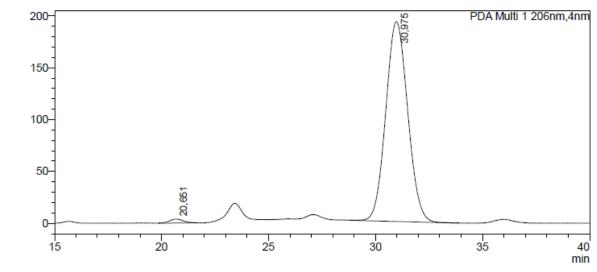

PDA Ch1 206nm					
Peak#	Ret. Time	Area	Height	Area%	
1	16,896	389883	9986	3,345	
2	18,590	11265734	319743	96,655	
Tota	I	11655617	329729	100,000	

<Chromatogram>

(S)-(2-(diphenylphosphaneyl)-1-phenylethyl)di-p-tolylphosphine oxide (3wa)

Following general procedure A: The reaction was performed with 1w (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 3wa was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [87% yield, 98% ee].

¹**H NMR** (**CDCl₃, 400 MHz**): δ 7.49 – 7.39 (m, 3H, CH_{Ar}), 7.38 – 7.25 (m, 4H, CH_{Ar}), 7.23 – 7.14 (m, 12H, CH_{Ar}), 7.12 – 7.02 (m, 2H, CH_{Ar}), 6.97 – 6.88 (m, 2H, CH_{Ar}), 3.28 – 3.12 (m, 1H, P(O)Ph₂CH), 2.93 – 2.72 (m, 1H, PPh₂CHH), 2.65 – 2.47 (m, 1H, PPh₂CHH), 2.40 (s, 3H, CH₃), 2.20 (s, 3H, CH₃).

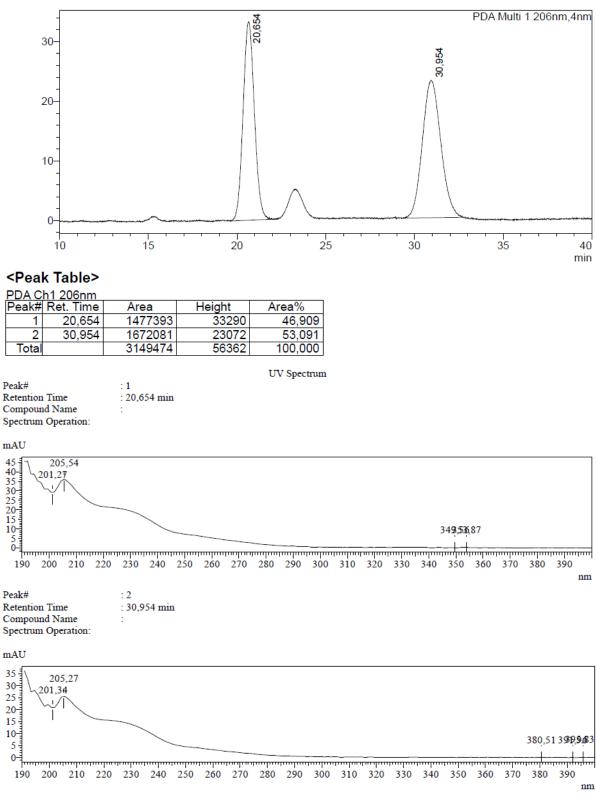

¹³C NMR (CDCl₃, 101 MHz): δ 142.2, 142.2, 141.6, 141.6, 139.1, 138.9, 137.4, 137.3, 135.8, 135.7, 135.7, 135.7, 134.6, 134.4, 131.9, 131.8, 131.5, 131.4, 131.1, 131.0, 130.2, 130.1, 129.6, 129.5, 128.8, 128.8, 128.7, 128.7, 128.4, 128.4, 128.3, 128.2, 128.0, 127.8, 127.4, 127.3, 44.0, 43.8, 43.3, 43.2, 29.2, 29.1, 29.0, 29.0, 21.8, 21.7, 21.6, 21.5. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 30.8 (d, J = 31.1 Hz), -22.6 (d, J = 31.1 Hz).

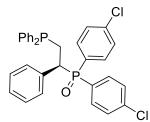
HRMS (ESI, m/Z): calcd. for C₃₄H₃₃OP₂ [M+H]⁺: 519.2001, found: 519.2003.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 20.7 (minor) and 31.0 (major).

<Chromatogram> mAU



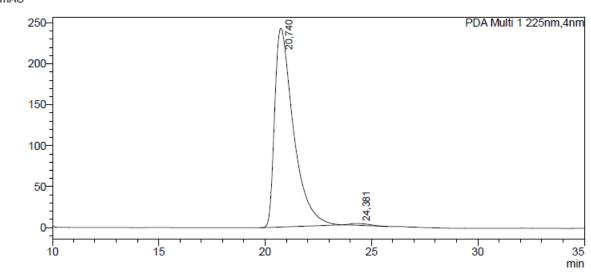
<Peak Table>


	PDA Ch1 206nm					
	Peak#	Ret. Time	Area	Height	Area%	
[1	20,651	171546	3840	1,231	
	2	30,975	13759361	192617	98,769	
	Total		13930906	196457	100,000	

45

(S)-bis(4-chlorophenyl)(2-(diphenylphosphaneyl)-1-phenylethyl)phosphine oxide (3xa)

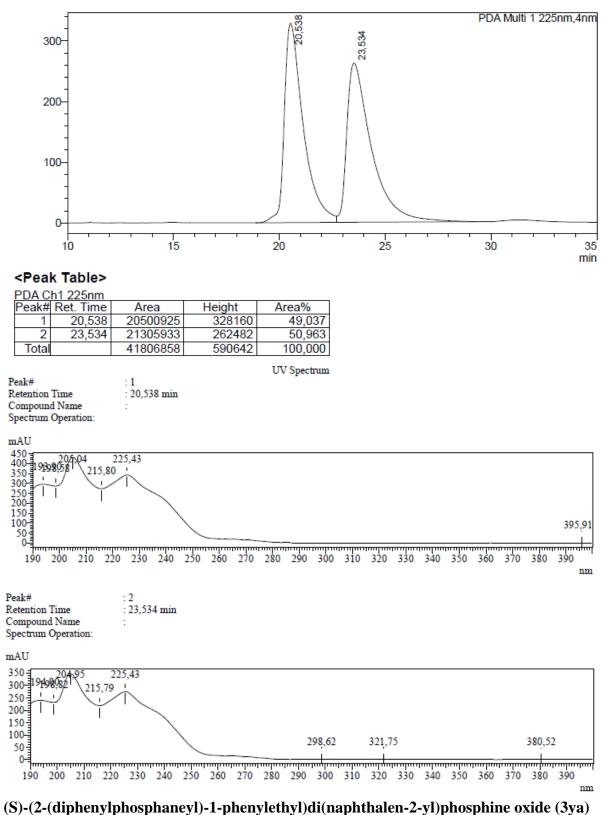
Following general procedure A: The reaction was performed with 1x (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 3xa was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [90% yield, 98% ee].

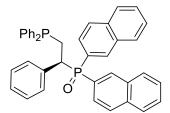

¹H NMR (CDCl₃, 400 MHz): δ 7.50 – 7.28 (m, 8H, CH_{Ar}), 7.27 – 7.07 (m, 15H, CH_{Ar}), 3.29 – 3.08 (m, 1H, P(O)Ph₂CH), 2.96 – 2.71 (m, 1H, PPh₂CHH), 2.59 – 2.37 (m, 1H, PPh₂CHH). ¹³C NMR (CDCl₃, 101 MHz): δ 138.6, 138.6, 138.3, 138.1, 138.0, 138.0, 137.3, 137.1, 134.8, 134.8, 134.7, 134.7, 134.4, 134.2, 132.6, 132.6, 132.2, 132.1, 131.8, 131.6, 130.7, 129.9, 129.9, 129.8, 129.7, 129.2, 129.1, 128.9, 128.8, 128.7, 128.6, 128.6, 128.4, 128.3, 128.2, 128.1, 127.7, 127.6, 43.7, 43.6, 43.1, 42.9, 29.1, 28.9. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 32.5 (d, J = 32.0 Hz), -19.9 (d, J = 32.0 Hz).

HRMS (ESI, m/Z): calcd. for C₃₂H₂₇Cl₂OP₂ [M+H]⁺: 559.0909, found: 559.0910.

HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 95:05, 0.5 mL/min., 40 °C, detection at 225 nm. Retention time (min): 20.7 (major) and 24.4 (minor). (*Due to the poor separation of the product* **3xa** in the HPLC, the ee of this compound was determined from the corresponding oxidized derivative.)


<Chromatogram> mAU

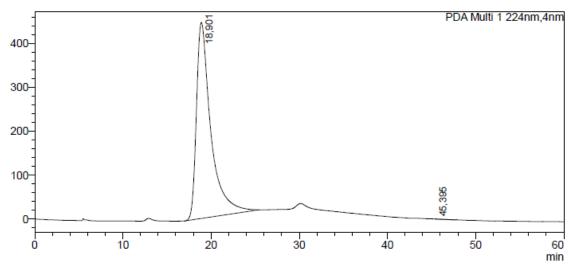


PDA Ch1 225nm					
Peak#	Ret. Time	Area	Height	Area%	
1	20,740	14942894	242870	99,071	
2	24,381	140070	2279	0,929	
Total		15082965	245149	100,000	

<Chromatogram>

Following general procedure A: The reaction was performed with 1y (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product **3ya** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [95% yield, >99% ee].

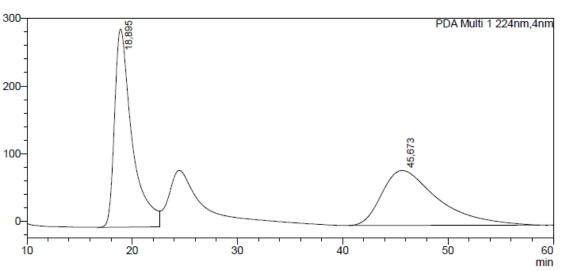
¹**H** NMR (CDCl₃, 400 MHz): δ 8.41 (d, J = 12.5 Hz, 1H, CH_{Ar}), 7.94 – 7.84 (m, 4H, CH_{Ar}), 7.71 – 7.50 (m, 6H, CH_{Ar}), 7.48 – 7.36 (m, 3H, CH_{Ar}), 7.35 – 7.21 (m, 7H, CH_{Ar}), 7.20 – 7.10 (m, 8H, CH_{Ar}), 3.59 – 3.40 (m, 1H, P(O)Ph₂CH), 3.05 – 2.85 (m, 1H, PPh₂CHH), 2.75 – 2.58 (m, 1H, PPh₂CHH).


¹³C NMR (CDCl₃, 101 MHz): δ 138.9, 138.7, 137.3, 137.1, 135.5, 135.5, 135.4, 135.4, 134.8, 134.8, 134.3, 134.3, 133.8, 133.8, 133.2, 132.8, 132.7, 132.3, 132.2, 131.9, 131.7, 130.2, 130.2, 129.9, 129.9, 129.7, 129.1, 129.1, 128.9, 128.9, 128.8, 128.7, 128.6, 128.6, 128.4, 128.3, 128.3, 128.2, 128.1, 128.0, 127.8, 127.7, 127.6, 127.5, 127.1, 126.6, 126.1, 126.0, 125.9, 125.8, 43.9, 43.7, 43.2, 43.1, 29.2, 29.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

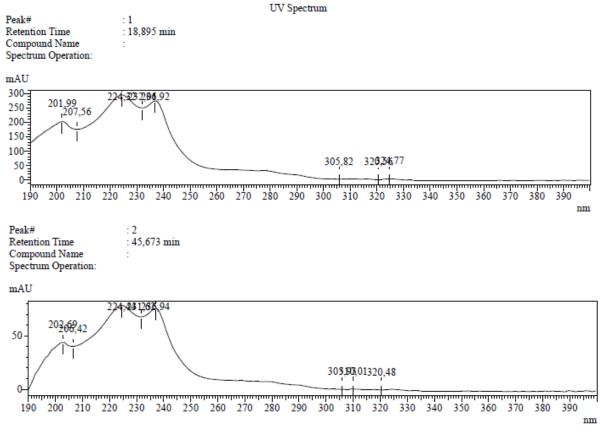
³¹**P** NMR (CDCl₃, 162 MHz) δ 30.8 (d, J = 31.0 Hz), -22.8 (d, J = 31.0 Hz).

HRMS (ESI, m/Z): calcd. for C₄₀H₃₃OP₂ [M+H]⁺: 590.2001, found: 590.2008.

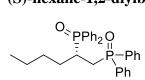
HPLC: Chiracel-OZH, *n*-heptane/*i*-PrOH 80:20, 0.5 mL/min., 40 °C, detection at 224 nm. Retention time (min): 18.9 (major) and 45.4 (minor). (*Due to the poor separation of the product* **3ya** *in the HPLC, the ee of this compound was determined from the corresponding oxidized derivative.*)


<Peak Table>

PDA C	h1 2	24nm	
Deel.#	Det	Time	


Peak#	Ret. Time	Area	Height	Area%
1	18,901	50624455	446250	99,976
2	45,395	12373	131	0,024
Total		50636828	446381	100,000

<Chromatogram> mAU

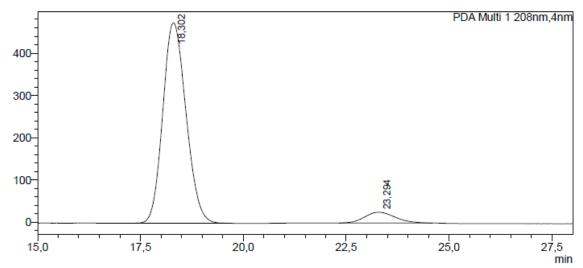


PDA C	h1 224nm			
Peak#	Ret. Time	Area	Height	Area%
1	18,895	33829336	292757	52,941
2	45,673	30070236	81148	47,059
Total		63899572	373905	100,000

(S)-hexane-1,2-diylbis(diphenylphosphine oxide) (3za)

Following general procedure A: The reaction was performed with 1z (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.010 mmol, 10 mol%), 2a (0.1 mmol, 1 equiv.), toluene (1.0 mL) at 60°C for 72 h. Then, the reaction mixture was quenched by 30% H₂O₂ aqueous solution (25 μ L) and was stirred for additional 30 minutes at room temperature. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) to give product 3za as a white solid [82% yield, 87% ee].

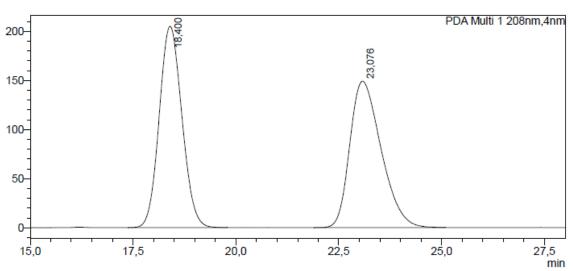
¹**H** NMR (CDCl₃, 400 MHz): δ 7.83 – 7.65 (m, 6H, CH_{Ar}), 7.54 – 7.30 (m, 14H, CH_{Ar}), 3.07 – 2.89 (m, 1H, P(O)Ph₂CH), 2.71 – 2.44 (m, 2H, P(O)Ph₂CH₂), 1.84 – 1.60 (m, 1H), 1.53 – 1.36 (m, 1H), 1.31 – 1.19 (m, 1H), 0.97 – 0.73 (m, 3H), 0.50 (t, *J* = 7.2 Hz, 3H, CH₃).


¹³C NMR (CDCl₃, 101 MHz): δ 134.0, 133.9, 133.0, 132.9, 132.7, 132.5, 131.9, 131.9, 131.8, 131.8, 131.7, 131.6, 131.3, 131.2, 131.1, 131.0, 130.9, 130.8, 130.8, 130.7, 31.7, 31.7, 31.0, 31.0, 29.2, 29.2, 28.1, 27.9, 27.2, 22.7, 13.5. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

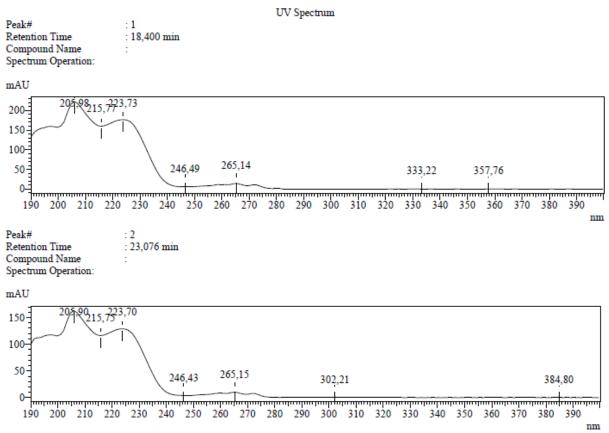
³¹**P** NMR (CDCl₃, 162 MHz): δ 37.0 (d, J = 47.4 Hz), 30.0 (d, J = 47.4 Hz).

HRMS (ESI, m/Z): calcd. for C₃₀H₃₂O₂P₂Na [M+Na]⁺: 509.1770, found: 509.1768.

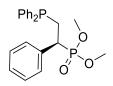
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 208 nm. Retention time (min): 18.3 (major) and 23.3 (minor).



<Peak Table>


PDA C	h1 208nm			
Peak#	Ret. Time	Area	Height	Area%
1	18,302	18627278	474484	93,503
2	23,294	1294244	25449	6,497
Total		19921522	499932	100,000

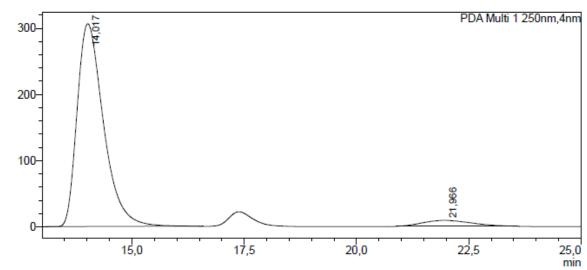
<Chromatogram>


mAU

PDA C	PDA Ch1 208nm						
Peak#	Ret. Time	Area	Height	Area%			
1	18,400	7875796	204969	49,988			
2	23,076	7879642	149129	50,012			
Total		15755438	354098	100,000			

dimethyl (S)-(2-(diphenylphosphaneyl)-1-phenylethyl)phosphonate (4a'a)

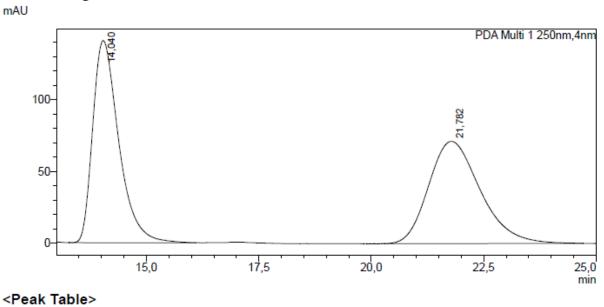
Following general procedure A: The reaction was performed with **1a'** (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 24 h. Product **4a'a** was obtained as colorless oil after column chromatography (SiO₂, pentane/ethyl acetate = 1:1) [88% yield, 90% ee].


¹**H** NMR (CDCl₃, 400 MHz): δ 7.51 – 7.45 (m, 2H, CH_{Ar}), 7.43 – 7.37 (m, 3H, CH_{Ar}), 7.36 – 7.23 (m, 10H, CH_{Ar}), 3.68 (d, *J* = 10.6 Hz, 3H, OCH₃), 3.42 (d, *J* = 10.6 Hz, 3H, OCH₃), 3.08 – 2.96 (m, 1H, P(O)(OCH₃)₂CH), 2.93 – 2.83 (m, 1H, PPh₂CHH), 2.76 – 2.65 (m, 1H, PPh₂CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 138.8, 138.7, 136.97, 136.9, 135.2, 135.2, 135.2, 135.2, 133.7, 133.6, 132.2, 132.1, 129.5, 129.5, 129.3, 128.7, 128.7, 128.6, 128.6, 128.3, 128.3, 127.6, 127.6, 53.6, 53.6, 52.7, 52.7, 41.5, 41.4, 40.6, 40.4, 29.2, 29.2, 29.1, 29.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets) ³¹P NMR (CDCl₃, 162 MHz): δ 30.4 (d, *J* = 43.3 Hz), -20.9 (d, *J* = 43.3 Hz).

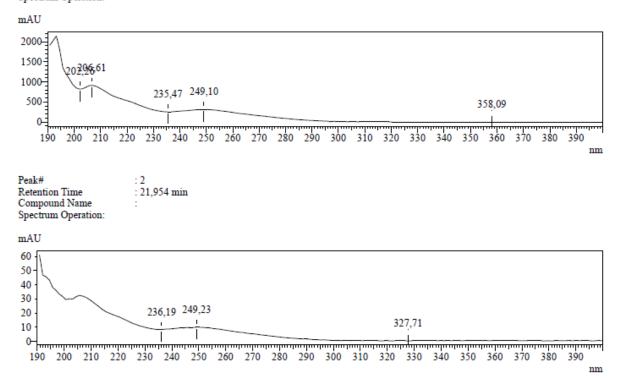
HRMS (ESI, m/Z): calcd. for C₂₂H₂₅O₃P₂ [M+H]⁺: 399.1273, found: 399.1280.

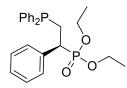
HPLC: Chiracel-OJH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 221 nm. Retention time (min): 14.0 (major) and 22.0 (minor).



<Peak Table>

PDA Ch1 250nm						
Peak#	Ret. Time	Area	Height	Area%		
1	14,017	12494368	306203	95,783		
2	21,966	550104	8066	4,217		
Total		13044472	314270	100,000		


<Chromatogram>


014.050

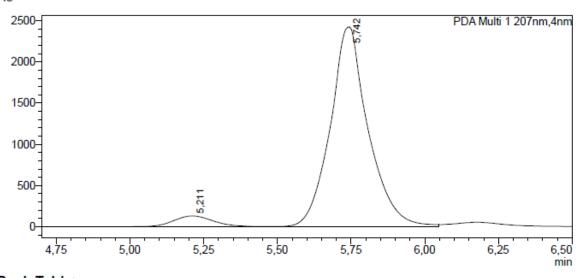
PDA Ch1 250nm						
Ret. Time	Area	Height	Area%			
14,040	5681470	140933	49,892			
21,782	5706021	71312	50,108			
	11387491	212245	100,000			

Peak# : 1 Retention Time : 14,031 min Compound Name : Spectrum Operation:

diethyl (S)-(2-(diphenylphosphaneyl)-1-phenylethyl)phosphonate (4b'a)

Following general procedure A: The reaction was performed with **1 b'** (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 24 h. Product **4b'a** was obtained as colorless oil after column chromatography (SiO₂, pentane/ethyl acetate = 1:1) [75% yield, 89% ee].

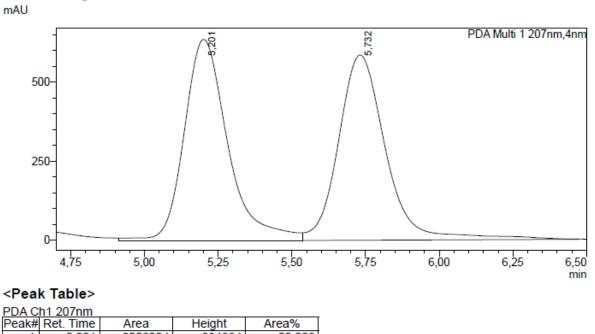
¹**H** NMR (CDCl₃, 400 MHz): δ 7.54 – 7.45 (m, 2H, CH_{Ar}), 7.43 – 7.36 (m, 3H, CH_{Ar}), 7.35 – 7.22 (m, 10H, CH_{Ar}), 4.11 – 4.03 (m, 1H, CH₃CHC*H*), 4.03 – 3.95 (m, 1H, CH₃CHC*H*), 3.91 – 3.82 (m, 1H, CH₃CHC*H*), 3.68 – 3.57 (m, 1H, CH₃CHC*H*), 3.03 – 2.94 (m, 1H, P(O)(OCH₂CH₃)₂C*H*), 2.94 – 2.87 (m, 1H, PPh₂CH*H*), 2.74 – 2.62 (m, 1H, PPh₂CH*H*), 1.29 (t, *J* = 7.1 Hz, 3H, CH₂CH₃), 1.05 (t, *J* = 7.1 Hz, 3H, CH₂CH₃).

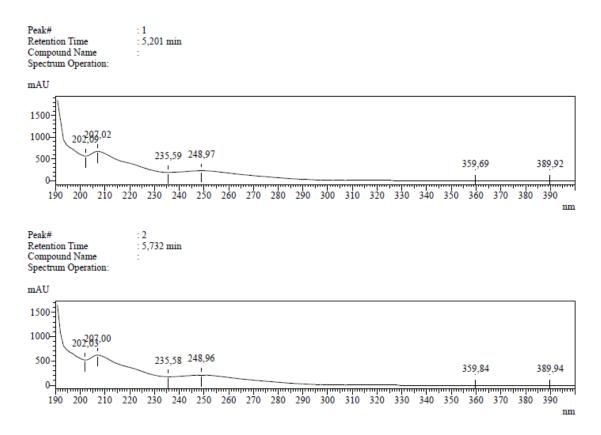

¹³C NMR (CDCl₃, 101 MHz): δ 139.0, 138.9, 137.1, 137.0, 135.5, 135.5, 135.5, 135.5, 133.8, 133.6, 132.2, 132.0, 129.6, 129.5, 129.3, 128.7, 128.6, 128.5, 128.5, 128.3, 128.3, 128.2, 127.5, 127.5, 62.8, 62.8, 61.9, 61.9, 41.9, 41.8, 41.0, 40.9, 29.3, 29.3, 29.2, 29.2, 16.4, 16.4, 16.2, 16.2. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 28.0 (d, J = 43.9 Hz), -20.8 (d, J = 43.9 Hz).

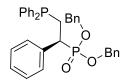
HRMS (**ESI, m/Z**): calcd. for C₂₄H₂₉O₃P₂ [M+H]⁺: 427.1586, found: 427.1594.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 5.2 (minor) and 5.7 (major).




<Peak Table>

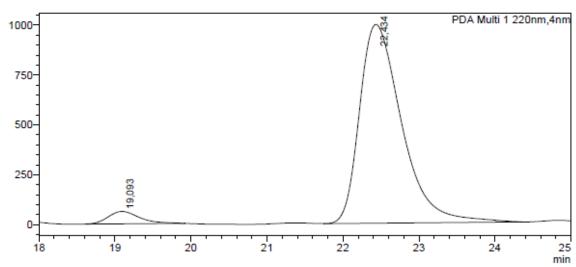
PDA C	h1 20/nm			
Peak#	Ret. Time	Area	Height	Area%
1	5,211	1296062	132007	5,629
2	5,742	21729204	2420890	94,371
Total		23025265	2552897	100,000


<Chromatogram>

Peak#	Ret. Time	Area	Height	Area%
1	5,201	6556204	634994	50,008
2	5,732	6554120	585460	49,992
Total		13110325	1220453	100,000

dibenzyl (S)-(2-(diphenylphosphaneyl)-1-phenylethyl)phosphonate (4c'a)

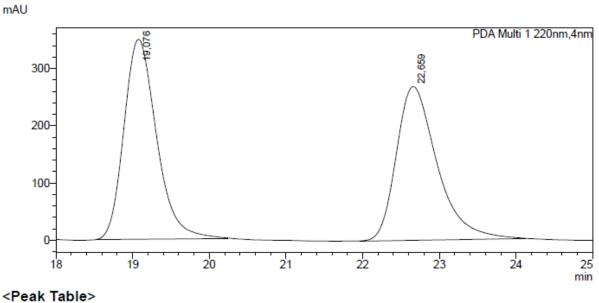
Following general procedure A: The reaction was performed with **1** c' (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 24 h. Product **4c'a** was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate = 2:1) [78% yield, 91% ee]. ¹**H NMR (CDCl₃, 400 MHz):** δ 7.45 – 7.11 (m, 23H, CH_{Ar}), 7.10 – 6.96 (m, 2H, CH_{Ar}), 5.01 (dd, *J* = 11.8, 9.0 Hz, 1H, PhCHC*H*), 4.87 (dd, *J* = 11.8, 7.6 Hz, 1H, PhCHC*H*), 4.75 (dd, *J* = 11.8, 6.8 Hz, 1H, PhCHC*H*), 4.48 (dd, *J* = 11.8, 8.0 Hz, 1H, PhCHC*H*), 3.10 – 2.95 (m, 1H, P(O)(OBn)₂C*H*), 2.90 – 2.80 (m, 1H, PPh₂CH*H*), 2.69 – 2.56 (m, 1H, PPh₂CH*H*). ¹³C NMR (CDCl₃, 101 MHz): δ 139.3, 139.3, 139.2, 139.2, 137.3, 137.1, 136.9, 136.8, 136.8, 136.7, 135.7, 135.6, 135.6, 134.2, 134.0, 132.6, 132.4, 130.1, 130.0, 129.7, 129.1, 129.0, 129.0, 128.8, 128.8, 128.7, 128.7, 128.6, 128.4, 128.2, 128.1, 128.0, 68.7, 68.6, 67.9, 67.8, 42.8, 42.6, 41.4, 41.2, 29.6, 29.5, 29.4, 29.4. (Due to C–P coupling and the complexity of


the spectrum, doublets cannot be assigned and they are listed as singlets)

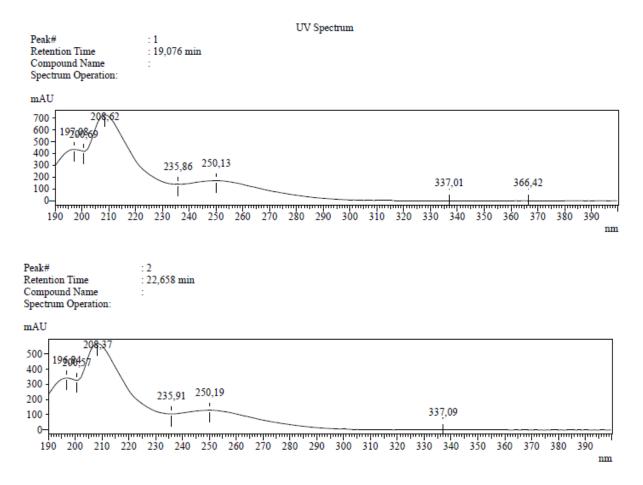
³¹**P NMR (CDCl₃, 162 MHz):** δ 25.9 (d, J = 44.6 Hz), -24.2 (d, J = 44.6 Hz).

HRMS (**ESI**, **m**/**Z**): calcd. for C₃₄H₃₃O₃P₂ [M+H]⁺: 551.1899, found: 551.1898.

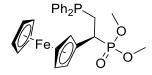
HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 250 nm. Retention time (min): 19.1 (minor) and 22.4 (major).



<Peak Table>


	h1 220nm			
Peak#	Ret. Time		Height	Area%
1	19,093	1795013	62148	4,465
2	22,434	38403152	996123	
Total		40198165	1058271	100,000

<Chromatogram>

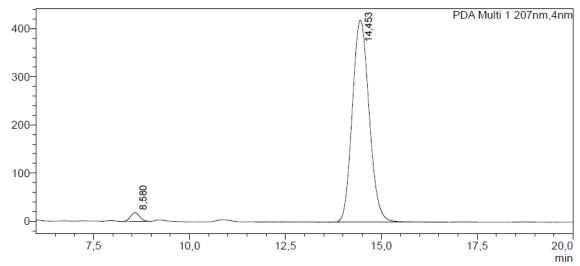


PDA Ch1 220nm

Peak#	Ret. Time	Area	Height	Area%
1	19,076	10350974	349197	50,973
2	22,659	9955942	268544	49,027
Total		20306915	617740	100,000

dimethyl (S)-(2-(diphenylphosphaneyl)-1-ferrocenylethyl)phosphonate (4d'a)

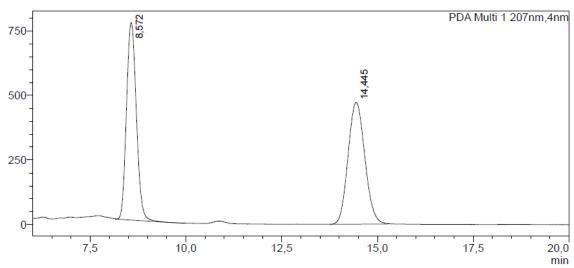
Following general procedure A: The reaction was performed with 1 d' (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 4d'a was obtained as an oringe solid after column chromatography (SiO₂, pentane/ethyl acetate = 1:1) [98% yield, 95% ee]. ¹H NMR (CDCl₃, 400 MHz): δ 7.61 – 7.55 (m, 2H, CH_{Ar}), 7.52 – 7.46 (m, 2H, CH_{Ar}), 7.43 –


7.31 (m, 6H, CH_{Ar}), 4.30 – 4.27 (m, 1H, CH_{Fe}), 4.24 – 4.20 (m, 1H, CH_{Fe}), 4.16 – 4.12 (m, 2H, CH_{Fe}), 4.04 – 3.97 (m, 5H, CH_{Fe}), 3.56 (d, J = 10.7 Hz, 1H, OCH₃), 3.49 (d, J = 10.5 Hz, 1H, OCH₃), 3.00 – 2.80 (m, 2H, P(O)(OCH₃)₂CH, PPh₂CHCH), 2.70 – 2.55 (m, 1H, PPh₂CHCH). ¹³C NMR (CDCl₃, 101 MHz): δ 139.7, 139.5, 138.3, 138.1, 133.3, 133.1, 132.9, 129.0, 128.8, 128.8, 128.7, 128.7, 128.6, 86.0, 86.0, 86.0, 69.3, 69.3, 69.3, 69.2, 69.0, 69.0, 67.8, 67.7, 67.5, 67.5, 67.4, 53.3, 53.2, 53.2, 52.7, 52.7, 52.6, 52.6, 35.8, 35.6, 34.4, 34.2, 29.9, 29.8, 29.7, 29.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P NMR (CDCl₃, 162 MHz):** δ 26.7 (d, J = 15.0 Hz), -19.3 (d, J = 15.0 Hz).

HRMS (ESI, m/Z): calcd. for C₂₆H₂₉FeO₃P₂ [M+H]⁺: 507.0936, found: 507.0934.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 207 nm. Retention time (min): 8.6 (minor) and 14.5 (major).

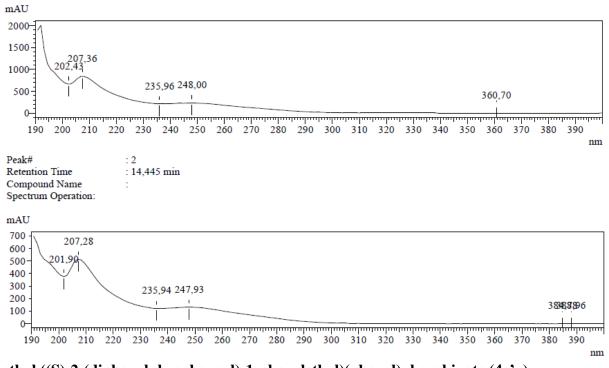


PDA Ch1 207nm

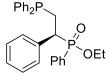
Peak#	Ret. Time	Area	Height	Area%
1	8,580	304262	18190	2,317
2	14,453	12827681	419380	97,683
Total		13131943	437570	100,000

<Chromatogram>

mAU



PDA Ch1 207nm

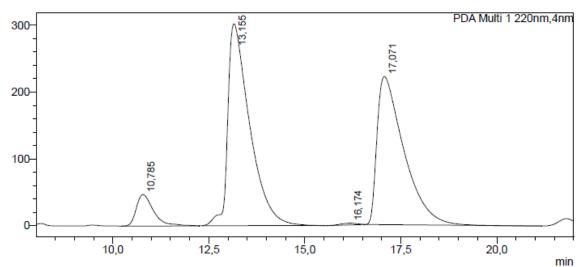

Peak	# Ret. Time	Area	Height	Area%
1	8,572	13707933	764334	48,845
2	2 14,445	14355942	471232	51,155
Tota	al	28063875	1235566	100,000

UV Spectrum

Peak# : 1 Retention Time : 8,572 min Compound Name : Spectrum Operation:

ethyl ((S)-2-(diphenylphosphaneyl)-1-phenylethyl)(phenyl)phosphinate (4e'a)

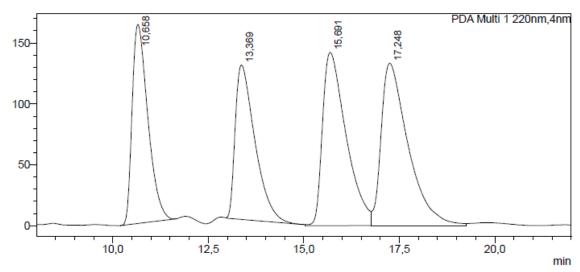
Following general procedure A: The reaction was performed with 1 e' (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Product 4e'a was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate = 1:1) [88% yield, 99% (80%) ee, 1:1 dr].


