Competing $\mathbf{C}-\mathbf{H}$ and $\mathbf{C}-\mathbf{F}$ bond activation reactions of a fluorinated olefin at Rh: A fluorido vinylidene complex as an intermediate in an unprecedented dehydrofluorination step

Maria Talavera and Thomas Braun*
Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489
Berlin, Germany. E-mail: thomas.braun@cms.hu-berlin.de.

General Procedures, Methods and Materials

All experiments were carried out under an atmosphere of argon by Schlenk techniques. Solvents were dried by the usual procedures ${ }^{1}$ and, prior to use, distilled under argon. The rhodium complexes $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1}),{ }^{2}\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{8}),{ }^{3}\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right]$ $(6)^{4}$ and $\left[\mathrm{Rh}(\mu-\mathrm{F})(\text { cyclooctene })_{2}\right]_{2}{ }^{5}$ were prepared as described in the literature. All reagents were obtained from commercial sources. Unless stated, NMR spectra were recorded at room temperature on a Bruker DPX 300 or a Bruker Avance 300 spectrometer using the solvent as the internal lock. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ signals are referred to residual solvent signals, those of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ and the ${ }^{19} \mathrm{~F}$ NMR spectra to external $\mathrm{CFCl}_{3} .{ }^{1} \mathrm{H},{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR signal assignments were supported or, when stated, determined by ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$ COSY, ${ }^{19} \mathrm{~F},{ }^{1} \mathrm{H}$ HETCOR, ${ }^{19} \mathrm{~F},{ }^{19} \mathrm{~F}$ gCOSY, ${ }^{31} \mathrm{P},{ }^{31} \mathrm{P}$ COSY, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC, ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ HMBC, ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ HMQC and ${ }^{1} \mathrm{H},{ }^{31} \mathrm{P}$ HMBC NMR experiments. The determined coupling constant values were confirmed by $g N M R$ software simulations. ${ }^{6}$ Mass spectra of organometallic complexes were measured with a Micromass Q-Tof-2 instrument equipped with a Linden LIFDI source (Linden CMS GmbH). Infrared spectra were recorded with the Platinum ATR module of a Bruker FT-IR Alpha II spectrometer.

Caution! In some experiments traces of HF might be generated. Immediate access to proper treatment procedures in case of contact with HF-containing solutions must be ensured.

Reaction of \mathbf{Z}-1,3,3,3-tetrafluoropropene with $\left[\mathbf{R h}(\mathbf{H})\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (1)

In a Young NMR tube $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})(30 \mathrm{mg}, 0.065 \mathrm{mmol})$ was dissolved in toluene- d_{8} $(0.4 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the NMR tube was degassed in vacuo, and pressurized with $Z-1,3,3,3$-tetrafluoropropene to 0.2 bar. The reaction was monitored at variable temperatures by NMR spectroscopy. At 233 K full conversion of complex $\mathbf{1}$ to complex fac- $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (7) was observed. At 273 K a 90% conversion, based on the ${ }^{19} \mathrm{~F}$ NMR spectrum, of $\mathbf{7}$ into $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ was observed as well as the release of HF and traces of complexes $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ and $\left[\mathrm{Rh}\left\{(Z)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (4). Finally, after 10 minutes at room temperature, a mixture of $\quad\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right] \quad(\mathbf{2}), \quad\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right] \quad(\mathbf{3}), \quad[\mathrm{Rh}\{(Z)-$
$\left.\left.\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (4) and $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (5) was detected in a 1:8:5 ratio. In addition, 3,3,3-trifluoropropene was observed.

When the reaction is directly warm up to room temperature, the same product mixture is observed. After 30 minutes, the ratio of complexes 2, 3, $\mathbf{4}$ and $\mathbf{5}$ is 3.8:2:1:4.4. After one day, $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{6})$ and complex 5 are the only products in a $1: 1$ ratio. . Complexes $\mathbf{2}$, and $\mathbf{6}$ have been identified by comparison with literature. ${ }^{4,7}$ Complex 5 was identified by comparison with $\left[\mathrm{Rh}(\mathrm{FHF})\left(\mathrm{PEt}_{3}\right)_{3}\right]$, ${ }^{7}$ however, P-F couplings are not observed which suggest the presence of more than one HF molecule leading to the proposed formula $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](5)$. Addition of excess of $\mathrm{NEt}_{3} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$ to remove the excess of HF , led to the formation of $\left[\operatorname{Rh}(\mathrm{F})\left(\mathrm{PEt}_{3}\right)_{3}\right]{ }^{7}$

The amount of HF in complex 5 was determined by adding ClSiEt_{3} ($0.059 \mathrm{mmol}, 6.5$ equiv) to a solution of complexes $\mathbf{6}$ and $\mathbf{5}\left(0.009 \mathrm{mmol}\right.$ of 5 based on the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ratio). After 10 min, full conversion of complex 5 into $\left[\mathrm{Rh}(\mathrm{Cl})\left(\mathrm{PEt}_{3}\right)_{3}\right]$ and dihydrido chlorido rhodium(III) species was observed with a 45% conversion of ClSiEt_{3} (determined directly from the ${ }^{1} \mathrm{H}$ NMR spectrum and supported by external standard of PhCF_{3}) into FSiEt_{3} and $\mathrm{F}_{2} \mathrm{SiEt}_{2}$ (0.027 mmol in total). The 3 equivalents required would correspond to two HF moieties and the rhodium-bounded fluorido ligand.

Analytical data for $\left[\operatorname{Rh}\left\{(Z)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{4}):{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=8.35$ (dt, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=14.1,{ }^{3} J_{\mathrm{H}, \mathrm{Pcis}}=4.3 \mathrm{~Hz}, \mathrm{CH}=$); $6.61\left(\mathrm{~m}\right.$, ddq in ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR spectrum, dqd in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=13.9,{ }^{4} J_{\mathrm{H}, \mathrm{Ptrans}}=11.8,{ }^{3} J_{\mathrm{H}, \mathrm{F}}=8.7,{ }^{4} J_{\mathrm{H}, \text { Pcis }} \approx{ }^{3} J_{\mathrm{H}, \mathrm{Rh}}=2.3 \mathrm{~Hz}$, $\left.=\mathrm{CHCF}_{3}\right) \mathrm{ppm}$; the resonances corresponding to the phosphine ligands are overlapped with the signals for the other products. ${ }^{19} \mathbf{F}$ NMR $\left(282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-59.7\left(\mathrm{~m}, \mathrm{tt}\right.$ in ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, $\left.{ }^{5} J_{\mathrm{F}, \text { Pcis }}=5.5,{ }^{5} J_{\mathrm{F}, \text { Ptrans }} \approx{ }^{4} J_{\mathrm{F}, \mathrm{Rh}}=1.7 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right) \mathrm{ppm} .{ }^{\mathbf{3 1} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(121.5}$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=12.5$ (ddq, $\left.{ }^{1} \mathrm{~J}_{\mathrm{P}, \mathrm{Rh}}=154.6,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=38.9,{ }^{5} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}=4.9 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{c i s}\right) \mathrm{ppm}$; the resonance of $\mathrm{P}_{\text {trans }}$ is overlapped with the signals for the other compounds.

Analytical data for $\left[\operatorname{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{5}):{ }^{1} \mathbf{H} \mathbf{N M R}\left(300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=1.65-1.50(\mathrm{~m}$, q in $\left.{ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{P}_{\mathrm{cis}} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 1.25-1.15\left(\mathrm{~m}, \mathrm{q}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}$ $6 \mathrm{H}, \mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); 1.17-1.03 (m, t in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.7 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{P}_{\mathrm{cis}} \mathrm{CH}_{2} \mathrm{CH}_{3}$); $0.96(\mathrm{dt}$, ${ }^{3} J_{\mathrm{H}, \mathrm{P}}=14.9,{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{19} \mathbf{F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=-178$ (br $\mathrm{m}, \mathrm{H} F) ;-277.0(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{Rh}-F) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=45.83(\mathrm{dt} \mathrm{br}$,
$\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=187.7,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=42.5 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\text {trans }}\right) ; 23.26\left(\mathrm{dd},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=139.6,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=42.5 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{P}_{c i s}\right)$ ppm

