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S1. Materials and Instruments

All chemicals were purchased from commercial sources and used without further
purification. Powder X-ray diffraction patterns (XRD) were measured on a Japan
RigakuMiniFlex 600 equipped with graphite-monochromated Cu Ka radiation (4 =
1.54178 A). Fourier transform infrared (FTIR) spectra in 4000 to 400 cm! range were
collected on a SHIMADZU IR Affinity-1 spectrometer with KBr discs. The 'H
nuclear magnetic resonance ('HNMR, Bruker AVANCE AV III 400) spectroscopy
was used to identify the functional group of ligands. Field-emission scanning electron
microscopy (FE-SEM) with a field S3 emission scanning electron microanalyzer
(Zeiss Supra 40 scanning electron microscope at 5 kV accelerated voltage) was
carried out. UV-Vis absorption spectrum was obtained from Shimadzu UV-2700
spectrophotometer. The transmission electron microscopy (TEM) images were
observed on a JEOL JEM-2100F field-emission transmission electron microscope.
Zeta potential was investigated on Zeta potentiometer (DelsaNano C).
Photoluminescence (PL) spectra (excitation at 250 nm) were measured with a
PerkinElmer LS 55 fluorescence spectrophotometer in the solution of MeCN or
MeCN contained with TEOA. Time-resolved photoluminescence spectra were taken
on a FM4-2015 TCSPC transient fluorescence spectrometer. The catalytic reaction
products were analyzed and identified by gas chromatography (Shimadzu GC-2014).
The liquid products were analyzed using ion chromatography (CASTLE CIK-3K
UPS). The consumption of TEOA was identified and analyzed by using a Shimadzu

gas chromatograph (GC-2010 Plus with a 0.25 mm X% 30 m Rtx-5 capillary column).
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S2. Experimental Section
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Fig. S1 '"H NMR spectra of MIL-125-NO, and MIL-125-Br.

The maximum linker-exchange extent of MIL-125-NO, and MIL-125-Br is about

50% according to the peak area of different H of linkers in the above '"H NMR spectra.
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Fig. S2 Powder XRD patterns of MIL-125 and MIL-125-X (X = NH,, NO,, Br).
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Fig. S3 SEM images of (a) MIL-125, (b) MIL-125-NH,, (c) MIL-125-NO, and (d)

MIL-125-Br.
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Fig. S4 (a) The FTIR spectra and (b) the enlarged FTIR spectra (3000 cm™! to 3600

cm!) of MIL-125 and MIL-125-X (X = NH,, NO,, Br).

FTIR show peaks at 3351 cm'! (venpn), 3461 cml(vagnn), 1257 ecm™! (Vg cn) and
550cm! (Vg cpr),S' in which the vy c.p; is partially overlaid by a stretching vibration
of Ti-O. Results suggest the successful introduction of different functional groups into

MIL-125.
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Fig. S5 The images of (a) MIL-125, (b) MIL-125-Br, (¢) MIL-125-NO, and (d) MIL-

125-NHo,.
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Fig. S6 UV-Vis absorption spectra of MIL-125 and MIL-125-X (X = NH,, NO,, Br).

The absorption band around 265 nm is induced by O to Ti charge transfer (LMCT
= ligand-to-metal charge transfer) in the Ti-oxo clusters; the extended absorbance in
the visible light region is assignable to the n-n* transition caused by the introduction

of functional group.
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Fig. S7 The ESR spectra of MIL-125 in the dark, under light on and off for different

time lengths.

Compared to MIL-125 in the dark, new EPR peaks at g = 1.945, 2.002 and 2.025
under light irradiation are assignable to the Ti*" intermediates generated from the
LMCT process and O, adsorbed onto Ti-oxo clusters (the residual O, molecules
accept electrons from electron-trapped Ti-oxo cluster). Upon turning off the light, the

EPR signal can be maintained for a long time, indicating the long-lived intermediate.
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Fig. S8 The photocatalytic hydrogen production activity of MIL-125 in the presence
of 4 mL MeOH under light off.
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Fig. S9 (a) TEM image of Pt NPs and (b) the corresponding size distribution,

indicating the Pt sizes are ~3 nm.
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Fig. S10 The dark photocatalytic hydrogen production over MIL-125 in 2 mL MeOH

with controlled reaction temperatures at 25 °C and 35 °C, respectively.
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Fig. S11 The dark photocatalytic hydrogen production activity of MIL-125 in
different concentrations of methanol sacrificial agent (MeOH) using acetonitrile as the

solvent. The total solution volume was fixed to 4 mL. The reaction temperature is

maintained at 25 °C.
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Fig. S12 The dark photocatalytic hydrogen production activity of MIL-125 in the
presence of (a) TEOA or (b) TEA as a sacrificial agent in MeCN at 25 °C, by fixing

the solution volume to 4 mL.
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Fig. S13 The hydrogen production activity of MIL-125-NH, with 2 mL MeOH as a

sacrificial agent and solution under dark and light irradiation at 25 °C.

MeOH is not a good sacrificial agent for MIL-125-NH,. Accordingly, TEOA,
which is efficient for hole removal of MIL-125-X (X = H, NH,, NO,, Br), is chosen

as a sacrificial agent in our work to compare the role of different functional groups.