¹H NMR (CDCl₃, 400 MHz): δ 7.55 – 7.41 (m, 2H, CH_{Ar}), 7.41 – 7.30 (m, 4H, CH_{Ar}), 7.30 – 7.14 (m, 11H, CH_{Ar}), 7.13 – 7.04 (m, 2H, CH_{Ar}), 7.03 – 6.90 (m, 1H, CH_{Ar}), 4.20 – 3.67 (m, 2H, CH₃CH₂), 3.16 – 2.50 (m, 3H, PPh₂CH₂, PhP(O)(OEt)CH), 1.37 – 0.90 (m, 3H, CH₂CH₃). ¹³C NMR (CDCl₃, 101 MHz): δ 141.8, 141.7, 139.7, 139.6, 139.2, 139.1, 138.0, 138.0, 137.7, 137.6, 136.5, 136.3, 136.3, 136.1, 134.9, 134.9, 134.8, 134.8, 134.8, 134.7, 134.7, 134.6, 134.6, 134.4, 133.1, 132.8, 132.6, 132.5, 132.5, 132.4, 132.3, 131.9, 131.8, 131.3, 131.3, 131.2, 131.0, 131.1, 131.0, 130.9, 130.9, 130.9, 130.8, 130.8, 130.8, 130.7, 130.6, 130.0, 129.8, 129.7, 129.2, 63.9, 63.8, 63.7, 47.8, 47.6, 47.4, 47.3, 46.8, 46.7, 46.5, 46.4, 30.7, 30.6, 30.3, 30.3, 30.2, 30.1, 19.2, 19.1, 18.9, 18.9. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

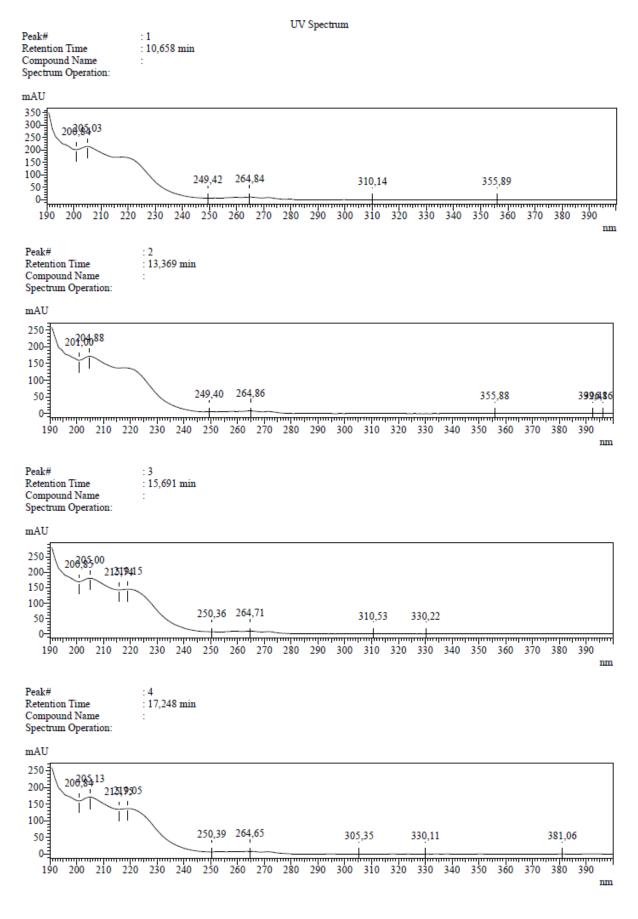
³¹**P NMR (CDCl₃, 162 MHz):** δ 39.8 (d, *J* = 37.0 Hz), 38.3 (d, *J* = 37.0 Hz), -23.2 (d, *J* = 37.0 Hz), -23.7 (d, *J* = 37.0 Hz).

HRMS (ESI, m/Z): calcd. for C₂₈H₂₉O₂P₂ [M+H]⁺: 459.1637, found: 459.1638.

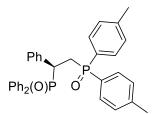
HPLC: Chiracel-ODH, *n*-heptane/*i*-PrOH 92:8, 1.0 mL/min., 40 °C, detection at 220 nm. Retention time (min): 10.8 (minor),13.2 (major), 16.2 (minor),17.1 (major). (Due to the poor separation of the product **4e'a** in the HPLC, the ee of this compound was determined from the corresponding oxidized derivative.)



<Peak Table>


	h1 220nm			
Peak#	Ret. Time	Area	Height	Area%
1	10,785	1478948	47084	6,070
2	13,155	12011693	302002	49,298
3	16,174	79927	2705	0,328
4	17,071	10794669	221661	44,304
Total		24365237	573452	100,000

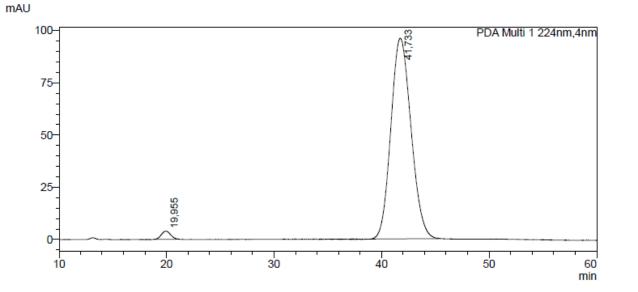
<Chromatogram>


mAU

	h1 220nm			
Peak#	Ret. Time	Area	Height	Area%
1	10,658	4678650	163164	21,400
2	13,369	4543525	126607	20,782
3	15,691	6104986	142014	27,924
4	17,248	6535528	133163	29,894
Total		21862689	564948	100,000

(S)-(2-(di-p-tolylphosphoryl)-1-phenylethyl)diphenylphosphine oxide (5ab)

Following general procedure A: The reaction was performed with 1a (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2b (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Then, the reaction mixture was quenched by 30% H₂O₂ aqueous solution (25 μ L) and was stirred for additional 30 minutes at room temperature. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) to give product **5ab** as a white solid [82% yield, 96% ee].

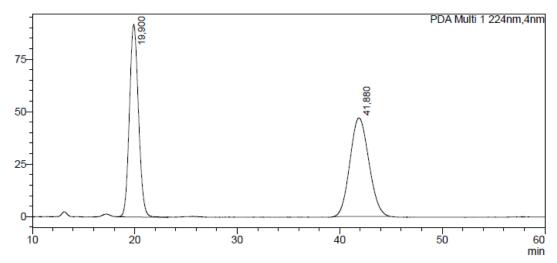

¹**H** NMR (CDCl₃, 400 MHz): $\delta 8.10 - 7.96$ (m, 2H, CH_{Ar}), 7.58 - 7.46 (m, 3H, CH_{Ar}), 7.44 - 7.34 (m, 2H, CH_{Ar}), 7.33 - 7.19 (m, 3H, CH_{Ar}), 7.18 - 7.07 (m, 6H, CH_{Ar}), 7.06 - 6.96 (m, 2H, CH_{Ar}), 6.89 - 6.73 (m, 5H, CH_{Ar}), 4.31 - 4.14 (m, 1H, P(O)Ph₂CH), 3.14 - 2.96 (m, 1H, P(O)Ph₂CHCHH), 2.91 - 2.70 (m, 1H, P(O)Ph₂CHCHH), 2.29 (s, 3H, CH₃), 2.17 (s, 3H, CH₃). ¹³C NMR (CDCl₃, 101 MHz): δ 142.2, 142.2, 141.3, 141.3, 134.5, 134.4, 132.2, 132.1, 131.8, 131.7, 131.5, 131.4, 131.3, 131.2, 131.0, 130.9, 130.8, 130.5, 130.4, 130.4, 130.2, 130.2, 129.5, 129.3, 129.2, 129.1, 128.9, 128.8, 128.6, 128.0, 127.9, 127.9, 126.7, 126.7, 39.7, 39.7, 39.1, 39.0, 30.7, 30.0, 21.6, 21.4. (Due to C-P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P NMR (CDCl₃, 162 MHz):** δ 32.1 (d, *J* = 46.7 Hz), 27.1 (d, *J* = 46.7 Hz).

HRMS (**ESI, m/Z**): calcd. for C₃₄H₃₃O₂P₂ [M+H]⁺: 535.1950, found: 535.1953.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 70:30, 1.0 mL/min., 40 °C, detection at 224 nm. Retention time (min): 20.0 (minor) and 41.7 (major).

<Chromatogram>

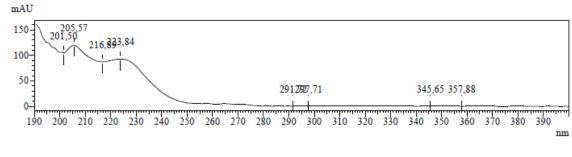


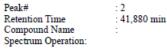
PDA Ch1 224nm

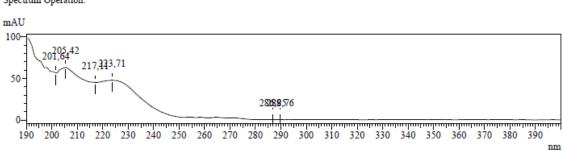
Peak#	Ret. Time	Area	Height	Area%
1	19,955	233663	3939	1,832
2	41,733	12521067	96024	98,168
Total		12754730	99962	100,000

<Chromatogram>

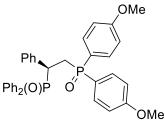
mAU




PDA Ch1 224nm

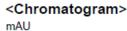

Peak#	Ret. Time	Area	Height	Area%
1	19,900	5654503	91696	48,439
2	41,880	6019049	46969	51,561
Tota	l	11673552	138665	100,000

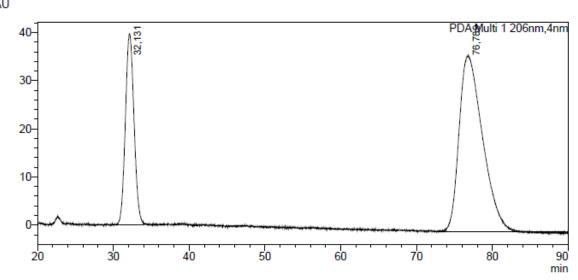
UV Spectrum



(S)-(2-(bis(4-methoxyphenyl)phosphoryl)-1-phenylethyl)diphenylphosphine oxide (5ac)

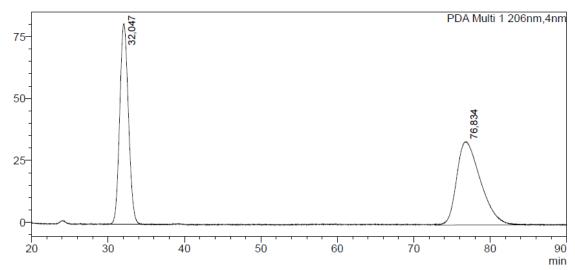
Following general procedure A: The reaction was performed with **1a** (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), **2c** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h. Then, the reaction mixture was quenched by 30% H₂O₂ aqueous solution (25 μ L) and was stirred for additional 30 minutes at room temperature. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) to give product **5ac** as a white solid [76% yield, 42% ee].


¹H NMR (CDCl₃, 400 MHz): δ 8.07 – 8.03 (m, 2H), 7.56 (s, 3H), 7.44 – 7.40 (m, 2H), 7.31 – 7.11 (m, 7H), 7.05 – 7.03 (m, 2H), 6.88 – 6.83 (m, 5H), 6.56 – 6.54 (m, 2H), 4.26 – 4.18 (m, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.06 – 3.00 (m, 1H), 2.86 – 2.75 (m, 1H).

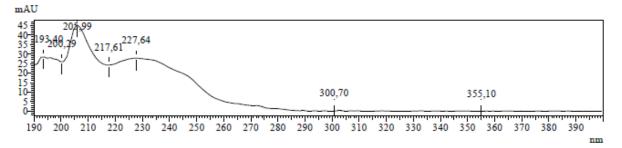

¹³C NMR (CDCl₃, 101 MHz): δ 162.2, 161.6, 134.5, 134.4, 132.7, 132.6, 132.2, 132.1, 131.7, 131.6, 131.2, 131.1, 130.9, 130.8, 130.4, 130.1, 130.0, 129.1, 129.0, 127.9, 127.8, 126.7, 114.2, 114.1, 113.6, 113.5, 55.3, 55.2, 39.6, 39.0, 30.8, 30.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

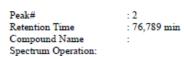
³¹**P NMR (CDCl₃, 162 MHz):** δ 35.3 (d, J = 46.5 Hz), 30.1 (d, J = 46.5 Hz).

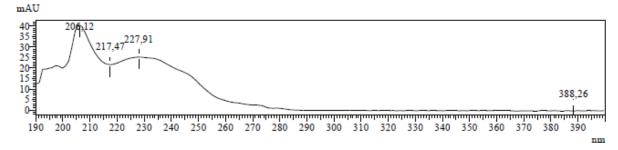
HRMS (ESI, m/Z): calcd. for C₃₄H₃₃O₄P₂ [M+H]⁺: 567.1849, found: 567.1853.


HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 70:30, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 32.1 (minor) and 76.8 (major).

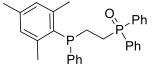
	PDA C	n1 206nm			
	Peak#	Ret. Time	Area	Height	Area%
[1	32,131	3159840	39779	28,908
[2	76,789	7770940	36521	71,092
[Total		10930780	76300	100,000




<Peak Table>

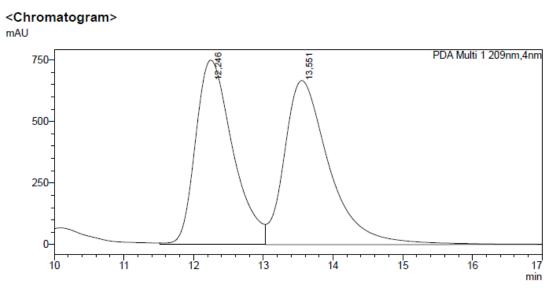

PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	32,047	6374204	81006	46,574
2	76,834	7312090	33610	53,426
Total		13686294	114616	100,000

Peak#	:1
Retention Time	: 32,131 min
Compound Name	:
Spectrum Operation:	



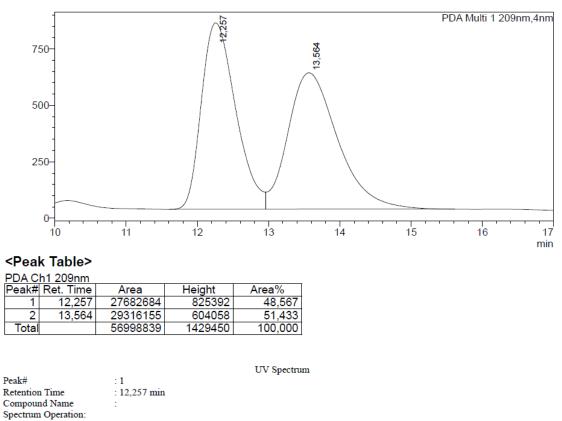
UV Spectrum

(2-(mesityl(phenyl)phosphaneyl)ethyl)diphenylphosphine oxide (5a'h)

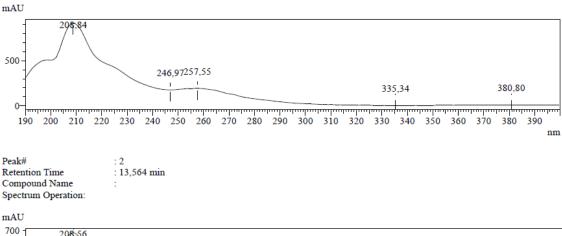

Following general procedure A: The reaction was performed with 1'b (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 5 mol%), *t*PentOK (0.01 mmol, 10 mol%), 2h (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h. Product 5b'h was obtained as a white solid after column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) [86% yield, 0% ee].

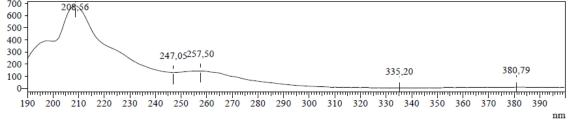
¹**H** NMR (CDCl₃, 400 MHz): δ 7.73 – 7.60 (m, 4H), 7.53 – 7.39 (m, 6H), 7.22 – 7.11 (m, 5H), 6.85 (s, 2H), 2.55 – 2.36 (m, 3H), 2.28 (s, 3H), 2.21 (s, 6H), 2.15 – 2.03 (m, 1H). ¹³C NMR (CDCl₃, 101 MHz): δ 145.8, 145.6, 140.7, 140.6, 140.5, 140.5, 140.1, 140.1, 133.6, 132.8, 132.6, 132.0, 131.9, 131.9, 131.1, 131.0, 131.0, 130.9, 130.1, 130.0, 129.4, 129.2, 128.9, 128.8, 128.7, 128.5, 128.5, 128.2, 128.0, 126.8, 126.8, 27.1, 26.9, 26.4, 26.2, 25.7, 23.4, 23.3, 21.2, 16.9, 16.7, 16.7. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

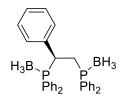
³¹**P** NMR (CDCl₃, 162 MHz): δ 29.6 (d, J = 55.3 Hz), -25.0 (d, J = 55.3 Hz).


HRMS (ESI, m/Z): calcd. for C₂₉H₃₁OP₂ [M+H]⁺: 457.1845, found: 457.1851.

HPLC: Chiracel-ASH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 209 nm. Retention time (min): 12.2 and 13.6.




PDA C	h1 209nm			
Peak#	Ret. Time	Area	Height	Area%
1	12,246	27731692	749362	48,004
2	13,551	30037348	666168	51,996
Total		57769040	1415531	100,000

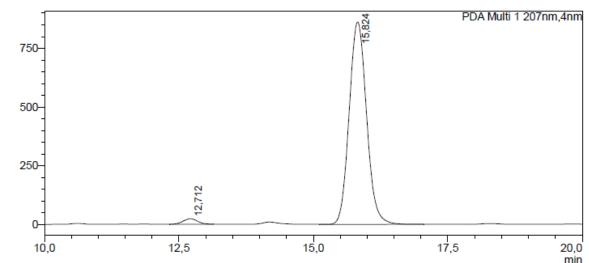


. . . .

(S)-(1-phenylethane-1,2-diyl)bis(diphenylphosphane) borane complex (6aa)¹

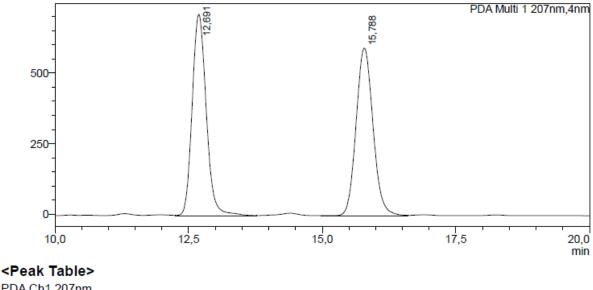
Following general procedure B: The reaction was performed with 1a (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h, then $Ti(OiPr)_4$ (0.03 mmol, 0.3 equiv), HSi(OEt)₃ (0.3 mmol, 3.0 equiv) at 120°C for 1h; finally, BH₃ THF (0.3 mmol, 3.0 equiv) at rt for 1h. Product **6aa** was obtained as a white solid after column chromatography (SiO₂, pentane/ dichloromethane = 2:1) [86% yield, 96% ee].

¹H NMR (CDCl₃, 400 MHz): δ 8.22 – 8.07 (m, 2H, CH_{Ar}), 7.65 – 7.57 (m, 3H, CH_{Ar}), 7.56 – 7.49 (m, 2H, CH_{Ar}), 7.48 – 7.43 (m, 1H, CH_{Ar}), 7.43 – 7.36 (m, 2H, CH_{Ar}), 7.34 – 7.26 (m, 3H, CH_{Ar}), 7.25 – 7.12 (m, 5H, CH_{Ar}), 7.09 – 7.01 (m, 2H, CH_{Ar}), 6.97 – 6.90 (m, 2H, CH_{Ar}), 6.89 – 6.82 (m, 1H, CH_{Ar}), 6.81 – 6.74 (m, 2H, CH_{Ar}), 4.61 – 4.49 (m, 1H, CH), 3.4 – 3.28 (m, 1H, CHH), 2.61 – 2.48 (m, 1H, CHH), 1.55 – 0.53 (m, 6H, 2xBH₃) ppm.


¹³C NMR (CDCl₃, 101 MHz): δ 133.8, 133.4, 133.0, 132.9, 132.8, 132.5, 132.2, 131.8, 131.5, 131.3, 131.1, 131.0, 130.7, 130.4, 130.0, 129.8, 129.6, 129.6, 129.2, 129.1, 129.0, 128.8, 128.7, 128.4, 128.1, 128.0, 127.6, 127.5, 127.3, 127.0, 126.9, 126.7, 126.6, 37.9, 37.6, 27.1, 26.8. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

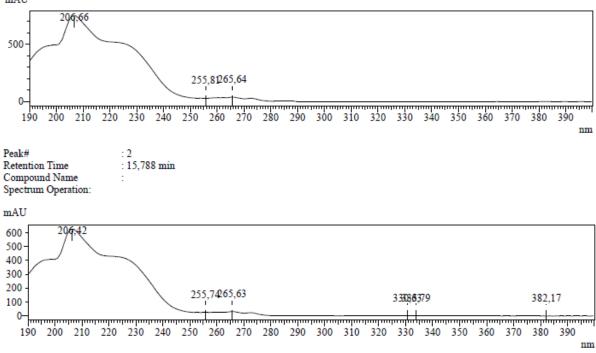
³¹P NMR (CDCl₃, 162 MHz): δ 23.8, 13.8.

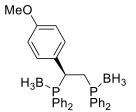
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 207 nm. Retention time (min): 12.7 (minor) and 15.8 (major).


<Chromatogram>

mAU

PDA C	PDA Ch1 207nm					
Peak#	Ret. Time	Area	Height	Area%		
1	12,712	438201	23439	2,208		
2	15,824	19403996	861747	97,792		
Total		19842197	885186	100,000		




PDAC	n1207nm			
Peak#	Ret. Time	Area	Height	Area%
1	12,691	13106260	711796	50,020
2	15,788	13095910	593075	49,980
Total		26202171	1304871	100,000
_				UV Spectrum

Peak# : 1 Retention Time : 12,691 min Compound Name : Spectrum Operation:

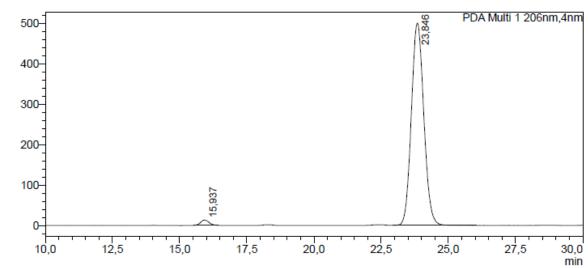
mAU

(S)-(1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphane) borane complex (6ba)

Following general procedure B: The reaction was performed with 1b (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h, then $Ti(OiPr)_4$ (0.03 mmol, 0.3 equiv), HSi(OEt)₃ (0.3 mmol, 3.0 equiv) at 120°C for 1h; finally, BH₃·THF (0.3 mmol, 3.0 equiv) at rt for 1h. Product **6ba** was obtained as a white solid after column chromatography (SiO₂, pentane/dichloromethane = 2:1) [80% yield, 97% ee].

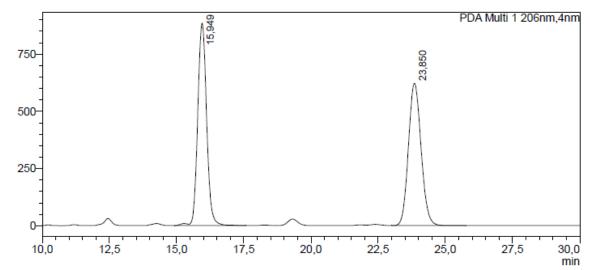
¹**H** NMR (CDCl₃, 400 MHz): $\delta 8.15 - 8.05$ (m, 2H, CH_{Ar}), 7.64 - 7.56 (m, 3H, CH_{Ar}), 7.54 - 7.48 (m, 2H, CH_{Ar}), 7.48 - 7.42 (m, 1H, CH_{Ar}), 7.42 - 73.6 (m, 2H, CH_{Ar}), 7.33 - 7.14 (m, 8H), 7.12 - 7.04 (m, 2H), 6.84 (d, J = 7.5 Hz, 2H, CH_{Ar}). 6.30 (d, J = 8.3 Hz, 2H, CH_{Ar}), 4.61 - 4.42 (m, 1H, CH), 3.65 (s, 3H, OCH₃), 3.35 - 3.20 (m, 1H, CHH), 2.58 - 2.43 (m, 1H, CHH), 1.47 - 0.56 (m, 6H, 2xBH₃).

¹³C NMR (CDCl₃, 101 MHz): δ 158.6, 158.6, 133.3, 133.2, 132.7, 132.7, 132.6, 132.5, 131.8, 131.8, 131.5, 131.5, 131.5, 131.4, 131.1, 131.1, 131.0, 131.0, 130.6, 130.6, 130.4, 130.0, 129.3, 129.23, 128.9, 128.8, 128.2, 128.1, 128.0, 128.0, 127.8, 127.7, 127.0, 126.7, 124.6, 113.0, 112.9, 55.1, 37.0, 36.9, 36.7, 36.7, 27.4, 27.4, 27.2, 27.1. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)


³¹P NMR (CDCl₃, 162 MHz): δ 25.8, 16.7.

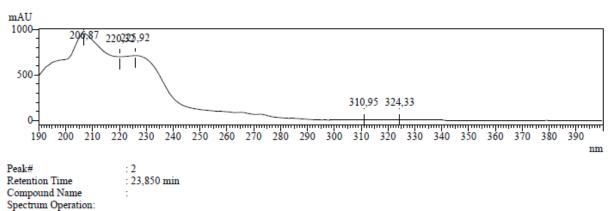
HRMS (ESI, m/Z): calcd. for C₃₃H₃₆OP₂Na [M+Na]⁺: 555.2320, found: 555.2319.

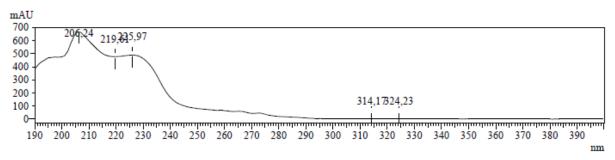
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 206 nm. Retention time (min): 15.9 (minor) and 23.8 (major).


<Chromatogram>

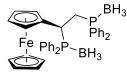
mAU

PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	15,937	279342	12995	1,704
2	23,846	16111266	499695	98,296
Total		16390609	512690	100,000




<Peak Table>

PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	15,949	20377422	884022	50,037
2	23,850	20347611	621388	49,963
Total		40725032	1505411	100,000

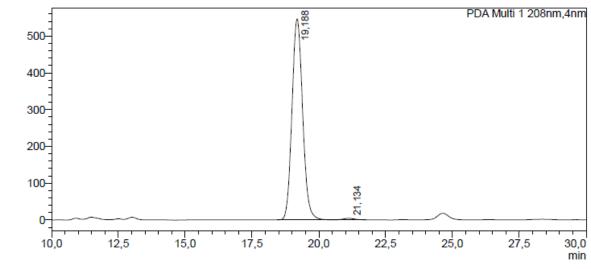

Peak# : 1 Retention Time : 15,949 min Compound Name : Spectrum Operation:

UV Spectrum

(S)-(1-ferrocenylethane-1,2-diyl)bis(diphenylphosphane) borane complex (6ca)

Following general procedure B: The reaction was performed with 1p (0.1 mmol, 1 equiv.), manganese catalyst (0.0025 mmol, 2.5 mol%), *t*PentOK (0.005 mmol, 5 mol%), 2a (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 16 h, then Ti(O*i*Pr)₄ (0.03 mmol, 0.3 equiv), HSi(OEt)₃ (0.3 mmol, 3.0 equiv) at 120°C for 1h; finally, BH₃ THF (0.3 mmol, 3.0 equiv) at rt for 1h. Product **6ca** was obtained as an orange solid after column chromatography (SiO₂, pentane/dichloromethane = 2:1) [81% yield, 98% ee].

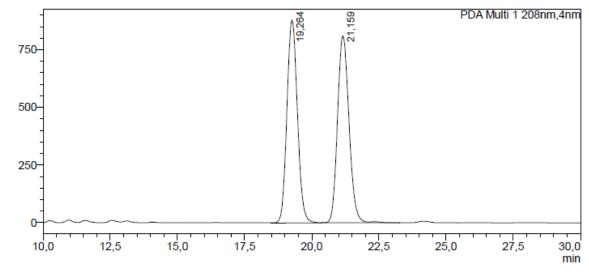
¹**H** NMR (CDCl₃, 400 MHz): δ 7.91 – 7.78 (m, 2H, CH_{Ar}), 7.73 – 7.62 (m, 2H, CH_{Ar}), 7.58 – 7.05 (m, 16H, CH_{Ar}), 4.43 – 4.30 (m, 1H, CH), 4.20 (s, br, 1H, CH_{Fe}), 3.94 (s, br, 6H, CH_{Fe}), 3.76 (s, br, 1H, CH_{Fe}), 3.59 (s, br, 1H, CH_{Fe}), 3.44 – 3.29 (m, 1H, CHH), 3.27 – 3.10 (m, 1H, CHH), 1.70 – 0.54 (m, 6H, 2xBH₃).

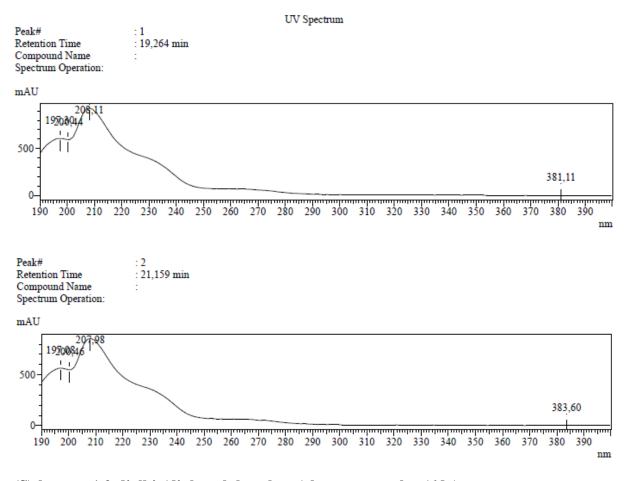

¹³C NMR (CDCl₃, 101 MHz): δ 133.5, 133.5, 133.0, 133.0, 132.9, 132.8, 132.0, 131.9, 131.8, 131.7, 131.7, 131.4, 131.4, 131.1, 131.1, 131.0, 130.9, 130.9, 130.7, 130.7, 130.6, 129.3, 129.2, 129.1, 128.9, 128.8, 128.8, 128.6, 128.6, 128.5, 128.4, 128.2, 128.2, 127.3, 127.0, 89.1, 89.1, 89.1, 69.6, 68.8, 68.6, 68.6, 67.3, 67.0, 31.2, 31.2, 31.0, 30.9, 29.9, 29.9, 29.7, 29.6. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹P NMR (CDCl₃, 162 MHz): δ 25.0, 16.2.

HRMS (ESI, m/Z): calcd. for C₃₆H₃₈B₂P₂Na [M+Na]⁺: 633.1876, found: 633.1867.

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 90:10, 0.5 mL/min., 40 °C, detection at 208 nm. Retention time (min): 19.2 (major) and 21.1 (minor).

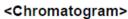

<Chromatogram> mAU


<Peak Table>

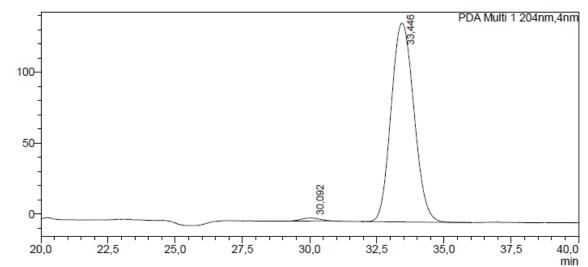
	h1 208nm			
Peak#	Ret. Time	Area	Height	Area%
1	19,188	15165953	546257	99,262
2	21,134	112803	4023	0,738
Tota		15278756	550280	100,000

PDA C	h1 208nm			
Peak#	Ret. Time	Area	Height	Area%
1	19,264	23970477	879790	49,848
2	21,159	24117061	810542	50,152
Total		48087538	1690332	100,000

(S)-hexane-1,2-diylbis(diphenylphosphane) borane complex (6da)

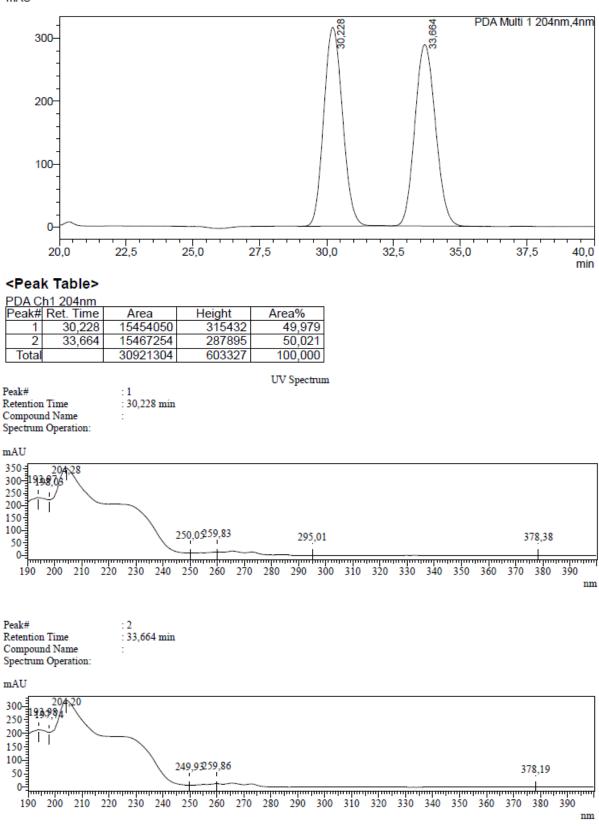

Following general procedure B: The reaction was performed with **1q** (0.1 mmol, 1 equiv.), manganese catalyst (0.005 mmol, 2.5 mol%), *t*PentOK (0.01 mmol, 10 mol%), **2a** (0.105 mmol, 1.05 equiv.), toluene (1.0 mL) at 25°C for 72 h, then $Ti(OiPr)_4$ (0.03 mmol, 0.3 equiv), HSi(OEt)₃ (0.3 mmol, 3.0 equiv) at 120°C for 1h; finally, BH₃·THF (0.3 mmol, 3.0 equiv) at rt for 1h. Product **6da** was obtained as a white solid after column chromatography (SiO₂, pentane/ dichloromethane = 2:1) [76% yield, 98% ee].