7

Analytical data for $f a c-\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](7):{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300.1 \mathrm{MHz}, 233 \mathrm{~K}$, toluene- $\left.\mathrm{d}^{8}\right): \delta=5.85\left(\mathrm{~d} \mathrm{br}\right.$, ddd in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{2} J_{\mathrm{H}, \mathrm{F}}=67.4,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=5.3,{ }^{2} J_{\mathrm{H}, \mathrm{Rh}}=$ $2.1 \mathrm{~Hz}, \mathrm{CHF}$); 2.14 (m , overlapped with the signal for toluene- d^{8}, observed by a ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum, CHCF_{3}); 1.55-1.78 (m, $6 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}$); 1.32-1.54 (m, $6 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}$); 0.93-1.18 ($\mathrm{m}, 24 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}+\mathrm{PCH}_{2} \mathrm{CH}_{3}$); $0.74\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{P}}=12.8,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.9 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right)$; $13.22\left(\mathrm{dqd},{ }^{2} J_{\mathrm{H}, \mathrm{Pc}}=160.0,{ }^{2} J_{\mathrm{H}, \mathrm{Pa}} \approx{ }^{2} J_{\mathrm{H}, \mathrm{Pb}} \approx{ }^{3} J_{\mathrm{H}, \mathrm{F}}=19.8,{ }^{1} J_{\mathrm{H}, \mathrm{Rh}}=12.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Rh} H\right) \mathrm{ppm} .{ }^{19} \mathbf{F}$ NMR ($282.4 \mathrm{MHz}, 253 \mathrm{~K}$, toluene- d^{8}): $\delta=-49.6\left(\mathrm{q} \mathrm{br},{ }^{4} J_{\mathrm{F}, \mathrm{P}} \approx^{4} J_{\mathrm{F}, \mathrm{F}} \approx^{3} J_{\mathrm{F}, \mathrm{H}}=13 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right.$); $-182.7\left(\mathrm{dm},{ }^{2} J_{\mathrm{F}, \mathrm{H}}=68 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{CF}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, 233 \mathrm{~K}\right.$, toluene-d $\left.{ }^{8}\right): \delta=$ 19.29 (dddqd, ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=135.4,{ }^{3} J_{\mathrm{P}, \mathrm{Pb}}=29.5,{ }^{2} J_{\mathrm{P}, \mathrm{Pc}}=26.0,{ }^{4} J_{\mathrm{P}, \mathrm{F}}=16.2,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=13.0 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{a}}$); $10.85\left(\mathrm{dq},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=111.9,{ }^{3} J_{\mathrm{P}, \mathrm{F}} \approx{ }^{2} J_{\mathrm{P}, \mathrm{Pc}} \approx{ }^{2} J_{\mathrm{P}, \mathrm{Pa}}=29.7 \mathrm{~Hz}, \mathrm{P}^{\mathrm{b}}\right) ; 0.87\left(\mathrm{br} \mathrm{dq},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=84.0,{ }^{2} J_{\mathrm{P}, \mathrm{Pa}}\right.$ $\left.\approx^{2} J_{\mathrm{P}, \mathrm{Pb}} \approx{ }^{3} J_{\mathrm{P}, \mathrm{F}}=27.2 \mathrm{~Hz}, \mathrm{P}^{\mathrm{c}}\right) \mathrm{ppm}$.

Synthesis of $\left[\mathrm{Rh}\left\{(E)-\mathbf{C H}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (2)

In a Young NMR tube $\left[\mathrm{Rh}_{\left.\left(\mathrm{CH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{8})(50 \mathrm{mg}, 0.106 \mathrm{mmol}) \text { was dissolved in } \mathrm{C}_{6} \mathrm{D}_{6} .40}\right.$ $(0.4 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the NMR tube was degassed in vacuo, and pressurized with 3,3,3-trifluoropropene to 0.2 bar. After warming up to room temperature the reaction mixture was kept for 30 min before the volatiles were removed under vacuum. An orange/reddish oil, identified as $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (2) by comparison with the literature, ${ }^{8}$ was obtained. Yield: 57 mg (98%).

Reaction of $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right) 3\right]$ (2) with $Z-1,3,3,3$-tetrafluoropropene

In a Young NMR tube $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](2)(31 \mathrm{mg}, 0.056 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.4 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the NMR tube was degassed in vacuo, and pressurized with Z-1,3,3,3-tetrafluoropropene to 0.2 bar. After warming up to
room temperature the NMR spectroscopic data of the reaction mixture revealed after 50 min the full conversion of $\mathbf{2}$ into $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ as well as the release of 3,3,3trifluoropropene. For the analytical data of complex 3 see below.

Reaction of $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (2) with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$

In an NMR tube equipped with a PFA inliner $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})(24 \mathrm{mg}$, $0.043 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.3 \mathrm{~mL})$. Then, excess of $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}(7 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ was added to the solution. After 5 minutes at room temperature, the NMR spectroscopic data of the reaction mixture revealed the full conversion of 2 into $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (5) (see above) as well as the release of 3,3,3-trifluoropropene.

Reaction of Z-1,3,3,3-tetrafluoropropene with $\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (8)

In a Young NMR tube $\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{8})(42 \mathrm{mg}, 0.089 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ $(0.4 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the NMR tube was degassed in vacuo, and pressurized with $Z-1,3,3,3$-tetrafluoropropene to 0.2 bar. After warming up to room temperature the NMR spectroscopic data of the reaction mixture revealed after 50 min the full conversion of $\mathbf{8}$ into $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ as well as the release of methane. Note that complex $\mathbf{3}$ is stable when the solvents were removed in vacuum to yield a reddish oil. When the formation of $\mathbf{3}$ was followed by low temperature NMR spectroscopy, complex fac- $\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](9)$ was observed up to 253 K together with an unknown complex which might be an isomer of $\mathbf{9}$ in a 16:1 ratio, respectively. Complex $\mathbf{3}$ is stable up to 4 h both in solution or as an oil and after 1 d , $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (6) and $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](5)$ in a 5.7:1 ratio are obtained. If $\mathrm{NEt}_{3} / \mathrm{Cs}_{2} \mathrm{CO}_{3}$ (2 equiv) are added, the dehydrofluorination requires 2 days but only complex 6 is obtained.

Analytical data for 3: ${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=5.37\left(\mathrm{dq},{ }^{3} J_{\mathrm{H}, \mathrm{F}}=51.8,{ }^{3} J_{\mathrm{H}, \mathrm{F}}=8.7 \mathrm{~Hz}\right.$, $1 \mathrm{H},=\mathrm{CH}) ; 1.65\left(\mathrm{q} \mathrm{br},{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{P}_{c i s} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$); 1.31 (quint d, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6,{ }^{2} J_{\mathrm{H}, \mathrm{P}}=$ $5.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); $1.02\left(\mathrm{~m}, \mathrm{t}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6 \mathrm{~Hz}, 18 \mathrm{H}$, $\mathrm{P}_{\text {cis }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); 0.92 (dt, ${ }^{3} J_{\mathrm{H}, \mathrm{P}}=14.1,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.8,9 \mathrm{H}, \mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$) ppm. ${ }^{19} \mathbf{F}$ NMR (282.4 $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=-26.6$ (ddqd, $\left.{ }^{3} J_{\mathrm{F}, \mathrm{H}}=52,{ }^{3} J_{\mathrm{F}, \mathrm{P}}=41,{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{F}}=13,{ }^{2} J_{\mathrm{F}, \mathrm{Rh}}=9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}\right) ;-54.1$ $\left(\mathrm{ddt},{ }^{4} J_{\mathrm{F}, \mathrm{F}}=13,{ }^{3} J_{\mathrm{F}, \mathrm{H}}=9,{ }^{5} J_{\mathrm{F}, \text { Pcis }}=5 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta$ $=18.29\left(\mathrm{dtd},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=115.8,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=39.4,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=36.2 \mathrm{~Hz}, \mathrm{P}_{\text {trans }}\right) ; 14.9\left(\mathrm{ddq},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=148.9,{ }^{2} J_{\mathrm{P}, \mathrm{P}}\right.$
$\left.=37.7,{ }^{5} J_{\mathrm{P}, \mathrm{F}}=4.5 \mathrm{~Hz}, \mathrm{P}_{\text {cis }}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=221\left(\mathrm{dm}\right.$ in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=363 \mathrm{~Hz}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $=C \mathrm{~F}$); 124 (qm in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=264 \mathrm{~Hz}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, C^{2}); 106 (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $=\mathrm{CH}$); 19 (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, ${ }^{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); 18 (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\mathrm{P}^{\text {cis }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); 9 (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\mathrm{PCH}_{2} \mathrm{CH}_{3}$) ppm.

