Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Diboramacrocycles: reversible borole dimerisation-dissociation systems

Sonja Fuchs, Arumugam Jayaraman, Ivo Krummenacher, Laura Haley, Marta Baštovanovič, Maximilian Fest, Krzysztof Radacki, Holger Helten and Holger Braunschweig*

Institute for Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany

Table of Contents

1. General Considerations	2
1.1 Photophysical Measurements	2
1.2 Electrochemical measurements	3
2. Synthetic Details and Characterisation Data	4
2.1 Compound 2c	4
2.2 Compound 3a	7
2.3 Compound 3b	11
2.4 Reactivity studies of 3a with Lewis bases	12
2.5 Compound 4a	18
2.6 Compound 4b	21
2.6 Compound 4c	24
2.6 Compound 4d	27
2.7 Compound 4e	29
3. Crystallographic details	32
4. Computational details	
4.1 Optimised structures, Cartesian coordinates, and energies	39
4.1.1 Thermodynamic stability of boroles and their diboracyclic dimers	
4.1.2 Mechanism for the tin-boron exchange reaction	47
4.1.3 Mechanism for the azide addition	65
4.1.4 Different boroles probed for antiaromaticity	93
5. References	101

1. GENERAL CONSIDERATIONS

All manipulations were performed either under an atmosphere of dry argon or in vacuo using standard Schlenk line or glovebox techniques. Deuterated solvents were dried over molecular sieves and degassed by three freeze-pump-thaw cycles prior to use. All other solvents were distilled and degassed from appropriate drying agents. Solvents (both deuterated and non-deuterated) were stored under argon over activated 4 Å molecular sieves. All glassware was oven dried prior to use. NMR spectra were acquired on a Bruker Avance 500 NMR spectrometer (¹H: 500.1 MHz, ¹¹B: 160.5 Hz, ¹³C{¹H}: 125.8 MHz) and a Bruker Avance 400 NMR spectrometer (¹H: 400.1 MHz, ¹¹B: 128.5 Hz, ¹³C: 101 MHz, ³¹P: 202.5 MHz). Chemical shifts (δ) are given in ppm and are internally referenced to the carbon nuclei $({}^{13}C{}^{1}H)$ or residual protons $({}^{1}H)$ of the solvent. All spectra were acquired at 298 K unless stated otherwise. Resonances are given as singlet (s), doublet (d), triplet (t) or multiplet (m). Microanalyses (C, H, N) were performed on an Elementar vario MICRO cube elemental analyser. High resolution mass spectrometry was performed on a Thermo Scientific Exactive Plus spectrometer using a LIFDI 700 stannoles,¹⁻² dibromophenyl-,³ source from Linden CMS. The dibromoxylyl-,³ and dibromomesitylborane³ were synthesised according to, or analogous to, known literature procedures.

1.1 Photophysical Measurements

UV-vis measurements were carried out using a METTLER TOLEDO UV5 spectrometer. The emission spectra were recorded using an Edinburgh Instruments FLSP920 spectrometer equipped with a double monochromator for both excitation and emission, operating in right-angle geometry mode, and all spectra were fully corrected for the spectral response of the instrument. All solutions used for photophysical measurements had a concentration lower than 2×10^{-5} M to minimise inner filter effects during fluorescence measurements. For solution-state measurements, the longest-wavelength absorption maximum of the compound in the respective solvent was chosen as the excitation wavelength.

Fluorescence lifetimes were recorded using the time-correlated single-photon counting (TCSPC) method using the same FLSP920 spectrometer described above. Solutions were excited with a picosecond pulsed diode laser at an emission maximum of 472.6 nm. The full width at half maximum (FWHM) of the laser pulses were ca. 91 ps, while the instrument response function (IRF) had a FWHM of ca. 1.0 ns, measured from the scatter of a Ludox solution at the excitation wavelength. Decays were recorded to 10000 counts in the peak channel with a record length of at least 4800 channels. The band pass of the monochromator was adjusted to give a signal count rate of ca. 15 kHz. Iterative reconvolution of the IRF with one decay function and non-linear least-squares analysis were used to analyse the data. The quality of the fit was judged by the calculated value of the reduced χ^2 and visual inspection of the weighted residuals.

1.2 Electrochemical measurements

All cyclic voltammetry experiments were conducted in an argon-filled glovebox using a Gamry Instruments Reference 600 potentiostat. A standard three-electrode cell configuration was employed using a platinum disk working electrode, a platinum wire counter electrode, and a silver wire reference electrode separated by a Vycor frit, serving as the reference electrode. The redox potentials are referenced to the ferrocene/ferrocenium ([Fc/Fc⁺]) redox couple by using decamethylferrocene ([Cp^{*}₂Fe]; $E_{1/2} = -0.532$ V in CH₂Cl₂) as an internal standard. Tetra-*n*-butylammonium hexafluorophosphate ([*n*Bu₄N][PF₆]) was employed as the supporting electrolyte. Compensation for resistive losses (*iR* drop) was employed for all measurements.

2. SYNTHETIC DETAILS AND CHARACTERISATION DATA

2.1 Compound 2c

In a Schlenk tube, stannole **1** (500 mg, 1.63 mmol, 1.0 eq.) and dibromo(mesityl)borane (270 mg, 977 μ mol, 1.0 eq.) were dissolved in toluene (10 mL) and the mixture was stirred at 110 °C for 72 h. All volatiles of the red solution were removed under reduced pressure. The remaining solid was recrystallised from hexane at -78 °C to afford **2c** as a red solid in 42% yield (197 mg, 684 mmol).

¹**H NMR** (400.1 MHz, C₆D₆): δ (ppm) = 7.05-7.03 (m, 1H, thio-*CH*), 6.80 (m, 2H, Mes-*CH*), 6.78-6.76 (m, 2H, Ar*H*), 6.70-6.63 (m, 2H, Ar*H*), 6.55 (d, 1H, ³*J*_{HH} = 4.7 Hz, Ar*H*), 2.22 (s, 6H, Mes-*CH*₃), 2.20 (s, 3H, Mes-*CH*₃). ¹¹**B NMR** (128.5 MHz, C₆D₆): δ (ppm) = 68 (br, s). ¹³C{¹H} **NMR** (100.7 MHz, C₆D₆): δ (ppm) = 169.7 (Ar-*C*_q), 147.45 (Ar-*C*_q), 138.9 (Mes-*C*_q), 138.5 (Mes-*C*_q), 134.3 (thio-*C*H), 134.0 (Ar-*C*H), 130.3 (Ar-*C*H), 128.6 (Ar-*C*H), 127.9 (Ar-*C*H), 127.6 (thio-*C*H), 119.1 (Ar-*C*H), 22.6 (Mes-*C*H₃), 21.3 (Mes-*C*H₃). The quaternary carbon atoms connected to the boron atom were not detected.

HRMS (LIFDI, m/z): [C₁₉H₁₇BS]⁺ calculated: 288.1133; found: 288.1133.

Figure S1. ¹H NMR spectrum (500.1 MHz) of 2c in C₆D₆.

Figure S2. ¹¹B NMR spectrum (128.5 MHz) of 2c in C₆D₆.

Figure S3. ¹³C NMR spectra (100.7 MHz) of 2c in C₆D₆.

Figure S4. Absorbance and emission spectra of **2c** in hexane. Photophysical data: lowest-energy absorption at 457 nm, emission at 551 nm (shoulder) and 590 nm, fluorescence lifetime $\tau = 11.5$ ns, quantum yield could not be determined due to slow decomposition.