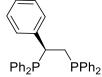
¹H NMR (CDCl₃, 400 MHz): δ 7.90 – 7.82 (m, 2H, CH_{Ar}), 7.81 – 7.70 (m, 4H, CH_{Ar}), 7.55 – 7.28 (m, 14H, CH_{Ar}), 3.31 – 3.12 (m, 1H, CH), 2.74 – 2.57 (m, 1H, CH₂CHCHH), 2.32 – 2.17 (m, 1H, CH₂CHCHH), 1.69 – 1.46 (m, 2H), 1.30 – 1.17 (m, 5H), 0.98 – 0.83 (m, 3H), 0.67 – 0.60 (m, 2H, CH₃CH₂), 0.41 (t, *J* = 7.3 Hz, 3H, CH₂CH₃).


¹³C NMR (CDCl₃, 101 MHz): δ 133.2, 133.1, 133.0, 132.9, 132.9, 132.8, 132.8, 131.8, 131.7, 131.6, 131.6, 131.6, 131.5, 131.2, 131.2, 130.6, 130.1, 129.4, 129.3, 129.2, 129.2, 129.1, 129.1, 129.0, 129.0, 128.9, 128.9, 128.9, 128.8, 128.5, 128.5, 128.4, 127.9, 30.2, 30.2, 29.7, 29.7, 29.5, 29.5, 29.2, 29.1, 27.4, 27.4, 27.1, 27.1, 22.5, 13.4. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets) ³¹P NMR (CDCl₃, 162 MHz): δ 22.0, 13.9.

HRMS (ESI, m/Z): calcd. for C₃₀H₃₈B₂P₂K [M+K]⁺: 521.2266, found: 521.2275.

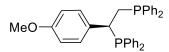
HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 98:02, 0.5 mL/min., 40 °C, detection at 204 nm. Retention time (min): 30.1 (minor) and 33.4 (major).





PDA C	PDA Ch1 204nm					
Peak#	Ret. Time	Area	Height	Area%		
1	30,092	101049	2144	1,203		
2	33,446	8299164	140172	98,797		
Total		8400214	142317	100,000		

(S)-(1-phenylethane-1,2-diyl)bis(diphenylphosphane) (7aa)


Following general procedure C: The reaction was performed with **6aa** (0.1 mmol, 1 equiv.), DABCO (0.40 mmol, 4.0 equiv) and degassed toluene (2.5 mL) at 50°C for 12 h. Product **7aa** was obtained as a white solid with 92% yield.

¹H NMR (Toluene-*d*₈, 400 MHz): δ 7.46 – 7.40 (m, 2H, C*H*_{Ar}), 7.35 – 7.28 (m, 2H, C*H*_{Ar}), 7.20 – 7.15 (m, 2H, C*H*_{Ar}), 7.15 – 7.05 (m, 8H, C*H*_{Ar}), 7.06 – 6.98 (m, 4H, C*H*_{Ar}), 7.00 – 6.87 (m, 4H, C*H*_{Ar}), 6.86 – 6.76 (m, 3H, C*H*_{Ar}), 3.56 – 3.48 (m, 1H, PPh₂C*H*), 2.69 – 2.59 (m, 2H, PPh₂CH*H*).

¹³C NMR (Toluene- d_8 , 101 MHz) δ 141.2, 141.2, 141.2, 141.1, 139.9, 139.8, 139.0, 138.9, 137.8, 137.7, 137.6, 137.4, 137.3, 137.2, 134.6, 134.5, 134.5, 134.4, 133.6, 133.5, 132.5, 132.3, 129.9, 129.9, 129.3, 129.1, 128.8, 128.4, 128.4, 128.4, 128.4, 128.2, 128.0, 128.0, 126.6, 126.6, 42.8, 42.7, 42.6, 33.8, 33.7, 33.7, 33.6. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹P NMR (Toluene-*d*₈, 162 MHz) δ 2.5 (d, *J* = 17.5 Hz), -21.0 (d, *J* = 17.5 Hz). HRMS (ESI, m/Z): calcd. for C₃₂H₂₉P₂ [M+H]⁺: 475.1739, found: 475.1743.

(S)-(1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphane) (7ba)

Following general procedure C: The reaction was performed with **6ba** (0.1 mmol, 1 equiv.), DABCO (0.40 mmol, 4.0 equiv) and degassed toluene (2.5 mL) at 50°C for 12 h. Product **7ba** was obtained as a white solid with 95% yield.

¹H NMR (Toluene-*d*₈, 400 MHz): δ 7.50 – 7.40 (m, 2H, CH_{Ar}), 7.38 – 7.28 (m, 2H, CH_{Ar}), 7.20 – 7.04 (m, 12H, CH_{Ar}), 7.00 – 6.96 (m, 1H, CH_{Ar}), 6.95 – 6.79 (m, 5H, CH_{Ar}), 6.67 – 6.59 (m, 2H, CH_{Ar}), 3.58 – 3.44 (m, 1H, PPh₂CH), 3.28 (s, 3H, OCH₃), 2.73 – 2.53 (m, 2H, PPh₂CH*H*).

¹³C NMR (Toluene-*d*₈, 101 MHz): δ 158.8, 158.8, 140.2, 140.0, 139.1, 139.0, 138.1, 138.1, 137.9, 137.9, 137.7, 134.7, 134.5, 134.5, 134.3, 133.7, 133.5, 132.9, 132.9, 132.8, 132.8, 132.5, 132.3, 130.8, 130.7, 129.3, 129.2, 128.8, 128.7, 128.4, 128.4, 128.0, 128.0, 128.0, 114.0, 54.5, 41.9, 41.8, 41.6, 34.3, 34.1, 34.1, 33.9. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (Toluene-*d*₈, 162 MHz): δ -1.4 (d, *J* = 17.2 Hz), -24.0 (d, *J* = 17.2 Hz). HRMS (ESI, m/Z): calcd. for C₃₃H₃₁OP₂ [M+H]⁺: 505.1845, found: 505.1857.

(S)-(1-ferrocenylethane-1,2-diyl)bis(diphenylphosphane) (7ca)

PPh₂ PPh₂

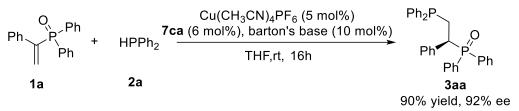
Following general procedure C: The reaction was performed with **6ca** (0.1 mmol, 1 equiv.), DABCO (0.40 mmol, 4.0 equiv) and degassed toluene (2.5 mL) at 50°C for 12 h. Product **7ca** was obtained as an yellow solid with 98% yield.

¹H NMR (CDCl₃, 400 MHz): δ 7.56 – 7.51 (m, 2H, CH_{Ar}), 7.47 – 7.42 (m, 2H, CH_{Ar}), 7.41 – 7.35 (m, 6H, CH_{Ar}), 7.33 – 7.27 (m, 6H, CH_{Ar}), 7.24 – 7.19 (m, 2H, CH_{Ar}), 7.19 – 7.13 (m, 2H, CH_{Ar}), 4.05 – 3.86 (m, 7H, CH_{Fe}), 3.79 (s, 1H, CH_{Fe}), 3.61 (s, 1H, CH_{Fe}), 3.32 – 3.13 (m, 1H, PPh₂CH), 2.81 – 2.63 (m, 1H, PPh₂CHH), 2.37 – 2.27 (m, 1H, PPh₂CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 139.2, 139.1, 139.0, 139.0, 137.8, 137.8, 137.7, 137.6, 135.6, 135.4, 134.2, 134.1, 133.5, 133.3, 132.9, 132.8, 132.8, 132.7, 129.1, 128.8, 128.5, 128.5, 128.4, 128.4, 128.0, 128.0, 127.8, 127.7, 127.7, 91.1, 91.0, 68.5, 68.0, 67.5, 67.0, 66.3, 36.5, 36.4, 36.4, 36.2, 32.5, 32.4, 32.4, 32.3. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹**P** NMR (CDCl₃, 162 MHz): δ 6.1 (d, J = 64.7 Hz), -19.6 (d, J = 64.7Hz). HRMS (ESI, m/Z): calcd. for C₃₆H₃₃FeP₂ [M+H]⁺: 583.1401, found: 583.1394.

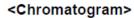
(S)-hexane-1,2-diylbis(diphenylphosphane (7da)

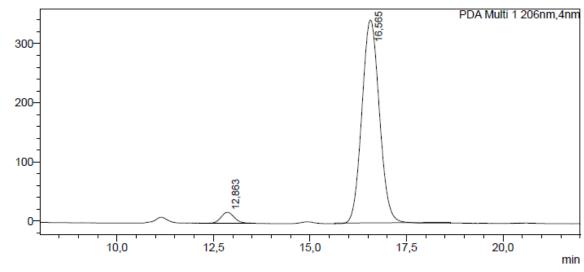

Following general procedure C: The reaction was performed with **6da** (0.1 mmol, 1 equiv.), DABCO (0.40 mmol, 4.0 equiv) and degassed toluene (2.5 mL) at 50°C for 12 h. Product **7da** was obtained as a white solid with 96% yield.

¹**H NMR (Toluene-***d*₈, **400 MHz):** δ 7.42 – 7.31 (m, 6H, CH_{Ar}), 7.30 – 7.23 (m, 2H, CH_{Ar}), 7.12 – 6.94 (m, 12H, CH_{Ar}), 2.49 – 2.34 (m, 2H), 2.12 – 2.06 (m, 1H), 2.00 – 1.87 (m, 1H), 1.84 – 1.75 (m, 1H), 1.72 – 1.61 (m, 1H), 1.56 – 1.46 (m, 1H), 1.29 – 1.17 (m, 2H), 0.84 (t, *J* = 7.4 Hz, 3H, CH₃).

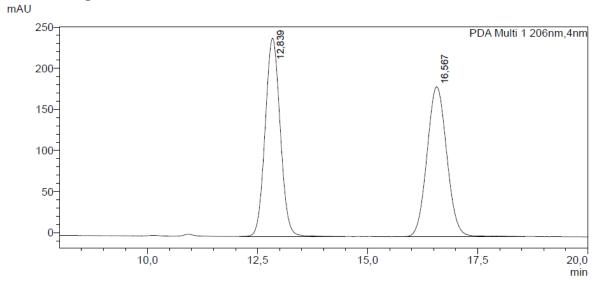
¹³C NMR (Toluene-*d*₈, 101 MHz): δ 140.1, 140.0, 139.3, 139.2, 138.1, 138.0, 137.6, 137.6, 137.3, 137.3, 134.6, 134.4, 134.2, 133.8, 133.7, 132.7, 132.6, 129.2, 129.1, 128.9, 128.6, 128.6, 128.6, 128.5, 128.1, 128.5, 128.2, 33.2, 33.1, 33.1, 33.0, 31.2, 31.2, 31.1, 31.1, 31.0, 29.6, 29.6, 29.5, 23.4, 14.2. (Due to C–P coupling and the complexity of the spectrum, doublets cannot be assigned and they are listed as singlets)

³¹P NMR (Toluene-*d*₈, 162 MHz): δ -3.8 (d, *J* = 21.2 Hz), -20.5 (d, *J* = 21.2 Hz). HRMS (ESI, m/Z): calcd. for C₃₀H₃₃P₂ [M+H]⁺: 455.2052, found: 455.2052.

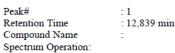

4. Application of 7ca in the catalytic asymmetric hydrophosphination of 1a and 8


General Procedure for hydrophosphination of 1a: In a 4 mL oven dried vial equipped with a magnetic stirring bar was charged with [Cu(CH₃CN)₄]PF₆ (0.005 mmol, 5 mol%) and 7ca

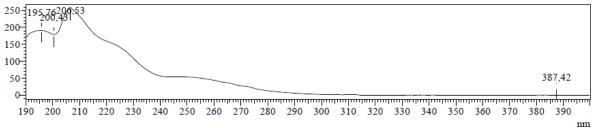
(0.005 mmol, 6 mol%) in a glove box under N₂ atmosphere. Anhydrous THF (1.0 mL) was added. The mixture was stirred at room temperature for 15 minutes to give a yellow catalyst solution. Then **1a** (0.1 mmol, 1.0 equiv) and **2a** (0.1 mmol, 1.0 equiv) were added sequentially and stirred for 2 min. Barton's Base (0.01 mmol, 10 mol%) was added. The resulting reaction mixture was stirred at room temperature for 16 hours. Then, the reaction mixture was concentrated under reduced pressure, the residue was purified by silica gel column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) to give the desired product **3aa** [90% yield, 92% ee].


HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 206 nm. Retention time (min): 12.9 (minor) and 16.6 (major).

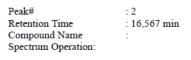
mAU

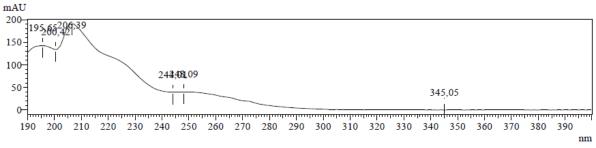


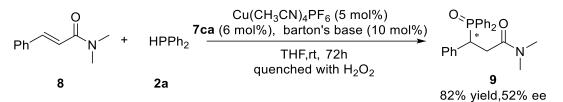
PDA C	h1 206nm			
Peak#	Ret. Time	Area	Height	Area%
1	12,863	438078	18481	3,923
2	16,565	10728322	342696	96,077
Total		11166400	361178	100,000



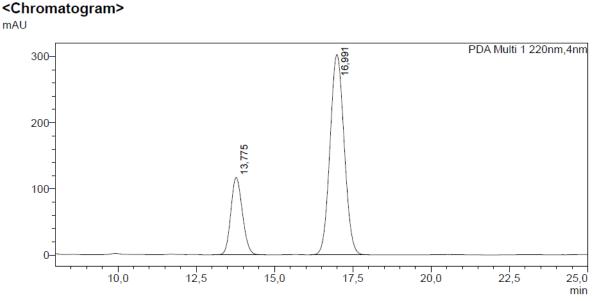
<Peak Table>


PDA C				
Peak#	Ret. Time	Area	Height	Area%
1	12,839	5752588	241197	50,190
2	16,567	5709111	182401	49,810
Total		11461699	423597	100,000



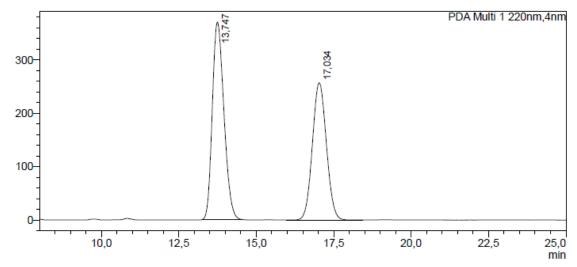


UV Spectrum



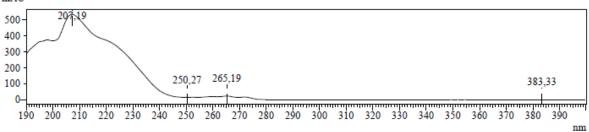
General Procedure for hydrophosphination of 8: In a 4 mL oven dried vial equipped with a magnetic stirring bar was charged with [Cu(CH₃CN)₄]PF₆ (0.005 mmol, 5 mol%) and 7ca (0.005 mmol, 6 mol%) in a glove box under N₂ atmosphere. Anhydrous THF (1.0 mL) was added. The mixture was stirred at room temperature for 15 minutes to give a yellow catalyst solution. Then 8 (0.1 mmol, 1.0 equiv) and 2a (0.1 mmol, 1.0 equiv) were added sequentially and stirred for 2 min. Barton's Base (0.01 mmol, 10 mol%) was added. The resulting reaction mixture was stirred at room temperature for 72 hours. Then, the reaction mixture was quenched by 30% H₂O₂ aqueous solution (25 μ L) and was stirred for additional 30 minutes at room temperature. After solvent was removed under reduced pressure, the residue was purified by silica gel column chromatography (SiO₂, pentane/ethyl acetate/methanol = 1:1:0.05) to give the desired product **9** [82% yield, 52% ee].

The NMR data are in agreement with the one present in literature.²


¹H NMR (CDCl₃, 400 MHz): $\delta 8.00 - 7.93$ (m, 2H, CH_{Ar}), 7.53 - 7.50 (m, 3H, CH_{Ar}), 7.41 - 7.36 (m, 2H, CH_{Ar}), 7.33 - 7.31 (m, 2H, CH_{Ar}), 7.28 - 7.24 (m, 1H, CH_{Ar}), 7.19 - 7.06 (m, 5H, CH_{Ar}), 4.36 - 4.31 (m, 1H), 3.21 - 3.13 (m, 1H), 2.84 - 2.71 (m, 7H).

HPLC: Chiracel-ADH, *n*-heptane/*i*-PrOH 80:20, 1.0 mL/min., 40 °C, detection at 220 nm. Retention time (min): 13.8 (minor) and 17.0 (major).

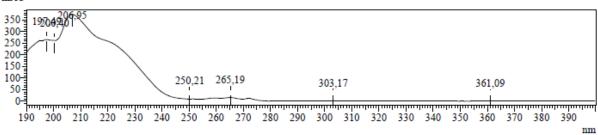
PDA Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area%				
1	13,775	3005867	116797	24,024				
2	16,991	9506153	302684	75,976				
Total		12512020	419481	100,000				



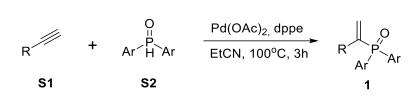
<Peak Table>

PDA Ch1 220nm								
Peak#	Ret. Time	Area	Height	Area%				
1	13,747	9643914	370014	54,350				
2	17,034	8100020	257258	45,650				
Tota		17743934	627272	100,000				

Peak# : 1 Retention Time : 13,747 min Compound Name : Spectrum Operation:


mAU

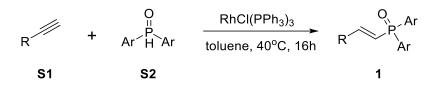
UV Spectrum


mAU

5. Substrate Synthesis

α, β-unsaturated phosphine oxides **1a–1y** were synthesized by a known literature procedure (Method A),³ among them **1g-1l**, **1n**, **1o**, **1q-1s**, **1u**, and **1w-1y** are new compounds. α, β-unsaturated phosphonates **1'a–1'e** were synthesized by a known literature procedure (Method B).⁴ α, β-unsaturated phosphine oxide **1z** was synthesized by a known literature procedure (Method C).⁵ The mesityl(phenyl)phosphane (**2h**) was synthesized by a known literature procedure procedure.⁶ The spectroscopic data of new compounds are shown below.

Method A:


A mixture of $Pd(OAc)_2$ (5 mol%), dppe (7.5 mol%), diarylphosphine oxide **S2** (1.0 equiv), and acetylene derivative **S1** (1.1 equiv) dissolved in propionitrile (3 ml/mmol) was heated at 100 °C for 3 h. The resulting mixture was evaporated and the residue was purified by column chromatography using pentane/ethyl acetate (1/1) afforded the product **1**.

Method B:

An oven-dried schlenck tube containing a Teflon-coated stir bar was charged with 0.5 mol% $Pd_2(dba)_3$, 1 mol% dppp and toluene (2 ml/mmol) under N₂ atmosphere and stirred at room temperature for 10 min, then H-phosphonate **S2** (1.0 equiv) and alkyne **S1** (1.0 equiv) were added and the mixture was stirred at 100 °C overnight. The resulting mixture was evaporated and the residue was purified by column chromatography using pentane /ethyl acetate (3/1) afforded the product **1**'.

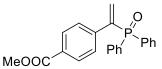
Method C:

Diarylphosphine oxide **S2** (1.0 equiv), alkyne **S1** (1.1 equiv) and RhCl(PPh₃)₃ (3 mol %) were dissolved in dry toluene (2 ml/mmol) under N₂ atmosphere. The resulting transparent yellow

solution was heated at 40 °C for 16h. The solvent was evaporated under reduced pressure to give a yellow semisolid. The crude product was then purified by column chromatography using pentane /ethyl acetate (2/1) afforded the product **1**.

(1-([1,1'-biphenyl]-4-yl)vinyl)diphenylphosphine oxide (1g)

The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 46% of yield.


¹**H NMR (CDCl₃, 400 MHz):** δ 7.82 – 7.70 (m, 4H, CH_{Ar}), 7.61 – 7.36 (m, 14H, CH_{Ar}), 7.35 – 7.30 (m, 1H, CH_{Ar}), 6.30 (dd, J = 40.4, 1.1 Hz, 1H, CHH), 5.74 (dd, J = 19.8, 1.1 Hz, 1H, CHH).

¹³C NMR (CDCl₃, 101 MHz): δ 144.0 (d, J = 92.6 Hz), 141.1, 140.5 136.6 (d, J = 9.9 Hz), 132.2, 132.1, 132.0, 131.9 (d, J = 103.5 Hz), 131.8 (d, J = 10.0 Hz), 128.9, 128.6 (d, J = 12.1 Hz), 128.6 (d, J = 4.7 Hz), 127.6, 127.2 (d, J = 12.5 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 30.3.

HRMS (ESI, m/Z): calcd. for C₂₆H₂₂OP [M+H]⁺: 381.1403, found: 381.1407.

methyl 4-(1-(diphenylphosphoryl)vinyl)benzoate (1h)

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 46% of yield.

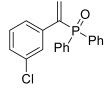
¹H NMR (CDCl₃, 400 MHz): δ 7.95 – 7.85 (m, 2H, CH_{Ar}), 7.77 – 7.64 (m, 4H, CH_{Ar}), 7.60 – 7.54 (m, 2H, CH_{Ar}), 7.54 – 7.47 (m, 2H, CH_{Ar}), 7.47 – 7.38 (m, 4H, CH_{Ar}), 6.29 (d, *J* = 39.6 Hz, 1H, CH*H*), 5.79 (d, *J* = 19.6 Hz, 1H, CH*H*), 3.86 (s, 3H, COOCH₃).

¹³C NMR (CDCl₃, 101 MHz): δ 166.8, 144.0 (d, *J* = 92.4 Hz), 142.3 (d, *J* = 9.9 Hz), 133.1 (d, *J* = 9.3 Hz), 132.2 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 9.8 Hz), 131.2 (d, *J* = 104.0 Hz), 129.8, 129.8, 128.7 (d, *J* = 12.3 Hz), 128.2 (d, *J* = 4.6 Hz), 52.2.

³¹P NMR (CDCl₃, 162 MHz): δ 26.8.

HRMS (ESI, m/Z): calcd. for C₂₂H₂₀O₃P [M+H]⁺: 363.1145, found: 363.1147. **diphenyl(1-(m-tolyl)vinyl)phosphine oxide (1i)**

The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 57% of yield.


¹**H NMR (CDCl₃, 400 MHz):** δ 7.75 – 7.64 (m, 4H, CH_{Ar}), 7.53 – 7.46 (m, 2H, CH_{Ar}), 7.45 – 7.36 (m, 4H, CH_{Ar}), 7.27 – 7.19 (m, 2H, CH_{Ar}), 7.12 – 7.09 (m, 1H, CH_{Ar}), 7.03 (d, *J* = 7.6 Hz,

1H, C*H*_{Ar}), 6.21 (dd, *J* = 40.2, 1.2 Hz, 1H, CH*H*), 5.73 (dd, *J* = 19.7, 0.9 Hz, 1H, CH*H*), 2.24 (s, 3H, C*H*₃).

¹³C NMR (CDCl₃, 101 MHz): δ 144.5 (d, J = 92.3 Hz), 138.1, 137.6 (d, J = 9.9 Hz), 132.1 (d, J = 9.5 Hz), 132.0, 132.0, 131.8 (d, J = 103.5 Hz), 129.1, 128.9 (d, J = 4.5 Hz), 128.8 (d, J = 13.5 Hz). 128.4, 125.4 (d, J = 4.7 Hz), 21.5.

³¹P NMR (162 MHz, CDCl₃): δ 27.0.

HRMS (ESI, m/Z): calcd. for $C_{21}H_{20}OP [M+H]^+$: 319.1246, found: 319.1243. (1-(3-chlorophenyl)vinyl)diphenylphosphine oxide (1j)

The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 66% of yield.

¹**H NMR (CDCl₃, 400 MHz):** δ 7.78 – 7.64 (m, 4H, CH_{Ar}), 7.57 – 7.35 (m, 8H, CH_{Ar}), 7.25 – 7.08 (m, 2H, CH_{Ar}), 6.23 (d, *J* = 39.6 Hz, 1H, CH*H*), 5.74 (d, *J* = 19.5 Hz, 1H, CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 143.5 (d, J = 92.6 Hz), 139.4 (d, J = 9.9 Hz), 134.4, 132.8 (d, J = 9.6 Hz), 132.2 (d, J = 2.8 Hz), 132.0 (d, J = 9.8 Hz), 131.3 (d, J = 104.1 Hz), 129.8, 128.7 (d, J = 12.1 Hz), 128.4, 128.1 (d, J = 4.9 Hz), 126.6 (d, J = 4.4 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 26.9.

HRMS (ESI, m/Z): calcd. for C₂₀H₁₇ClOP [M+H]⁺: 339.0700, found: 339.0701.

(1-(3-methoxyphenyl)vinyl)diphenylphosphine oxide (1k)

The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 70% of yield.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.78 – 7.64 (m, 4H, CH_{Ar}), 7.56 – 7.47 (m, 2H, CH_{Ar}), 7.47 – 7.39 (m, 4H, CH_{Ar}), 7.17 – 7.13 (m, 1H, CH_{Ar}), 7.06 – 6.96 (m, 2H, CH_{Ar}), 6.83 – 6.74 (m, 1H, CH_{Ar}), 6.25 (dd, *J* = 39.8, 0.8 Hz, 1H, CHH), 5.85 – 5.73 (m, 1H, CHH), 3.67 (s, 3H, OCH₃). ¹³C NMR (CDCl₃, 101 MHz): δ 159.3, 144.2 (d, *J* = 92.4 Hz), 138.9 (d, *J* = 10.3 Hz), 132.1, 132.0 (d, *J* = 9.6 Hz), 131.9, 131.1, 129.4, 128.4 (d, *J* = 12.1 Hz), 120.6 (d, *J* = 4.8 Hz), 114.2, 113.3 (d, *J* = 4.6 Hz), 55.1.

³¹P NMR (CDCl₃, 162 MHz): δ 29.5.

HRMS (ESI, m/Z): calcd. for C₂₁H₂₀O₂P [M+H]⁺: 335.1195, found: 335.1197. (1-(2-fluorophenyl)vinyl)diphenylphosphine oxide (3l)

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 70% of yield.

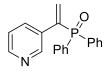
¹**H NMR (CDCl₃, 400 MHz):** δ 7.79 – 7.69 (m, 4H, CH_{Ar}), 7.55 – 7.47 (m, 3H, CH_{Ar}), 7.47 – 7.38 (m, 4H, CH_{Ar}), 7.24 – 7.12 (m, 1H, CH_{Ar}), 7.03 – 6.92 (m, 2H, CH_{Ar}), 6.29 (d, *J* = 40.1 Hz, 1H, CH*H*), 6.03 (d, *J* = 19.8 Hz, 1H, CH*H*).

¹³**C NMR** (**CDCl₃, 101 MHz**): δ 159.6 (dd, J = 247.7, 5.6 Hz), 138.0 (d, J = 94.3 Hz), 135.7 (dd, J = 8.8, 3.4 Hz), 132.1, 132.1, 132.0, 131.7, 131.3, 131.3, 131.3, 130.7, 129.8 (dd, J = 8.3, 1.4 Hz), 128.6 (d, J = 12.2 Hz), 125.0 (dd, J = 14.2, 10.4 Hz), 124.0 (dd, J = 3.7, 1.3 Hz), 115.9 (d, J = 22.6 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 30.0.

¹⁹F NMR (CDCl₃, 376 MHz) δ -115.4.

HRMS (ESI, m/Z): calcd. for C₂₀H₁₆FOP [M+H]⁺: 323.0996, found: 323.0999.


diphenyl(1-(thiophen-3-yl)vinyl)phosphine oxide (1n)

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 71% of yield.

¹**H NMR (CDCl₃, 400 MHz):** δ 7.77 – 7.65 (m, 4H, CH_{Ar}), 7.56 – 7.48 (m, 3H, CH_{Ar}), 7.48 – 7.40 (m, 4H, CH_{Ar}), 7.24 – 7.16 (m, 2H, CH_{Ar}), 6.29 (d, *J* = 40.7 Hz, 1H, CH*H*), 5.58 (d, *J* = 20.0 Hz, 1H, CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 138.5 (d, J = 94.9 Hz), 137.2, 132.0, 131.9, 131.0, 129.4 (d, J = 9.3 Hz), 128.5 (d, J = 12.2 Hz), 126.5 (d, J = 6.0 Hz), 125.6, 124.8 (d, J = 3.5 Hz). ³¹P NMR (CDCl₃, 162 MHz): δ 30.7.

HRMS (ESI, m/Z): calcd. for C₁₈H₁₆OPS [M+H]⁺: 311.0654, found: 311.0653. **diphenyl(1-(pyridin-3-yl)vinyl)phosphine oxide (10)**

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 66% of yield.

¹**H NMR (CDCl₃, 400 MHz):** δ 8.62 (s, 1H, CH_{Ar}), 8.47 (d, *J* = 4.9 Hz, 1H, CH_{Ar}), 7.98 – 7.89 (m, 1H, CH_{Ar}), 7.78 – 7.64 (m, 4H, CH_{Ar}), 7.56 – 7.49 (m, 2H, CH_{Ar}), 7.49 – 7.41 (m, 4H, CH_{Ar}), 7.16 (dd, *J* = 8.0, 4.8 Hz, 1H, CH_{Ar}), 6.27 (d, *J* = 39.5 Hz, 1H, CH*H*), 5.77 (d, *J* = 19.5 Hz, 1H, CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 149.3 (d, J = 1.3 Hz), 148.6 (d, J = 5.5 Hz), 141.7 (d, J = 92.7 Hz), 136.0 (d, J = 3.6 Hz), 133.8 (d, J = 9.8 Hz), 133.0 (d, J = 9.4 Hz), 132.3 (d, J = 2.8 Hz), 132.0 (d, J = 9.7 Hz), 130.9 (d, J = 104.2 Hz), 128.8 (d, J = 12.3 Hz), 123.2.

³¹P NMR (CDCl₃, 162 MHz): δ 30.0.

HRMS (ESI, m/Z): calcd. for C₁₉H₁₆NOP [M+H]⁺: 306.1042, found: 306.1046.

hex-1-en-2-yldiphenylphosphine oxide (1q)

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 67% of yield.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.76 – 7.63 (m, 4H, CH_{Ar}), 7.59 – 7.35 (m, 6H, CH_{Ar}), 5.93 (d, J = 43.1 Hz, 1H, CH₂CCH*H*), 5.60 (d, J = 20.9 Hz, 1H, CH₂CCH*H*), 2.30 (q, J = 8.6 Hz, 2H), 1.54 – 1.38 (m, 2H), 1.33 – 1.19 (m, 2H), 0.82 (t, J = 7.3 Hz, 3H, CH₃).

¹³C NMR (CDCl₃, 101 MHz): δ 144.2 (d, J = 91.5 Hz), 132.1, 132.0, 131.0, 128.8, 128.6 (d, J = 12.0 Hz), 31.4 (d, J = 10.4 Hz), 30.3 (d, J = 5.4 Hz), 22.4, 14.0.

³¹P NMR (CDCl₃, 162 MHz): δ 28.8.

HRMS (ESI, m/Z): calcd. for C₁₈H₂₂OP [M+H]⁺: 285.1403, found: 285.1406.

(3-cyclohexylprop-1-en-2-yl)diphenylphosphine oxide (1r)

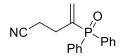
The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 86% of yield.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.74 – 7.63 (m, 4H, CH_{Ar}), 7.57 – 7.40 (m, 6H, CH_{Ar}), 5.88 (dd, J = 43.2, 1.1 Hz, 1H,C=CHH), 5.63 (d, J = 20.8 Hz, 1H, C=CHH), 2.19 (dd, J = 12.0, 7.0 Hz, 2H, CH₂=CCH₂), 1.74 – 1.51 (m, 5H), 1.50 – 1.35 (m, 1H), 1.17 – 0.99 (m, 3H), 0.84 – 0.67 (m, 2H).

¹³C NMR (CDCl₃, 101 MHz): δ 142.1 (d, *J* = 91.0 Hz), 131.9 (d, *J* = 9.6 Hz), 131.8 (d, *J* = 2.6 Hz), 131.6 (d, *J* = 101.3 Hz), 129.8 (d, *J* = 10.1 Hz), 128.4 (d, *J* = 12.0 Hz), 39.9 (d, *J* = 10.1 Hz), 35.8 (d, *J* = 4.0 Hz), 33.0, 26.4, 26.1.

³¹P NMR (CDCl₃, 162 MHz): δ 31.6.

HRMS (ESI, m/Z): calcd. for $C_{21}H_{26}OP [M+H]^+$: 325.1716, found: 325.1720. (1-cyclopropylvinyl)diphenylphosphine oxide (1s)

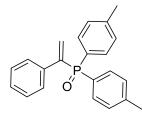

The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 56% of yield.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.79 – 7.69 (m, 4H, CH_{Ar}), 7.57 – 7.48 (m, 2H, CH_{Ar}), 7.49 – 7.42 (m, 4H, CH_{Ar}), 5.65 (d, J = 40.5 Hz, 1H, C=CHH), 5.60 (d, J = 20.0 Hz, 1H, C=CHH), 1.62 – 1.48 (m, 1H, CH₂CH₂CH), 0.80 – 0.67 (m, 2H, CHCH₂CH₂), 0.60 – 0.52 (m, 2H, CHCH₂CH₂).

¹³**C NMR (CDCl₃, 101 MHz):** δ 145.8 (d, *J* = 93.5 Hz), 132.0 (d, *J* = 9.8 Hz), 131.8 (d, *J* = 2.6 Hz), 131.6 (d, *J* = 102.0 Hz), 128.4 (d, *J* = 11.9 Hz), 124.6 (d, *J* = 9.9 Hz), 12.8 (d, *J* = 16.2 Hz), 8.9 (d, *J* = 3.7 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 31.2.

HRMS (ESI, m/Z): calcd. for C₁₇H₁₈OP [M+H]⁺: 269.1090, found: 269.1091. **4-(diphenylphosphoryl)pent-4-enenitrile (1u)**

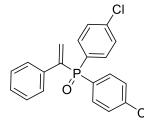


The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 83% of yield.

¹**H** NMR (CDCl₃, 400 MHz): δ 7.77 – 7.64 (m, 4H, CH_{Ar}), 7.62 – 7.42 (m, 6H, CH_{Ar}), 6.07 (d, *J* = 41.4 Hz, 1H, C=CH*H*), 5.58 (d, *J* = 19.7 Hz, 1H, C=CH*H*), 2.77 – 2.56 (m, 4H, CH₂CH₂). ¹³C NMR (CDCl₃, 101 MHz): δ 140.5 (d, *J* = 93.3 Hz), 132.4 (d, *J* = 2.7 Hz), 131.8 (d, *J* = 9.8 Hz), 131.7 (d, *J* = 9.9 Hz), 130.4 (d, *J* = 102.8 Hz), 128.8 (d, *J* = 12.1 Hz), 118.8, 28.7 (d, *J* = 11.4 Hz), 17.2 (d, *J* = 3.9 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 30.9.

HRMS (ESI, m/Z): calcd. for $C_{17}H_{17}NOP [M+H]^+$: 282.1042, found: 282.1046. (1-phenylvinyl)di-p-tolylphosphine oxide (1w)


The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 70% of yield.

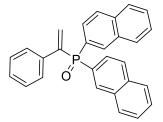
¹**H NMR (CDCl₃, 400 MHz):** δ 7.61 – 7.52 (m, 4H, CH_{Ar}), 7.48 – 7.40 (m, 2H, CH_{Ar}), 7.26 – 7.16 (m, 7H, CH_{Ar}), 6.19 (d, *J* = 39.9 Hz, 1H, CH*H*), 5.72 (d, *J* = 19.6 Hz, 1H, CH*H*), 2.35 (s, 6H, 2xCH₃).