9

Analytical data for 9: ${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, 238 \mathrm{~K}$, toluene-d ${ }^{8}$): $\delta=5.28$ (dd br, ddd in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, $\left.{ }^{2} J_{\mathrm{H}, \mathrm{F}}=67.9,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=5.4,{ }^{2} J_{\mathrm{H}, \mathrm{Rh}}=2.3 \mathrm{~Hz}, \mathrm{CHF}\right) ; 1.95(\mathrm{~m}$ br, 1 H , CHCF_{3}); 1.49-1.76 (m, 18H, $\mathrm{PCH}_{2} \mathrm{CH}_{3}$); 0.86-1.24 (m, 27H, $\mathrm{PCH}_{2} \mathrm{CH}_{3}$);-0.74 (td, ${ }^{2} J_{\mathrm{H}, \mathrm{Pa}} \approx$ $\left.{ }^{2} J_{\mathrm{H}, \mathrm{Pc}}=7.9,{ }^{2} J_{\mathrm{H}, \mathrm{Pb}}=4.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{RhCH}_{3}\right) \mathrm{ppm} .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282.4 \mathrm{MHz}, 238 \mathrm{~K}\right.$, toluene-d $\left.{ }^{8}\right): \delta$ $=-49.1\left(\mathrm{dt} \mathrm{br},{ }^{4} J_{\mathrm{F}, \mathrm{Pc}}=19,{ }^{3} J_{\mathrm{F}, \mathrm{H}} \approx{ }^{3} J_{\mathrm{F}, \mathrm{Rh}}=9 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right) ;-182.6\left(\mathrm{~m}, \mathrm{t}\right.$ br in ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum, $J \approx 35 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, 238 \mathrm{~K}\right.$, toluene-d ${ }^{8}$): $\delta=8.269$ (dddqd, ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=130.1,{ }^{3} J_{\mathrm{P}, \mathrm{Pa}}=30.62,{ }^{2} J_{\mathrm{P}, \mathrm{Pb}}=24.65,{ }^{4} J_{\mathrm{P}, \mathrm{F}}=20.10,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=3.40 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{c}}$); 6.176 (ddddq, ${ }^{1} J_{P, R h}=91.97,{ }^{3} J_{P, F}=28.88,{ }^{2} J_{P, P a}=26.28,{ }^{2} J_{P, P \mathrm{Pc}}=24.65,{ }^{4} J_{P, F}=0.97 \mathrm{~Hz}, 1 \mathrm{P}$, P^{b}); -5.335 (ddddq, ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=102.98,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=42.27,{ }^{2} J_{\mathrm{P}, \mathrm{Pc}}=30.62,{ }^{2} J_{\mathrm{P}, \mathrm{Pb}}=26.28,{ }^{4} J_{\mathrm{P}, \mathrm{F}}=-1.11$ $\left.\mathrm{Hz}, 1 \mathrm{P}, \mathrm{P}^{\mathrm{a}}\right) \mathrm{ppm} .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR shifts and coupling constants were determined by $g N M R$ software. ${ }^{6}$

Reaction of $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](3)$ with BF_{3}

In a PFA tube $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](3)(20 \mathrm{mg}, 0.035 \mathrm{mmol})$ was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.3 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the PFA tube was degassed in vacuo, and a defined amount of $\mathrm{BF}_{3}(0.04 \mathrm{mmol})$ was condensed into the reaction vessel using a stainless-steel vacuum line. After warming up to 263 K the NMR spectroscopic data of the reaction mixture revealed the full conversion of 3 into $\left[\mathrm{Rh}_{\left.\left(\mathrm{PEt}_{3}\right)_{4}\right] \mathrm{BF}_{4} \text {, a }}\right.$ $\left[\mathrm{Rh}\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ derivative and $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](6)$ in a 1:2:2 ratio.

Reaction of $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](3)$ with LiBF_{4}

In an NMR tube equipped with a PFA inliner $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})(20 \mathrm{mg}, 0.035$ mmol) was dissolved in THF-d ${ }^{8}(0.3 \mathrm{~mL})$. Then, $\mathrm{LiBF}_{4}(4 \mathrm{mg}, 0.043 \mathrm{mmol})$ was added to the solution. After 30 minutes at room temperature, the NMR spectroscopic data of the reaction mixture revealed the full conversion of 6 into $\left[\mathrm{Rh}_{\left.\left(\mathrm{PEt}_{3}\right)_{4}\right] \mathrm{BF}_{4},[\mathrm{Rh}(\mathrm{THF}-1 .}\right.$ $\left.\left.\mathrm{d}^{8}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ and $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](6)$ in a 5:2.3:1 ratio.

Reaction of $\left[\operatorname{Rh}(E-C F=C H C F 3)\left(\mathrm{PEt}_{3}\right) 3\right](3)$ with $\mathbf{C O}$ or ${ }^{13} \mathrm{CO}$

Complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})(60 \mathrm{mg}, 0.10 \mathrm{mmol})$ was dissolved in toluene-d ${ }^{8}$ $(0.4 \mathrm{~mL})$ and the solution was cooled to 77 K , degassed and treated with CO. After 5 min , the solution turned yellow and low temperature NMR measurements showed the formation of trans, cis- $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathbf{1 0})$ and two unknown products (17:1:9 ratio, considering that all the products bear 2 phosphines) together with free phosphine. Then, volatiles were removed under vacuum for 1 day and an orange oil, identified as trans-$\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathbf{1 1})$, was obtained. Yield: $48 \mathrm{mg}(95 \%)$.

The synthesis of the labeled derivatives trans,cis- $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left({ }^{13} \mathrm{CO}\right)_{2}\left(\mathrm{PEt}_{3}\right)_{2}\right]\left(\mathbf{1 0}{ }^{\boldsymbol{\prime}}\right)$ and trans- $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left({ }^{13} \mathrm{CO}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right](11 ')$ was performed following the same procedure using ${ }^{13} \mathrm{CO}$.

Analytical data for the main unknown product: ${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}$): $\delta=$ $5.40\left(\mathrm{dq},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{F}}=47.9,{ }^{3} J_{\mathrm{H}, \mathrm{F}}=6.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right) \mathrm{ppm} .{ }^{19} \mathbf{F} \mathbf{N M R}\left(282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}\right)$: $\delta=-19.4$ (br, 1F, F); -55.2 (br, 3F, CF F_{3}) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 201 \mathrm{~K}\right.$): δ $=24.9\left(\mathrm{~d} \mathrm{br},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=121 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}\right): \delta=111$ (m , observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $=C \mathrm{H}$) ppm.

Analytical data for 10: ${ }^{1} \mathbf{H} \mathbf{N M R}\left(300.1 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}\right): \delta=5.72\left(\mathrm{dq},{ }^{3} J_{\mathrm{H}, \mathrm{F}}=47.2,{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{F}}\right.$ $=7.75 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}) ; 1.38\left(\mathrm{~m}, \mathrm{q}\right.$ in a ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\} \mathrm{NMR}$ spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 6 \mathrm{H}$, $\mathrm{P}_{\text {cis }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); 1.0-1.1 (m, overlapped with other PEt_{3} resonances, $\mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$); $0.85(\mathrm{~m}, \mathrm{t}$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.4 \mathrm{~Hz}, 9 \mathrm{H}, \mathrm{P}_{\text {cis }} \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ; 0.75\left(\mathrm{~m}, \mathrm{t}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=6.4,9 \mathrm{H}, \mathrm{P}_{\text {trans }} \mathrm{CH}_{2} \mathrm{CH}_{3}$) ppm. ${ }^{19} \mathbf{F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}$): $\delta=-$ $15.4\left(\mathrm{ddm},{ }^{3} J_{\mathrm{F}, \mathrm{P}}=51,{ }^{3} J_{\mathrm{F}, \mathrm{H}}=50 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}\right) ;-54.7\left(\mathrm{dt},{ }^{4} J_{\mathrm{F}, \mathrm{F}}=11,{ }^{3} J_{\mathrm{F}, \mathrm{H}} \approx{ }^{5} J_{\mathrm{F}, \mathrm{Pcis}}=7 \mathrm{~Hz}, 3 \mathrm{~F}\right.$,
$\mathbf{C} F_{3}$) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}\right): \delta=26.3\left(\mathrm{ddd},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=74.2,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=51.3\right.$, ${ }^{2} J_{\mathrm{P}, \mathrm{P}}=32.0 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\text {trans }}$); 5.34 (ddquint, ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=121.4,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=32.0,{ }^{3} J_{\mathrm{F}, \mathrm{P}} \approx{ }^{5} J_{\mathrm{P}, \mathrm{F}}=5.7 \mathrm{~Hz}, 1 \mathrm{P}$, $\mathrm{P}_{\text {cis }}$) ppm. ${ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 213 \mathrm{~K}$): $\delta=123$ (m in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=$ 256 Hz , observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $C \mathrm{~F}_{3}$); 110 (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $=C H$ ppm. Note that PEt_{3} resonances are overlapped with the unknown products as well as the free phosphine.