2.2 Compound 3a

In a Schlenk tube, stannole **1** (1.50 g, 4.89 mmol, 1.0 eq.) was dissolved in toluene (50 mL). At -78 °C, a solution of dibromo(phenyl)borane (1.21 g, 4.89 mmol, 1.0 eq.) in toluene (100 mL) was added over a period of 30 min. The mixture was stirred and allowed to warm to room temperature. All volatiles were removed under reduced pressure and the remaining solid washed three times with hexane. Compound **3a** (950 mg, 1.93 mmol) was isolated as a yellow solid in 79% yield.

¹**H NMR** (500.1 MHz, toluene-*d*₈, -40 °C): δ (ppm) = 7.49 (d, 4H, ${}^{3}J_{HH}$ = 7.6 Hz), 7.06 (m, 4H, toluene residue below signal), 6.95 (dt, 1H, ${}^{3}J_{HH}$ = 7.5 Hz, ${}^{4}J_{HH}$ = 1.5 Hz), 6.84 (m, 2H), 6.79 (m, 1H), 6.50 (d, 1H, ${}^{3}J_{HH}$ = 5.1 Hz). ¹¹**B NMR** (160.5 MHz, toluene-*d*₈, 0 °C): δ (ppm) = 64 (s). ¹³C{¹H} **NMR** (125.8 MHz, toluene-*d*₈, -40 °C): δ (ppm) = 163.5 (Ar-*C*_q), 150.7 (Ar-*C*_q), 148.9 (Ar-*C*_q), 141.4 (Ar-*C*_q), 139.5(Ar-*C*_q), 137.5, 137.1, 137.0, 137.0, 131.8, 130.5, 127.2, 126.7, 123.9

Elemental analysis: Calculated: C: 78.08%, H: 4.50%, S: 13.03%; found: C: 77.25%, H: 4.40%, S: 12.86%.

Figure S5. ¹H NMR spectrum (500.1 MHz) of 3a in toluene- d_8 at -40 °C.

Figure S6. ¹¹B NMR spectrum (160.5 MHz) of **3a** in toluene- d_8 at 0 °C.

Figure S7. ¹³C{¹H} NMR spectrum (125.8 MHz) of **3a** in toluene- d_8 at -40 °C.

Figure S8. Variable temperature ¹H NMR spectra of 3a in toluene- d_8 .

Figure S9. Variable-temperature ¹¹B NMR spectra of 3a in toluene- d_8 .

Figure S10. Cyclic voltammogram of **3a** in a 0.1 M $[nBu_4N][PF_6]/1,2$ -difluorobenzene solution with a scan rate of 250 mV/s.

Figure S11. UV-vis spectrum of 3a in dichloromethane.

2.3 Compound 3b

In a Schlenk tube, stannole **1** (300 mg, 977 μ mol, 1.0 eq.) was dissolved in toluene (5 mL). At –78 °C, a solution of dibromo(xylyl)borane (270 mg, 977 μ mol, 1.0 eq.) in toluene (5 mL) was added over a period of 30 min. Stirring was continued and the reaction mixture allowed to warm to room temperature. All volatiles were removed under reduced pressure and the remaining solid was washed three times with hexane. Compound **3b** (100 mg, 182 mmol) was isolated as an off-white solid in 37% yield.

Elemental analysis: Calculated: C: 78.85%, H: 5.51%, S: 11.69%; found: C: 77.69%, H: 5.44%, S: 11.56%.

HRMS (LIFDI, m/z): [C₃₆H₃₀B₂S₂]⁺ calculated: 548.2970, found: 548.1966; [C₁₈H₁₅BS]⁺ calculated: 274.0982, found: 274.0979.

Figure S12. Section of the ¹H NMR spectrum of **3b** immediately after dissolution in benzene solution (blue), after one (red) and two days at room temperature (green).

Figure S13. Section of the ¹H NMR spectrum of **3b** in benzene immediately after dissolution in benzene (blue), after heating overnight (ON) at 80 °C (red), after 3 h at room temperature (green), and after standing overnight (ON) at room temperature (purple).

2.4 Reactivity studies of 3a with Lewis bases

Scheme S1. Lewis acid-base adduct (2a-pyr) from addition of pyridine to 3a.

Synthesis of 2a-pyr. To a J-Young NMR tube containing 3a (30.0 mg, 60.9 μ mol, 1.0 eq.) in benzene was added an excess of pyridine. After evaporation of all volatiles under reduced pressure, the crude product was washed with hexane and dried. Compound 2a-pyr (70 mg, 215 μ mol) was isolated in 27% yield.

¹**H** NMR (400 MHz, 298 K, CD₂Cl₂): δ (ppm) = 8.68 (d, ³*J*_{HH} = 5.5 Hz, 2H, H-1/1[•]), 7.96 (t, ³*J*_{HH} = 7.6 Hz, 1H, H-3), 7.52–7.37 (m, 3H, H-2/2[•], Ar-C*H*), 7.42 (d, ³*J*_{HH} = 7.4 Hz, 2H, Ar-C*H*), 7.33 (d, ³*J*_{HH} = 7.4 Hz, 1H, Ar-C*H*), 7.27 (d, ³*J*_{HH} = 4.6 Hz, 1H, Ar-C*H*), 7.23–7.16 (m, 5H, Ar-C*H*), 7.07 (t, ³*J*_{HH} = 7.3 Hz, 1H, Ar-C*H*). ¹¹**B** NMR (128.5 MHz, 298 K, CD₂Cl₂): δ (ppm) = 1.1. ¹³C{¹H} NMR (100.7 MHz, 298 K, CD₂Cl₂): δ (ppm) = 151.9 (Ar-C_q), 146.2 (Ar-CH), 145.7 (Ar-C_q), 141.2 (Ar-CH), 133.5 (Ar-CH), 130.6 (Ar-CH), 128.7 (Ar-CH), 128.7 (Ar-C_q), 128.0 (Ar-CH), 127.3 (Ar-CH), 126.3 (Ar-CH), 126.2 (Ar-C*H*), 126.0 (Ar-CH), 125.2 (Ar-CH), 118.9 (Ar-CH). The quaternary carbon atoms connected to the boron center were not detected.

HRMS (LIFDI, m/z): [C₂₁H₁₆BSN]⁺ calculated: 325.1091; found: 325.1088.

Figure S14. ¹H NMR spectrum (400 MHz) of 2a-pyr in CD₂Cl₂.

Figure S15. ¹¹B NMR spectrum (128.5 MHz) of **2a-pyr** in CD₂Cl₂.

Figure S16. ${}^{13}C{}^{1}H$ NMR spectrum (100.7 MHz) of **2a-pyr** in CD₂Cl₂.