¹³C NMR (CDCl₃, 101 MHz): δ 144.7 (d, J = 92.4 Hz), 142.4 (d, J = 2.9 Hz), 137.8 (d, J = 9.9 Hz), 132.1 (d, J = 9.9 Hz), 131.7 (d, J = 9.7 Hz), 129.3 (d, J = 12.5 Hz), 128.5, 128.6 (d, J = 106.0 Hz), 128.2 (d, J = 4.7 Hz), 128.2 (d, J = 0.9 Hz), 21.7 (d, J = 1.4 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 27.4.

HRMS (ESI, m/Z): calcd. for $C_{22}H_{22}OP [M+H]^+$: 333.1403, found: 333.1404. **bis(4-chlorophenyl)(1-phenylvinyl)phosphine oxide (1x)**

The product was synthesized following **Method A** obtained after column chromatography (SiO₂, EA:Pentane = 1:1) as a white solid 54% of yield.


¹**H NMR (CDCl₃, 400 MHz):** δ 7.69 – 7.54 (m, 4H, CH_{Ar}), 7.50 – 7.36 (m, 6H, CH_{Ar}), 7.33 – 7.19 (m, 3H, CH_{Ar}), 6.27 (d, *J* = 40.8 Hz, 1H, CH*H*), 5.77 (d, *J* = 20.2 Hz, 1H, CH*H*).

¹³C NMR (CDCl₃, 101 MHz): δ 144.0 (d, J = 94.3 Hz), 138.9 (d, J = 2.8 Hz), 137.1 (d, J = 9.8 Hz), 133.4 (d, J = 10.4 Hz), 132.5 (d, J = 9.4 Hz), 129.9 (d, J = 105.2 Hz), 129.1 (d, J = 12.8 Hz), 128.7, 128.7, 128.2 (d, J = 4.7 Hz).

³¹P NMR (CDCl₃, 162 MHz): δ 28.5.

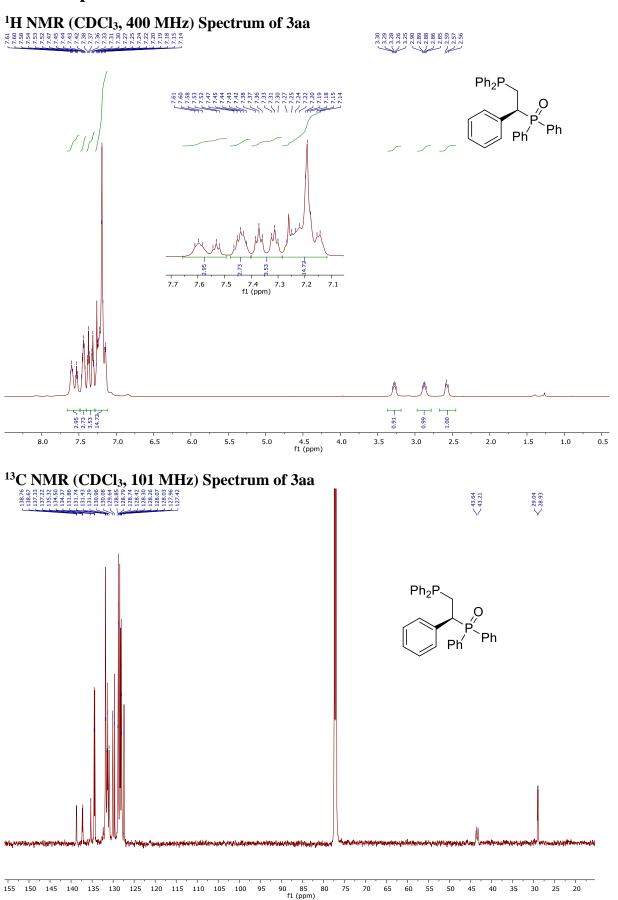
HRMS (ESI, m/Z): calcd. for C₂₀H₁₆Cl₂OP [M+H]⁺: 373.0310, found: 373.0312.

di(naphthalen-2-yl)(1-phenylvinyl)phosphine oxide (1y)

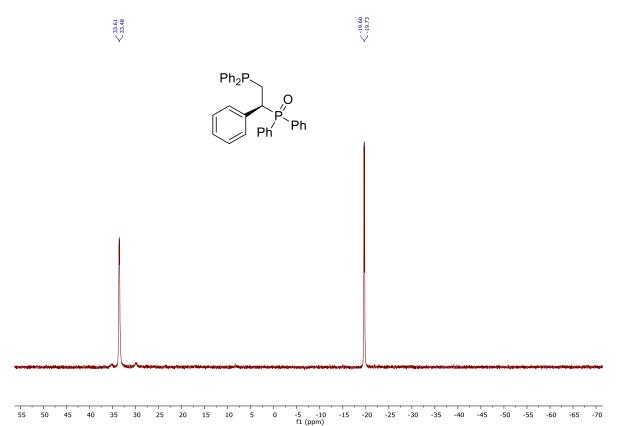
The product was synthesized following **Method A** obtained after column chromatography $(SiO_2, EA:Pentane = 1:1)$ as a white solid 50% of yield.

¹**H NMR (CDCl₃, 400 MHz):** δ 8.42 (d, *J* = 13.6 Hz, 2H), 7.92 – 7.82 (m, 6H), 7.75 – 7.67 (m, 2H), 7.62 – 7.48 (m, 6H), 7.27 – 7.21 (m, 3H), 6.32 (dd, *J* = 40.4, 0.8 Hz, 1H), 5.87 (dd, *J* = 19.9, 0.8 Hz, 1H).

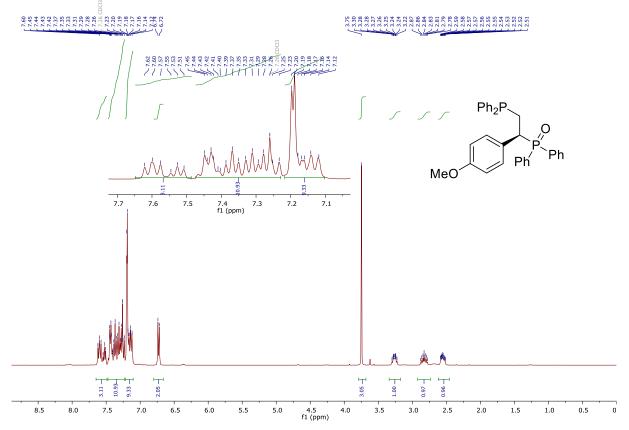
¹³C NMR (CDCl₃, 101 MHz): δ 144.5 (d, J = 92.7 Hz), 137.7 (d, J = 9.9 Hz), 134.8 (d, J = 2.3 Hz), 134.2 (d, J = 9.0 Hz), 132.6 (d, J = 13.4 Hz), 132.3 (d, J = 9.9 Hz), 129.1, 129.0 (d, J = 103.8 Hz), 128.6, 128.4, 128.4, 128.3, 128.3, 128.2 (d, J = 3.3 Hz), 127.0 (d, J = 0.7 Hz), 126.9 (d, J = 10.5 Hz).

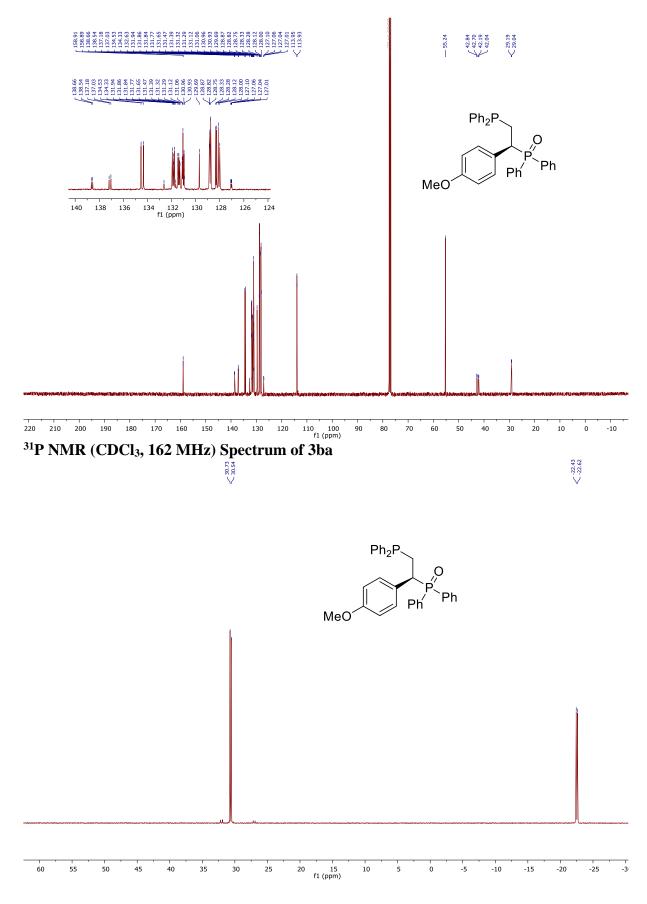

³¹P NMR (CDCl₃, 162 MHz): δ 27.0.

HRMS (ESI, m/Z): calcd. for C₂₈H₂₂OP [M+H]⁺: 405.1403, found: 405.1402.

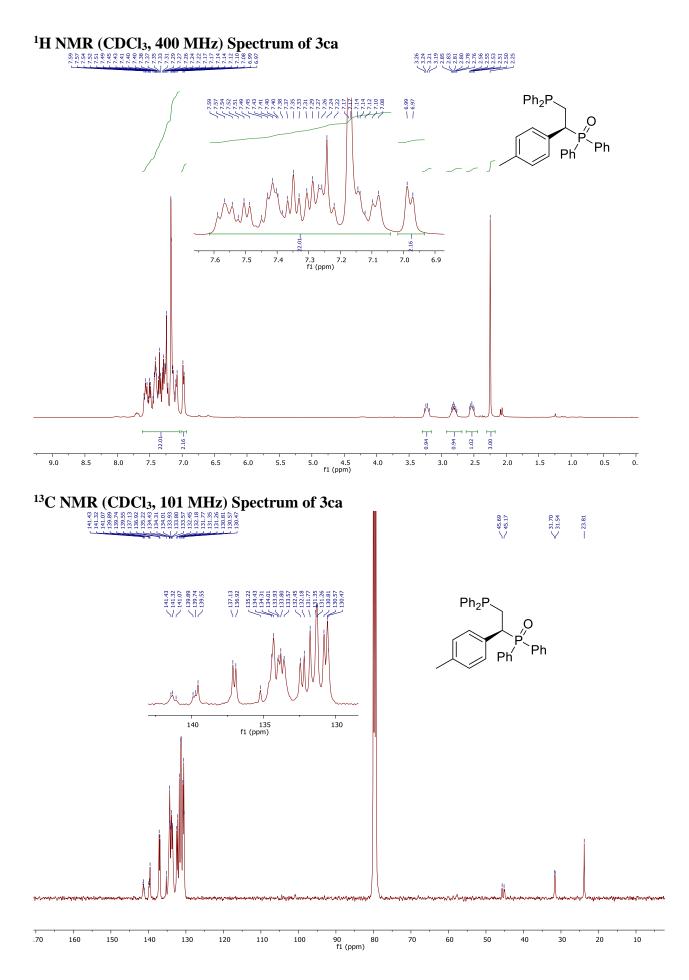

6. References

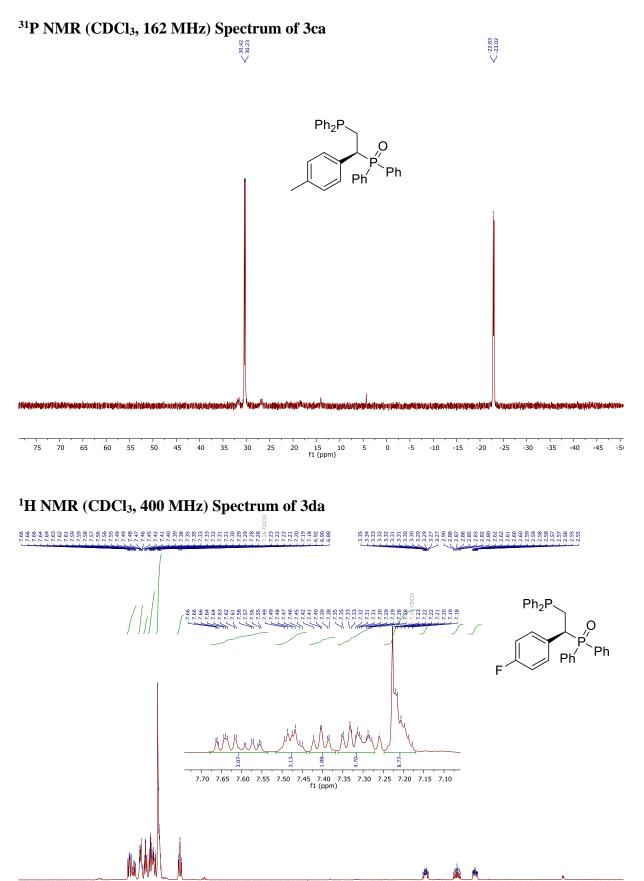
- (1) W. J. Yue, J. Z. Xiao, S. Zhang and L. Yin, *Angew. Chem., Int. Ed.* 2020, **59**, 7057–7062.
- (2) Y.-B. Li, H. Tian and L. Yin, J. Am. Chem. Soc. 2020, 142, 20098–20106.
- (3) N. Dobashi, K. Fuse, T. Hoshino, J. Kanada, T. Kashiwabara, C. Kobata, S. K. Nune and M. Tanaka, *Tetrahedron Lett.* 2007, **48**, 4669–4673.
- (4) T. Chen, C. Q. Zhao and L. B. Han, J. Am. Chem. Soc. 2018, 140, 3139–3155.
- (5) V. Hornillos, C. Vila, E. Otten and B. L. Feringa, *Angew. Chem., Int. Ed.* 2015, **54**, 7867–7871.
- (6) Y.-B. Huang, Y.-X. Li, P.-H. Leung and T. Hayashi, J. Am. Chem. Soc. 2014, **136**, 4865–4868

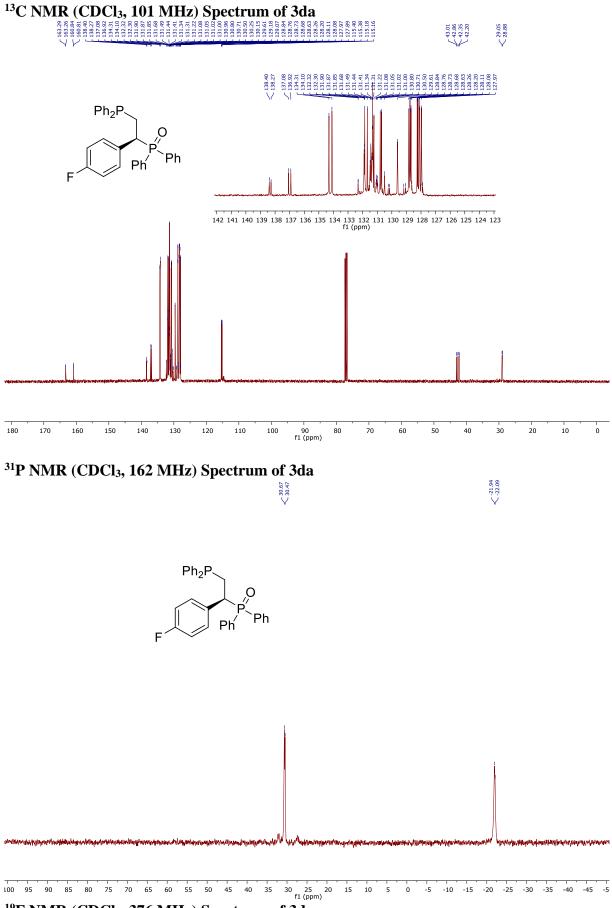

7. NMR spectra

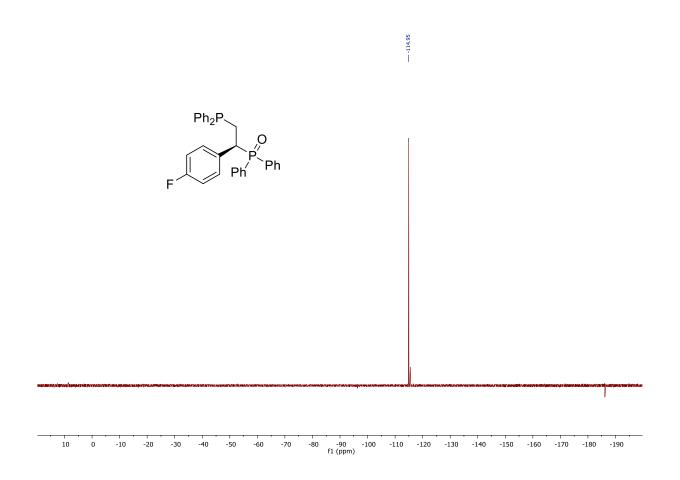


¹³P NMR (CDCl₃, 162 MHz) Spectrum of 3aa

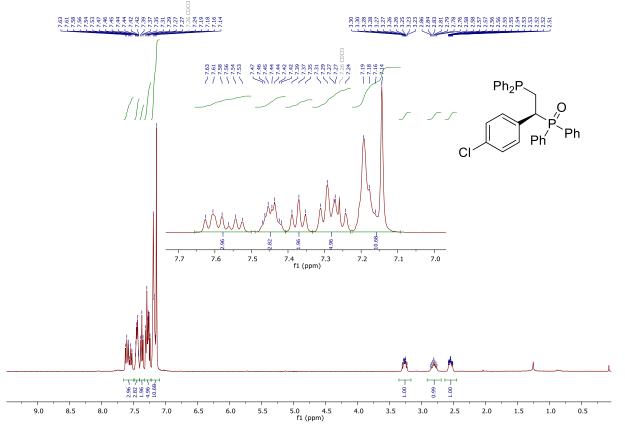


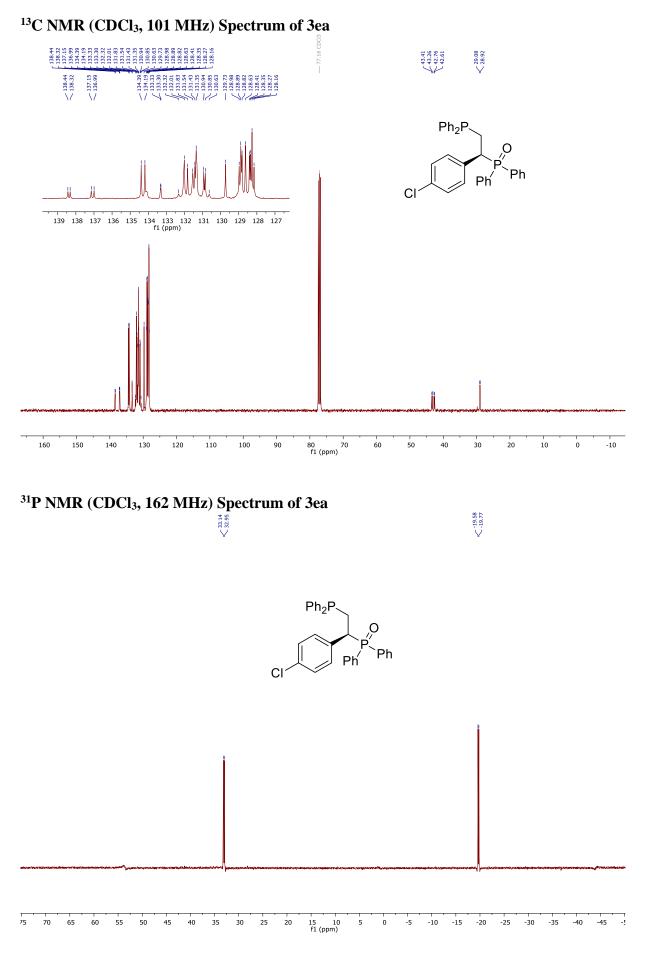

¹H NMR (CDCl₃, 400 MHz) Spectrum of 3ba


¹³C NMR (CDCl₃, 101 MHz) Spectrum of 3ba

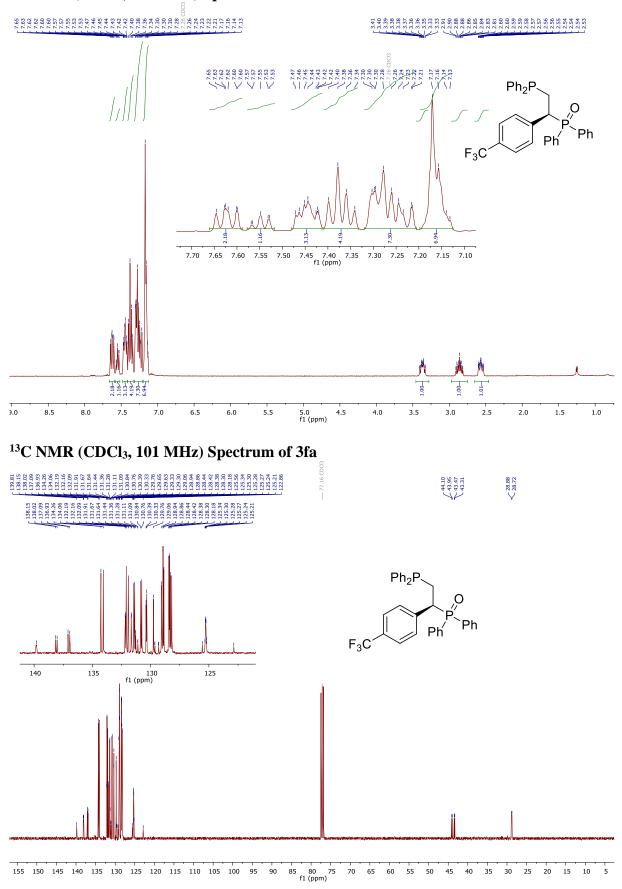


2.04 3.13 9 1.06-1.00 0.5 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 2.0 1.5 1.0

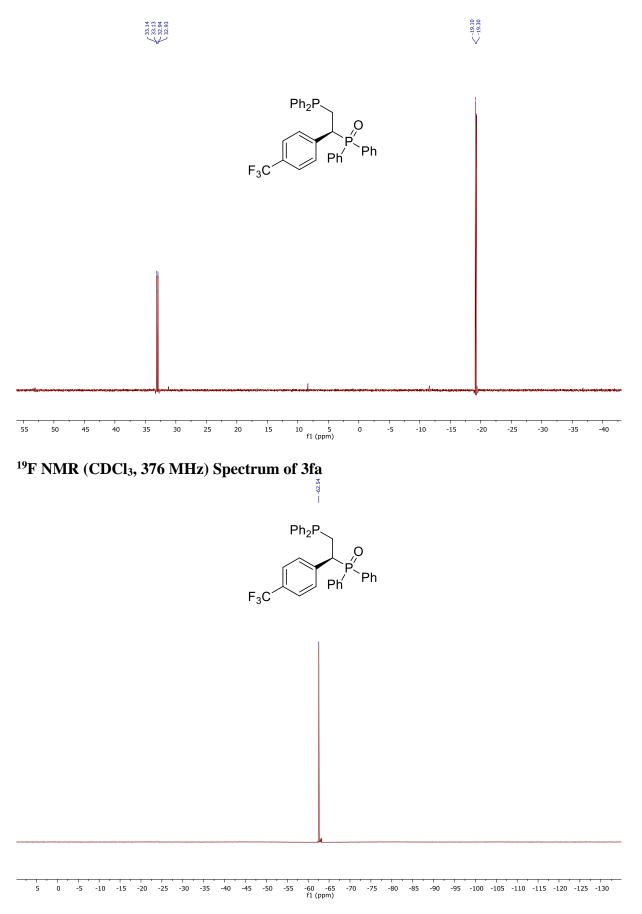

9.0

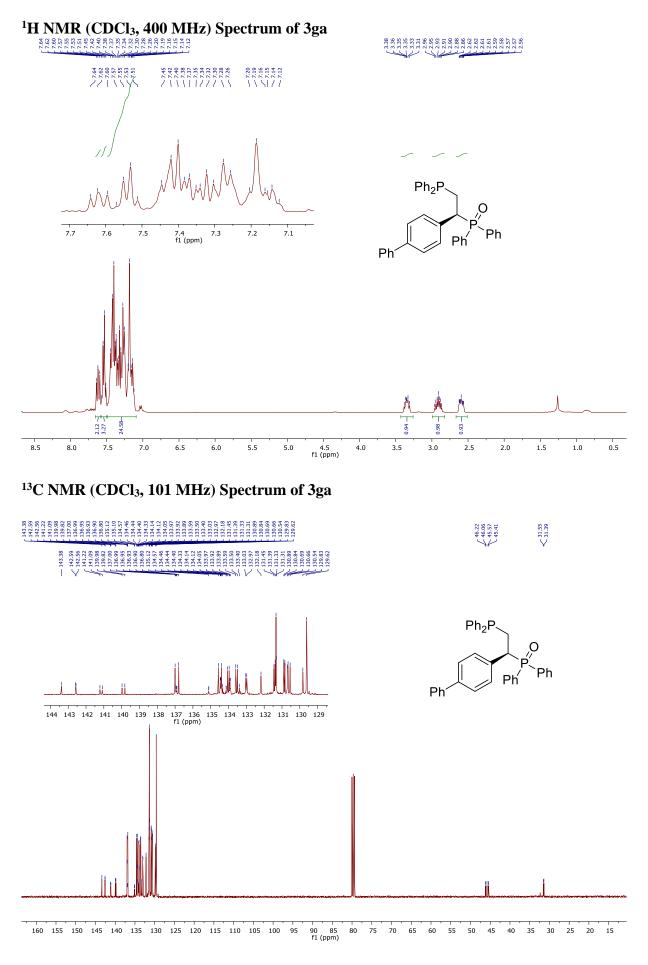


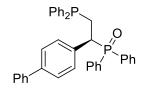
¹⁹F NMR (CDCl₃, 376 MHz) Spectrum of 3da