Analytical data for 11: IR $\left(\mathrm{cm}^{-1}\right): \tilde{v}=1959(\mathrm{~s}, \mathrm{CO}), 1597(\mathrm{~m}, \mathrm{C}=\mathrm{C}) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(300.1 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=5.02\left(\mathrm{dqtd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{F}}=53.8,{ }^{3} J_{\mathrm{H}, \mathrm{F}}=8.4,{ }^{4} J_{\mathrm{H}, \mathrm{P}}=2.4,{ }^{3} J_{\mathrm{H}, \mathrm{Rh}}=0.5 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right) ; 1.63$ (m, q in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.6,12 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) ; 0.99\left(\mathrm{dt},{ }^{3} J_{\mathrm{H}, \mathrm{P}}=16.1,{ }^{3} J_{\mathrm{H}, \mathrm{H}}=\right.$ $7.6,18 \mathrm{H}, \mathrm{PCH}_{2} \mathrm{CH}_{3}$) ppm. ${ }^{19} \mathbf{F}$ NMR $\left(282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right.$): $\delta=-43.5$ (dquint, ${ }^{3} J_{\mathrm{F}, \mathrm{H}}=54,{ }^{4} J_{\mathrm{F}, \mathrm{F}}$ $\left.\approx{ }^{2} J_{\mathrm{F}, \mathrm{Rh}}=13 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}\right) ;-55.1\left(\mathrm{ddt},{ }^{4} J_{\mathrm{F}, \mathrm{F}}=13,{ }^{3} J_{\mathrm{F}, \mathrm{H}}=9,{ }^{5} J_{\mathrm{F}, \mathrm{P}}=4 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=22.2\left(\mathrm{dq},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=131.5,{ }^{5} J_{\mathrm{P}, \mathrm{F}}=4.3 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) \mathrm{ppm} .{ }^{\mathbf{1 3}} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=214\left(\mathrm{~m}\right.$ in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=340,{ }^{1} J_{\mathrm{C}, \mathrm{Rh}}=57,{ }^{3} J_{\mathrm{C}, \mathrm{F}}=17$ Hz observed in a ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $=C \mathrm{~F}$); $197\left(\mathrm{dm}\right.$ in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{Rh}}=$ 58 Hz , observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, CO); 123.2 (qm in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}$ $=272,{ }^{3} J_{\mathrm{C}, \mathrm{F}}=18 \mathrm{~Hz}$, confirmed by a ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C} \mathrm{HMBC}$ NMR spectrum, $C \mathrm{~F}_{3}$); $108.0\left(\mathrm{qqm},{ }^{2} J_{\mathrm{C}, \mathrm{F}}\right.$ $\left.=30,{ }^{2} J_{\mathrm{C}, \mathrm{F}} \approx{ }^{3} J_{\mathrm{C}, \mathrm{P}}=5 \mathrm{~Hz},=C \mathrm{H}\right) ; 8.2\left(\mathrm{~s}, \mathrm{PCH}_{2} C \mathrm{H}_{3}\right) ; 17.6\left(\mathrm{vt} \mathrm{d}, N=\left.\right|^{1} J_{\mathrm{C}, \mathrm{P}}+{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13 \mid,{ }^{2} J_{\mathrm{C}, \mathrm{Rh}}\right.$ $\left.=1.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Selected analytical data for $\mathbf{1 0}{ }^{\prime}:{ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 201 \mathrm{~K}\right): ~ \delta=26.3$ (dddt, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=74.2,{ }^{3} J_{\mathrm{P}, \mathrm{F}}=51.3,{ }^{2} J_{\mathrm{P}, \mathrm{P}}=32.0,{ }^{2} J_{\mathrm{P}, \mathrm{C}}=17.5 \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\text {trans }}\right) ; 5.34\left(\mathrm{dq} \mathrm{br},{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=121.4\right.$, $\left.{ }^{2} J_{\mathrm{P}, \mathrm{P}} \approx{ }^{2} J_{\mathrm{P}, \mathrm{C}}=30.0, \mathrm{~Hz}, 1 \mathrm{P}, \mathrm{P}_{\text {cis }}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}, 201 \mathrm{~K}\right): \delta=198.3$ (ddt, $\left.{ }^{1} J_{\mathrm{C}, \mathrm{Rh}}=69.0,{ }^{2} J_{\mathrm{C}, \mathrm{Pc}}=28.7,{ }^{2} J_{\mathrm{C}, \mathrm{Pt}}={ }^{3} J_{\mathrm{C}, \mathrm{F}}=17.7 \mathrm{~Hz}, C \mathrm{C}\right) \mathrm{ppm}$.

Selected analytical data for 11': IR $\left(\mathrm{cm}^{-1}\right): \tilde{v}=1917\left(\mathrm{~s},{ }^{13} \mathrm{CO}\right), 1599(\mathrm{~m}, \mathrm{C}=\mathrm{C}) .{ }^{\mathbf{1 9}} \mathbf{F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=-43.5$ (dsext, ${ }^{3} J_{\mathrm{F}, \mathrm{H}}=54,{ }^{4} J_{\mathrm{F}, \mathrm{F}} \approx{ }^{3} J_{\mathrm{F}, \mathrm{C}} \approx{ }^{2} J_{\mathrm{F}, \mathrm{Rh}}=13 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}$); -55.1 (ddt, ${ }^{4} J_{\mathrm{F}, \mathrm{F}}=13,{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{H}}=9,{ }^{5} J_{\mathrm{F}, \mathrm{P}}=4 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}$) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}\left(121.4 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=$ 22.2 (ddq, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=131.5,{ }^{2} J_{\mathrm{P}, \mathrm{C}}=14.2,{ }^{5} J_{\mathrm{P}, \mathrm{F}}=4.3 \mathrm{~Hz}, \mathrm{PEt}_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75.5 \mathrm{MHz}$, $\left.\mathrm{C}_{6} \mathrm{D}_{6}, 201 \mathrm{~K}\right): \delta=196.6\left(\mathrm{dtd},{ }^{1} J_{\mathrm{C}, \mathrm{Rh}}=55.6,{ }^{2} J_{\mathrm{C}, \mathrm{P}}=13.9,{ }^{3} J_{\mathrm{C}, \mathrm{F}}=12.5 \mathrm{~Hz}, C \mathrm{O}\right.$); 17.6 (vt t, $N=$ $\left.\left|{ }^{1} J_{\mathrm{C}, \mathrm{P}}+{ }^{3} J_{\mathrm{C}, \mathrm{P}}=13\right|,{ }^{2} J_{\mathrm{C}, \mathrm{Rh}} \approx{ }^{3} J_{\mathrm{C}, \mathrm{C}}=1.3 \mathrm{~Hz}, \mathrm{PCH}_{2} \mathrm{CH}_{3}\right) \mathrm{ppm}$.

Reaction of $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right](12)$ with $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ or $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$

Complex $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1 2})(0.06 \mathrm{mmol})$ was dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ and excess of $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}(7 \mu \mathrm{~L}, 0.04 \mathrm{mmol})$ or $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}(12 \mu \mathrm{~L}, 0.08 \mathrm{mmol})$ was added at around 243 K . The reaction mixture was slowly warmed up to room temperature. After 1 day 85% conversion of complex $\mathbf{1 2}$ to yield mainly $\left[\operatorname{Rh}\left\{(Z)-\mathrm{C}\left(\mathrm{PEt}_{3}\right)=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right] \mathrm{BF}_{4}$ (13•BF4) with $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}$ was observed, while for HF , an 80% conversion to $\mathbf{1 3} \cdot \mathbf{F H F}$ as the main product was obtained. When HBF_{4} is used, another complex, which might be $\left[\mathrm{Rh}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right] \mathrm{BF}_{4}$ was detected. Note that the reaction with $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}$ was performed in a PFA inliner.

Analytical data for 13: IR $\left(\mathrm{cm}^{-1}\right): \tilde{v} 1950(\mathrm{~s}, \mathrm{CO}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(300.1 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=6.63$ (dqq, ${ }^{3} J_{\mathrm{H}, \mathrm{P}}=36.4,{ }^{3} J_{\mathrm{H}, \mathrm{F}}=6.3,{ }^{4} J_{\mathrm{H}, \mathrm{P}} \approx{ }^{3} J_{\mathrm{H}, \mathrm{Rh}}=3.9 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}$) ppm; the resonances corresponding to the phosphine ligands are overlapped with the signals for the other products. ${ }^{19} \mathbf{F}$ NMR ($282.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=-63.3\left(\mathrm{q} \mathrm{br},{ }^{3} \mathrm{~J}_{\mathrm{F}, \mathrm{H}} \approx{ }^{5} \mathrm{~J}_{\mathrm{F}, \text { Pcis }}=4 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{C} F_{3}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR ($121.4 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=37.1\left(\mathrm{dt},{ }^{2} J_{\mathrm{P}, \mathrm{Rh}}=4.8,{ }^{3} J_{\mathrm{P}, \mathrm{P}}=2.4 \mathrm{~Hz}, 1 \mathrm{P},=\mathrm{CPEt} 3\right) ; 14.5(\mathrm{dqd}$, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=125.0,{ }^{5} J_{\mathrm{P}, \mathrm{F}}=5.2,{ }^{3} J_{\mathrm{P}, \mathrm{P}}=2.6 \mathrm{~Hz}, 2 \mathrm{P}, \mathrm{Rh} P E t^{2}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(75.5 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=192\left(\mathrm{~m}\right.$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, CO); $166(\mathrm{~m}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $=C \mathrm{PEt}_{3}$); 122 (qm in the ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{F}}=260 \mathrm{~Hz}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $C \mathrm{~F}_{3}$); 136 (qm in the ${ }^{13} \mathrm{C}$ domain, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=37 \mathrm{~Hz}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $=C \mathrm{H}$) ppm.

Reaction of $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (6) with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$

In an NMR tube equipped with a PFA inliner $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{6})(23 \mathrm{mg}, 0.042 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.3 \mathrm{~mL})$. Then, excess of $\mathrm{NEt}_{3} \cdot 3 \mathrm{HF}(15 \mu \mathrm{~L}, 0.092 \mathrm{mmol})$ was added to the solution. After 5 minutes at room temperature, the NMR spectroscopic data of the reaction mixture revealed 36% conversion of $\mathbf{6}$ into $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (5) (see above). After one day, full conversion was achieved. In addition of complex 5 the release of Z -1,3,3,3-tetrafluoropropene and other fluorinated compounds was observed.