Fig. S14 The TEM images of (a) MIL-125, (b) MIL-125-NH,, (¢) MIL-125-Br, and

(d) MIL-125-NO, after reaction.

The TEM images show that Pt NPs with similar sizes of 3 nm are evenly
distributed on the isoreticular MOF surfaces. The dispersion of Pt is similar in

different MOFs.
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Fig. S15 Powder XRD patterns of MIL-125 and MIL-125-X (X = NH,, NO,, Br) after

photocatalytic reaction, suggesting their maintained crystallinity.
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Fig. S16 (a) The dark photocatalytic hydrogen production activity comparison of
MIL-125, MIL-125-NH; and MIL-125-0.5NH, with TEOA as a sacrificial agent at 25

°C. (b) '"H NMR spectra of MIL-125-0.5NH,, BDC-NH, and BDC.

The higher dark photocatalytic activity of MIL-125-0.5NH, than MIL-125 is in line
with the overall activity trend, indicating that the introduction of -NH, group is

conducive to the improvement of dark reaction activity.
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Fig. S17 The dark photocatalytic hydrogen production activity of MIL-125 in MeCN

with TEOA as a sacrificial agent at 25 °C, in the presence of H,O and D,0O as a
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hydrogen source, respectively.

The experiment with D,O gives reduced hydrogen production activity due to the

difficult bond cleavage of D-O, indicating that the H source is from water, as

concluded by the previous report.S?
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Fig. S18 The vacuum liquid UV-Vis absorption spectra of (a) MIL-125, (b) MIL-125-

NH,, (¢) MIL-125-NO, and (d) MIL-125-Br before light on and after light on/off for

different time lengths in MeCN with TEOA as sacrificial agent.
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Fig. S19 The open-circuit potential (OCP) responses of MIL-125 and MIL-125-X (X

= NH2, NO2, BI')
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Fig. S20 (a) Steady-state and (b) Time-resolved PL spectra for MIL-125 and MIL-
125-X (X = NH,, NO,, Br) in MeCN with TEOA as sacrificial agent. The fitted PL
lifetime for MIL-125, MIL-125-NH,, MIL-125-Br and MIL-125-NO, are 10.1 ps,

26.1 ps, 8.8 ps and 1.5 ps, respectively.
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Fig. S21 The calculation of HOMO/LUCO energy levels of MIL-125-NH,, MIL-125

and MIL-125-NO,.
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Fig. S22 Mott Schottky plots of MIL-125 and MIL-125-X (X = NH,, NO,, Br). Inset:

the energy level position.
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Fig. S23 The plots of transformed Kubelka-Munk function vs. the light absorption

energy of MIL-125 and MIL-125-X (X = NH,, NO,, Br).
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Fig. S24 (a) The band structure potential positions and (b) LSV curves for MIL-125

and MIL-125-X (X = NH,, NO,, Br).
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Fig. S25 The dark photocatalytic benzyl alcohol oxidation over MIL-125. Reaction

conditions: 10 mg MIL-125 was dispersed in the solution of 0.5 ml benzyl alcohol

and 3.5 ml anhydrous MeCN.

MIL-125 achieves a significantly higher dark photocatalytic benzyl alcohol
oxidation activity with the assistance of O, than that without O, (negligible activity),

indicating the process might be related to O, -involved oxidation mechanism.
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Table S1. The zeta potential of Pt NPs and MIL-125 and MIL-125-X (X = NH,, NO,,

Br).
Cat Zeta potential (mV)
Pt NPs 1.30
MIL-125 -26.5
MIL-125-NH, -43.4
MIL-125-Br -37.4
MIL-125-NO, -38.3

There is an electrostatic interaction between Pt NPs and MOF due to the opposite

of the zeta potentials of them.

Table S2. The lifetimes extracted from time-resolved PL spectra in MeCN.

Cat lifetime
MIL-125 55.29 ps
MIL-125-NH, 624.13 ns
MIL-125-Br 37.61 ps
MIL-125-NO, 31.21 ps
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Table S3. The estimated percentage of excited and converted Ti3* in MIL-125-NH,.

Mmol
consumed TEOA 4.3
total Ti species in MIL-125-NH, 49.2
the released electrons by Ti** for H, production 24

Reaction condition: 10 mg MIL-125-NH,, 3.5 mL MeCN, 0.5 mL TEOA as a sacrificial agent,

0.25 mL Pt NPs solution (0.5 mg/mL) as co-catalyst, 25°C, ALM

Ideally, the theoretical ratio of consumed TEOA and hole is 1:1; the theoretical
ratio of electron and hole is also 1:1. Therefore, the amount of Ti** generated in the
light harvesting step can be deduced by the consumed TEOA; the “useful” Ti** for H,

production in the dark can be evaluated based on measured H, amount.

The consumed TEOA amount is measured to be 4.3 umol by GC with a FID
detector, from which the total Ti** excited in the light harvesting step is calculated to
be 8.6%, according to the total 49.2 umol Ti*" in MIL-125-NH,. On the other hand,
the generated H, amount in the dark is 1.2 umol, and the released electrons by Ti** for
H, production is 2.4 umol, from which the “useful” Ti** for H, production, relative to

the total Ti3*, is 55.3%.
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