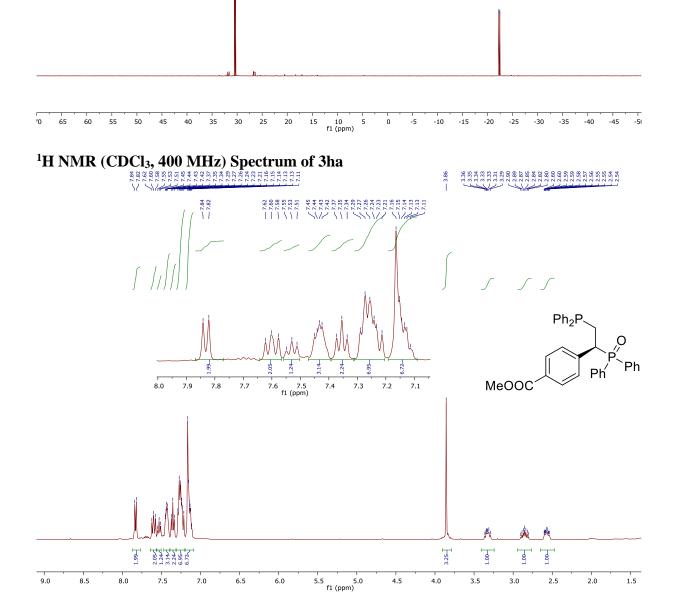


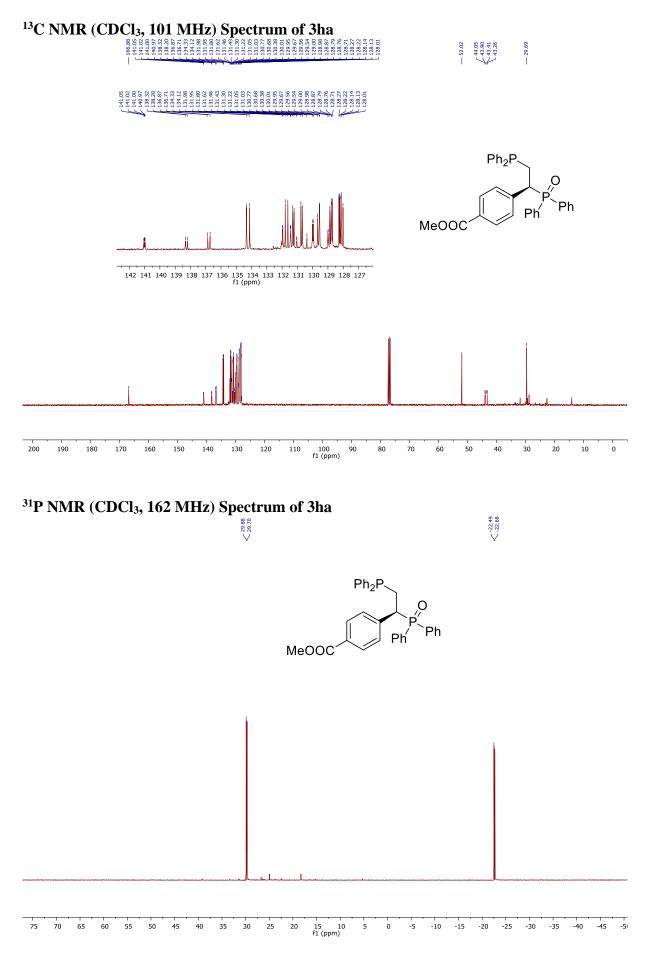
¹H NMR (CDCl₃, 400 MHz) Spectrum of 3ea

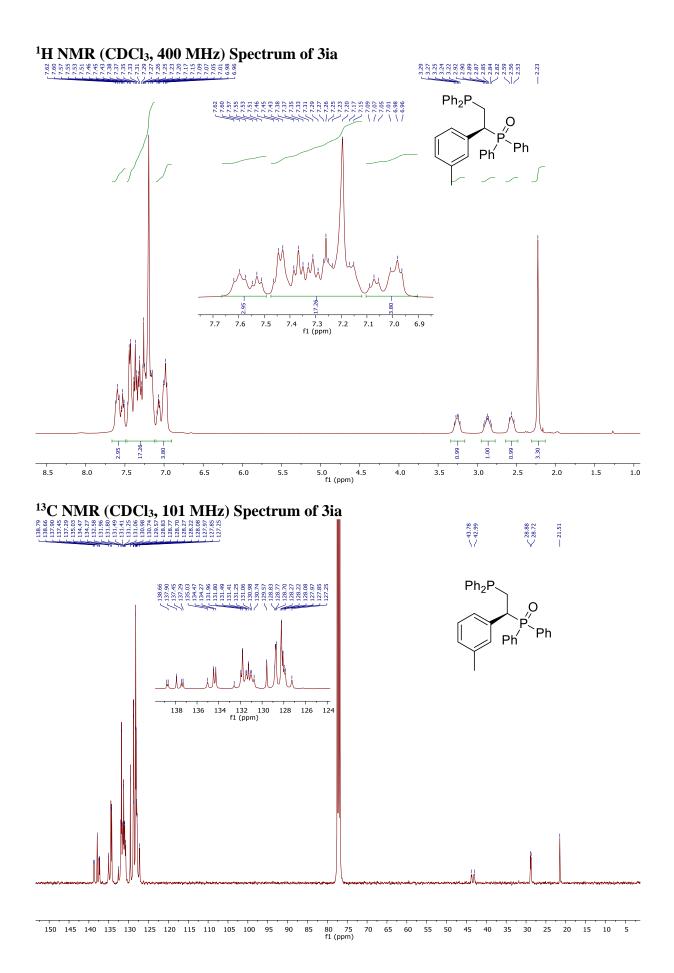


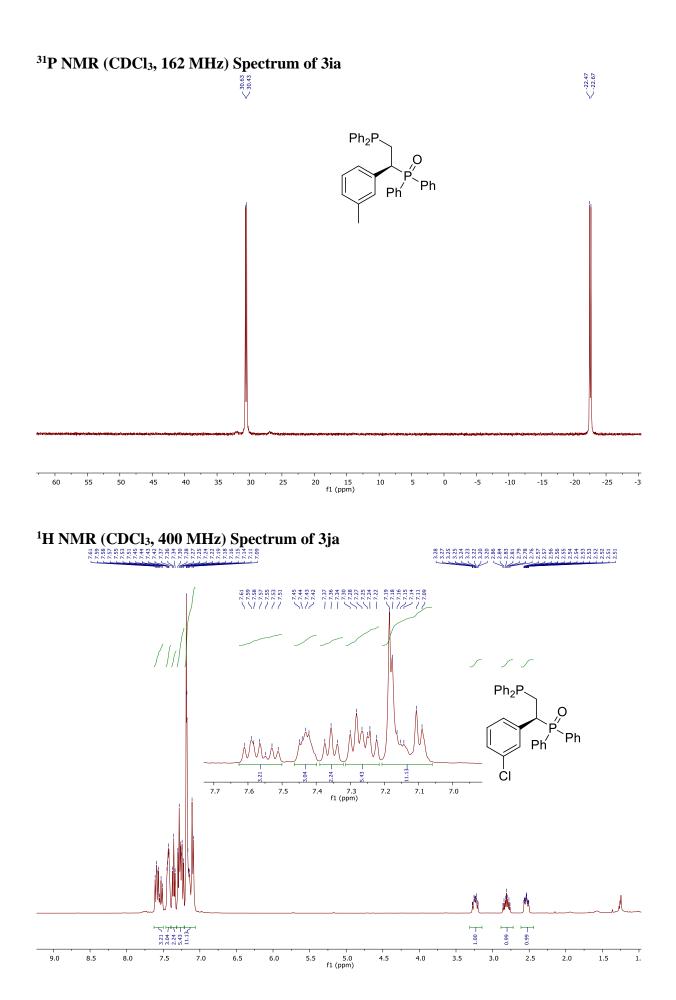


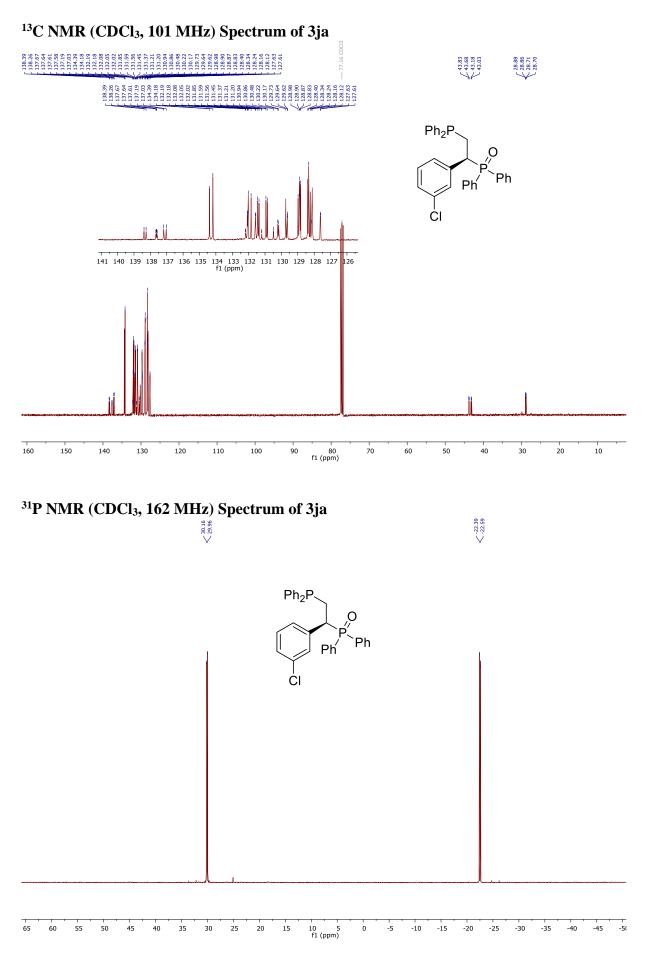

¹H NMR (CDCl₃, 400 MHz) Spectrum of 3fa

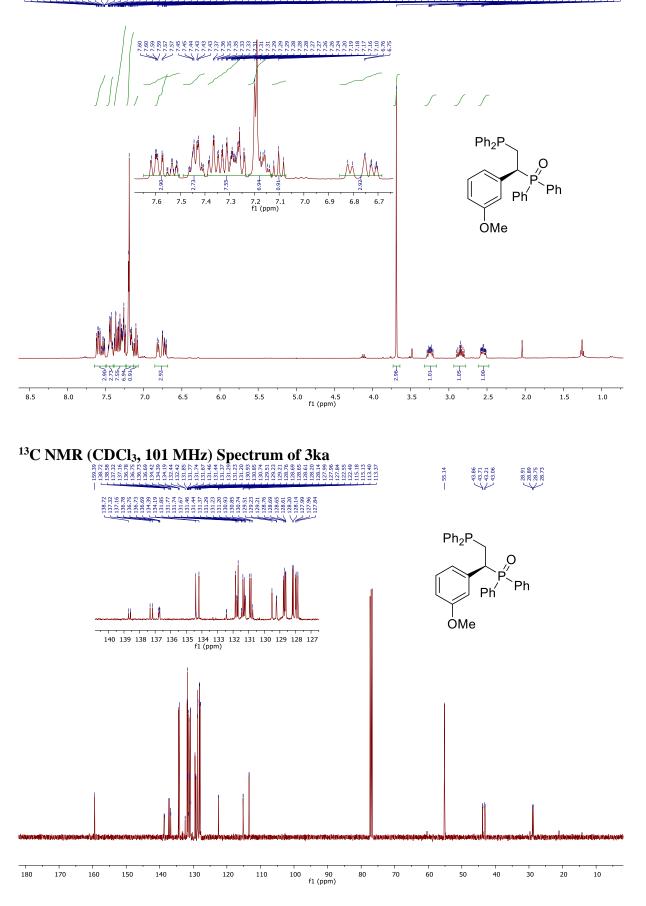

³¹P NMR (CDCl₃, 162 MHz) Spectrum of 3fa

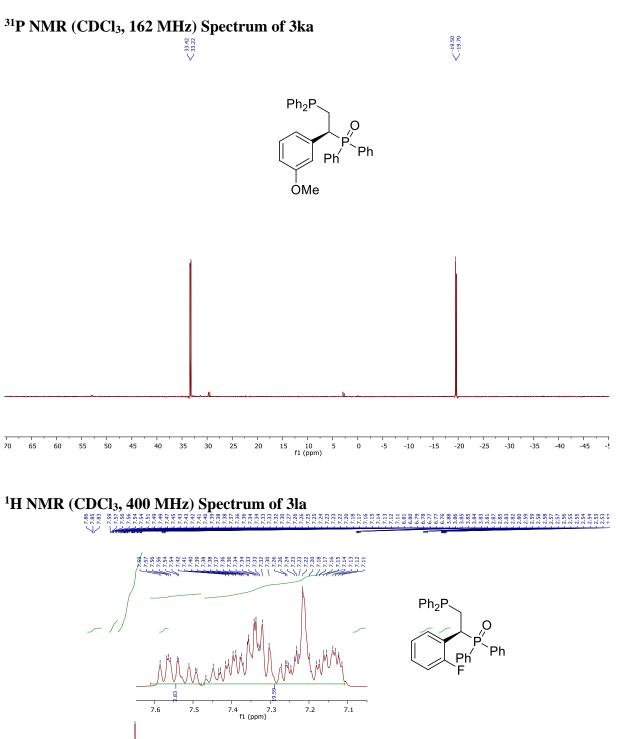


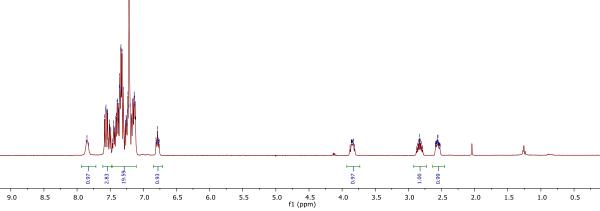


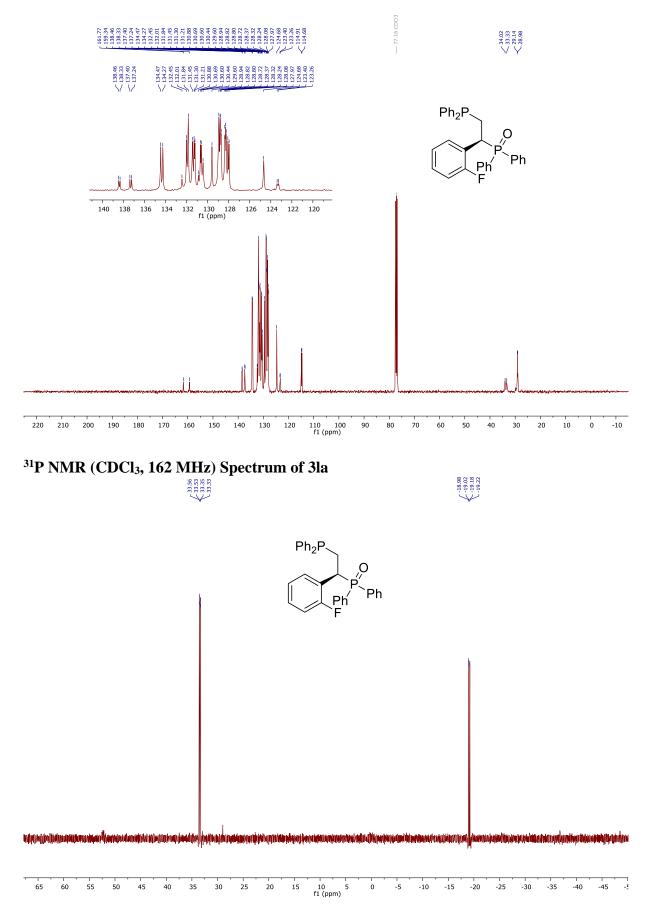


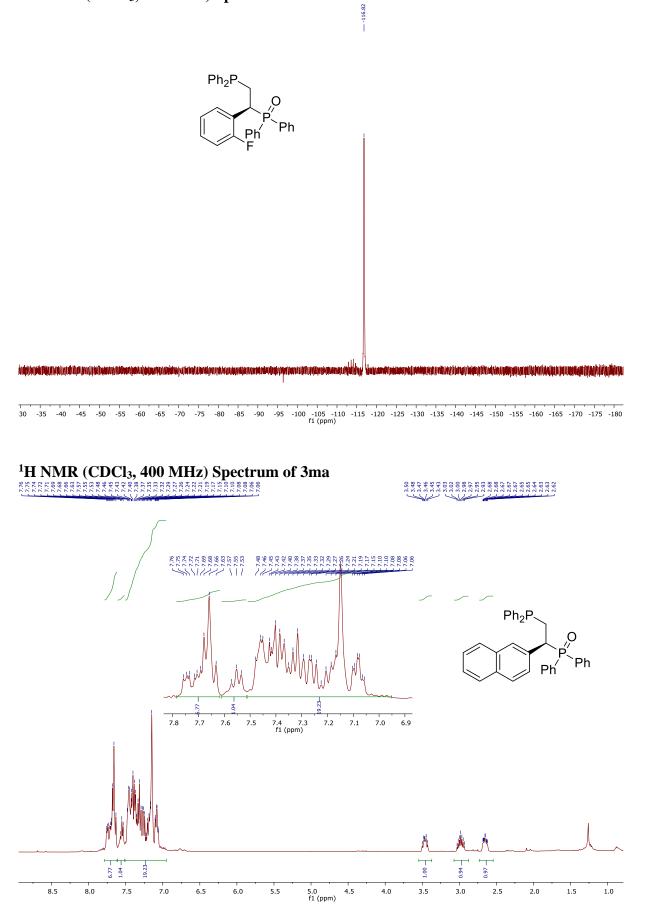

<-22.24 <-22.44

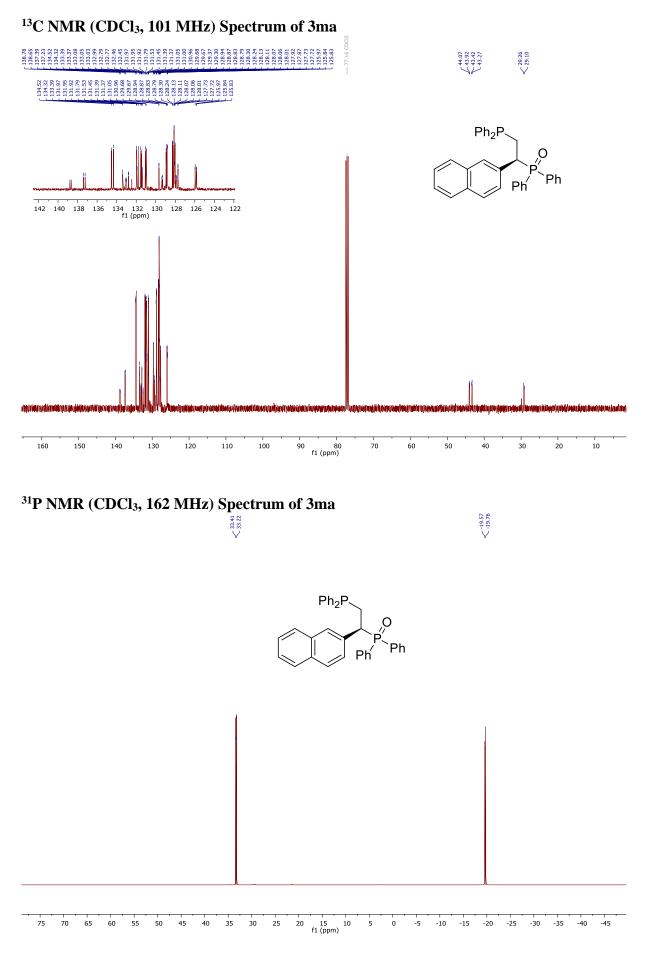




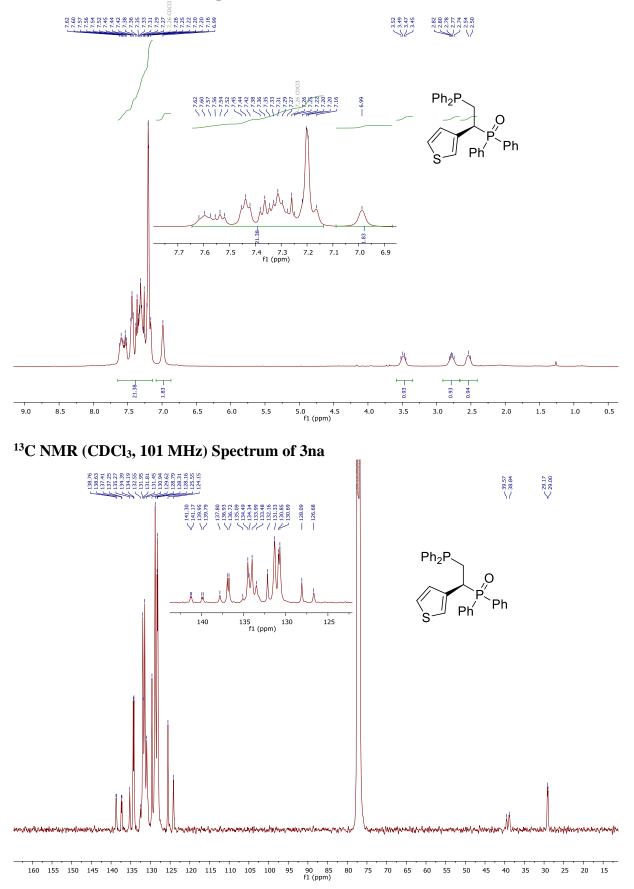


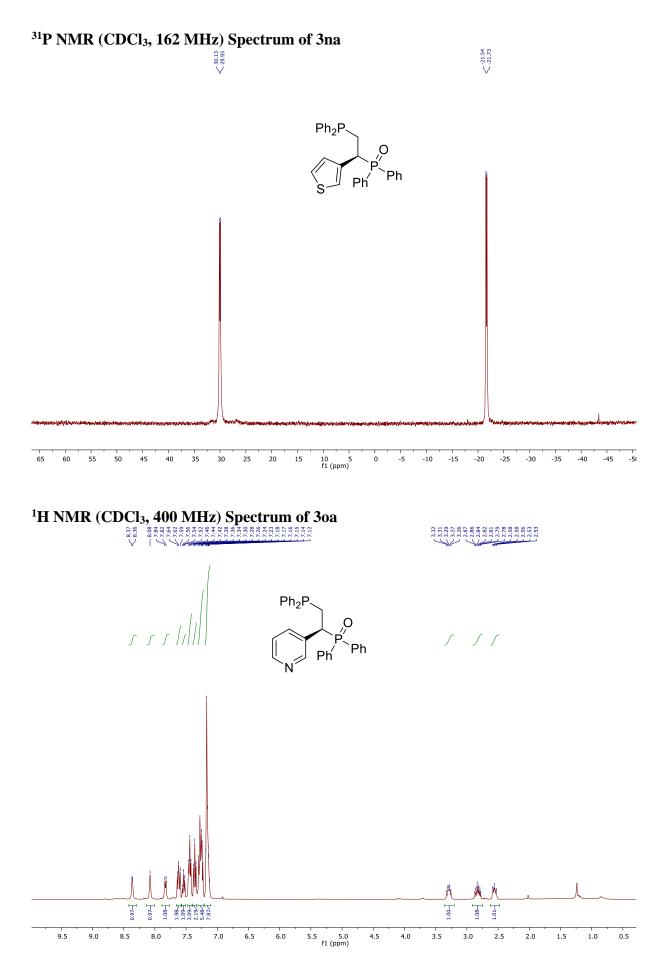

¹H NMR (CDCl₃, 400 MHz) Spectrum of 3ka

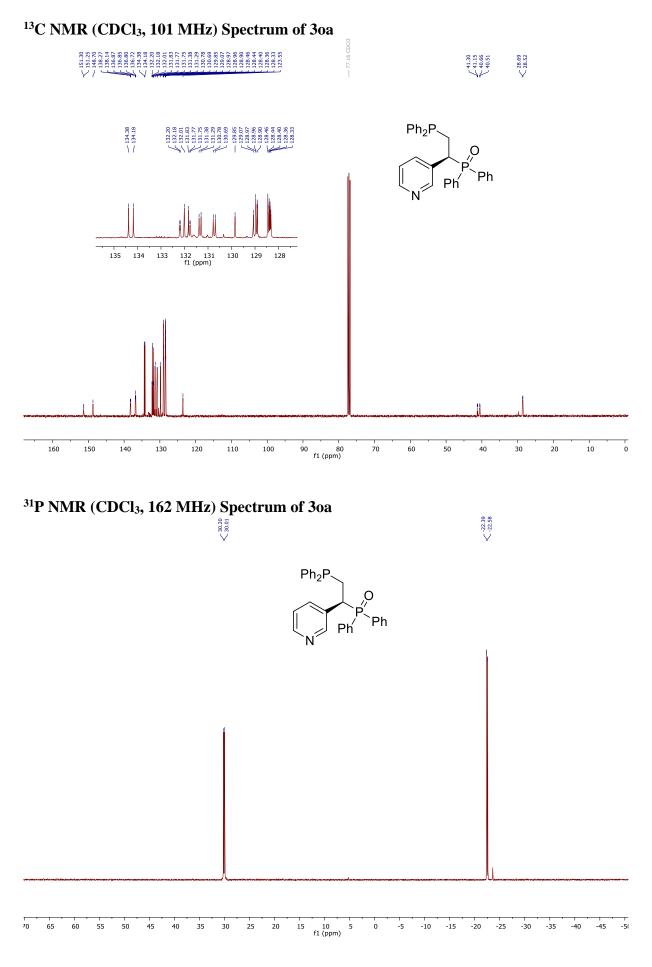


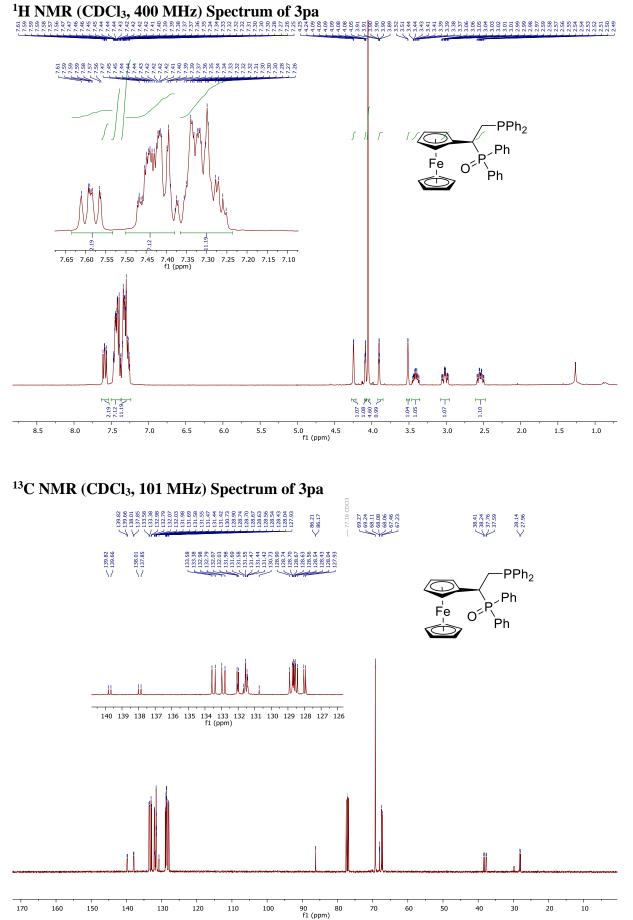


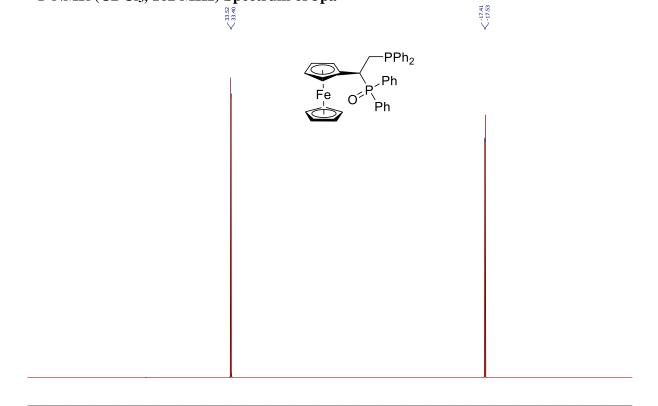
¹³C NMR (CDCl₃, 101 MHz) Spectrum of 3la