Synthesis of $\left[\mathbf{R h}(\mathbf{F})\left(\mathbf{P R}_{3}\right)_{2}\right]_{2}(14) \mathbf{R}=i \operatorname{Pr}(\mathbf{a}), E t(b)$

$\left[\mathrm{Rh}(\mathrm{F})(\text { cyclooctene })_{2}\right]_{2}(150 \mathrm{mg}, 0.22 \mathrm{mmol})$ was dissolved in THF $(10 \mathrm{~mL})$ and the corresponding phosphine was added (4 eq., 0.88 mmol). The dark red solution was stirred for 1 h and then the volatiles were removed under vacuum. The obtained product was washed with cold pentane ($2 \times 5 \mathrm{~mL}$) and dried under vacuum. Complex 14a was obtained as a dark red solid while $\mathbf{1 4 b}$ is a brownish oil. Both complexes were identified by comparison with literature. ${ }^{9,10}$ Yield: 171 mg (88% for 14a); 134 mg (85% for 14b).

Reactivity of $\left[\mathbf{R h}(\mathbf{F})\left(\mathbf{P i P r}_{3}\right)_{2}\right]_{2}$ (14a) with 3,3,3-trifluoropropyne

In a Young NMR tube $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{PiPr}_{3}\right)_{2}\right]_{2}(\mathbf{1 4 a})(50 \mathrm{mg}, 0.056 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ $(0.4 \mathrm{~mL})$. The reaction mixture was frozen to 77 K , the NMR tube was degassed in vacuo, and pressurized with 3,3,3-tetrafluoropropyne ($13 \mathrm{mg}, 0.14 \mathrm{mmol}$). After warming up to room temperature the NMR spectroscopic data of the reaction mixture revealed after 5 min the full conversion of $\mathbf{1 4 a}$ into $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{CH} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 5})$ together with small unknown impurities.

Analytical data of 15: IR $\left(\mathrm{cm}^{-1}\right): \tilde{v} 1810(\mathrm{~m}, \mathrm{C} \equiv \mathrm{C}) .{ }^{\mathbf{1}} \mathbf{H}$ NMR (300.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=4.52$ (qd, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{F}}=4.0,{ }^{2} J_{\mathrm{H}, \mathrm{Rh}}=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \equiv \mathrm{C} H\right) ; 2.11\left(\mathrm{~m}\right.$, sept in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=$ $\left.7.2 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.32\left(\mathrm{~m}, \mathrm{~d}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 18 \mathrm{H}$, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.17\left(\mathrm{~m}, \mathrm{~d}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.0 \mathrm{~Hz}, 18 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$. ${ }^{19}$ F NMR (282.4 MHz, Tol-d 8): $\delta=-47.7\left(\mathrm{dq},{ }^{4} J_{\mathrm{F}, \mathrm{H}}=4,{ }^{4} J_{\mathrm{F}, \mathrm{P}} \approx{ }^{3} J_{\mathrm{F}, \mathrm{Rh}}=2 \mathrm{~Hz}, 3 \mathrm{~F}, \mathrm{CF} F_{3}\right.$);-242.9 (m br, d br at $233 \mathrm{~K},{ }^{1} J_{\mathrm{F}, \mathrm{Rh}}=87 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{RhF}$) ppm. ${ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\}$ NMR (121.4 MHz, Tol- d_{8}): $\delta=$ 36.4 (d, ${ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=119.0 \mathrm{~Hz}, \mathrm{PiPr}_{3}$) ppm. $\left.{ }^{\mathbf{3 1}} \mathbf{P} \mathbf{~}{ }^{\mathbf{1}} \mathbf{H}\right\} \mathbf{N M R}(121.4 \mathrm{MHz}$, Tol-d $8,233 \mathrm{~K}$): $\delta=36.4$ (dd, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=119.0,{ }^{3} \mathrm{~J}_{\mathrm{P}, \mathrm{F}}=10.3 \mathrm{~Hz}, \mathrm{PiPr}_{3}\right) \mathrm{ppm} .{ }^{13} \mathbf{C}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}\left(75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=83(\mathrm{~m}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\left.\equiv \mathrm{CH}\right) ; 61\left(\mathrm{dm}\right.$ in the ${ }^{13} \mathrm{C}$ domain, ${ }^{2} J_{\mathrm{C}, \mathrm{F}}=40 \mathrm{~Hz}$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMBC NMR spectrum, $\equiv \mathrm{CCF}_{3}$); 21 (m , observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 19.3$ (m, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\left.\operatorname{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 18.9\left(\mathrm{~m}\right.$, observed in a ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ HMQC NMR spectrum, $\left.\mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm}$.

Rearrangement of $\left[\operatorname{Rh}(\mathrm{F})\left(\mathrm{CH}_{\mathrm{E}} \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](15)$ in the presence of phosphine

In an NMR tube $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{CH} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 5})(30 \mathrm{mg}, 0.055 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}$ $(0.4 \mathrm{~mL})$. Then, excess of $\operatorname{PiPr}_{3}(23 \mu \mathrm{~L}, 0.12 \mathrm{mmol})$ was added to the solution. Complex 15
slowly converted into complex $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (16). After 3 weeks at room temperature, the NMR spectroscopic data of the reaction mixture revealed full conversion of 15 into 16 together with some impurities. Using of NEt_{3} instead of the phosphine did not reduce the reaction time.

Analytical data of 16: IR $\left(\mathrm{cm}^{-1}\right): \tilde{\mathrm{V}} 1638$ (m, C=C). LIFDI (Toluene): $m / z 517$ [M-F]+. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (300.1 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=2.51\left(\mathrm{~m}\right.$, sept in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=7.2 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\operatorname{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 1.25\left(\mathrm{dvt}, \mathrm{d}\right.$ in ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR spectrum, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.1 \mathrm{~Hz}, 36 \mathrm{H}, \mathrm{PCH}\left(\mathrm{CH}_{3}\right)_{2}\right) ; 0.67$ $(\mathrm{m}, 1 \mathrm{H},=\mathrm{CH}) \mathrm{ppm} .{ }^{19}$ F NMR (282.4 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right): \delta=-52.2\left(\mathrm{dt},{ }^{3} J_{\mathrm{F}, \mathrm{H}}=7,{ }^{5} J_{\mathrm{F}, \mathrm{P}}=3 \mathrm{~Hz}, 3 \mathrm{~F}\right.$, $\mathbf{C} F_{3}$); -208 (tdd, $\left.{ }^{2} J_{\mathrm{F}, \mathrm{P}}=20,{ }^{1} J_{\mathrm{F}, \mathrm{Rh}}=11,{ }^{4} \mathrm{~J}_{\mathrm{F}, \mathrm{H}}=8 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{RhF}\right) \mathrm{ppm} .{ }^{31} \mathbf{P}\left\{{ }^{1} \mathbf{H}\right\} \mathbf{N M R}(121.4$ $\mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=46.6$ (ddq, $\left.{ }^{1} J_{\mathrm{P}, \mathrm{Rh}}=139.9,{ }^{2} J_{\mathrm{P}, \mathrm{F}}=20.4,{ }^{5} J_{\mathrm{P}, \mathrm{F}}=2.7 \mathrm{~Hz}, \mathrm{PiPr}_{3}\right) \mathrm{ppm} .{ }^{19} \mathbf{F},{ }^{13} \mathbf{C}$ HMBC NMR ($282.4 / 75.5 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$): $\delta=-52 / 282(\mathrm{~m}, \mathrm{Rh}=C=\mathrm{C}) ;-52 / 116\left(\mathrm{~m}\right.$ in ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{H}}=153,{ }^{1} J_{\mathrm{C}, \mathrm{F}}=268 \mathrm{~Hz}, C \mathrm{~F}_{3}$); -52/104 (d in ${ }^{19} \mathrm{~F}$ domain, m in ${ }^{13} \mathrm{C}$ domain, ${ }^{1} J_{\mathrm{C}, \mathrm{H}}$ $\left.=153,{ }^{2} J_{\mathrm{C}, \mathrm{F}}=35 \mathrm{~Hz},=C \mathrm{H}\right) \mathrm{ppm}$.

Reaction of $\left[\operatorname{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](16)$ with PEt_{3}

In a NMR tube $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](16)(20 \mathrm{mg}, 0.037 \mathrm{mmol})$ was dissolved in $\mathrm{C}_{6} \mathrm{D}_{6}(0.4 \mathrm{~mL})$. Then, excess of $\mathrm{PEt}_{3}(37 \mu \mathrm{~L}, 0.25 \mathrm{mmol})$ was added to the solution. After 1 hour at room temperature the NMR spectroscopic data of the reaction mixture revealed the full conversion of 16 into $\left[\mathrm{Rh}\left\{\mathrm{F}(\mathrm{HF})_{2}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](5)$ and $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (6) (1:1 ratio) as well as the release of PiPr_{3} and small amounts of 3,3,3-trifluoropropene.

NMR Spectra

S1. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $Z-1,3,3,3$-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different times.

S2. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of Z-1,3,3,3-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different times.