Synthesis of 2a-P. In a J-Young NMR tube, 3a (30.0 mg, 61 µmol, 1.0 eq.) and tris(*p*-tolyl)phosphine (37.1 mg, 122 mmol, 2.0 eq.) were dissolved in benzene. After evaporation of all volatiles, the remaining solid was washed with hexane and dried under vacuum. Compound **2a-P** was isolated in 61% yield (20.6 mg, 37.4 mmol)

¹**H NMR** (500.1 MHz, C₆D₆): δ (ppm) = 7.85 (d, 2H, ³J_{HH} = 7.4 Hz, Ar-*H*), 7.77(d, 1H, ${}^{3}J_{\text{HH}} = 7.1 \text{ Hz}, \text{Ar-}H), 7.56 \text{ (d, 1H, } {}^{3}J_{\text{HH}} = 7.3 \text{ Hz}, \text{Ar-}H) 7.27-7.18 \text{ (m, 11, 7.11 (m, 2H, Ar-H), })$ $^{3}J_{\rm HH} = 8.0$ Hz, ${}^{4}J_{\rm HH} = 2.1$ Hz, 7.76 (dd, 6H, Ar-*H*), 1.88 9H, (s, CH₃). ¹¹**B** NMR (160.5 MHz, C₆D₆): δ (ppm) = -10.0 (s). ¹³C{¹H} NMR (125.8 MHz, C₆D₆): δ (ppm) = 152.8 (s, Ar-C_q), 142.8 (s, Ar-CH), 141.8 (d, $J_{CP} = 2.5$ Hz, tol-C_q), 135.6 (d, $J_{CP} = 7.0$ Hz, Ar-CH), 134.4 (d, J_{CP} = 8.7 Hz, tol-CH), 133.0 (s, Ar-CH), 130.6 (s, Ar-CH), 129.5 (d, *J*_{CP} = 9.9 Hz, tol-*C*H), 127.7 (s, Ar-*C*H), 127.1 (s, Ar-*C*H), 126.1 (s, Ar-*C*H), 125.3(s, Ar-*C*H), 124.6 (s, Ar-CH), 124.6 (d, $J_{CP} = 53.8$ Hz, tol-Cq), 119.4(s, Ar-CH), 112.6 (m, Ar-Cq), 21.2 (d, $J_{CP} = 1.1$ Hz, tol-CH₃). ³¹**P** NMR (202.5 MHz, C₆D₆): δ (ppm) = 6.5(s).

HRMS (LIFDI, m/z): [C₃₆H₃₂BS₂P]⁺ calculated: 570.1771; found: 570.1769.

Figure S17. ¹H NMR spectrum (500.1 MHz) of 2a-P in C₆D₆.

Figure S18. ¹¹B NMR spectrum (160.5 MHz) of **2a-P** in C₆D₆.

Figure S19. ³¹P NMR spectrum (202.5 MHz) of **2a-P** in C₆D₆.

Figure S20. ¹³C NMR spectrum (125.8 MHz) of 2a-P in C₆D₆.

2.5 Compound 4a

To a toluene solution of 3a (60 mg, 122 µmol, 1.0 eq.) was added phenyl azide (14.5 mg, 122 µmol, 1.0 eq.). The reaction mixture was stirred for 10 min before all volatiles were removed under reduced pressure. The remaining solid was washed three times with 10 mL of hexane. Compound 4a (50 mg, 81.8 µmol, 67% yield) was isolated as an orange solid.

¹**H NMR** (500.1 MHz, CD₂Cl₂): *δ* (ppm) = 7.70-7.68 (m, 1H, Ar*H*), 7.54-7.51 (m, 5H, Ar*H*), 7.51-7.49 (m, 2H, Ar*H*), 7.48-7.46 (m, 2H, Ar*H*), 7.41-7.38(m, 2H, Ar*H*), 7.37-7.38 (m, 8H, Ar*H*), 7.26-7.22(m, 3H, Ar*H*), 7.17-7.15(m, 1H, Ar*H*), 6.97 (d, 1H, ${}^{3}J_{HH} = 5.3$ Hz, thiophene-*H*), 6.06 (d, 1H, ${}^{3}J_{HH} = 5.3$ Hz, thiophene-*H*), 5.57 (d, 1H, ${}^{3}J_{HH} = 6.1$ Hz, thiophene-*H*), 4.52 (d, 1H, ${}^{3}J_{HH} = 6.1$ Hz, thiophene-*H*). ¹¹**B NMR** (160.5 MHz, CD₂Cl₂): *δ* (ppm) = 52.2 (br, s), 7.25 (s). ¹³C{¹H} **NMR** (125.8 MHz, CD₂Cl₂): *δ* (ppm) = 158.1 (Ar-*C*_q), 143.1 (Ar-*C*_q), 141.1 (Ar-*C*_q), 139.7 (Ar-*C*_q), 138.8 (Ar-*C*_q), 138.7 (Ar-*C*H), 134.9 (Ar-*C*H), 134.4 (Ar-*C*H), 132.7 (Ar-*C*H), 132.6 (Ar-*C*H), 128.7 (Ar-*C*H), 128.2 (Ar-*C*H), 127.9 (Ar-*C*H), 127.5 (Ar-*C*H), 127.1 (Ar-*C*G). The quaternary carbon atoms connected to the boron center were not detected.

HRMS (LIFDI, m/z): [C₃₈H₂₇B₂N₃S₃]⁺ calculated: 611.1827; found: 611.1825.

Figure S21. ¹H NMR spectra (500.1 MHz) of 4a in CD₂Cl₂.

Figure S22. ¹¹B NMR spectrum (160.5 MHz) of 4a in CD₂Cl₂.

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz) of 4a in CD₂Cl₂.

Figure S24. UV-vis spectrum of 4a in benzene. Absorption maxima at 349 nm and 467 nm.

2.6 Compound 4b

To a toluene solution of 3a (100 mg, 203 µmol, 1.0 eq.) was added trimethylsilyl azide (23.4 mg, 203 µmol, 1.0 eq.) and the solution was stirred for 12 h. All volatiles were removed under reduced pressure and the remaining solid washed three times with 10 mL of hexane. Compound 4a (40 mg, 65.9 µmol) was isolated as an orange solid in 33% yield.

¹**H NMR** (500.1 MHz, C₆D₆): δ (ppm) = 7.75-7.73 (m, 1H, Ar-*H*), 7.67-7.63 (m, 3H, Ar-*H*), 7.57 (d, 1H, ³*J*_{HH} = 7.7 Hz, Ar-*H*), 7.41-7.39 (m, 2H, Ar-*H*), m 7.33 (t, 2H, ³*J*_{HH} = 7.4 Hz, Ar-*H*), 7.29-7.27 (m, 2H, Ar-*H*), 7.23-7.18 (m, 3H, Ar-*H*), 7.16-7.12 (m, 3H, Ar-*H*), 7.05 (m, 2H, Ar-*H*), 6.57 (d, 1H, ³*J*_{HH} = 5.3, thiophene-*H*), 6.26 (d, 1H, ³*J*_{HH} = 5.3, thiophene-*H*), 5.32 (d, 1H, ³*J*_{HH} = 6.1, thiophene-*H*), 4.62 (d, 1H, ³*J*_{HH} = 6.1, thiophene-*H*), -0.04 (s, 9H, Si(C*H*₃)₃). ¹¹**B NMR** (160.5 MHz, C₆D₆): δ (ppm) = 52.8 (br, s), 8.71 (s). ¹³C{¹H} **NMR** (125.8 MHz, C₆D₆): δ (ppm) = 158.4 (Ar-Cq), 143.2 (Ar-Cq), 140.6 (Ar-Cq), 140.0 (Ar-Cq), 138.7 (Ar-CH), 134.8 (Ar-CH), 133.0 (Ar-CH), 132.8 (Ar-CH), 132.2 (Ar-CH), 130.4 (Ar-CH), 129.6 (Ar-CH), 129.5 (Ar-CH), 128.4 (Ar-CH), 128.2 (Ar-CH), 127.6 (Ar-CH), 127.5 (Ar-CH), 127.3 (Ar-CH), 127.2 (Ar-CH), 126.6 (Ar-CH), 126.5 (Ar-CH), 123.2 (Ar-CH), 122.1 (Ar-CH), 78.1 (*C*_q), -0.8(Si(*C*H₃)₃. Due to broadening, the quaternary carbon atoms connected to the boron center were not detected.

HRMS (LIFDI, m/z): [C₃₅H₃₁B₂N₃S₃S₁]⁺ calculated: 607.1909; found: 607.1906

Figure S25. ¹H NMR spectrum (500.1 MHz) of 4b in C_6D_6 .