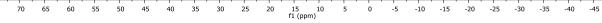


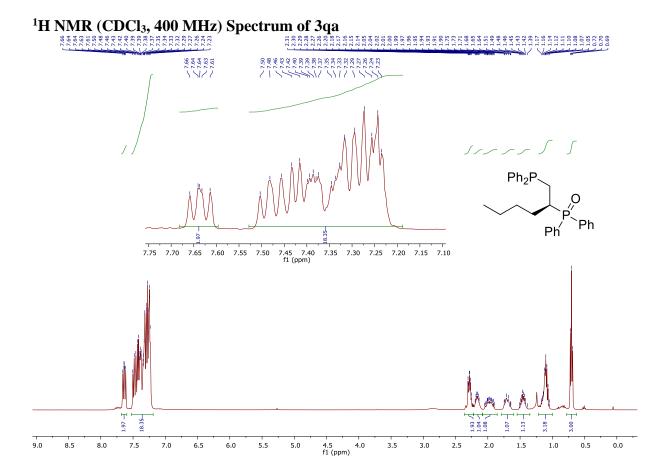

¹⁹F NMR (CDCl₃, 376 MHz) Spectrum of 3la

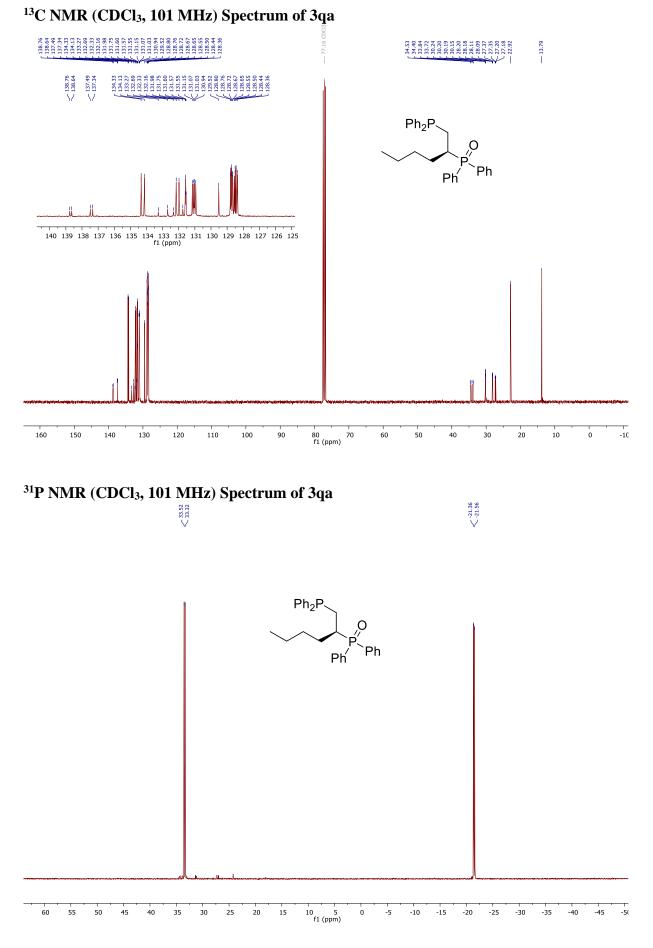


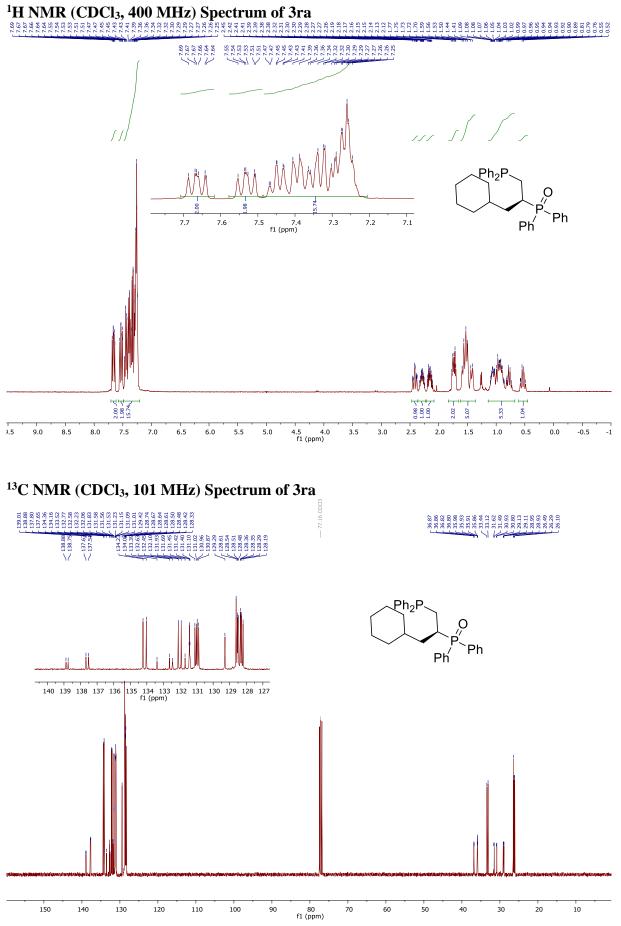


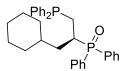


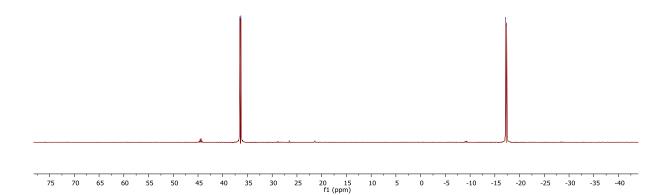


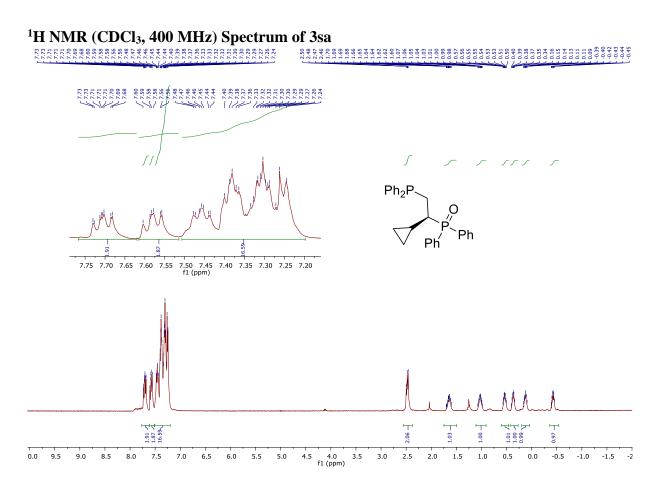


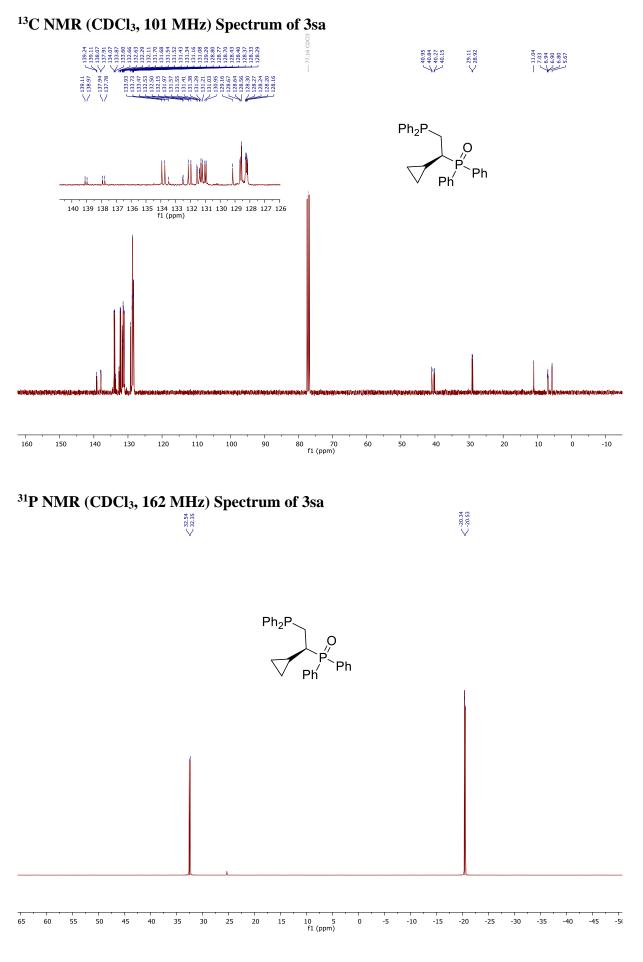


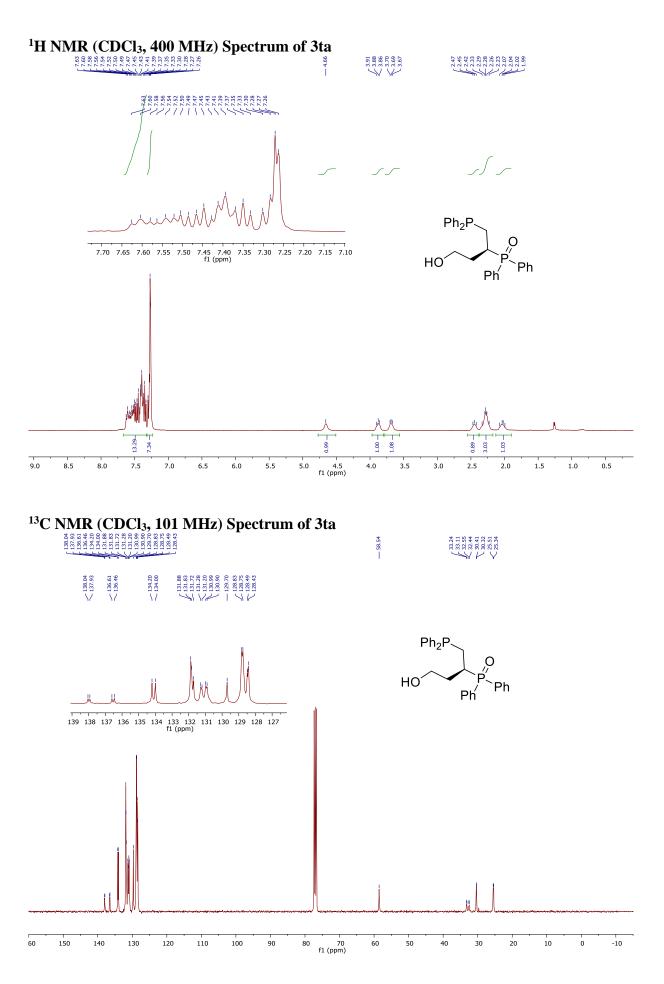

³¹P NMR (CDCl₃, 162 MHz) Spectrum of 3pa

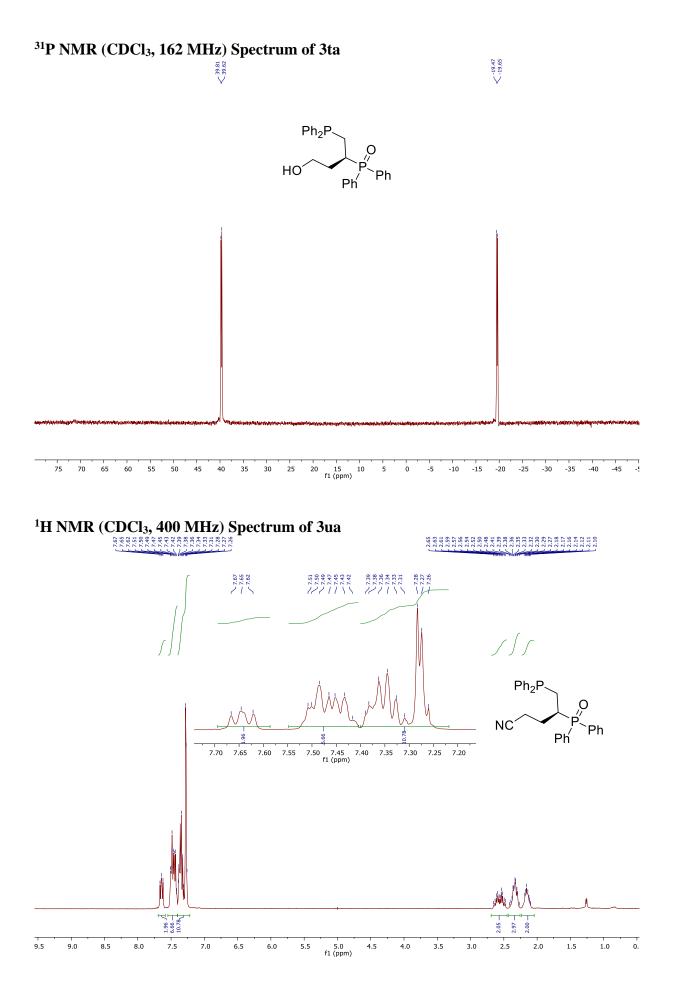


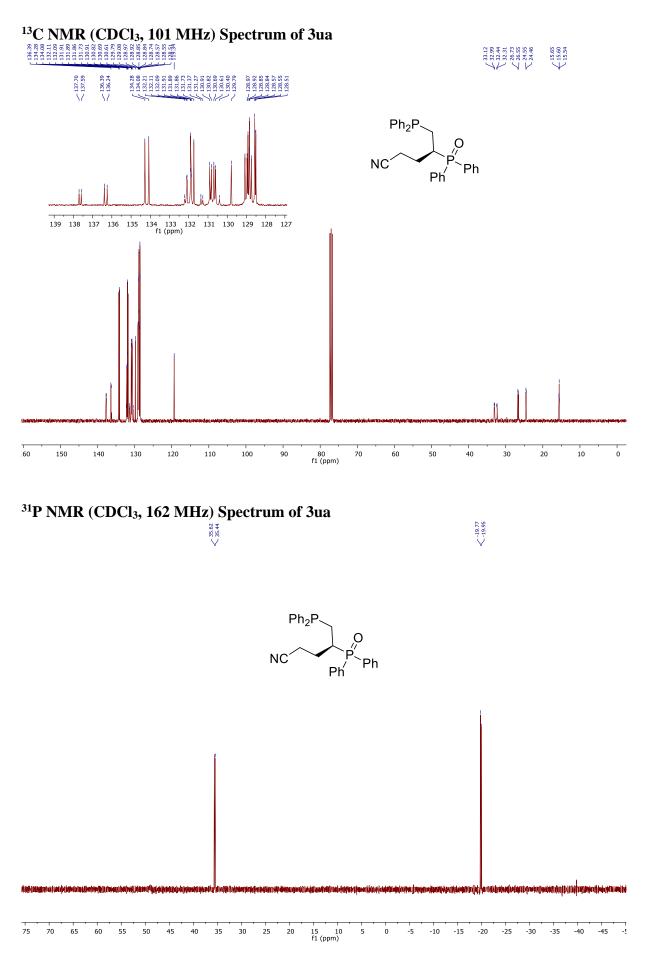


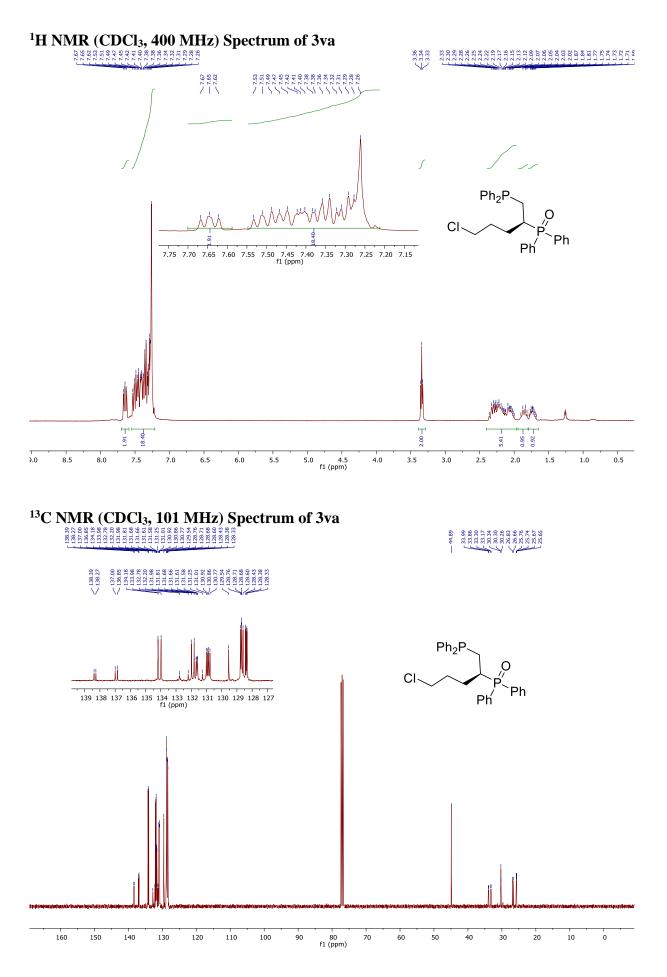


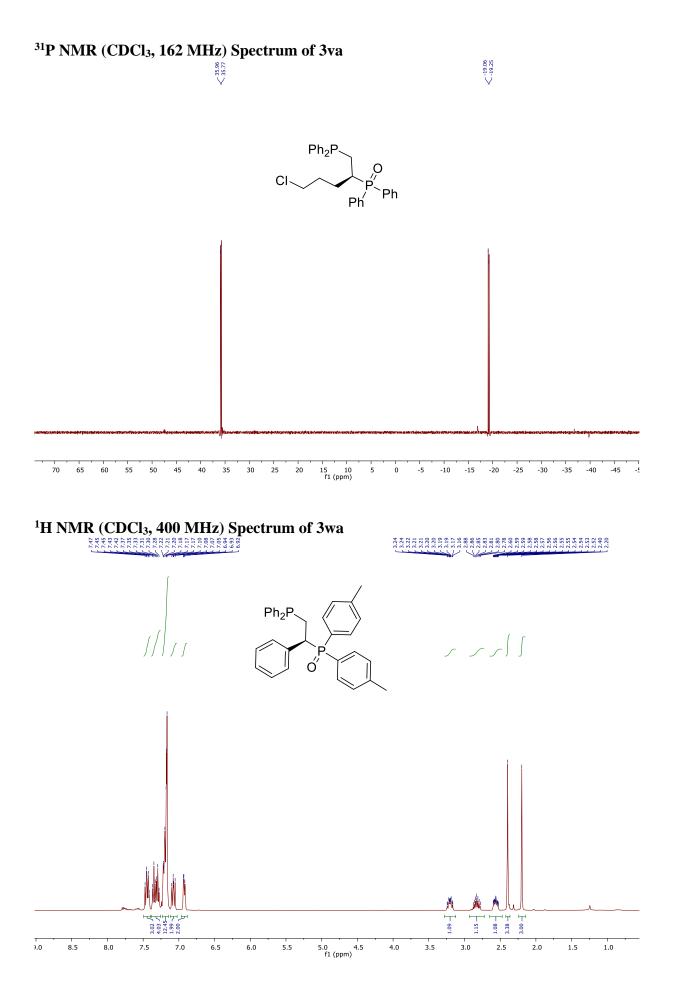


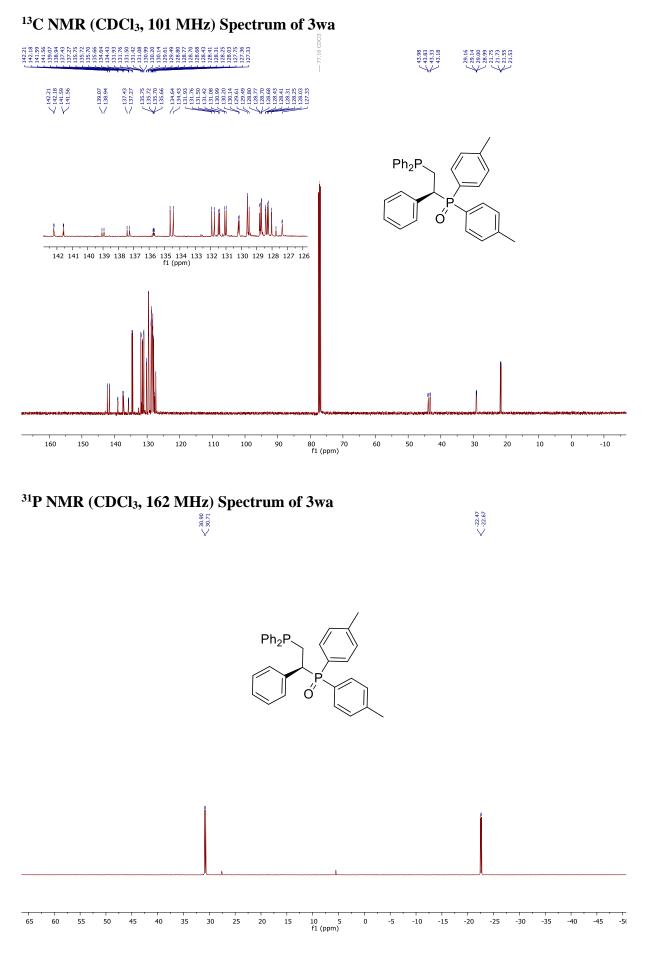


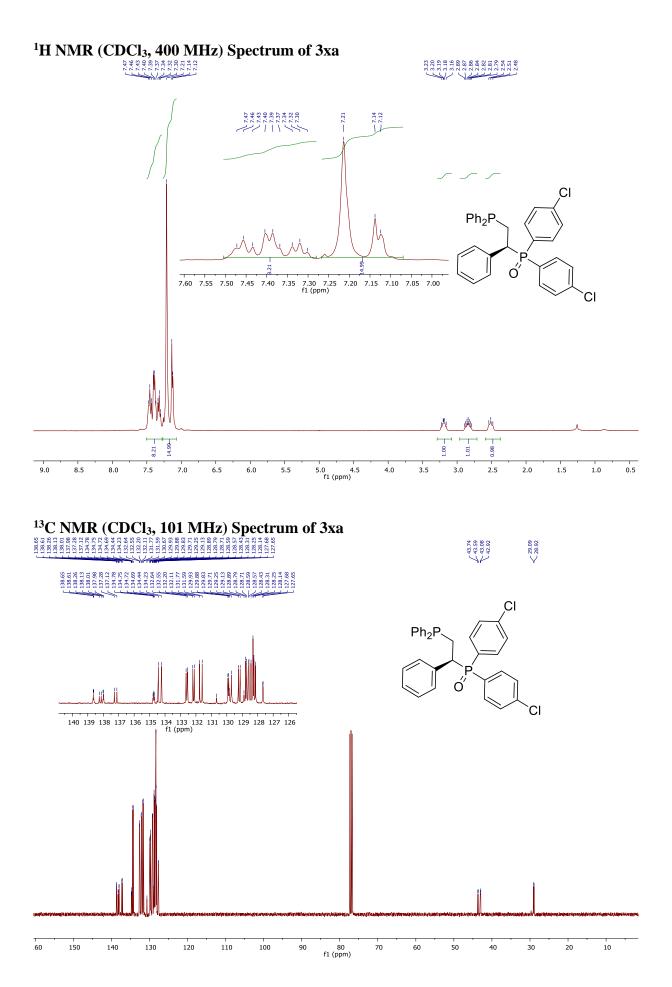

<-17.21 <-17.40

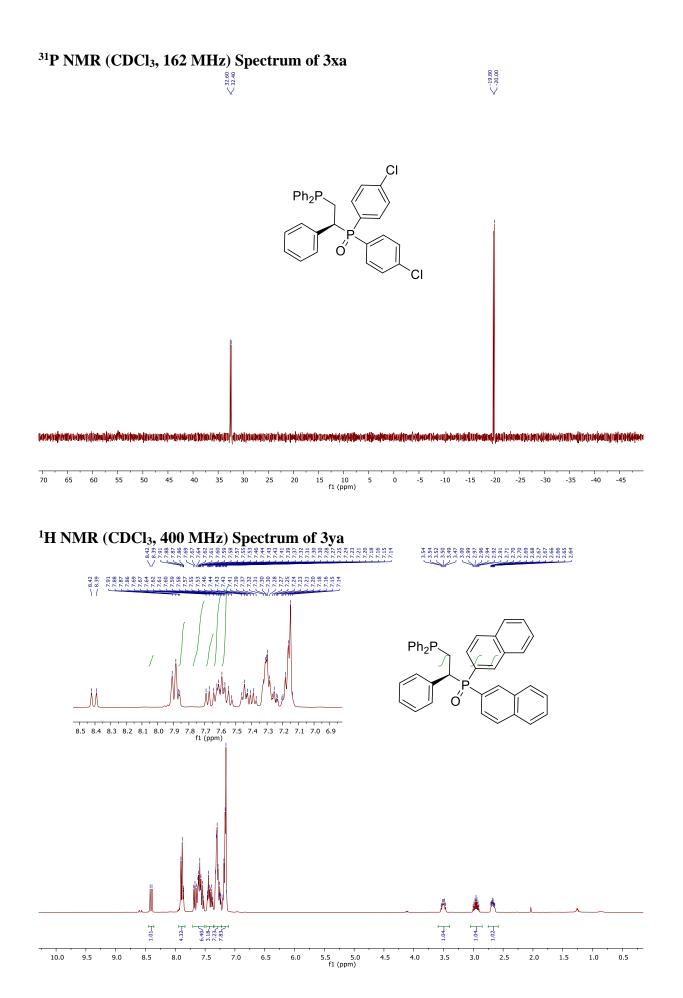


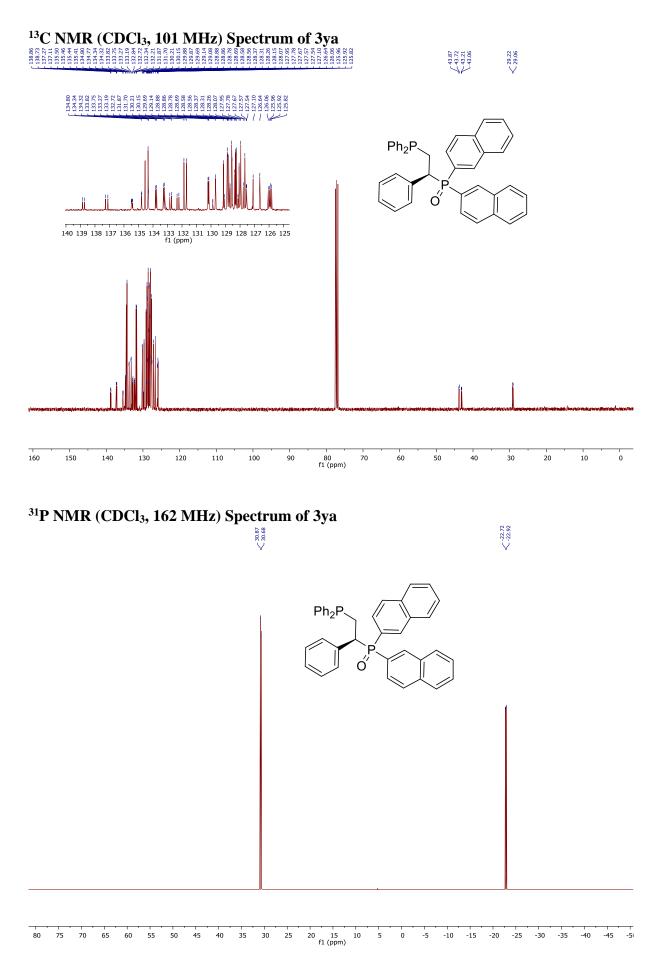


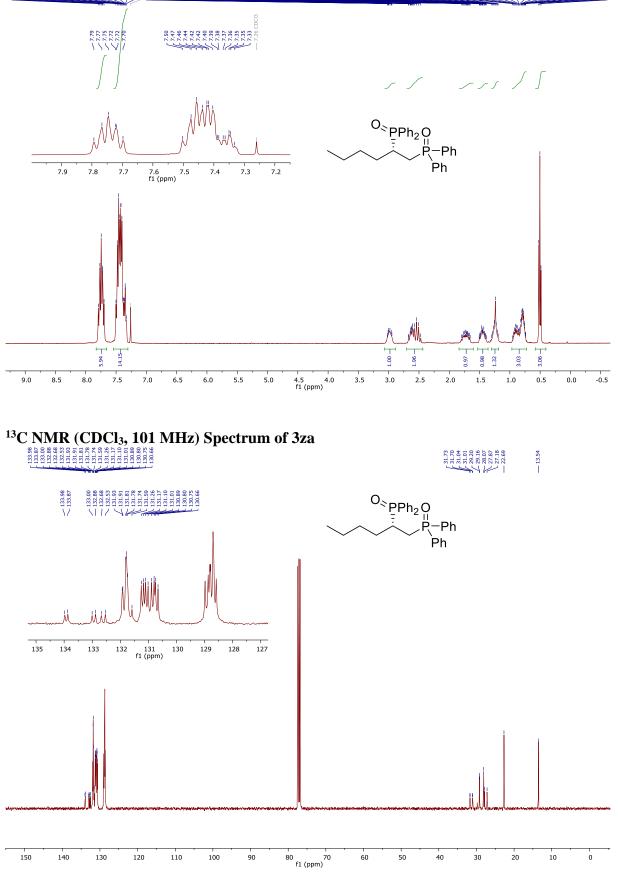


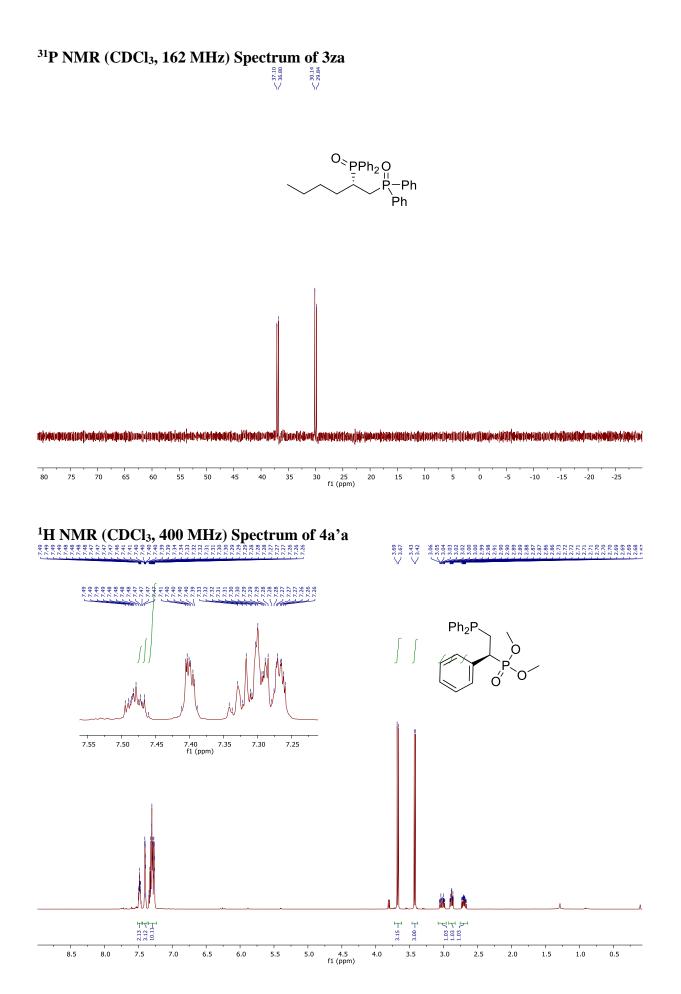


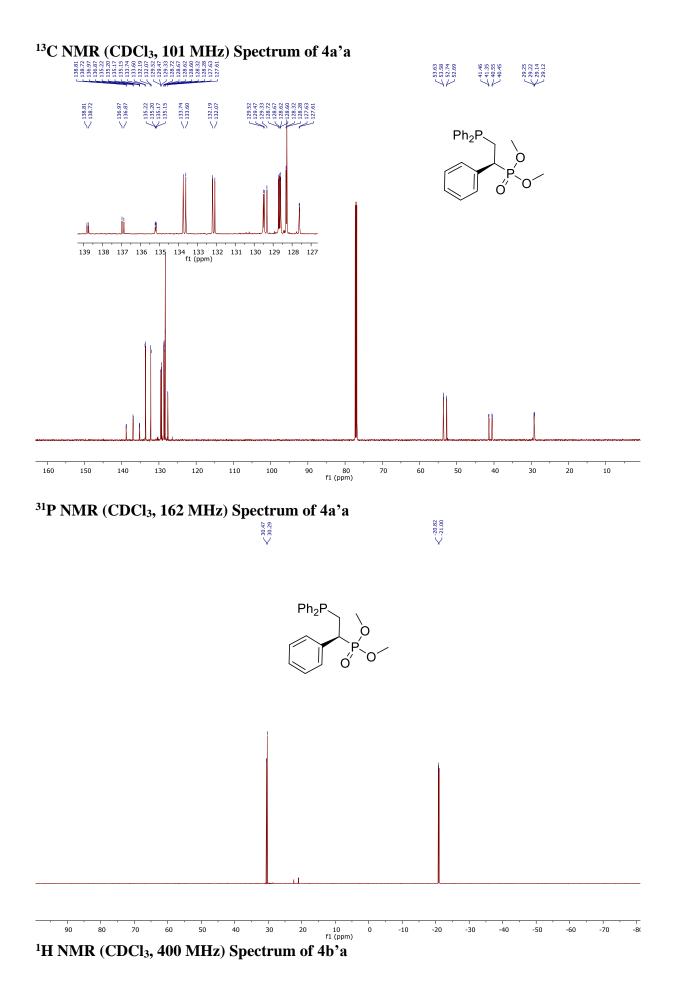


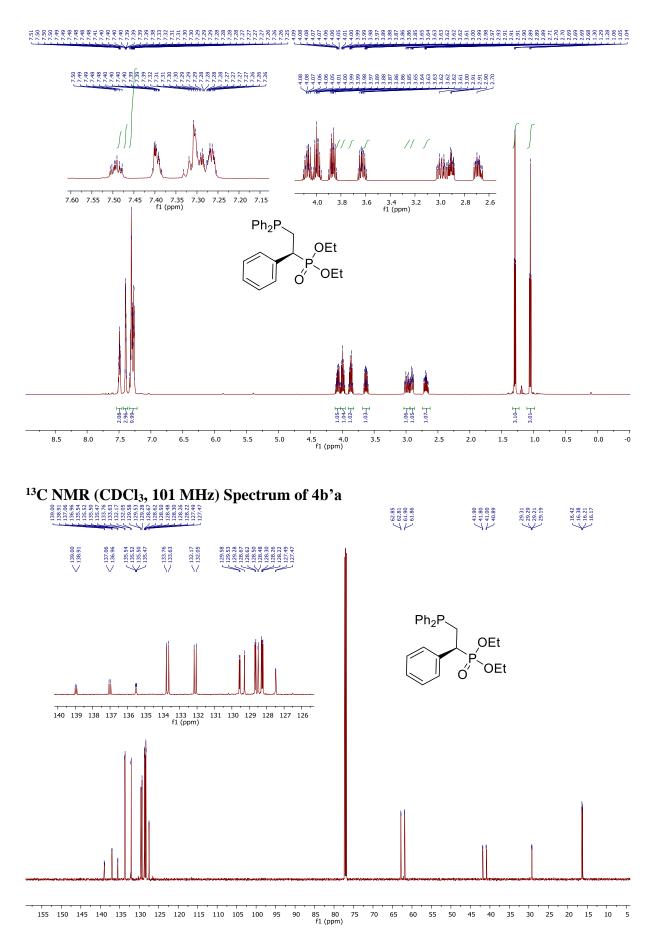


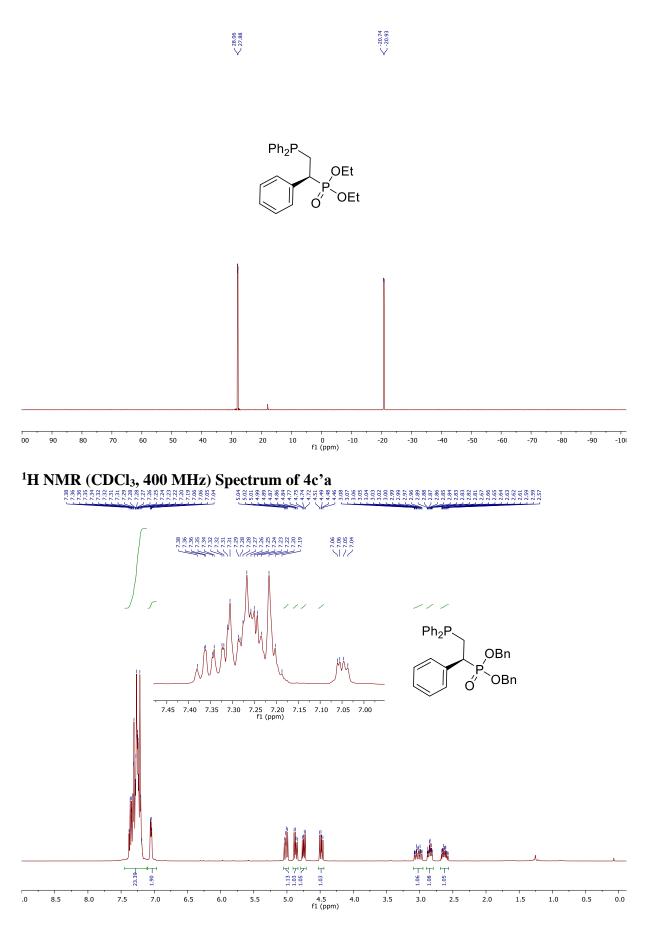


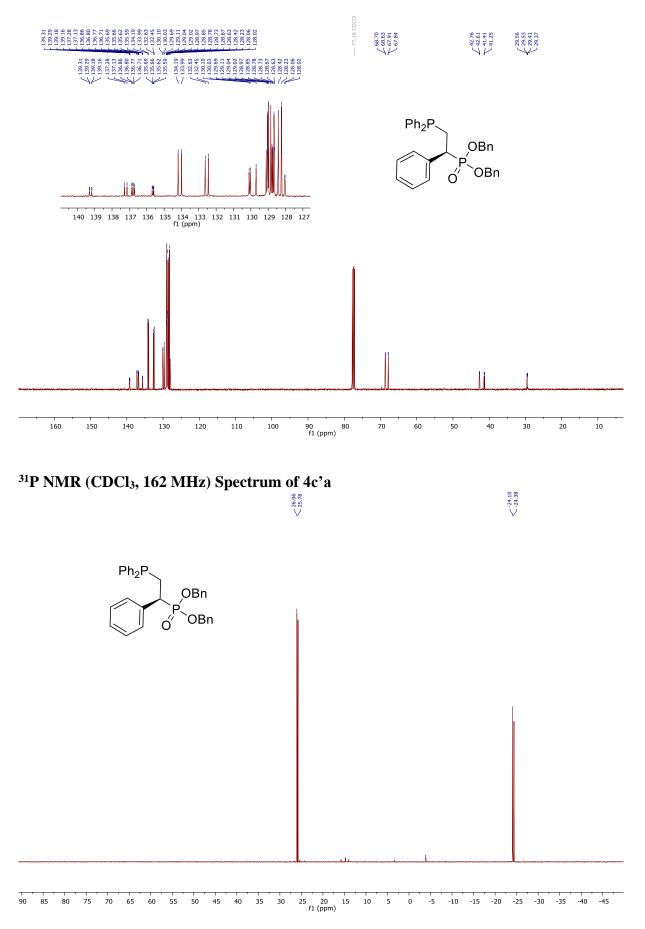


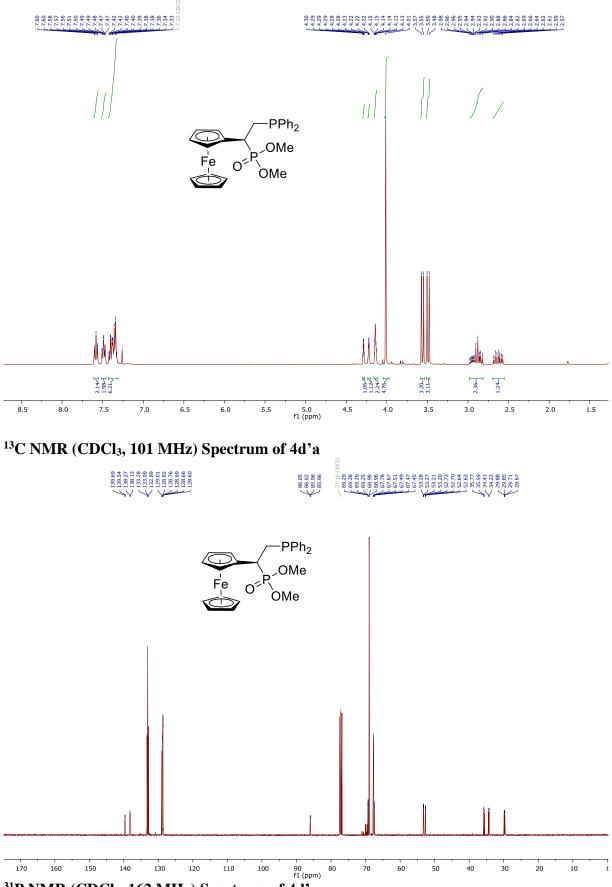


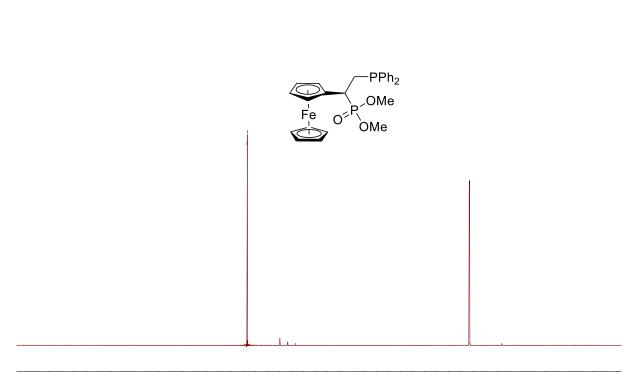



¹H NMR (CDCl₃, 400 MHz) Spectrum of 3za

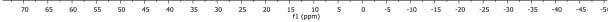


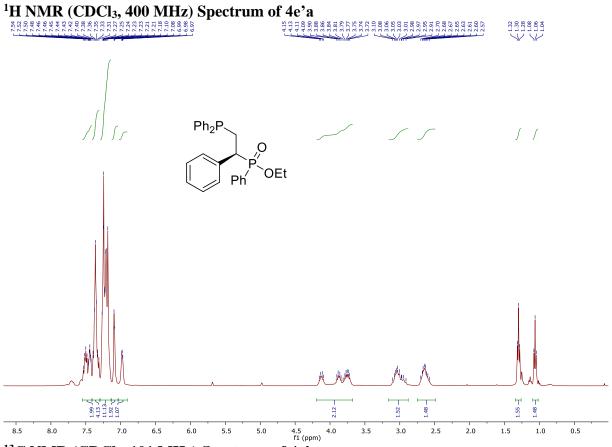

S140

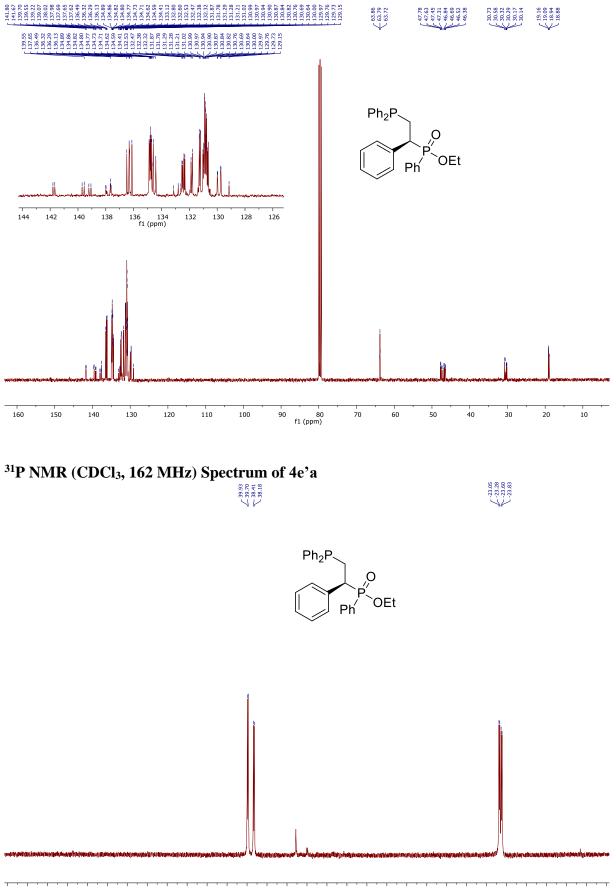

³¹P NMR (CDCl₃, 162 MHz) Spectrum of 4b'a


¹³C NMR (CDCl₃, 101 MHz) Spectrum of 4c'a

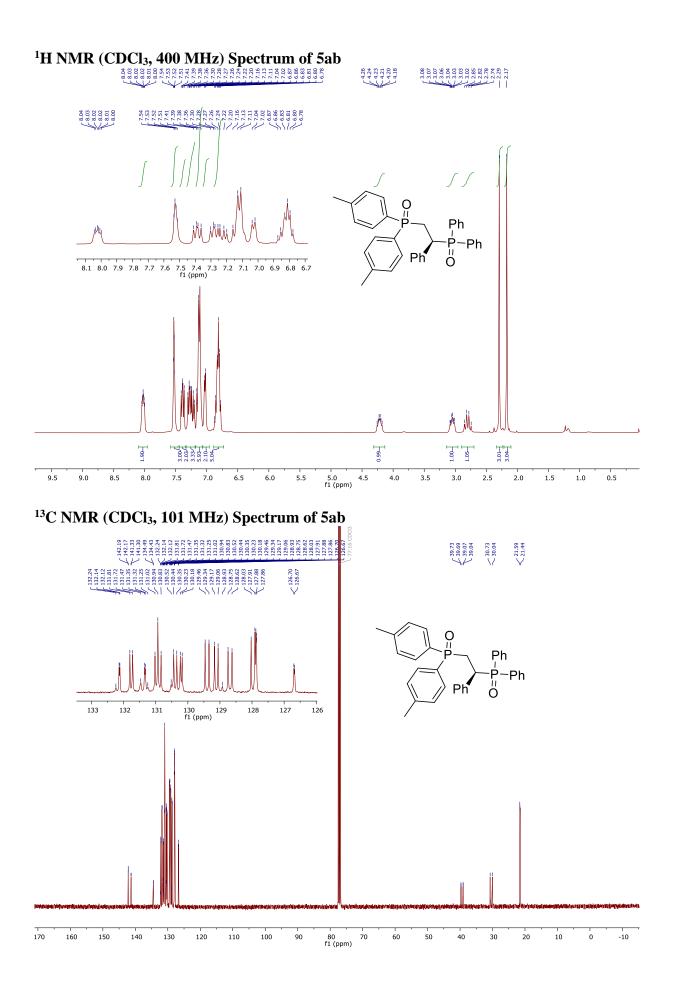
¹H NMR (CDCl₃, 400 MHz) Spectrum of 4d'a