S3. Section of the ${ }^{19} \mathrm{~F}$ NMR (bottom) and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra corresponding to complex $[\mathrm{Rh}\{(\mathrm{Z})$ $\left.\left.\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S4. Parts of the ${ }^{1} \mathrm{H}$ (bottom), ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F}\right\}$ (middle) and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ (top) NMR spectra corresponding to complex $\left[\mathrm{Rh}\left\{(\mathrm{Z})-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](4)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S5. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $Z-1,3,3,3$-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in toluene- d^{8} at 233 K .

S6. ${ }^{19}$ F NMR spectrum of the reaction of Z-1,3,3,3-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in toluene-d ${ }^{8}$ at 233 K .

S7. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $Z-1,3,3,3$-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in toluene- d^{8} at 233 K .

S8. Parts of the ${ }^{1} \mathrm{H}$ (bottom), ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F}\right\}$ (middle) and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ (top) NMR spectra corresponding to complex fac-[Rh(H)($\left.\left.\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (7) in toluene-d ${ }_{8}$.

S9. ${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY NMR spectrum of the reaction of $Z-1,3,3,3$-tetrafluoropropene with $\left[\mathrm{Rh}(\mathrm{H})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1})$ in toluene- d^{8} at 223 K .

S10. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S11. ${ }^{19} \mathrm{~F}$ NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S12. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S13. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (2) with Z -1,3,3,3-tetrafluoropropene in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S14. ${ }^{19}$ F NMR spectrum of the reaction of complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ with Z-1,3,3,3-tetrafluoropropene in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S15. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CH}^{2}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ with Z-1,3,3,3-tetrafluoropropene in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S16. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CH}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{2})$ with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S17. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S18. ${ }^{19} \mathrm{~F}$ (bottom) and ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ (top) NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](3)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S19. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S20. Section of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of the reaction of $Z-1,3,3,3$-tetrafluoropropene with $\left[\mathrm{Rh}\left(\mathrm{CH}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](8)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$ at different times with and without presence of base.

S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of complex $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with BF_{3} at 263 K in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

S22. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\boldsymbol{3})$ with BF_{3} at 263 K in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

S23. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with LiBF_{4} in THF-d ${ }^{8}$.

S24. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of complex $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with LiBF_{4} in THF-d ${ }^{8}$.

S25. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\left.\mathrm{fac}-\left[\mathrm{Rh}_{\left(\mathrm{CH}_{3}\right)}\right)\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{9})$ in toluene- d^{8} at 213 K : experimental (bottom), simulated (top). ${ }^{6}$

S26. ${ }^{19} \mathrm{~F}$ NMR spectrum of complex $\left.\mathrm{fac}-\left[\mathrm{Rh}_{\left(\mathrm{CH}_{3}\right)}\right)\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](9)$ in toluene-d ${ }^{8}$ at 238 K .

S27. ${ }^{1} \mathrm{H}$ NMR spectrum of complex fac- $\left[\mathrm{Rh}_{(}\left(\mathrm{CH}_{3}\right)\left(\mathrm{CF}_{3} \mathrm{CHCHF}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right](9)$ in toluene- d^{8} at 238 K .

S28. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with CO in toluene- d^{8} at 213 K .

S29. Section of ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with ${ }^{13} \mathrm{CO}$ in toluene- d^{8} at 201 K .

S30. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with CO in toluene-d ${ }^{8}$ at 213 K .

S31. ${ }^{1} \mathrm{H}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with CO in toluene-d ${ }^{8}$ at 213 K .

S32. Section of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{3})$ with ${ }^{13} \mathrm{CO}$ in toluene-d ${ }^{8}$ at 201 K .

S33. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex trans- $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathbf{1 1})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The signals for $\mathbf{1 1}$ (bottom) and $\mathbf{1 1}^{\prime}$ (top) are shown for comparison.

S34. ${ }^{19} \mathrm{~F}$ NMR spectrum of complex trans- $\left[\operatorname{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathbf{1 1})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$. The signals for $\mathbf{1 1}$ (bottom) and $\mathbf{1 1}^{\prime}$ (top) are shown for comparison.

S35. ${ }^{1} \mathrm{H}$ NMR spectrum of complex trans- $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right](\mathbf{1 1})$ in $\mathrm{C}_{6} \mathrm{D}_{6}(\mathrm{no}$ changes in complex $\mathbf{1 1}^{\prime}$).

S36. Section of the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex trans- $\left[\mathrm{Rh}\left\{(E)-\mathrm{CF}=\mathrm{CHCF}_{3}\right\}\left({ }^{13} \mathrm{CO}\right)\left(\mathrm{PEt}_{3}\right)_{2}\right]$ $\left(\mathbf{1 1}^{\prime}\right)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S37. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right](\mathbf{1 2})$ with HF (top) or HBF_{4} (bottom) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

S38. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (12) with HF (top) or HBF_{4} (bottom) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

S39. Section of the ${ }^{1} \mathrm{H}$ NMR (bottom), ${ }^{1} \mathrm{H}\left\{{ }^{19} \mathrm{~F}\right\}$ NMR (middle) and ${ }^{1} \mathrm{H}\left\{{ }^{31} \mathrm{P}\right\}$ NMR (top) of complex $\left[\mathrm{Rh}\left\{(\mathrm{Z})-\mathrm{C}\left(\mathrm{PEt}_{3}\right)=\mathrm{CHCF}_{3}\right\}(\mathrm{CO})\left(\mathrm{PEt}_{3}\right)_{2}\right]^{+}(\mathbf{1 3})$ corresponding to the vinyl proton of the phosphonioalkenyl ligand in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

S40. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of $\left[\mathrm{Rh}\left(\mathrm{C} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PEt}_{3}\right)_{3}\right]$ (6) with $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S41. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{CH} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 5})$ in Tol- d_{8} at 233 K .

S42. ${ }^{19} \mathrm{~F}$ NMR spectrum of complex $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{CH} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](15)$ in Tol- d_{8} showing the Rh-F ligand resonance at 233 K .

S43. ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\left[\mathrm{Rh}(\mathrm{F})\left(\mathrm{CH} \equiv \mathrm{CCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](15)$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S44. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of complex $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 6})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S45. Sections of the ${ }^{19} \mathrm{~F}$ NMR (bottom) and the ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (top) spectra of complex $\left[\operatorname{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 6})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S46. ${ }^{19} \mathrm{~F},{ }^{13} \mathrm{C}$ HMBC NMR spectrum of complex $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 6})$ in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S47. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of the reaction of complex $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right](\mathbf{1 6})$ with PEt_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$.

S48. ${ }^{19} \mathrm{~F}$ NMR spectrum of the reaction of complex $\left[\mathrm{Rh}(\mathrm{F})\left(=\mathrm{C}=\mathrm{CHCF}_{3}\right)\left(\mathrm{PiPr}_{3}\right)_{2}\right]$ (16) with PEt_{3} in $\mathrm{C}_{6} \mathrm{D}_{6}$.

DFT calculations

Computational details for geometry optimization of all the calculated complexes
Calculations were run using the Gaussian 09 (Revision D.01) program package. ${ }^{11}$ All rhodium complexes were calculated using the BP86 functional. Rhodium was described with RECPs and the associated def2-SVP basis sets. ${ }^{12,13}$ All the other atoms were described with def2-SVP basis sets. A Grimme D3 dispersion correction with Becke-Johnson damping was included. ${ }^{14,15}$ All calculated structures were identified as minima (no negative eigenvalues).

Geometry optimization of both possible rotamers of complexes 7 and 9

Complex 7

7

Complex 7a

7a

Energies in Hartree (corrected for zero-point energy): -2361.736294 for complex 7 and 2361.734125 for complex 7a. Accordingly, structure 7 is slightly favored by $5.7 \mathrm{~kJ} / \mathrm{mol}$.

9

Complex 9a

9a

Energy in Hartree (corrected for zero-point energy): -2400.978525 for complex 12 and 2400.978446 for complex 9a. Accordingly, both structures are possible as complex 9 is only favored by $0.2 \mathrm{~kJ} / \mathrm{mol}$.

Geometry optimization of complex 10

In order to optimize the structure of complex 10, calculations with different initial structures were run, which did not non-converge except for the structure shown in Figure S49.

Energy in Hartree (corrected for zero-point energy): -2008.420899.

S49. Optimized structure of complex 10. Hydrogen atoms of the phosphine ligands have been omitted for clarity.