Figure S26. ¹¹B NMR spectrum (160.5 MHz) of 4b in C_6D_6 .

Figure S27. ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz) of 4b in C₆D₆.

Figure S28. UV-vis spectra of 4b in benzene. Lowest-energy absorption at 430 nm.

2.6 Compound 4c

In a Young NMR tube, *p*-fluorophenyl azide (8.36 mg, 60.9 μ mol, 1.0 eq.) was added to a toluene solution of **3a** (30 mg, 60.9 μ mol, 1.0 eq.) and the solution shaken. All volatiles were removed under reduced pressure and the remaining solid washed three times with 10 mL of hexane. Compound **4c** (23.4 mg, 37.2 μ mol) was isolated as an orange solid in 67% yield.

¹**H** NMR (500.1 MHz, C₆D₆): δ (ppm) = 7.76-7.74 (m, 1H, Ar-*H*), 7.67-7.63 (m, 2H, Ar-*H*), 7.63-7.62 (m, 1H, Ar-*H*), 7.57-7.55 (m, 1H, Ar-*H*), 7.50-7.48 (m, 2H, Ar-H), 7.35-7.31 (m, 4H, Ar-*H*), 7.29-7.17 (m, 5H, Ar-*H*), 7.14-7.03 (m, 4H, Ar-*H*), 6.51 (d, 1H, ${}^{3}J_{HH} = 5.3$ Hz, thiophene-H), 6.29 (d, 1H, ${}^{3}J_{HH} = 8.1$ Hz, Ar-CH), 6.27 (d, 1H, ${}^{3}J_{HH} = 8.1$ Hz, Ar-CH), 6.16 (d, 1H, ${}^{3}J_{HH} = 5.3$ Hz, thiophene-*H*), 5.37 (d, 1H, ${}^{3}J_{HH} = 6.1$ Hz, thiophene-*H*), 4.6 (d, 1H, ${}^{3}J_{HH}$ = 6.1 Hz, thiophene-H). ¹¹B NMR (160.5 MHz, C₆D₆): δ (ppm) = 53.9 (br, s), 7.53 (s). ¹³C{¹H} **NMR** (125.8 MHz, C₆D₆): δ (ppm) = 164.3 (Ar-C_q), 162.3 (Ar-C_q), 158.4 (Ar-C_q), 146.6 (Ar-C_q), 146.6 (Ar-C_q), 162.3 (Ar-C_q) C_q -B), 146.1 (Ar- C_q -B), 143.2 (Ar- C_q), 140.2 (Ar- C_q), 140.1 (Ar- C_q -B), 139.5 (Ar- C_q -B), 139.1 (Ar-C_q), 138.7 (Ar-CH), 137.1 (Ar-C_q), 137.0 (Ar-CH), 135.2 (Ar-CH), 133.1 (Ar-CH), 132.8 (Ar-CH), 132.6 (Ar-CH), 130.4 (Ar-CH), 129.8 (Ar-CH), 129.4 (Ar-CH), 128.8 (Ar-CH), 128.5 (Ar-CH), 128.3 (Ar-CH), 127.9 (Ar-CH), 127.4 (Ar-CH), 126.9 (Ar-CH), 126.8 (Ar-CH), 124.4 (Ar-CH), 123.6 (Ar-CH), 121.3 (Ar-CH), 166.5 (Ar-CH), 166.3 (Ar-*C*H), 92.4(*C*_q-B), 78,2 (*C*_q). ¹⁹**F** NMR (470.6 MHz, C₆D₆): δ (ppm) = -110.0.

HRMS (LIFDI): [C₃₈H₂₆B₂N₃S₃F]⁺ calculated: 629.1733 m/z; found: 629.1729 m/z.

Figure S29. ¹H NMR spectrum (500.1 MHz) of 4c in C_6D_6 .

Figure S30. ¹¹B NMR spectrum (160.5 MHz) of 4c in C₆D₆.

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz) of 4c in C₆D₆.

Figure S32. ¹⁹F NMR spectrum (470.6 MHz) of 4c in C₆D₆.

2.6 Compound 4d

In a Young NMR tube, *p*-methoxyphenyl azide (9.54 mg, 60.9 μ mol, 1.0 eq.) was added to a toluene solution of **3a** (30 mg, 60.9 μ mol, 1.0 Äq.) and the solution shaken. All volatiles were removed under reduced pressure and the remaining solid was washed three times with 10 mL of hexane. Compound **4d** (21.0 mg, 32.7 μ mol) was isolated as an orange solid in 54% yield.

¹**H** NMR (500 MHz, 298 K, C₆D₆): δ (ppm) = 7.89 (ddd, ³*J* = 7.3 Hz, ⁴*J* = 1.3 Hz, ⁵*J* = 0.5 Hz, 1H, Ar-C*H*), 7.70 (ddd, ³*J* = 7.8 Hz, ⁴*J* = 2.4 Hz, ⁵*J* = 1.2 Hz, 2H, Ar-C*H*), 7.65 (ddd, ³*J* = 7.5 Hz, ⁴*J* = 1.1 Hz, ⁵*J* = 0.6 Hz, 1H, Ar-C*H*), 7.59–7.56 (m, 3H, Ar-C*H*), 7.53–7.49 (m, 2H, Ar-C*H*), 7.36–7.33 (m, 2H., Ar-C*H*), 7.32–7.18 (m, 7H, Ar-C*H*), 7.15–7.05 (m, 4H, Ar-C*H*), 6.51 (d, ³*J* = 5.2 Hz, 1H, S-C*H*), 6.25–6.22 (m, 2H, Ar-C*H*), 6.22 (d, ³*J* = 5.2 Hz, 1H, S-C*H*), 6.51 (d, ³*J* = 6.3 Hz, 1H, S-C*H*), 4.66 (d, ³*J* = 6.3 Hz, 1H, S-C*H*-C*H*), 3.00 (s, 3H, OC*H*₃). ¹¹**B** NMR (160 MHz, 298 K, C₆D₆): δ (ppm) = 53.2, 7.85. ¹³C{¹H} NMR (126 MHz, 298 K, C₆D₆): δ (ppm) = 161.3 (Ar-C_q), 158.6 (Ar-C_q), 147.2 (B-C_q), 146.5 (B-C_q), 143.3 (Ar-C_q), 140.4 (Ar-C_q), 139.6 (B-C_q), 139.1 (Ar-C_q), 138.7 (Ar-CH), 129.5 (Ar-CH), 128.7 (Ar-CH), 128.4 (Ar-CH), 127.9 (Ar-CH), 127.7 (Ar-CH), 127.5 (Ar-CH), 127.3 (Ar-CH), 127.0 (Ar-CH), 126.8 (Ar-C_H), 124.1 (Ar-C_H), 123.6 (Ar-C_H), 122.0 (Ar-CH), 114.7 (Ar-CH), 91.8(B-C_q), 78.2 (C_q), 54.9 (OCH₃),

Figure S33. ¹H NMR spectrum (500.1 MHz) of 4d in C_6D_6 .

Figure S34. ¹¹B NMR spectrum (160.5 MHz) of 4d in C_6D_6 .

Figure S35. ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz) of 4d in C₆D₆.

2.7 Compound 4e

In a Young NMR tube, *p*-nitrophenyl azide (10.5 mg, 60.9 μ mol, 1.0 eq.) was added to a toluene solution of **3a** (30 mg, 60.9 μ mol, 1.0 eq.) and the solution shaken. All volatiles were removed under reduced pressure and the remaining solid was washed three times with 10 mL of hexane. Compound **4e** (28.4 mg, 43.3 μ mol) was isolated as an orange solid in 71% yield.