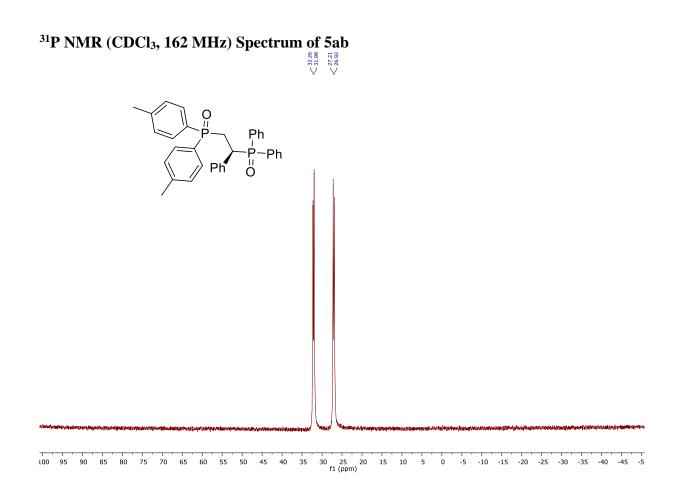



³¹P NMR (CDCl₃, 162 MHz) Spectrum of 4d'a

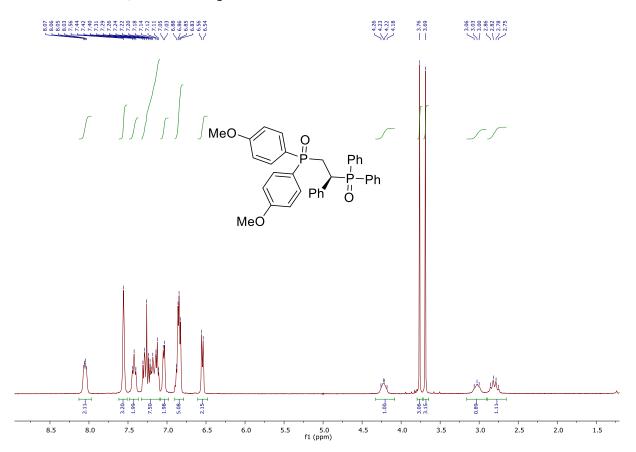

 $< \frac{26.73}{26.64}$

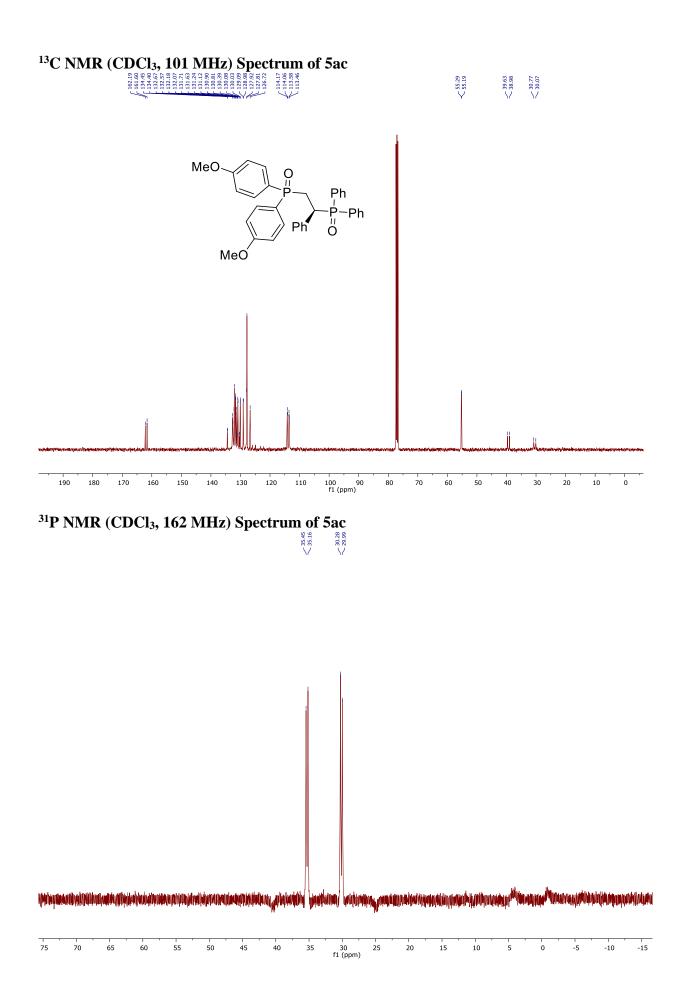
 $< ^{-19.23}_{-19.32}$

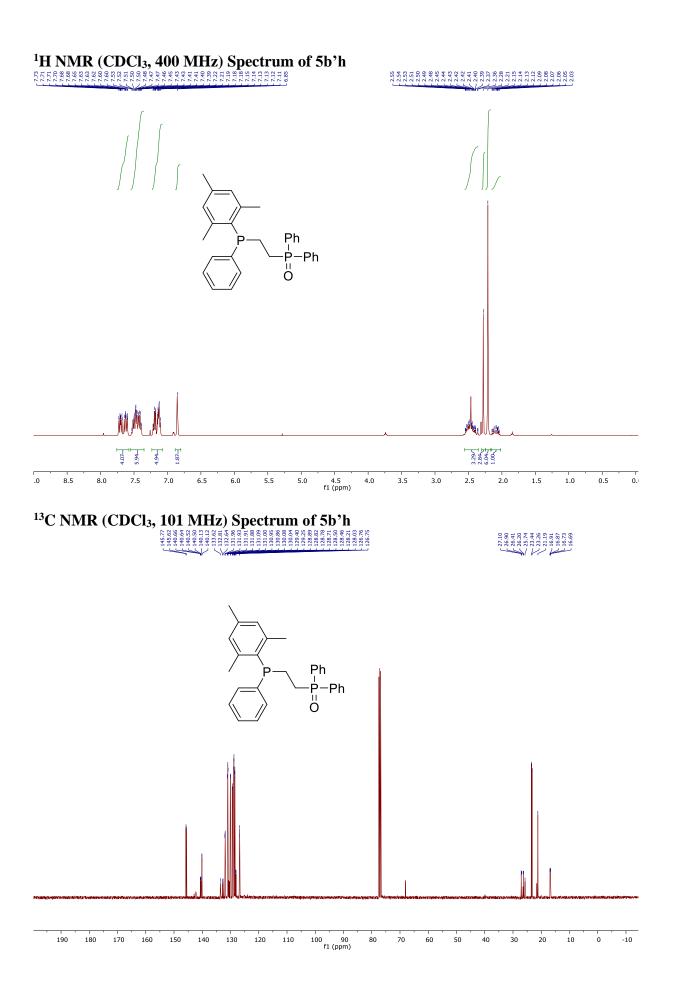


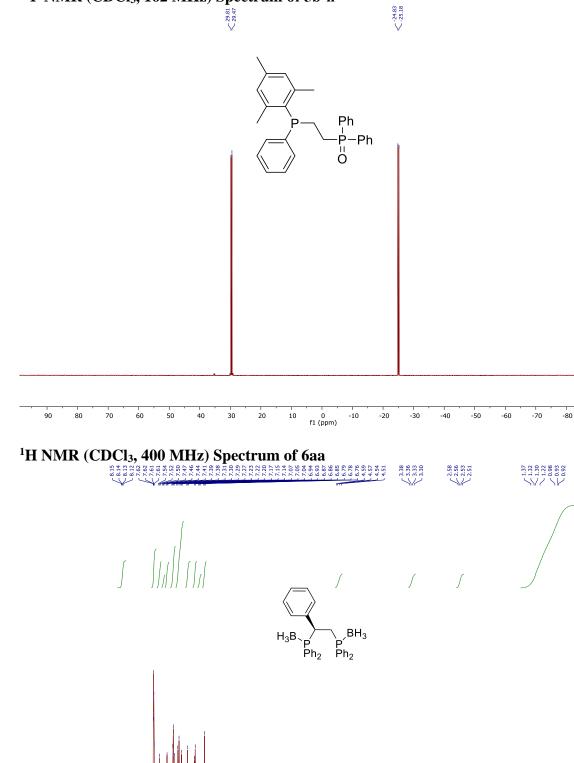


¹³C NMR (CDCl₃, 101 MHz) Spectrum of 4e'a

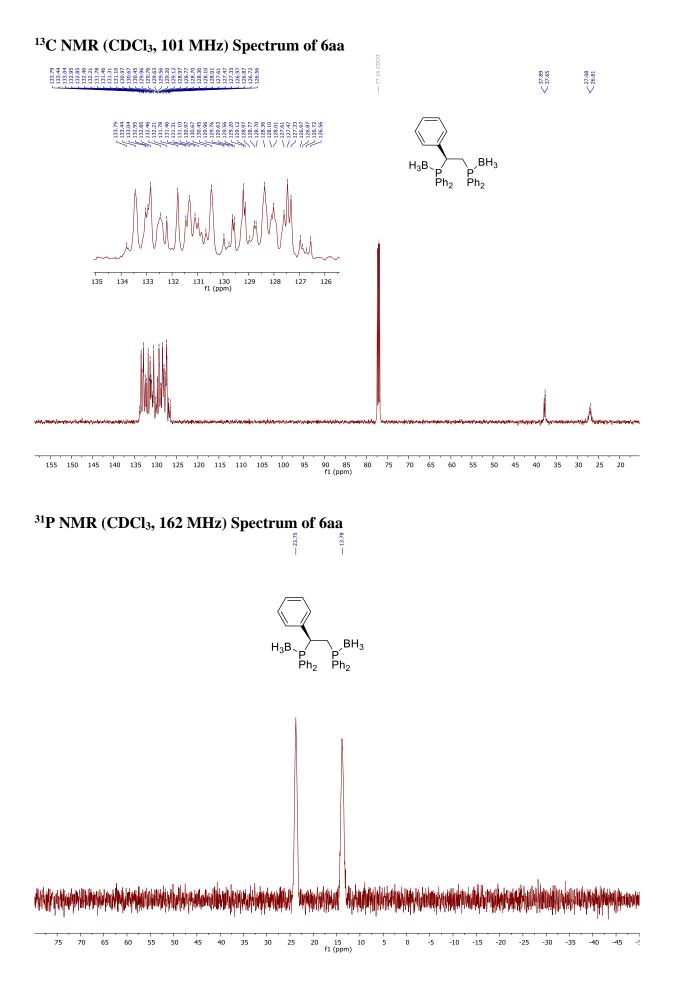


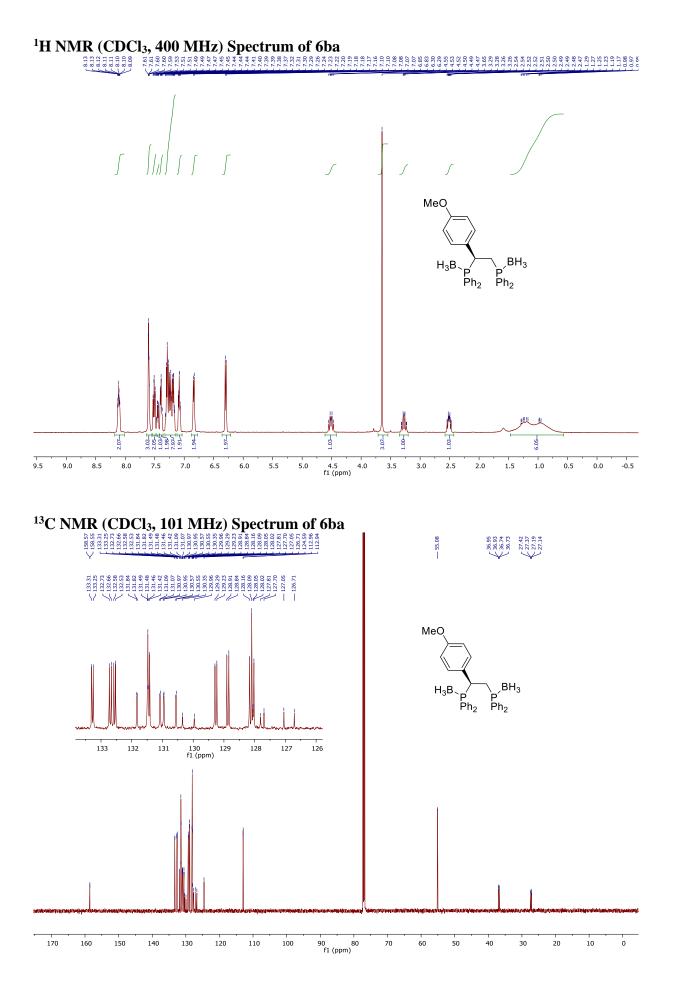

100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -5 f1 (ppm)



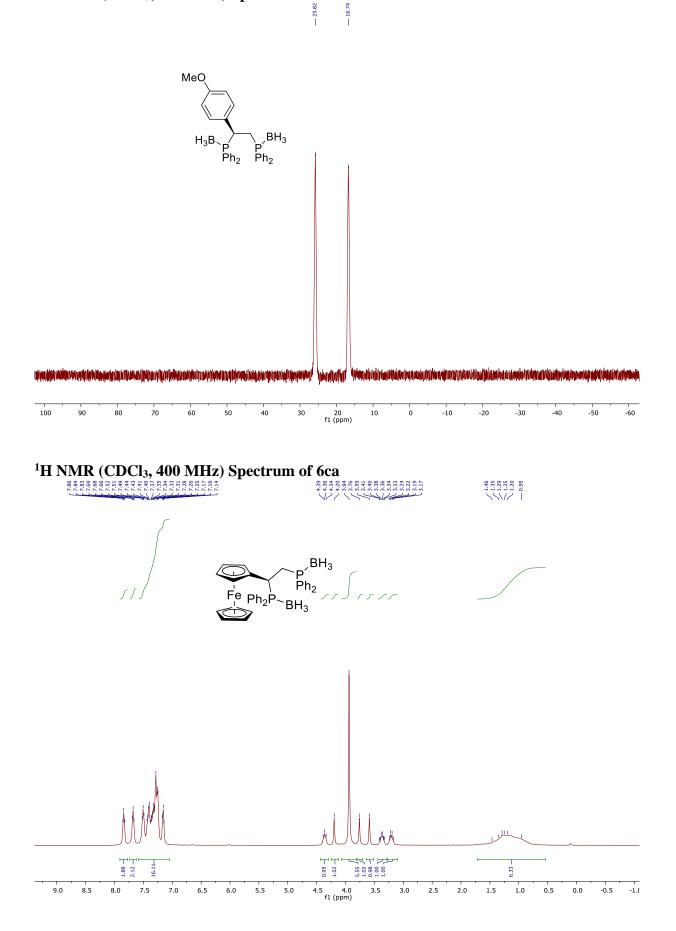


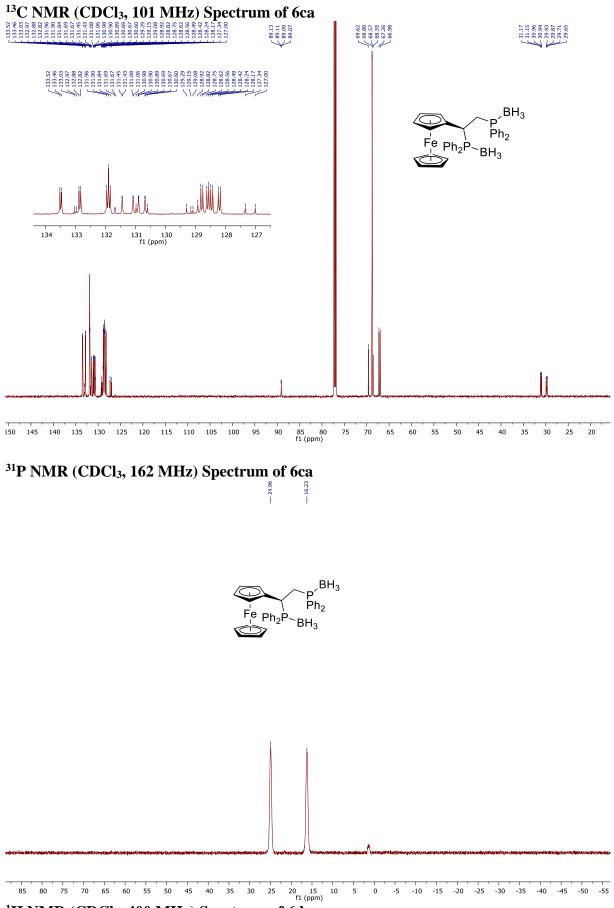
¹H NMR (CDCl₃, 400 MHz) Spectrum of 5ac

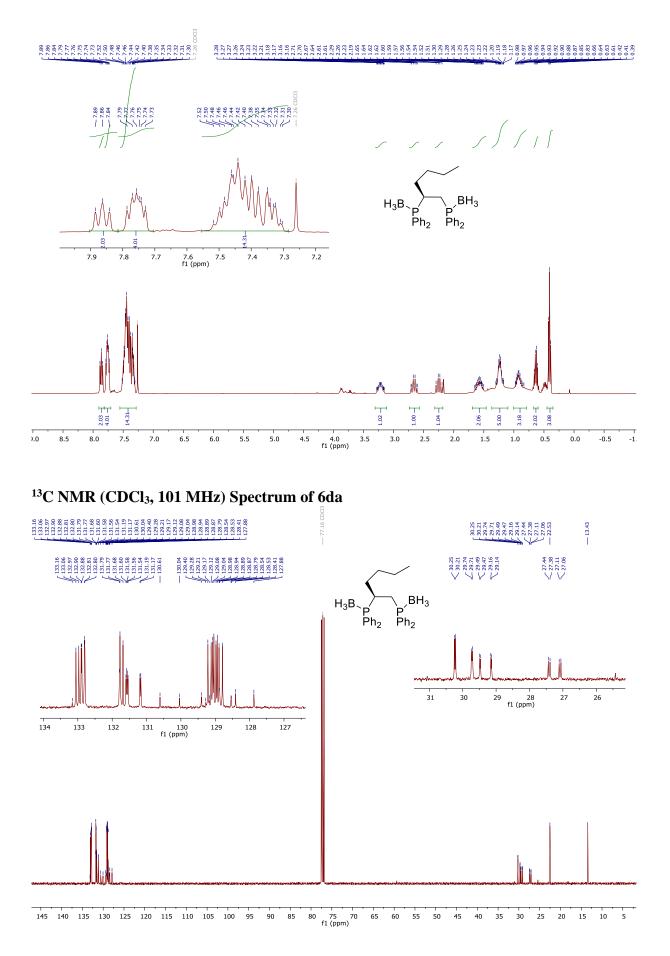




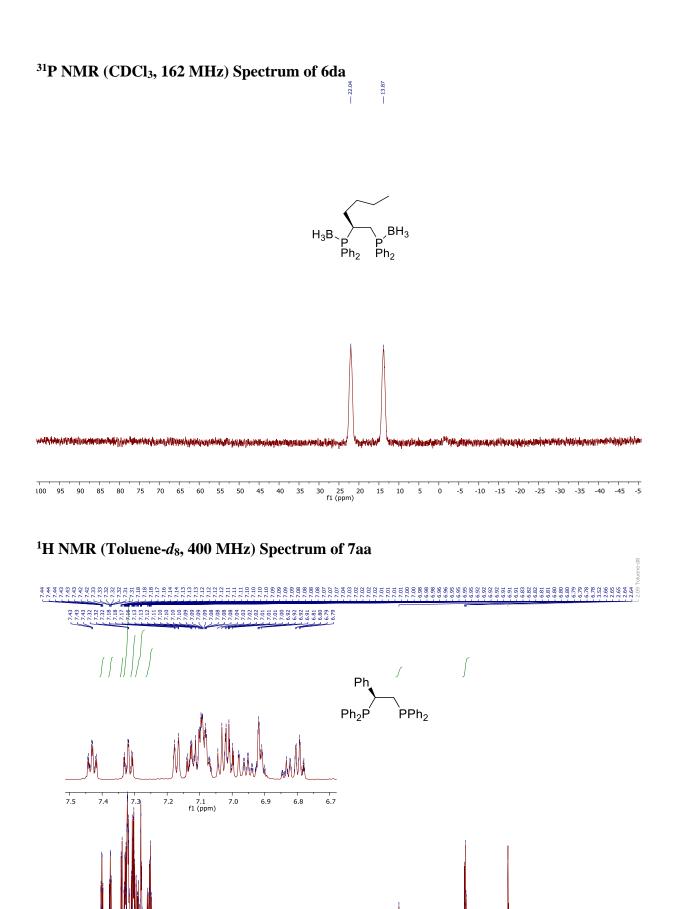
-90


³¹P NMR (CDCl₃, 162 MHz) Spectrum of 5b'h


2.01-Heo. 1.034 1.02H 6.14 5.0 4.5 f1 (ppm) 7.0 3.5 2.5 1.0 -0 8.0 7.5 6.5 4.0 9.5 9.0 8.5 6.0 5.5 3.0 2.0 1.5 0.5 0.0



³¹P NMR (CDCl₃, 162 MHz) Spectrum of 6ba



¹H NMR (CDCl₃, 400 MHz) Spectrum of 6da

S156

4.5 4.0 f1 (ppm) 3.5

-16 -1

2.5

2.0

1.5

1.0

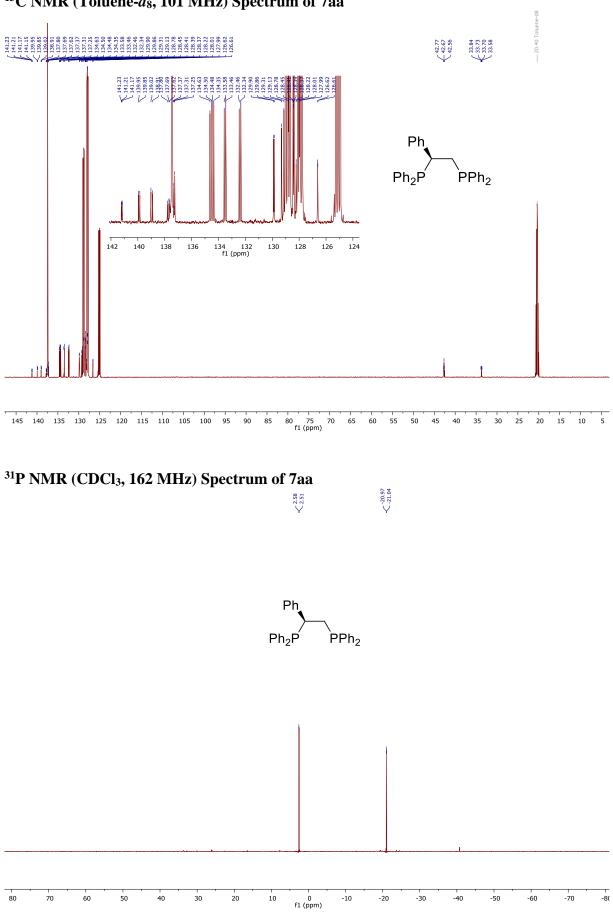
0.5

3.0

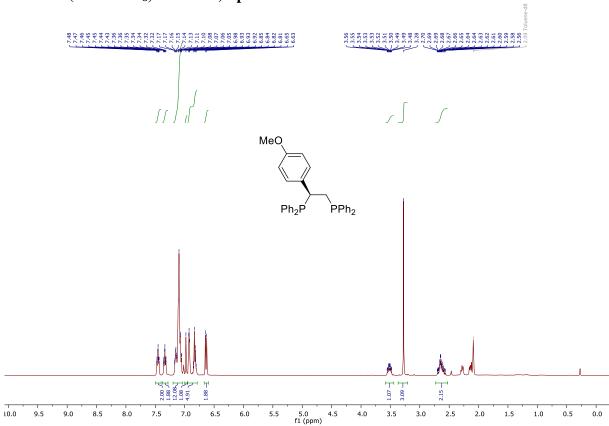
7.98 7.98 7.98 7.98 7.98 7.98 7.98 7.98

7.0

6.5

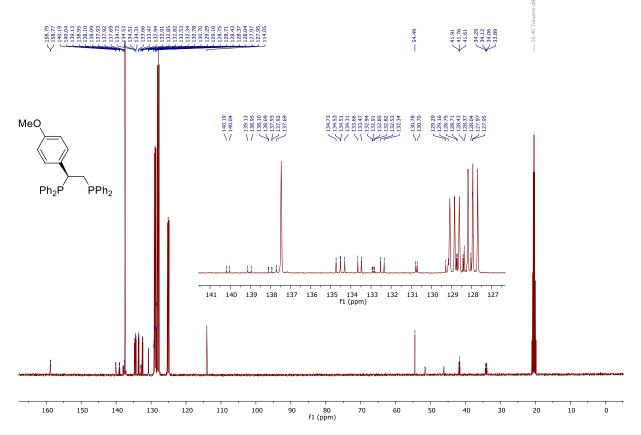

6.0

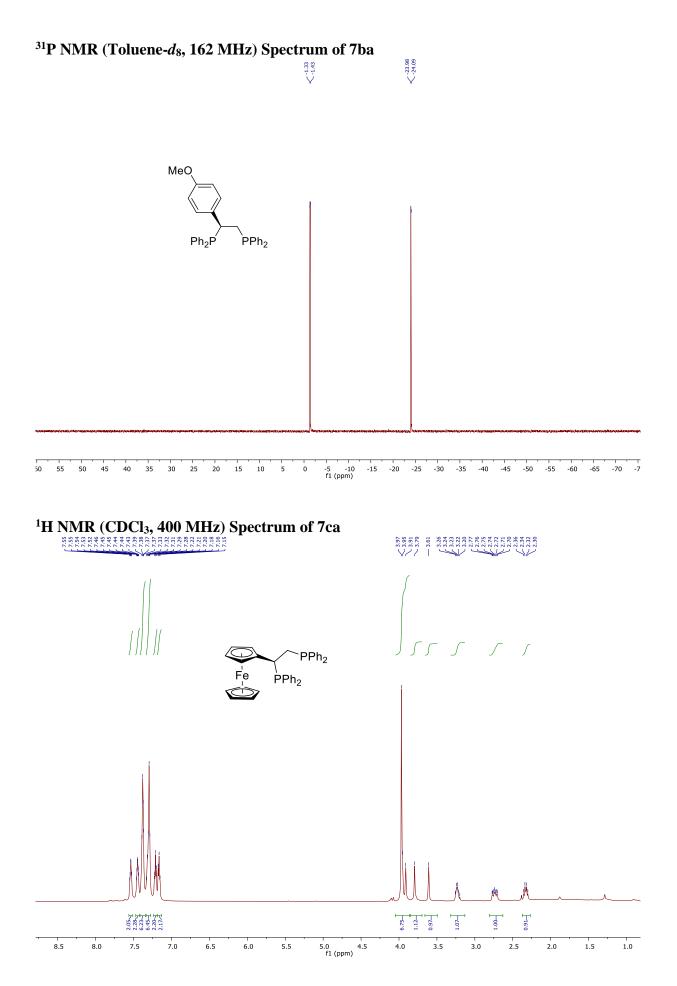
5.5

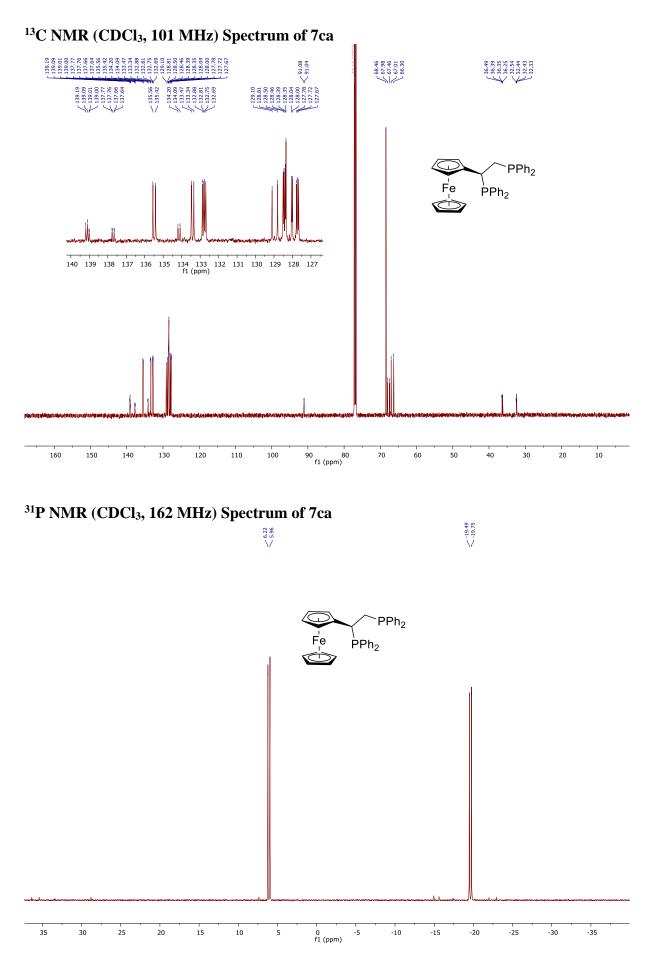

5.0

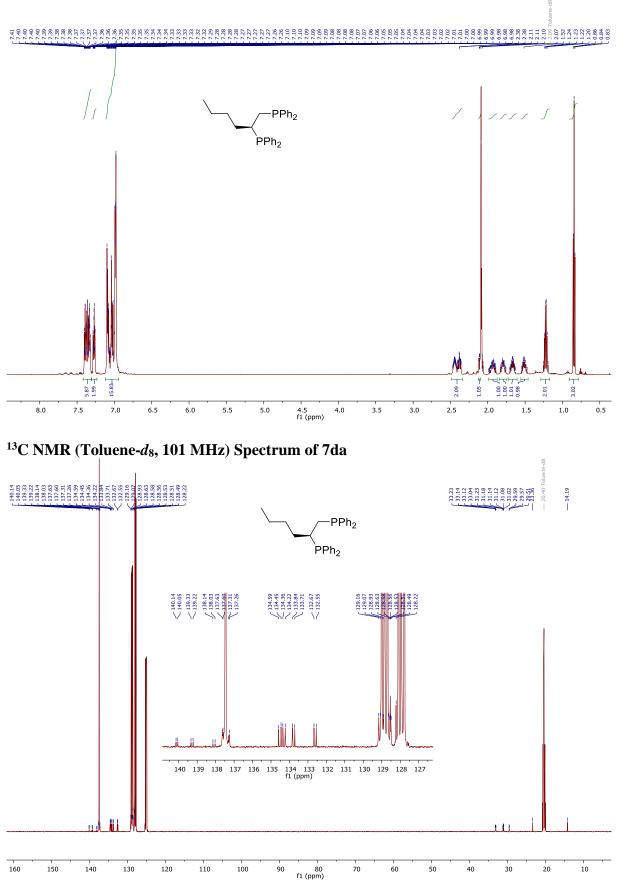
7.5

8.0

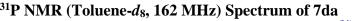


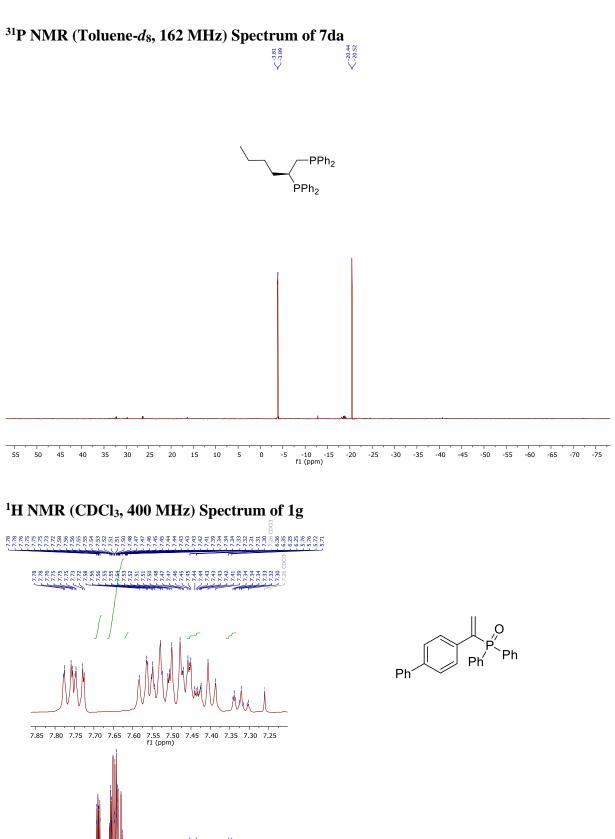

¹³C NMR (Toluene-d₈, 101 MHz) Spectrum of 7aa

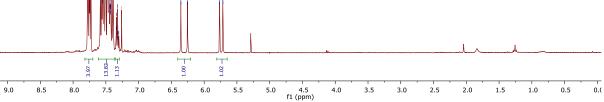


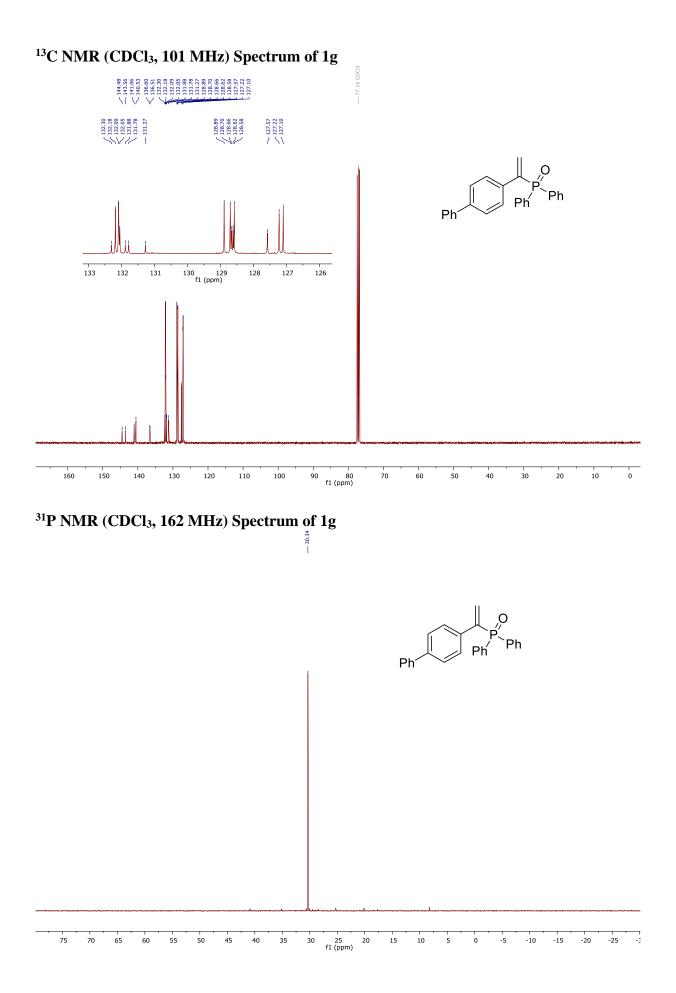

¹H NMR (Toluene-d₈, 400 MHz) Spectrum of 7ba

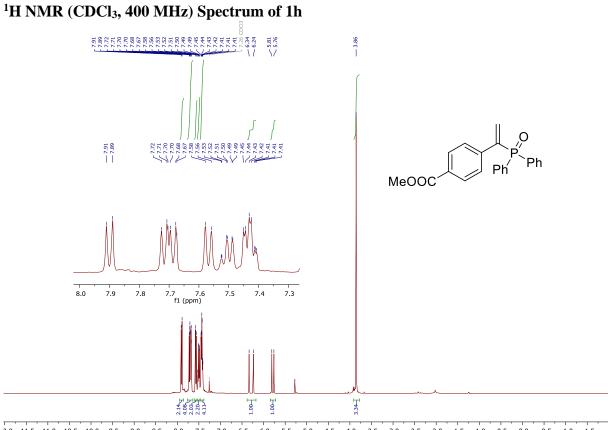
¹³C NMR (Toluene-d₈, 101 MHz) Spectrum of 7ba