Table S1. Cartesian coordinates of all optimized structures

Complex 7				Complex 7a				Complex 9				Complex 9a			
Rh	0.00120	-0.33758	-0.29248	Rh	-0.04779	-0.01759	-0.61464	Rh	0.01560	0.36287	0.28874	Rh	-0.06148	-0.05461	-0.62865
P	-0.48702	-1.14701	1.89623	P	0.19895	-1.39818	1.33096	P	-0.41829	0.67572	-2.04124	P	0.04096	-1.29836	1.42632
P	-2.00863	0.62015	-0.99287	P	-2.30591	0.49626	-0.54785	P	-2.12801	-0.26839	0.99321	P	-2.31285	0.57719	-0.55883
P	1.46053	1.45544	0.16797	P	1.13121	1.90216	0.06169	P	1.36624	-1.59695	0.16678	P	1.33286	1.76797	0.05215
C	-3.57202	-0.00729	-0.15998	C	-3.47985	-0.90852	-0.11525	C	-3.58906	0.07639	-0.14179	C	-3.54620	-0.49279	0.37561
C	-2.26430	0.17089	-2.79023	C	-2.86731	0.91828	-2.28698	C	-2.59833	0.71986	2.51237	C	-3.07227	0.49458	-2.27239
C	-2.32658	2.46719	-1.12409	C	-2.98882	2.00674	0.33932	C	-2.47284	-1.99739	1.63181	C	-2.75578	2.34680	-0.11974
C	3.27893	1.00174	0.10126	C	2.85276	1.88571	-0.68696	C	3.18305	-1.16016	0.30805	C	3.02652	1.52545	-0.72232
C	1.30343	2.75654	-1.17552	C	0.36295	3.43829	-0.70250	C	1.12749	-2.80587	1.59062	C	0.79680	3.44662	-0.61793
C	1.33916	2.39925	1.78862	C	1.35452	2.41668	1.85868	C	1.30279	-2.69174	-1.35701	C	1.69463	2.17224	1.85080
C	-0.90265	-0.02711	3.33592	C	-0.49730	-0.75120	2.95790	C	-0.89572	-0.69414	-3.23422	C	-0.44696	-0.50234	3.06365
C	-1.86248	-2.42138	1.97380	C	-0.56400	-3.10228	1.23381	C	-1.69287	2.01532	-2.40042	C	-0.94956	-2.88872	1.44974
C	0.89156	-2.13168	2.70093	C	1.91856	-1.85135	1.92816	C	0.99605	1.37656	-3.06765	C	1.68455	-2.00509	2.00222
C	1.11147	-2.12483	-0.69681	C	1.20398	-1.12987	-1.96162	C	1.20005	2.16881	0.17881	C	1.11199	-1.41639	-1.82168
C	-0.27097	-2.23490	-1.13434	C	-0.20114	-1.48811	-2.08486	C	-0.17166	2.43340	0.58233	C	-0.31835	-1.66919	-1.91282
H	-0.94492	-2.94765	-0.62270	F	-0.60706	-2.78735	-1.78321	H	-0.84266	2.97817	-0.10576	F	-0.82876	-2.88870	-1.48004
F	-0.50912	-2.34245	-2.50501	H	-0.74345	-1.16844	-2.99482	F	-0.40200	2.93962	1.86137	H	-0.84384	-1.39833	-2.84831
H	1.86874	2.33449	-2.03448	H	0.60013	3.36417	-1.78609	H	1.69512	-2.37503	2.44012	H	1.06037	3.44034	-1.69445
C	1.68978	4.21252	-0.90476	C	0.69653	4.82538	-0.14587	C	1.47364	-4.28484	1.40226	C	1.29522	4.73267	0.04689
H	0.24351	2.70091	-1.48486	H	-0.72902	3.26003	-0.63611	H	0.06482	-2.70888	1.88027	H	-0.30987	3.42052	-0.59020
H	1.12938	1.60272	2.53003	H	1.27239	1.47584	2.43514	H	1.09646	-1.97810	-2.17546	H	1.58765	1.20891	2.37814
H	0.40034	2.99039	1.73251	H	0.44234	2.99823	2.11205	H	0.37598	-3.29801	-1.26247	H	0.84061	2.79482	2.19485
C	2.50330	3.25804	2.29371	C	2.61645	3.16897	2.28970	C	2.49924	-3.56270	-1.75411	C	3.03424	2.79838	2.24950
H	3.32011	0.10856	-0.54856	H	2.70929	1.29078	-1.61163	H	3.19336	-0.22066	0.89199	H	2.81375	0.92565	-1.62994
H	3.53039	0.63371	1.11835	H	3.46507	1.23072	-0.03226	H	3.49058	-0.85909	-0.71520	H	3.56513	0.82496	-0.05034
C	4.30924	2.03253	-0.37342	C	3.59191	3.18735	-1.01338	C	4.17711	-2.16019	0.90699	C	3.90154	2.72955	-1.08364
C	-2.04848	0.94666	3.07586	C	-1.99252	-0.97836	3.18407	C	-1.94344	-1.69240	-2.75227	C	-1.91463	-0.16000	3.30420
H	0.03068	0.52929	3.56154	H	-0.27292	0.33468	2.98090	H	0.05608	-1.22021	-3.45309	H	0.16049	0.41954	3.15033
H	-1.10118	-0.66179	4.22558	H	0.08500	-1.21230	3.78524	H	-1.19570	-0.22007	-4.19179	H	-0.08184	-1.18755	3.85900
C	2.25601	-1.44240	2.65727	C	2.85790	-0.68778	2.23262	c	2.34196	0.67693	-2.87433	C	2.83844	-1.03673	2.24794
H	0.93681	-3.10675	2.16928	H	2.35476	-2.49522	1.14319	H	1.08404	2.45134	-2.80150	H	1.97363	-2.74271	1.23441
H	0.59225	-2.36155	3.74598	H	1.78950	-2.48332	2.83231	H	0.68200	1.35097	-4.13352	H	1.46946	-2.57868	2.92902
H	-2.72777	-1.97852	1.44199	H	-1.64715	-2.93498	1.05693	H	-2.50308	1.89314	-1.65664	H	-1.94648	-2.64384	1.03393
C	-2.28239	-2.96257	3.34303	C	-0.34128	-4.06715	2.40192	C	-2.26538	2.12032	-3.81565	C	-1.07727	-3.65363	2.76997
H	-1.51079	-3.24889	1.32064	H	-0.18269	-3.51876	0.28296	H	-1.17792	2.96055	-2.12548	H	-0.46560	-3.50646	0.66891
H	-2.00264	-0.90292	-2.85608	H	-2.46202	0.10209	-2.92116	H	-2.27449	1.75659	2.29019	H	-2.79098	-0.50833	-2.65776
H	-1.43100	0.69236	-3.31009	H	-2.27827	1.82066	-2.55868	H	-1.90140	0.37319	3.30241	H	-2.50826	1.22070	-2.89045
C	-3.60449	0.45580	-3.47263	C	-4.35861	1.12553	-2.56275	C	-4.04124	0.68897	3.02170	C	-4.57832	0.72005	-2.43151
C	-2.15533	3.27315	0.16020	C	-2.51226	2.19644	1.77807	C	-2.27393	-3.13042	0.62516	C	-2.24433	2.83125	1.23782
H	-3.33923	2.62035	-1.55206	H	-4.09661	2.02219	0.27523	H	-3.49339	-2.03243	2.06766	H	-3.84856	2.51300	-0.21948
H	-1.61508	2.82125	-1.90071	H	-2.63458	2.85216	-0.28983	H	-1.77175	-2.11190	2.48711	H	-2.27854	2.92963	-0.93808
H	-3.69763	-1.03996	-0.55340	H	-3.58738	-1.48493	-1.05938	H	-3.78691	1.16373	-0.01715	H	-3.82375	-1.29389	-0.34325
C	-4.87249	0.79581	-0.26984	C	-4.84204	-0.57049	0.49578	C	-4.87939	-0.73377	0.02196	C	-4.78860	0.17162	0.97464
H	-3.30284	-0.12344	0.90725	H	-2.91276	-1.57603	0.56064	H	-3.21080	-0.04243	-1.17361	H	-2.97659	-1.00126	1.17148
H	4.09698	2.37697	-1.40588	H	3.02297	3.81259	-1.73121	H	3.90291	-2.43933	1.94466	H	3.38657	3.41322	-1.78894
H	5.32110	1.57486	-0.39055	H	4.56922	2.95905	-1.48945	H	5.18930	-1.70547	0.95403	H	4.83080	2.38749	-1.58680
H	4.36222	2.92686	0.27769	H	3.79899	3.80323	-0.11709	H	4.26159	-3.09376	0.31742	H	4.20585	3.32251	-0.19944
H	2.58126	-1.28946	1.61051	H	2.96739	-0.02978	1.35026	H	2.69010	0.77862	-1.82802	H	3.03679	-0.41891	1.35230
H	3.02654	-2.05059	3.17484	H	3.86885	-1.06193	2.49636	H	3.11463	1.11725	-3.53804	H	3.76867	-1.59906	2.47129
H	2.23268	-0.44921	3.15341	H	2.50382	-0.07057	3.08410	H	2.28598	-0.40602	-3.11124	H	2.65247	-0.36024	3.10734
H	-2.72048	-2.17140	3.98580	H	-0.63413	-3.63286	3.38102	H	-2.88368	1.23757	-4.07904	H	-1.59727	-3.06728	3.55521
H	-1.43240	-3.41240	3.89621	H	0.71900	-4.38052	2.48074	H	-1.47221	2.21840	-4.58577	H	-0.09200	-3.95841	3.17809
H	-3.05352	-3.75350	3.23079	H	-0.94139	-4.99075	2.26045	H	-2.91897	3.01334	-3.90608	H	-1.66274	-4.58461	2.61695
H	-1.86820	1.51441	2.14310	H	-2.59673	-0.56041	2.35855	H	-1.71578	-2.02850	-1.72291	H	-2.28960	0.55552	2.55184
H	-2.16088	1.67376	3.90661	H	-2.32890	-0.48734	4.12116	H	-1.97847	-2.58658	-3.40844	H	-2.04387	0.31104	4.30133
H	-3.01862	0.41823	2.96645	H	-2.24218	-2.05511	3.26649	H	-2.96136	-1.25220	-2.74413	H	-2.56709	-1.05632	3.27739
H	-5.19121	0.95507	-1.31763	H	-5.45230	0.08199	-0.15940	H	-5.30447	-0.66045	1.04081	H	-5.40702	0.68655	0.21417
H	-4.77649	1.79367	0.20478	H	-4.73500	-0.05235	1.47153	H	-4.71609	-1.80876	-0.19373	H	-4.51792	0.92199	1.74536
H	-5.69896	0.26699	0.25095	H	-5.42765	-1.49577	0.68105	H	-5.65487	-0.37359	-0.68712	H	-5.43353	-0.58492	1.46992
H	-2.91969	3.00865	0.91890	H	-3.02982	1.51379	2.47954	H	-3.04632	-3.11868	-0.16975	H	-2.88409	2.47669	2.07043
H	-2.23993	4.36323	-0.03121	H	-2.69158	3.23331	2.13090	H	-2.32000	-4.12278	1.12002	H	-2.21930	3.93939	1.29168
H	-1.16221	3.08346	0.61332	H	-1.42619	1.98580	1.85346	H	-1.28835	-3.04804	0.12516	H	-1.21801	2.45182	1.42388
H	-4.42617	-0.15131	-3.04055	H	-4.94625	0.20409	-2.37383	H	-4.75355	1.12874	2.29390	H	-5.17710	-0.05331	-1.90923
H	-3.54616	0.19442	-4.55042	H	-4.52284	1.40092	-3.62608	H	-4.12751	1.28469	3.95501	H	-4.86079	0.67596	-3.50470
H	-3.90345	1.52326	-3.41360	H	-4.79359	1.93801	-1.94480	H	-4.39042	-0.33740	3.26072	H	-4.90008	1.71221	-2.05262
H	2.76271	4.33241	-0.65959	H	1.77159	5.07408	-0.23353	H	2.55067	-4.44805	1.20427	H	2.39431	4.84809	-0.02065
H	1.10048	4.64208	-0.06852	H	0.41703	4.91528	0.92397	H	0.90230	-4.74190	0.56840	H	1.01460	4.78423	1.11857
H	1.48418	4.83783	-1.79971	H	0.13027	5.60863	-0.69356	H	1.21792	-4.85595	2.32021	H	0.84098	5.61738	-0.44828
H	3.42697	2.65724	2.41700	H	3.53369	2.59518	2.04629	H	3.41021	-2.94984	-1.90956	H	3.88477	2.15501	1.94596
H	2.26048	3.68840	3.28892	H	2.61511	3.33175	3.38869	H	2.29189	-4.08622	-2.71196	H	3.09124	2.91290	3.35307
H	2.73762	4.10201	1.61762	H	2.70079	4.16267	1.80824	H	2.73818	-4.33636	-1.00029	H	3.19126	3.79931	1.80475