¹**H** NMR (500 MHz, 298 K, C₆D₆): δ (ppm) = 7.71–7.69 (d, 1H, ³*J*_{HH} = 6.7 Hz, Ar-*H*), 7.63–7.60 (m, 3H, Ar-*H*), 7.56–7.54 (m, 1H, Ar-*H*), 7.36–7.33 (m, 2H, Ar-*H*), 7.31–7.28 (m, 2H, Ar-*H*), 7.28–7.17 (m, 7H, Ar-*H*), 7.15–7.03 (m, 4H, Ar-*H*), 6.56 (d, 1H, ³*J*_{HH} = 5.4 Hz, S-C*H*), 6.15 (d, 1H, ³*J*_{HH} = 5.4 Hz, S-CH-C*H*), 5.38 (d, 1H, ³*J*_{HH} = 6.1 Hz, S-C*H*), 4.58 (d, 1H, ³*J*_{HH} = 6.1 Hz, S-C*H*). ¹¹**B** NMR (160 MHz, 298 K, C₆D₆) δ (ppm) = 56.7, 7.95. ¹³C{¹H} NMR

(126 MHz, 298 K, C₆D₆): δ (ppm) = 158.2 (Ar- C_q), 147.7 (Ar- C_q), 146.1 (B- C_q), 145.5 (B- C_q), 144.7 (Ar- C_q), 143.2 (Ar- C_q), 139.8 (Ar- C_q), 139.4 (Ar- C_q), 139.3 (B- C_q), 139.2 (B- C_q), 138.9 (Ar-CH), 135.7 (Ar-CH), 133.2 (Ar-CH), 133.1 (Ar-CH), 132.7 (Ar-CH), 130.4 (Ar-CH), 130.3 (Ar-CH), 129.3 (Ar-CH), 129.2 (Ar-CH), 129.0 (Ar-CH), 128.6 (Ar-CH), 128.1 (Ar-CH), 128.0 (Ar-CH), 127.5 (Ar-CH), 127.2 (Ar-CH), 126.7 (Ar-CH), 124.8 (Ar-CH), 123.8 (Ar-CH), 122.3 (Ar-CH), 120.3 (Ar-CH), 119.1 (Ar-CH), 93.5 (B- C_q) 78.3 (C_q), 54.9 (OCH₃),

HRMS (LIFDI, m/z): $[C_{38}H_{26}B_2N_4S_2O_2]^+$ calculated: 656.1678; found: 656.1666.

Figure S36. ¹H NMR spectrum (500.1 MHz) of 4e in C₆D₆.

Figure S37. ¹¹B NMR spectrum (160.5 MHz) of 4e in C₆D₆.

Figure S38. ${}^{13}C{}^{1}H$ NMR spectrum (125.8 MHz) of 4e in C₆D₆.

3. CRYSTALLOGRAPHIC DETAILS

The crystal data of 2c were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using the intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

In each molecule, the displacement parameters of the atoms of only one of the two thiophene-benzofused borole backbones were restrained to the same value with the similarity restraint SIMU. In each molecule, the 1-2 and 1-3 distances in one of the two thiophene-benzo-fused borole backbones were restrained to the same values with SAME.

Crystal data for **2c**: C₁₉H₁₇BS, $M_r = 288.19$, orange block, $0.385 \times 0.286 \times 0.253$ mm³, monoclinic space group $P2_1/c$, a = 13.289(6) Å, b = 30.280(16) Å, c = 7.763(5) Å, $\beta = 93.30(2)^\circ$, V = 3119(3) Å³, Z = 8, $\rho_{calcd} = 1.228$ g·cm⁻³, $\mu = 0.197$ mm⁻¹, F(000) = 1216, T = 99(2) K, $R_1 = 0.0821$, $wR^2 = 0.1211$, 6429 independent reflections [2 $\theta \le 52.924^\circ$] and 585 parameters. CCDC-2126040.

The crystal data of **3a** were collected on a RIGAKU OD XTALAB SYNERGY-S diffractometer with a HPAD area detector and multi-layer mirror monochromated $Cu_{K\alpha}$ radiation. The structure was solved using the intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions. The structure was refined using the TWIN keyword (matrix: $-1\ 0\ 0\ 0\ -1\ 0\ 0.004\ 0\ 1$). The BASF parameter was refined to 7.4%.

Crystal data for **3a**: C₃₂H₂₂B₂S₂, $M_r = 492.23$, clear yellow block, $0.240 \times 0.189 \times 0.136 \text{ mm}^3$, monoclinic space group $P2_1$, a = 11.42010(10) Å, b = 17.97960(10) Å, c = 12.12770(10) Å, $\alpha = 90^\circ$, $\beta = 90.1200(10)^\circ$, $\gamma = 90^\circ$, V = 2490.16(3) Å³, Z = 4, $\rho_{calcd} = 1.313 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 2.074 \text{ mm}^{-1}$, F(000) = 1024, T = 100.00(10) K, $R_I = 0.0305$, $wR^2 = 0.0819$, Flack parameter = 0.001(8), 10291 independent reflections [$2\theta \le 154.66^\circ$] and 650 parameters. CCDC-2126041.

The crystal data of **3b** were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions. Crystal data for **3b**: C₃₆H₃₀B₂S₂, $M_r = 548.34$, colourless block, $0.40 \times 0.176 \times 0.112 \text{ mm}^3$, monoclinic space group *C*2/*c*, a = 14.644(7) Å, b = 11.056(4) Å, c = 17.829(8) Å, $\beta = 94.90(2)^\circ$, V = 2876(2) Å³, Z = 4, $\rho_{calcd} = 1.266 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.210 \text{ mm}^{-1}$, F(000) = 1152, T = 100(2) K, $R_I = 0.1042$, $wR^2 = 0.1490$, 3064 independent reflections [2 $\theta \le 53.554^\circ$] and 183 parameters. CCDC-2126042.

The crystal data of **4a** were collected on a BRUKER D8-QUEST diffractometer with a CMOS area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions. Disorder of the solvent molecules was done with the Disordered Structure Refinement (DSR) Plugin, Version: 228.⁶

The displacement parameters of atoms of the solvent molecules were restrained to the same value with the similarity restraint SIMU. The distances between atoms of the solvent molecules were restrained during refinement to the same value with the SADI restraint. The Uii displacement parameters of atoms of the solvent molecule residues were restrained with the ISOR keyword to approximate isotropic behaviour. The atomic displacement parameters of atoms of the solvent molecules were restrained with the RIGU keyword in the SheIXL input ('enhanced rigid bond' restraint for all bonds in the connectivity list. Standard values of 0.004 for both parameters s1 and s2 were used). The 1-2 and 1-3 distances in the solvent molecules were restrained to the same values with SAME.

Crystal data for **4a** C_{44.25}H_{33.51}B₂N₃S₂, $M_r = 693.04$, orange block, $0.388 \times 0.221 \times 0.107$ mm³, triclinic space group P $\bar{1}$, a = 10.278(3) Å, b = 12.065(3) Å, c = 16.702(4) Å, $\alpha = 92.946(9)^{\circ}$, $\beta = 107.906(8)^{\circ}$, $\gamma = 114.158(16)^{\circ}$, V = 1760.3(8) Å³, Z = 2, $\rho_{calcd} = 1.308$ g·cm⁻³, $\mu = 0.189$ mm⁻¹, F(000) = 724, T = 100(2) K, $R_I = 0.0504$, $wR^2 = 0.0965$, 7225 independent reflections $[20 \le 52.94^{\circ}]$ and 460 parameters. CCDC-2126043.