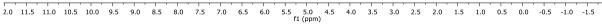


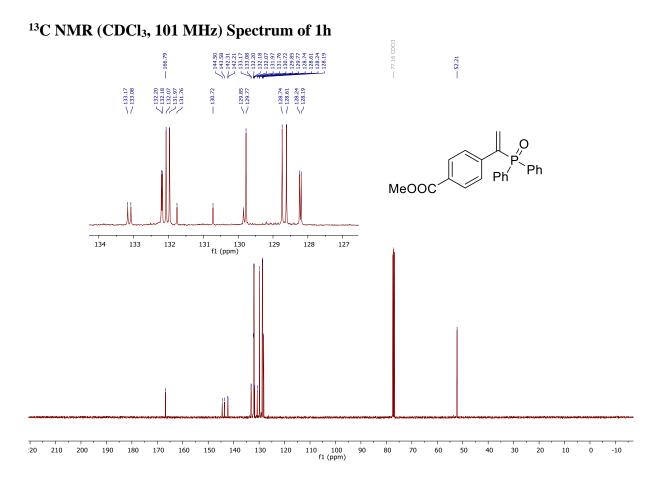


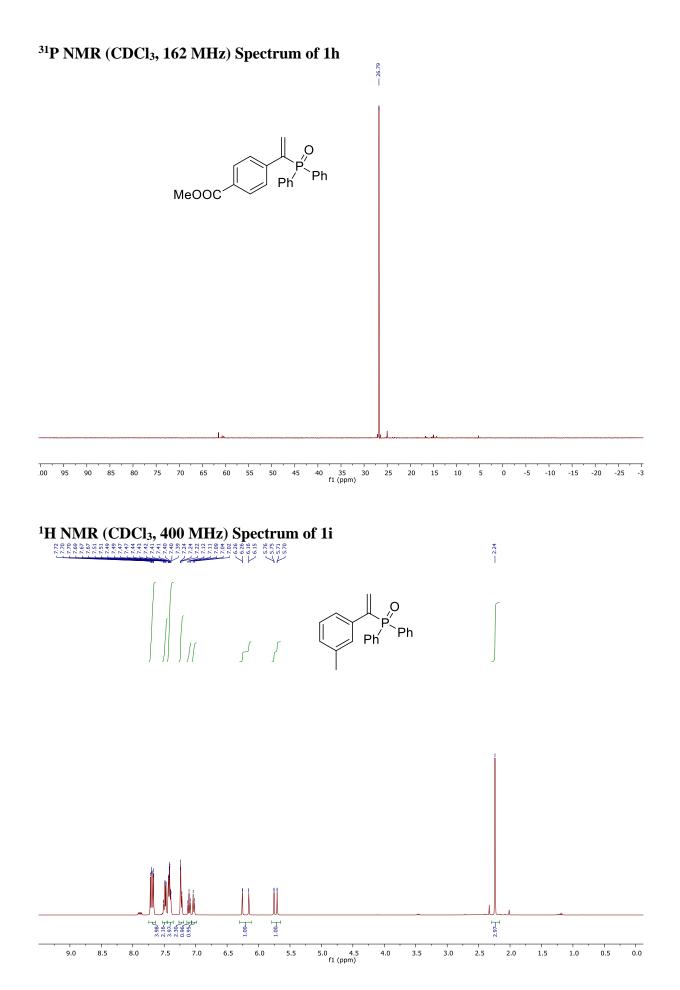


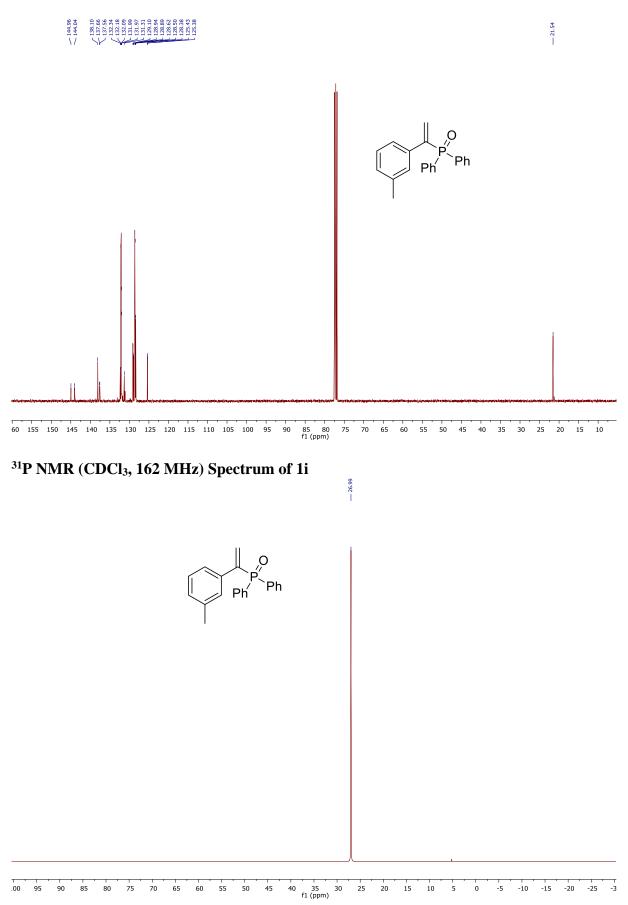


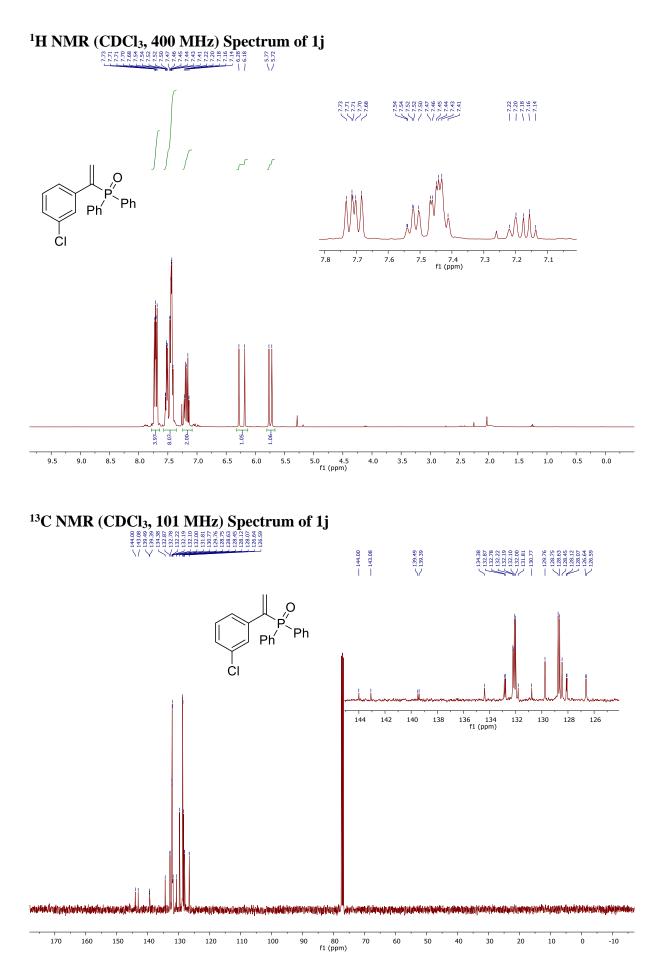

¹H NMR (Toluene-*d*₈, 400 MHz) Spectrum of 7da

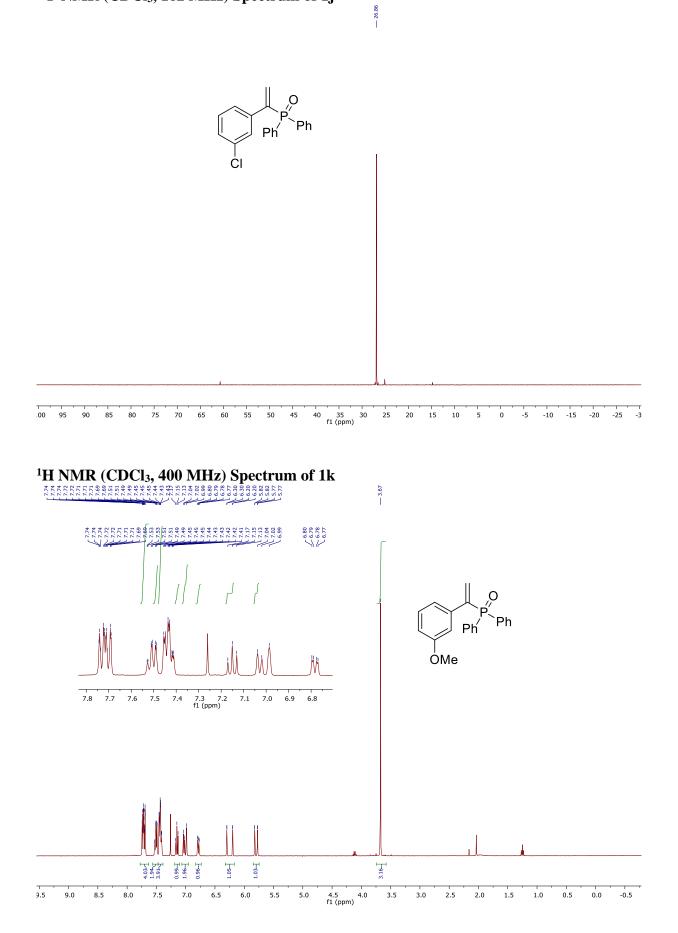


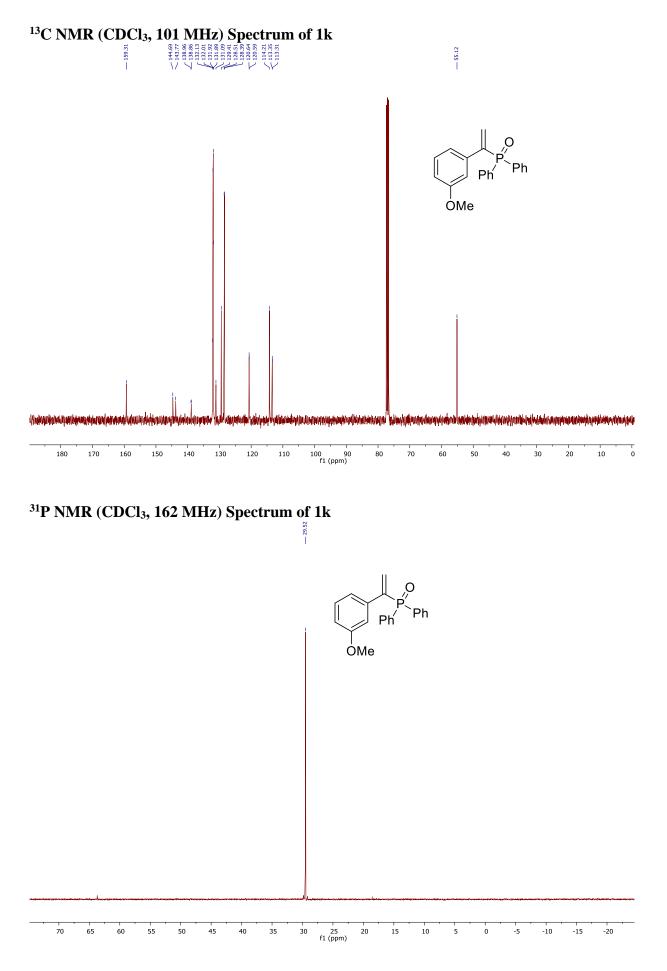


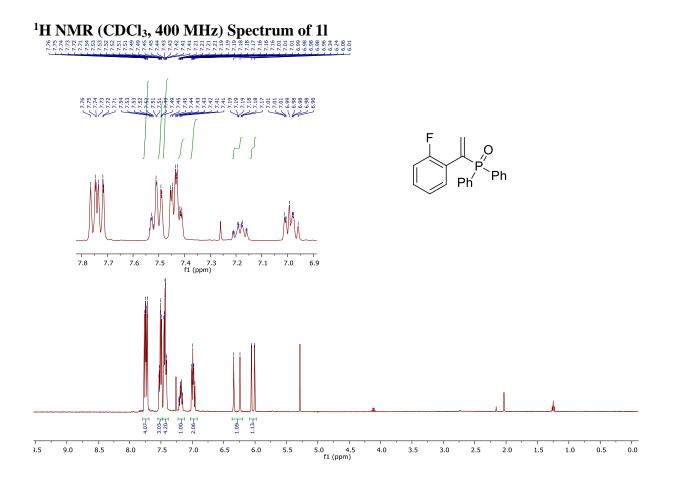


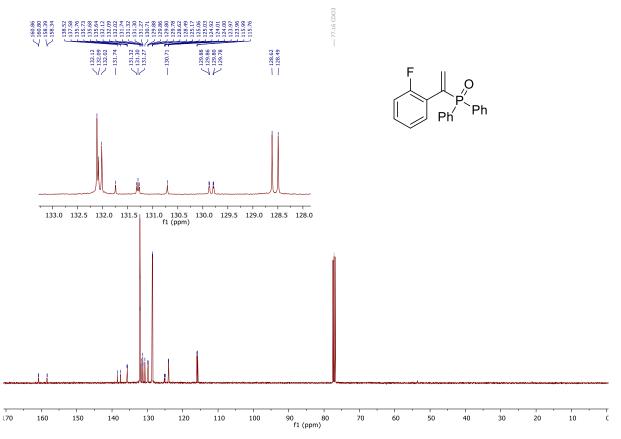


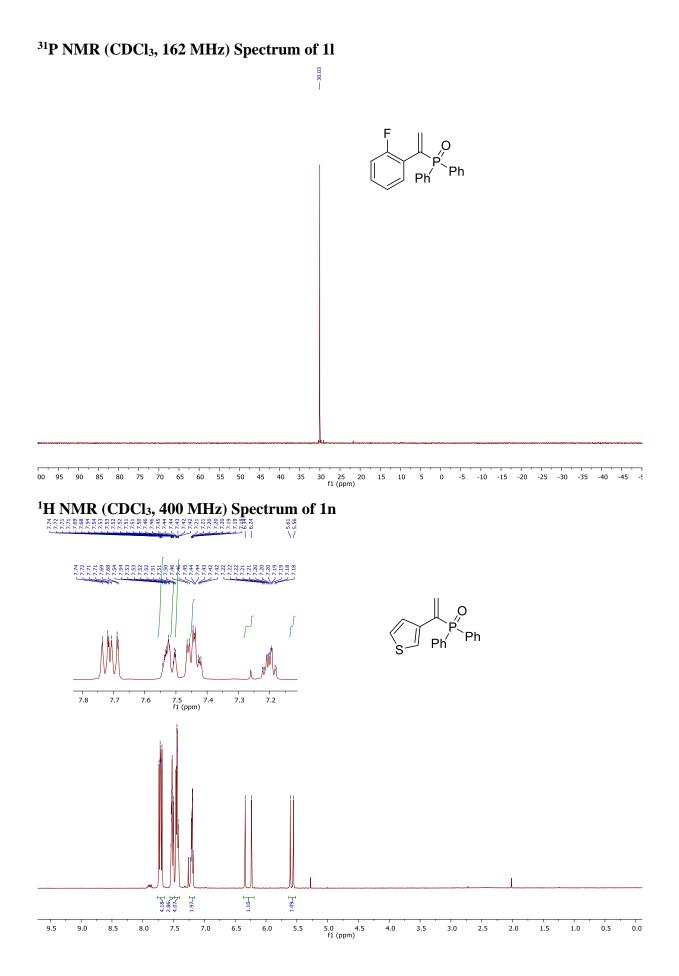


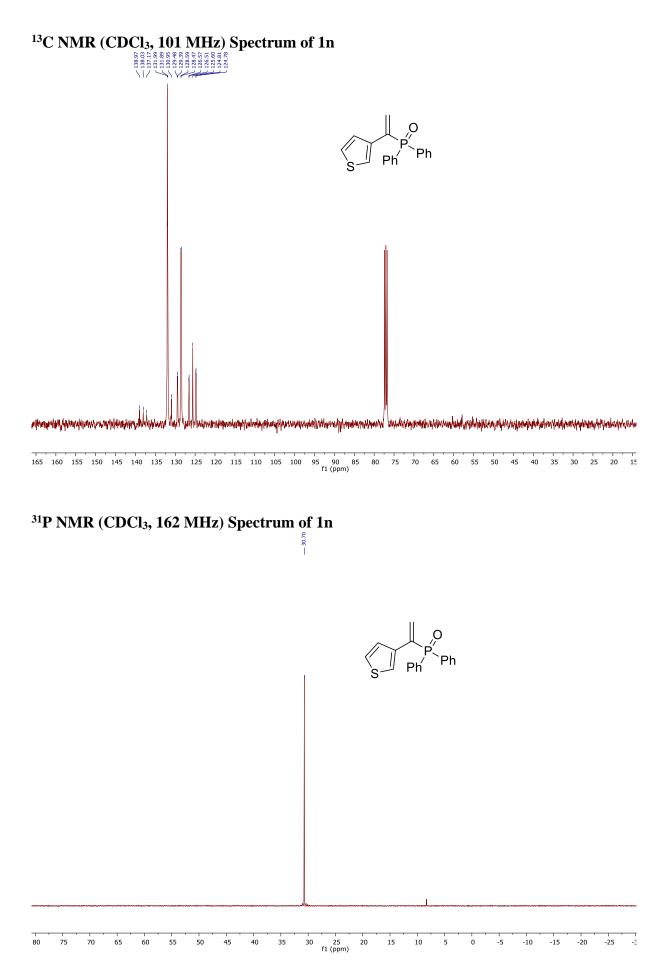


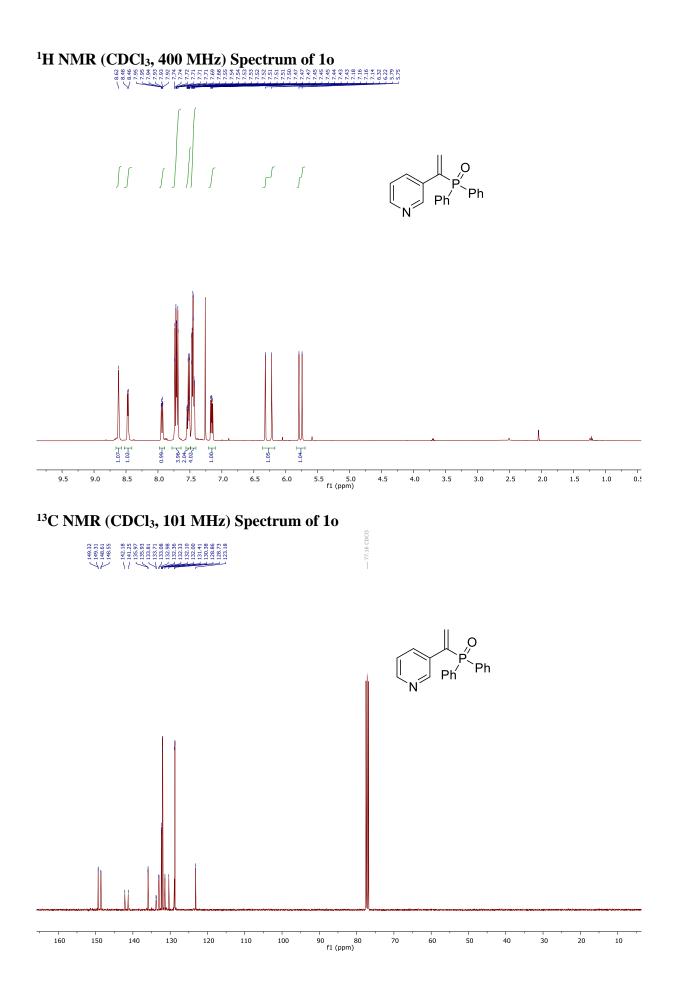



¹³C NMR (CDCl₃, 101 MHz) Spectrum of 1i

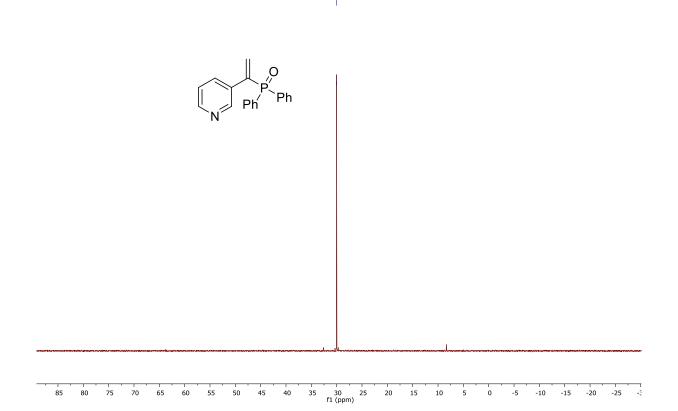


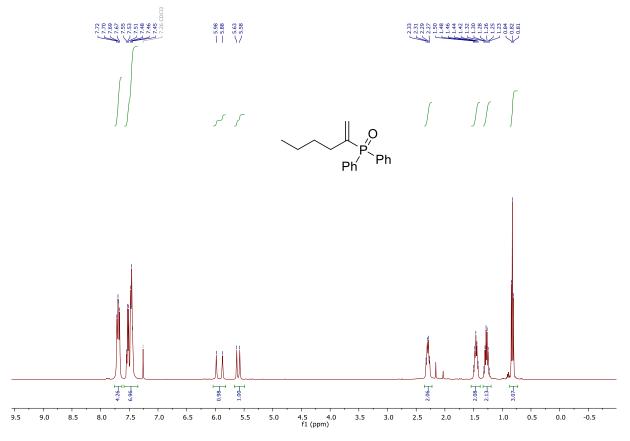


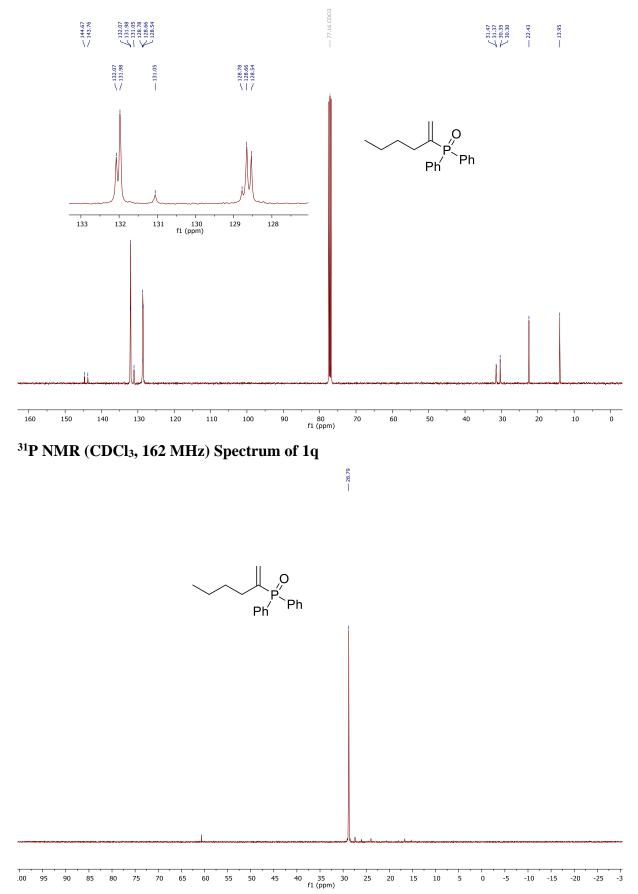


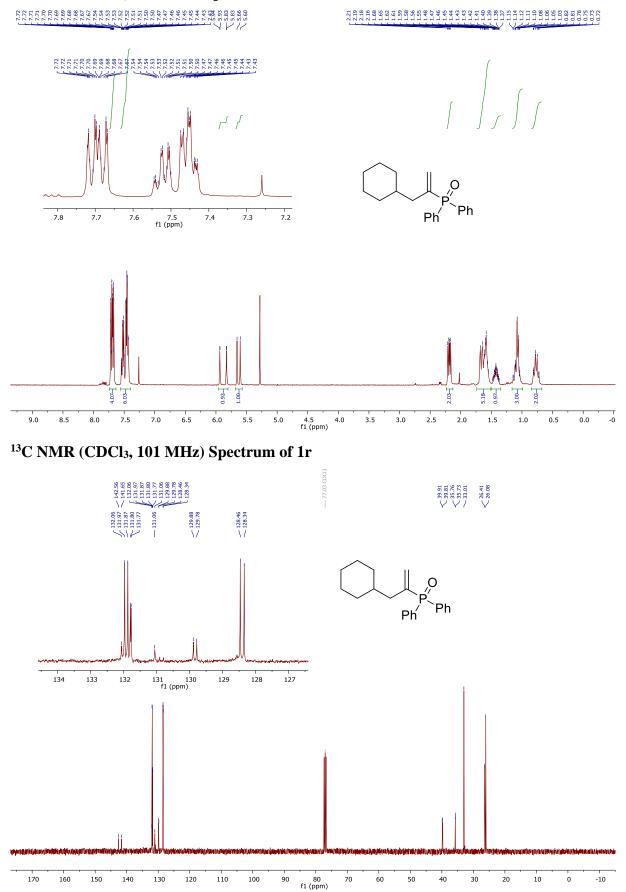


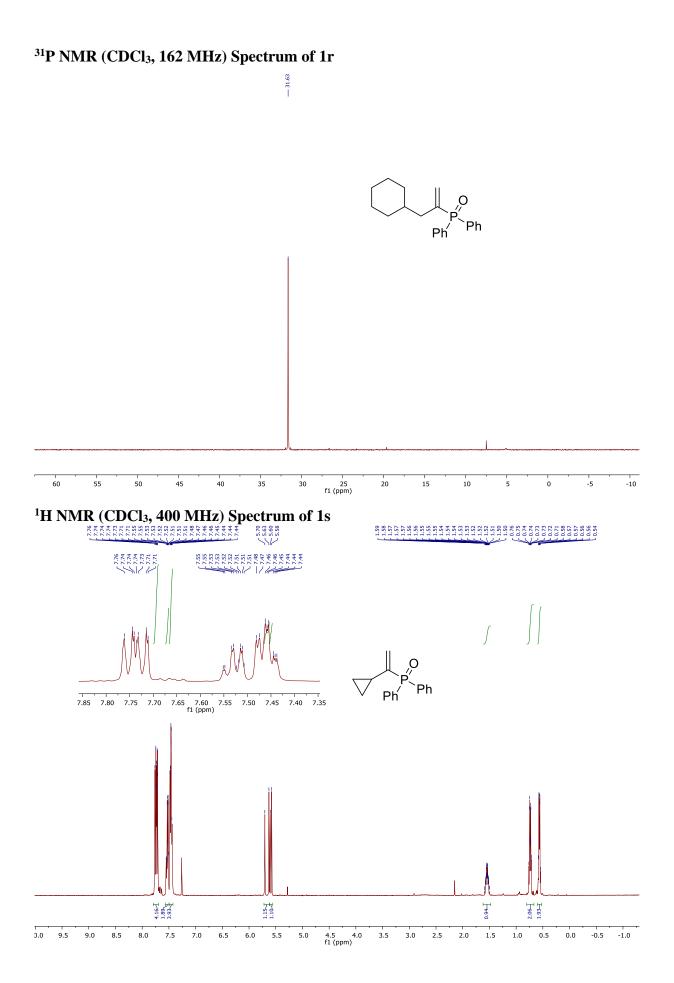
¹³C NMR (CDCl₃, 101 MHz) Spectrum of 11



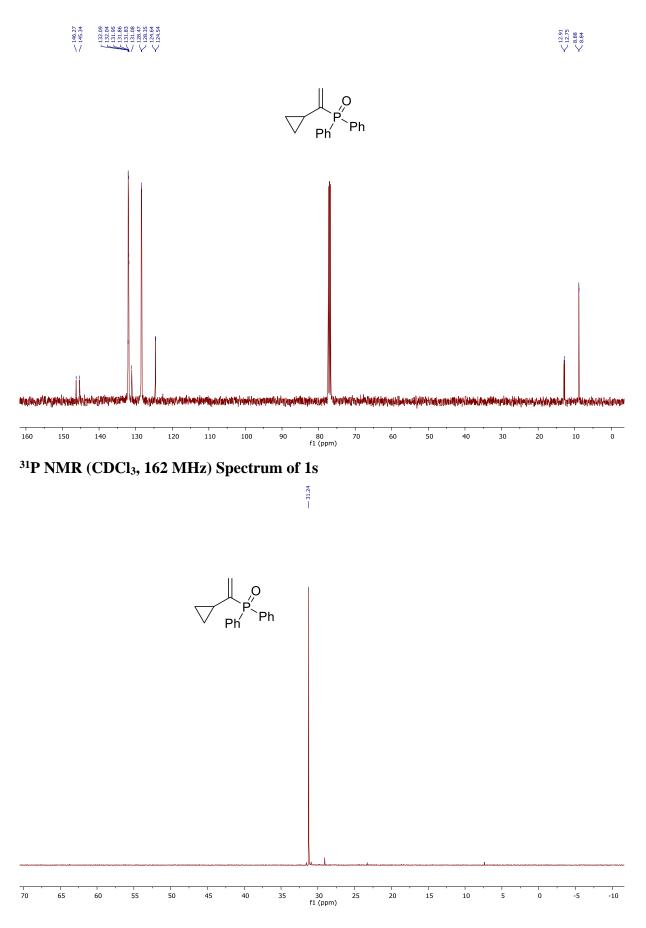



³¹P NMR (CDCl₃, 162 MHz) Spectrum of 10

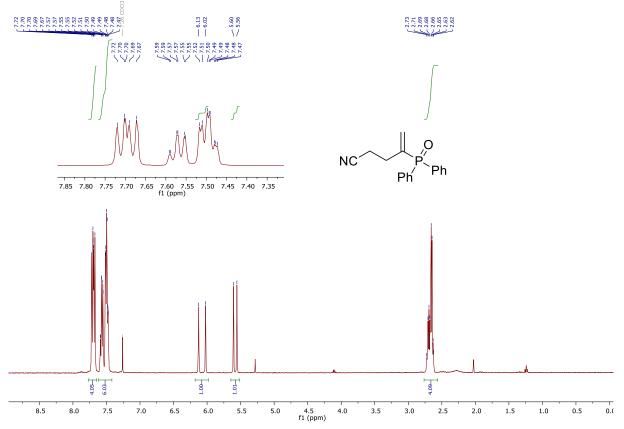

¹H NMR (CDCl₃, 400 MHz) Spectrum of 1q

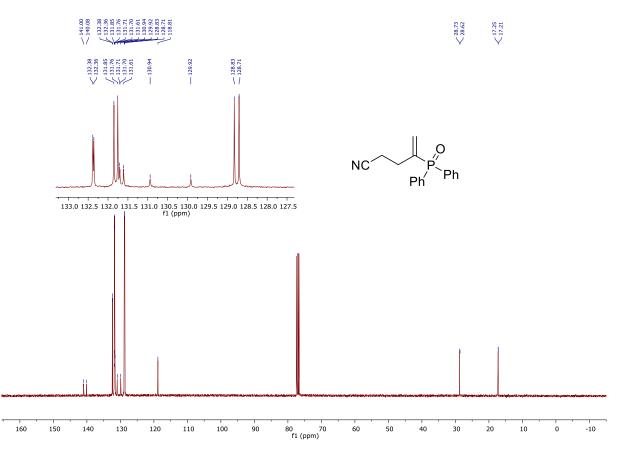


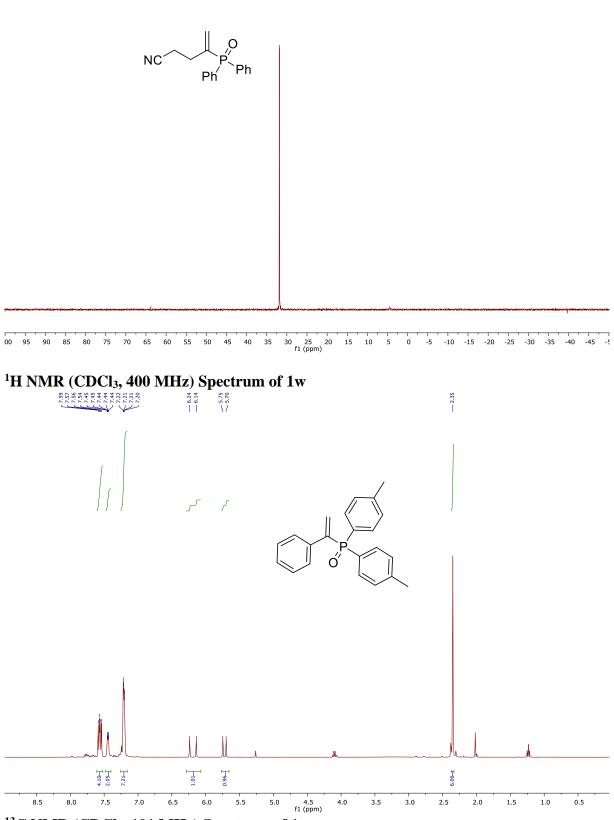
¹³C NMR (CDCl₃, 101 MHz) Spectrum of 1q



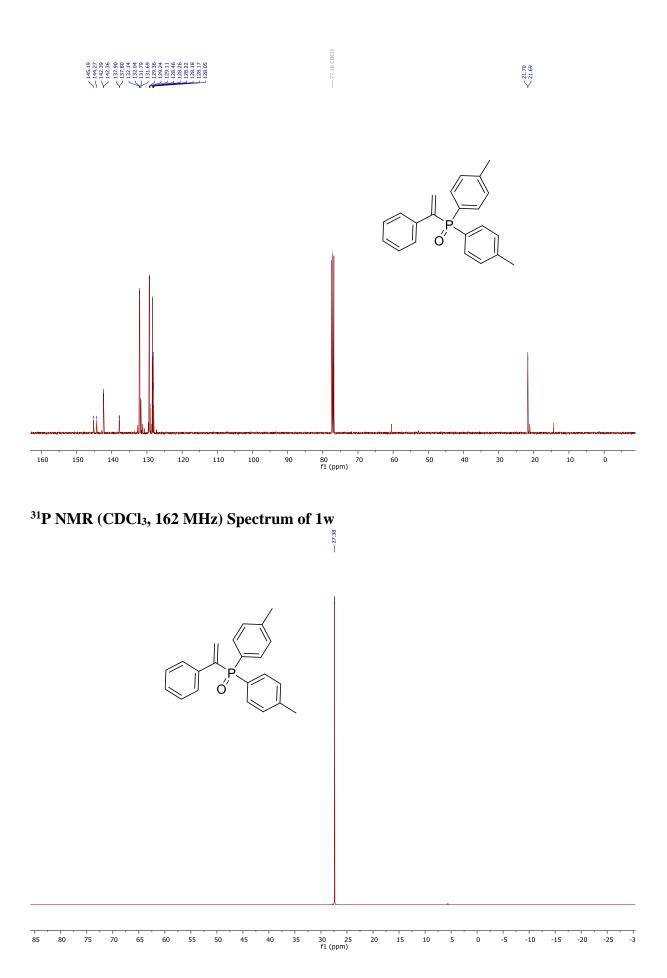
¹H NMR (CDCl₃, 400 MHz) Spectrum of 1r

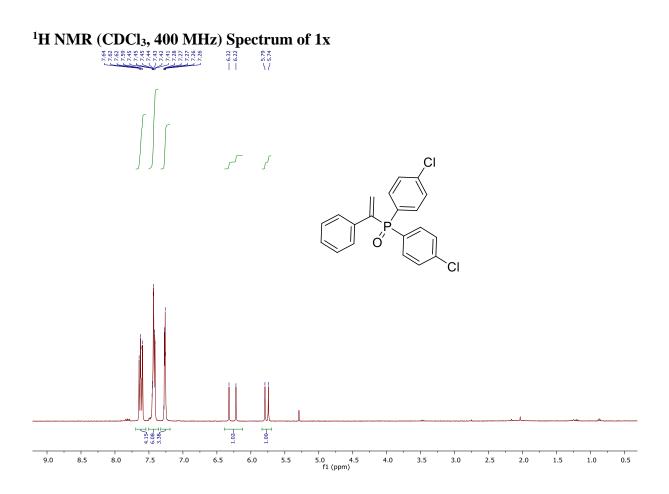


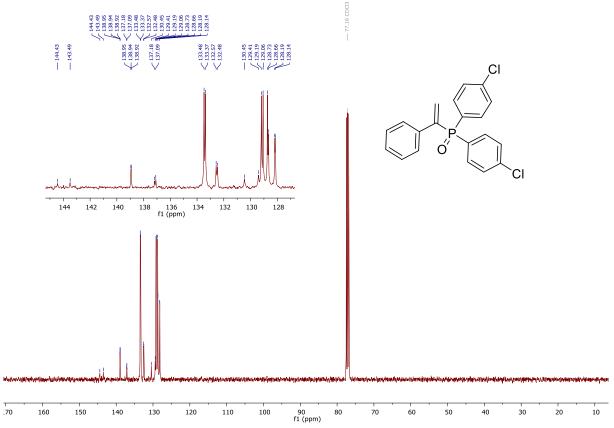

¹³C NMR (CDCl₃, 101 MHz) Spectrum of 1s

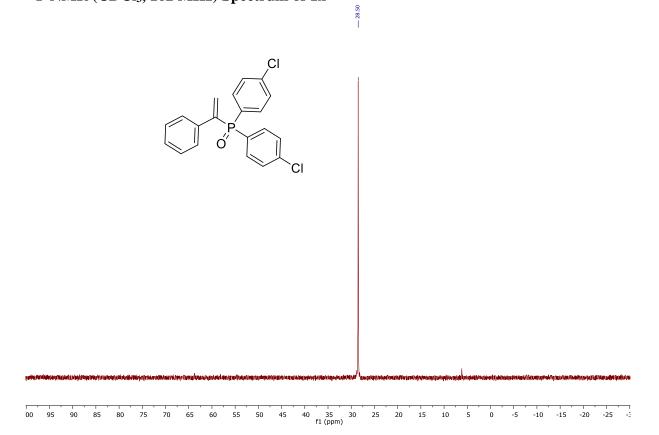

¹H NMR (CDCl₃, 400 MHz) Spectrum of 1u

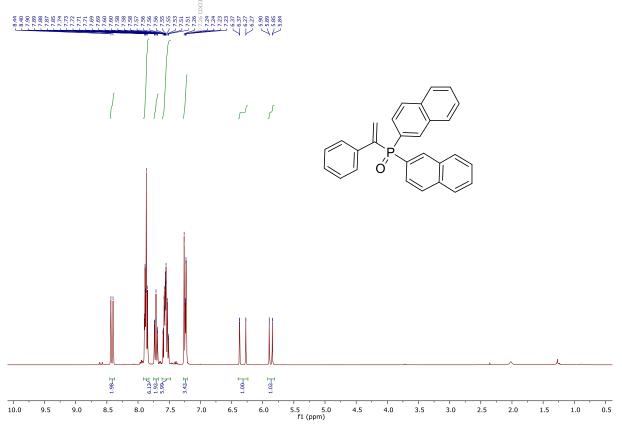
¹³C NMR (CDCl₃, 101 MHz) Spectrum of 1u

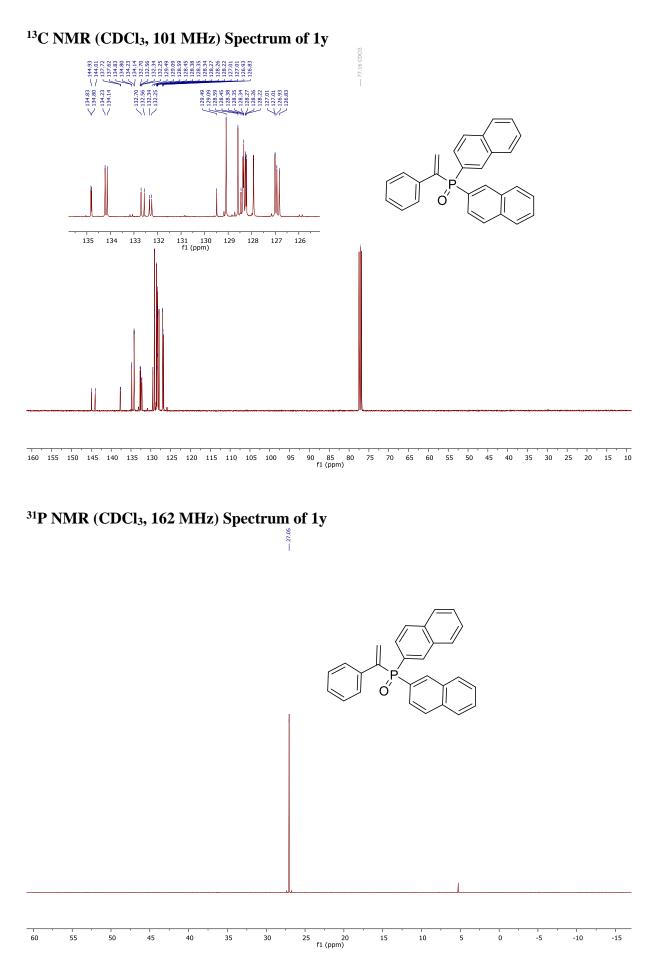



³¹P NMR (CDCl₃, 162 MHz) Spectrum of 1u


31.86




¹³C NMR (CDCl₃, 101 MHz) Spectrum of 1x



³¹P NMR (CDCl₃, 162 MHz) Spectrum of 1x

¹H NMR (CDCl₃, 400 MHz) Spectrum of 1y