C	2.24411	-2.22154	-1.66888	H	1.58267	-0.45724	-2.75137	C	2.38685	2.60746	0.97254	H	1.53071	-0.83856	-2.66508
F	2.22209	-1.33205	-2.69196	C	2.27692	-2.11441	-1.65117	F	2.34843	2.36779	2.30198	C	2.10636	-2.47025	-1.47554
F	2.32841	-3.46190	-2.24399	H	-0.13281	0.94839	-1.87668	F	2.59890	3.95970	0.83693	C	-0.00172	1.06957	-2.45988
F	3.45040	-2.04285	-1.02296	F	2.78633	-2.68648	-2.78760	F	3.54085	2.01956	0.50011	H	-0.57622	2.01749	-2.43785
H	1.37736	-2.72352	0.19086	F	1.88892	-3.15826	-0.85898	H	1.42180	2.44669	-0.86438	H	-0.40070	0.46037	-3.29816
H	0.42640	0.10213	-1.75376	F	3.35304	-1.53490	-1.02639	C	0.52368	0.16599	2.35997	H	1.04684	1.32433	-2.72569
								H	0.01891	-0.69362	2.84657	F	2.59290	-3.08418	-2.59967
								H	0.23446	1.09070	2.88694	F	1.62943	-3.48008	-0.68675
								H	1.61582	0.03327	2.49321	F	3.21189	-1.96874	-0.83445
Complex 10															
Rh	-0.22596	-0.61361	0.17527												
P	-2.57543	-0.50446	-0.13877												
C	1.26586	1.83767	-1.87440												
C	1.85437	2.24784	0.93543												
C	-0.71133	3.10110	-0.19722												
P	0.48356	1.66179	-0.18853												
C	-3.33549	-2.09963	0.46444												
C	-4.67593	-2.55485	-0.12412												
C	-3.16424	-0.37958	-1.89580												
C	-2.62604	0.83942	-2.64631												
C	-3.47816	0.84423	0.76482												
C	-5.00925	0.84605	0.74360												
C	1.61978	2.03154	2.43446												
C	2.06155	3.11130	-2.17404												
H	-3.38622	-1.99439	1.57030												
H	-2.55025	-2.86158	0.27955												
H	-4.27441	-0.39954	-1.90347												
H	-2.82429	-1.31627	-2.38651												
H	-2.99549	1.79035	-2.20921												
H	-2.94217	0.82022	-3.70911												
H	-1.51789	0.85804	-2.61895												
H	-3.07835	1.78911	0.34494												
H	-3.09117	0.79481	1.80489												
H	-5.41419	0.84549	-0.28945												
H	-5.39925	1.75447	1.24809												
H	-5.43071	-0.03006	1.27512												
C	-1.20812	3.55282	1.17994												
H	-4.59784	-2.75502	-1.21163												
H	-5.48652	-1.81510	0.02461												
H	-4.99824	-3.50130	0.35756												
H	2.75239	1.67918	0.61332												
H	2.04984	3.31808	0.70631												
H	0.43542	1.69891	-2.59996												
H	1.91275	0.94240	-1.97178												
H	1.45691	4.03338	-2.04380												
H	2.42177	3.10369	-3.22395												
H	2.95433	3.19686	-1.52289												
H	-2.07113	4.24416	1.08314												
H	-0.41623	4.09165	1.73663												
H	-1.52788	2.69520	1.80575												
H	-0.22865	3.95084	-0.72646												
H	-1.55626	2.77535	-0.83952												
C	1.78928	-0.94026	0.40706												
C	2.75059	-1.09010	-0.54256												
H	2.47339	-1.13033	-1.60320												
H	0.75906	2.61098	2.81964												
H	2.51782	2.34278	3.00716												
H	1.43951	0.96342	2.65230												
F	2.24890	-0.95148	1.69773												
C	4.21416	-1.17586	-0.25465												
F	4.70540	-0.02719	0.32107												
F	4.91365	-1.35301	-1.40939												
F	4.56048	-2.18768	0.58234												
C	-0.55358	-0.96747	2.03239												
O	-0.80025	-1.19882	3.14876												
C	-0.15985	-1.69607	-1.37750												
O	-0.13689	-2.37842	-2.32704												

References

1. D. D. Perrin and W. L. F. Armarego, Purification of Laboratory Chemicals, Butterworth/Heinemann, London/Oxford, 3rd edn., 1988.
2. T. Braun, D. Noveski, M. Ahijado and F. Wehmeier, Dalton Trans., 2007, 3820-3825.
3. P. Zhao and J. F. Hartwig, Organometallics, 2008, 27, 4749-4757.
4. C. N. von Hahmann, M. Talavera, C. Xu and T. Braun, Chem. Eur. J., 2018, 24, 11131-11138.
5. J. Vicente, J. Gil-Rubio, D. Bautista, A. Sironi and N. Masciocchi, Inorg. Chem., 2004, 43, 5665-5675.
6. P. H. M. Budzelaar gNMR, Version 4.1; Adept Scientific plc: Letchworth, 2001.
7. D. Noveski, T. Braun and S. Krückemeier, J. Fluorine Chem., 2004, 125, 959-966.
8. M. Talavera, C. N. von Hahmann, R. Müller, M. Ahrens, M. Kaupp and T. Braun, Angew. Chem. Int. Ed., 2019, 58, 10688-10692, Angew. Chem., 2019, 131, 10798-10802.
9. J. Gil-Rubio, B. Weberndörfer and H. Werner, J. Chem. Soc., Dalton Trans., 1999, 14371444.
10. L. Zámostná and T. Braun, Angew. Chem. Int. Ed., 2015, 54, 10652-10656.
11. G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2016.
12. D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, Theor. Chim. Acta, 1990, 77, 123-141.
13. F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305.
14. S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456-1465.
15. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