The crystal data of **4b** were collected on a BRUKER D8-QUEST diffractometer with a CPA area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

Crystal data for **4b**: C₄₁H₃₇B₂N₃S₂Si, $M_r = 685.56$, orange block, $0.196 \times 0.096 \times 0.087 \text{ mm}^3$, triclinic space group $P\overline{1}$, a = 9.9577(13) Å, b = 12.2845(16) Å, c = 16.579(5) Å, $\alpha = 100.823(7)^\circ$, $\beta = 90.407(8)^\circ$, $\gamma = 112.635(10)^\circ$, V = 1831.5(7) Å³, Z = 2, $\rho_{calcd} = 1.243$ g·cm⁻³, $\mu = 0.212$ mm⁻¹,

F(000) = 720, T = 100(2) K, $R_1 = 0.0386, wR_2 = 0.0779, 6683$ independent reflections $[20 \le 50.698^\circ]$ and 445 parameters. CCDC-2126044.

The crystal data of **4e** were collected on a BRUKER D8-QUEST diffractometer with a CMOS area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

Crystal data for **4e**: C₃₈H₂₆B₂N₄O₂S₂, $M_r = 656.37$, red block, $0.25 \times 0.137 \times 0.133$ mm³, Monoclinic space group $P2_1/n$, a = 13.299(3) Å, b = 18.859(4) Å, c = 13.574(3) Å, $\beta = 112.808(10)^\circ$, V = 3138.2(12) Å³, Z = 4, $\rho_{calcd} = 1.389$ g·cm⁻³, $\mu = 0.213$ mm⁻¹, F(000) = 1360, T = 100(2) K, $R_I = 0.0875$, $wR^2 = 0.1392$, 5731 independent reflections [2 $\theta \le 50.7^\circ$] and 433 parameters. CCDC-2126045.

The crystal data of **2-pyr** were collected on a BRUKER X8-APEX II diffractometer with a CCD area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions.

The displacement parameters of the atoms of the thiophene-benzo-fused borole backbone were restrained to the same value with the similarity restraint SIMU. The U_{ii} displacement parameters of the atoms of the thiophene-benzo-fused borole backbone were restrained with the ISOR keyword to approximate isotropic behaviour.

Crystal data for **2-pyr**: C₂₁H₁₆BNS, $M_r = 325.22$, colourless block, $0.60 \times 0.202 \times 0.182 \text{ mm}^3$, monoclinic space group $P2_1/c$, a = 8.800(5) Å, b = 10.843(6) Å, c = 17.829(10) Å, $\beta = 99.74(2)^\circ$, V = 1676.7(15) Å³, Z = 4, $\rho_{calcd} = 1.288 \text{ g} \cdot \text{cm}^{-3}$, $\mu = 0.193 \text{ mm}^{-1}$, F(000) = 680, T = 100(2) K, $R_I = 0.0763$, $wR_2 = 0.1551$, 3069 independent reflections $[2\theta \le 50.684^\circ]$ and 317 parameters. CCDC-2126039.

The crystal data of **2-P** were collected on a FOUR-CIRCLE DIFFRACTOMETER with a CPA area detector and multi-layer mirror monochromated $Mo_{K\alpha}$ radiation. The structure was solved using intrinsic phasing method⁴, refined with the SHELXL program⁵ and expanded using Fourier techniques. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factors calculations. All hydrogen atoms were assigned to idealised geometric positions. The displacement parameters of the atoms of the thiophene-benzo-fused borole backbone were restrained to the same value with the similarity restraint SIMU. The Uii displacement parameters of the atoms of the thiophene-benzo-fused borole backbone were restrained with the ISOR keyword to approximate isotropic behaviour.

Crystal data for **2-P**: C₃₇H₃₂BPS, $M_r = 550.46$, colourless block, $0.251 \times 0.147 \times 0.144$ mm³, monoclinic space group *Cc*, a = 20.883(11) Å, b = 8.704(4) Å, c = 19.093(7) Å, $\beta = 123.59(3)^\circ$, V = 2891(2) Å³, Z = 4, $\rho_{calcd} = 1.265$ g·cm⁻³, $\mu = 0.193$ mm⁻¹, F(000) = 1160, T = 100(2) K, $R_I = 0.0765$, $wR_2 = 0.1255$, Flack parameter = -0.03(7), 6147 independent reflections [20 \leq 53.856°] and 465 parameters. CCDC-2126038.

Data	2c	3a	3b	4a
Empirical formula	$C_{19}H_{17}BS$	$C_{32}H_{22}B_2S_2$	$C_{36}H_{30}B_2S_2$	$C_{44.25}H_{33.51}B_2N_3$
				S_2
Formula weight (g·mol ⁻¹)	288.19	492.23	548.34	693.04
Temperature (K)	99(2)	100.00(10)	100(2)	100(2)
Radiation, λ (Å)	Μο _{Kα} 0.71073	Cu _{Ka} 1.54184	Μο _{Kα} 0.71073	Μο _{κα} 0.71073
Crystal system	Monoclinic		Monoclinic	Triclinic
Space group	$P2_{1}/c$	<i>P</i> 2 ₁	<i>C</i> 2/ <i>c</i>	$P \overline{1}$
Unit cell dimensions				
a (Å)	13.289(6)	11.42010(10)	14.644(7)	10.278(3)
b (Å)	30.280(16)	17.97960(10)	11.056(4)	12.065(3)
<i>c</i> (Å)	7.763(5)	12.12770(10)	17.829(8)	16.702(4)
α (°)	90	90	90	92.946(9)
β(°)	93.30(2)	90.1200(10)	94.90(2)	107.906(8)
γ(°)	90	90	90	114.158(16)
Volume (Å ³)	3119(3)	2490.16(3)	2876(2)	1760.3(8)
Ζ	8	4	4	2
Calculated density (mg·m ⁻	1.228	1.313	1.266	1.308
3)				
Absorption coefficient	0.197	2.074	0.210	0.189
(mm^{-1})				
<i>F</i> (000)	1216	1024	1152	724
Theta range for collection	1.345 to	2.457 to	2.293 to	2.222 to 26.470°
	26.462°	77.330°	26.777°	
Reflections collected	28969	57553	12973	26653
Independent reflections	6429	10291	3064	7225
Minimum/maximum	0.6440/0.7454	0.77997/1.0000	0.5375/0.745	0.6452/0.7454
transmission		0	4	
Refinement method	Full-matrix	Full-matrix	Full-matrix	Full-matrix least-
	least-squares	least-squares on	least-squares	squares on F^2
	on F^2	F^2	on F^2	
Data / parameters / restrain	6429 / 585 / 20	10291 / 650 / 1	3064 / 183 /	7225 / 460 / 90
ts	0		0	
Goodness-of-fit on F^2	1.174	1.022	1.038	1.024
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0602,$	$R_1 = 0.0305,$	$R_1 = 0.0585,$	$R_1 = 0.0381,$
	$wR^2 = 0.1139$	$wR^2 = 0.0819$	$wR^2 = 0.1294$	$wR^2 = 0.0890$

R indices (all data)	$R_1 = 0.0821,$	$R_1 = 0.0305,$	$R_1 = 0.1042,$	$R_1 = 0.0504,$
	$wR^2 = 0.1211$	$wR^2 = 0.0819$	$wR^2 = 0.1490$	$wR^2 = 0.0965$
Maximum/minimum residual electron density $(e \cdot Å^{-3})$	0.316 / -0.232	0.457 / -0.245	0.385 / - 0.372	0.333 / -0.329
Flack parameter		0.001(8)		

Data	4b	4e
Empirical formula	$C_{41}H_{37}B_2N_3S_2Si$	$C_{38}H_{26}B_2N_4O_2S_2$
Formula weight $(g \cdot mol^{-1})$	685.56	656.37
Temperature (K)	100(2)	100(2)
Radiation, λ (Å)	Μο _{κα} , 0.71073	Μο _{Kα} 0.71073
Crystal system	Triclinic	Monoclinic
Space group	PĪ	$P2_{1}/n$
Unit cell dimensions		
<i>a</i> (Å)	9.9577(13)	13.299(3)
<i>b</i> (Å)	12.2845(16)	18.859(4)
<i>c</i> (Å)	16.579(5)	13.574(3)
α (°)	100.823(7)	90
β (°)	90.407(8)	112.808(10)
γ (°)	112.635(10)	90
Volume (Å ³)	1831.5(7)	3138.2(12)
Ζ	2	4
Calculated density $(mg \cdot m^{-3})$	1.243	1.389
Absorption coefficient (mm ⁻¹)	0.212	0.213
<i>F</i> (000)	720	1360
Theta range for collection	1.999 to 25.349°	1.953 to 25.350°
Reflections collected	57499	55262
Independent reflections	6683	5731
Minimum/maximum	0.6648/0.7456	0.6075/0.7452
transmission		
Refinement method	Full-matrix least-squares on	Full-matrix least-squares on
	F^2	F^2
Data / parameters / restraints	6683 / 445 / 0	5731 / 433 / 0
Goodness-of-fit on F^2	1.036	1.062
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0312, wR_2 = 0.0738$	$R_1 = 0.0514, wR^2 = 0.1197$
R indices (all data)	$R_1 = 0.0386, wR_2 = 0.0779$	$R_1 = 0.0875, wR^2 = 0.1392$
Maximum/minimum residual	0.290 / -0.267	0.424 / -0.599
electron density $(e \cdot Å^{-3})$		

Data	2-pyr	2-P
Empirical formula	C ₂₁ H ₁₆ BNS	C ₃₇ H ₃₂ BPS
Formula weight (g·mol ⁻¹)	325.22	550.46
Temperature (K)	100(2)	100(2)
Radiation, λ (Å)	Μο _{Kα} , 0.71073	Μο _{Kα} 0.71073
Crystal system	Monoclinic	Monoclinic
Space group	$P2_{1}/c$	Cc
Unit cell dimensions		
<i>a</i> (Å)	8.800(5)	20.883(11)
<i>b</i> (Å)	10.843(6)	8.704(4)
<i>c</i> (Å)	17.829(10)	19.093(7)
α (°)	90	90
β (°)	99.74(2)	123.59(3)
--	------------------------------------	------------------------------------
γ (°)	90	90
Volume (Å ³)	1676.7(15)	2891(2)
Ζ	4	4
Calculated density (mg·m ⁻³)	1.288	1.265
Absorption coefficient (mm ⁻¹)	0.193	0.193
<i>F</i> (000)	680	1160
Theta range for collection	2.207 to 25.342°	2.325 to 26.928°
Reflections collected	15397	24459
Independent reflections	3069	6147
Minimum/maximum	0.5792/0.7454	0.5184/0.7454
transmission		
Refinement method	Full-matrix least-squares on F^2	Full-matrix least-squares on F^2
Data / parameters / restraints	3069 / 317 / 276	6147 / 465 / 278
Goodness-of-fit on F^2	1.271	1.048
Final R indices $[I>2\sigma(I)]$	$R_1 = 0.0691, wR_2 = 0.1525$	$R_1 = 0.0526, wR^2 = 0.1124$
R indices (all data)	$R_1 = 0.0763, wR_2 = 0.1551$	$R_1 = 0.0765, wR^2 = 0.1255$
Maximum/minimum residual	0.267 / -0.257	0.368 / -0.531
electron density ($e \cdot Å^{-3}$)		
Flack parameter		-0.03(7)

4. COMPUTATIONAL DETAILS

All computations were carried out using the Gaussian 09 (Revision E.01) software.⁷ Geometry optimisations, with no symmetry constraints, and vibrational frequency calculations were performed using the hybrid DFT functional B3LYP⁸ augumented with the Grimme's D3 correction (GD3) and Becke-Johnson damping (BJ).9 Basis sets employed in optimisation and frequency analysis are LANL2DZ (for Sn and Br) and 6-31G(d,p) for other atoms. Transition state geometries were located using the algorithm opt = (ts, noeigentest, calcfc).¹⁰ All optimised transition state structures were confirmed as a first-order saddle point with only one imaginary frequency, and the magnitudes of all frequencies were greater than the residual frequencies related to rotations and translations. Additionally, each transition state found was made sure to be on the desired reaction coordinate by performing the "plus-and-minus-displacement" minimisation computations, which involve in the displacement of the transition state structure by ~0.05 Å or 5° to 10° by the imaginary frequency normal mode in both directions,¹¹ and the displaced geometries were then optimised to the closest minimum structures. The zero-point vibrational energies (ZPVE) and thermal corrections were computed from frequency calculations with a standard state of 298 K and 1 atm. Single-point energies were computed on the optimised geometries using the B3LYP-D3/6-311G++** (def2TZVP for Sn and Br) level of theory augmented with the SMD solvation model (SCRF = SMD) to include the benzene solvent effect.¹² The energies (ΔG) reported are corrected for ZPVEs. Information on the antiaromatic character of boroles was obtained from the nucleus-independent chemical shift (NICS) calculations¹³ using the GIAO method¹⁴ with the model chemistry B3LYP-D3BJ/6-311++g(2d,2p)//B3LYP-D3BJ/6-31g(d,p). The NICS values were obtained by including the ghost atoms in the axis perpendicular to the ring plane at a distance of zero (NICS(0)) and one (NICS(1)) angstrom from the centroid of the borole ring.

4.1 Optimised structures, Cartesian coordinates, and energies

4.1.1 Thermodynamic stability of boroles and their diboracyclic dimers

Note: Computed details about compounds 2a and 3a are provided in Section 4.1.2.

1) Borole 2b

Number of imaginary frequencies = 0

 $E_{total} = -1118.117351 \ a.u$

 $G_{correction} = 0.231202 a.u$

С	0.84506600	2.53866500	-0.35476800
С	1.02990700	1.18079700	-0.13641800
С	2.36288100	0.67156600	-0.12554100
С	3.46094600	1.49806800	-0.28935300
С	3.24332000	2.87472200	-0.48372700
С	1.95361600	3.39038200	-0.52463200
Н	-0.15764400	2.95285600	-0.39703800
Н	4.47121800	1.09921100	-0.27837200
Н	4.09475800	3.53632100	-0.61260300
Н	1.80043700	4.45262500	-0.68825000
С	2.28965500	-0.78877900	0.03940000
С	0.99298300	-1.28221700	0.10103100
В	0.03680600	-0.04892300	0.02819400
S	3.48376400	-2.02423600	0.17641400
С	0.97896700	-2.70058100	0.27306700
Н	0.07803300	-3.29750700	0.35840800

С	2.23453800	-3.24519300	0.32503000
Н	2.51854700	-4.28127000	0.44430800
С	-1.50850800	-0.10100200	0.02866400
С	-2.37709200	0.80917500	0.67560700
С	-2.09631800	-1.14090200	-0.72699200
С	-3.76019500	0.66840100	0.51994900
С	-3.46988400	-1.25034600	-0.89203600
Н	-1.44694800	-1.86436200	-1.21184100
С	-4.32826600	-0.33591200	-0.26738200
Н	-4.41847900	1.36297600	1.03826500
Н	-3.88465400	-2.05351400	-1.49550400
С	-1.87445000	1.89969500	1.59474400
Н	-2.35167500	1.81970900	2.57757500
Н	-0.79592100	1.85355000	1.74209400
Н	-2.11959600	2.89416900	1.20382800
С	-5.82194300	-0.43212600	-0.44660900
Н	-6.15823400	-1.47356200	-0.43819000
Н	-6.35599400	0.10615800	0.34096900
Н	-6.12944200	-0.00146200	-1.40744300

2) Diboracycle **3b**

Number of imaginary frequencies = 0

 $E_{total} = -2236.289617 \ a.u$

 $G_{correction} = 0.489423 \ a.u$

С	-2.00909300	-0.92223400	1.13416600
В	-1.12477900	0.36901700	1.17042600

С	-2.02559000	-3.37341300	0.98834900
Н	-1.47053600	-4.30741400	0.96044100
С	-1.34806500	-2.16724400	1.11917800
Н	-0.26555600	-2.18715200	1.17784900
С	-3.41960400	-3.38779400	0.89631800
С	-4.09204600	-2.16236000	0.94062400
Н	-5.17877000	-2.16113100	0.88968300
С	-3.42526200	-0.93815800	1.04032000
С	-4.26353100	0.32047600	1.05677400
Н	-5.30870200	0.07966400	1.26958600
Н	-4.22960200	0.83437100	0.09094700
Н	-3.92063500	1.03835300	1.80476400
С	-4.17779000	-4.67974900	0.72833000
Н	-4.32103500	-4.91409300	-0.33397600
Н	-5.17047900	-4.62467400	1.18470700
Н	-3.64022700	-5.52025600	1.17671700
С	0.15744400	0.39589600	2.04921400
С	0.31211100	-0.38829100	3.25090600
Н	-0.43982500	-1.09136800	3.58742200
С	1.46497600	-0.14063600	3.93552500
Н	1.80348300	-0.57775000	4.86451500
S	2.44219900	1.04500700	3.12320800
С	1.26169200	1.22868500	1.85575800
С	1.52209500	2.12908400	0.72733900
С	1.92156900	3.45370600	0.94911800
Н	2.09327900	3.79366200	1.96611800
С	2.04641600	4.34074300	-0.11632800
Н	2.34845100	5.36742600	0.06570100
С	1.74955300	3.91222200	-1.41055800
Н	1.81970400	4.60506400	-2.24375800
С	1.35985500	2.59227400	-1.63406200
Н	1.12643200	2.26918500	-2.64427800
С	1.27101600	1.66734300	-0.58341200
С	2.21623500	-0.86132900	-0.72817400
В	1.01928100	0.15000200	-0.91336600

С	3.49947200	-2.48900300	0.56570800
Н	3.63634500	-3.03595700	1.49521900
С	2.44170000	-1.58888000	0.44957000
Н	1.78460900	-1.45352300	1.29956400
С	4.38134900	-2.69579100	-0.49660000
С	4.16410100	-1.97136200	-1.67287700
Н	4.83888300	-2.11630400	-2.51431200
С	3.11161300	-1.06211500	-1.80580000
С	2.95708300	-0.28628600	-3.09402900
Н	3.65151900	-0.64462300	-3.85850600
Н	3.15523500	0.77999000	-2.93627300
Н	1.94202000	-0.36677600	-3.49838700
С	5.54896500	-3.64308200	-0.37413800
Н	6.44402000	-3.12415900	-0.00895300
Н	5.80509200	-4.08984300	-1.33959800
Н	5.33429100	-4.45332800	0.32897300
С	-0.26638100	-0.33579200	-1.62242000
С	-0.35283900	-1.58763200	-2.33223900
Н	0.47113500	-2.28995900	-2.37229800
С	-1.54470800	-1.79144100	-2.95818200
Н	-1.85509700	-2.63257000	-3.56198800
S	-2.64381800	-0.47099000	-2.67511900
С	-1.46458000	0.37464800	-1.71810000
С	-1.83005600	1.60165600	-1.00198900
С	-2.37792300	2.70440500	-1.66754400
Н	-2.56724500	2.64429300	-2.73526800
С	-2.63377700	3.88436400	-0.97250600
Н	-3.05181200	4.73984900	-1.49401700
С	-2.32072700	3.97299100	0.38518800
Н	-2.49626500	4.89935700	0.92383400
С	-1.78114000	2.87177700	1.04830600
Н	-1.54054000	2.94630000	2.10514400
С	-1.56159600	1.65798900	0.38422000

Number of imaginary frequencies = 0

 $E_{total} = -1157.441603 \ a.u$

 $G_{\text{correction}} = 0.255989 \ a.u$

С	0.79253900	2.55498500	-0.43828100
С	1.04593200	1.21661300	-0.18183400
С	2.39762800	0.76926900	-0.12540000
С	3.45691600	1.64094200	-0.30491600
С	3.17384600	2.99868000	-0.55067500
С	1.86236100	3.45356200	-0.61980700
Н	-0.23288700	2.91123100	-0.49658900
Н	4.48578600	1.29526800	-0.26269100
Н	3.99462400	3.69547200	-0.69227300
Н	1.66361200	4.50280700	-0.81494100
С	2.37813500	-0.68331300	0.12092100
С	1.09967200	-1.22250800	0.20549800
В	0.09933300	-0.03847300	0.02873600
S	3.61555700	-1.86296400	0.33409300
С	1.13736200	-2.62835900	0.45611700
Н	0.25813800	-3.25313400	0.56663300
С	2.41198100	-3.12052600	0.54676900
Н	2.73446500	-4.13641300	0.72647000
С	-1.45330400	-0.05826900	0.03068000
С	-2.19069500	0.60267900	1.03740400
С	-2.15518700	-0.73979900	-0.99212700
С	-3.58809800	0.57507200	1.00725900
С	-3.54973500	-0.73586200	-0.99889200

С	-4.28684100	-0.08257900	-0.00579900
Н	-4.14354800	1.07756000	1.79595100
Н	-4.07648000	-1.25284700	-1.79811700
С	-1.48867300	1.27646600	2.19441600
Н	-1.12603600	0.53590600	2.91793300
Н	-0.61854400	1.85011600	1.86450000
Н	-2.16223600	1.95240400	2.72821400
С	-5.79453500	-0.07244800	-0.04674900
Н	-6.19278800	-1.05037800	-0.33543500
Н	-6.21889500	0.19421900	0.92505900
Н	-6.16534300	0.65528100	-0.77901300
С	-1.40515700	-1.43437200	-2.10625200
Н	-0.83804200	-0.71775700	-2.71225000
Н	-0.68238500	-2.15839200	-1.71793900
Н	-2.08988700	-1.96293800	-2.77468000

4) Diboracycle **3c**

Number of imaginary frequencies = 0

 $E_{total} = -2314.927386 \ a.u$

 $G_{correction} = 0.542197 \ a.u$

С	2.75050600	-1.00593300	-0.17306900
В	1.42089300	-0.20117900	-0.46156000
С	4.54393600	-2.46977600	-0.93114100
Н	5.00431900	-3.04376200	-1.73256800
С	3.35568300	-1.77608500	-1.19325700

С	5.14825500	-2.45151500	0.32350000
С	4.54472100	-1.68837500	1.32766200
Н	4.99956000	-1.65274900	2.31539700
С	3.38097000	-0.95772000	1.09342900
С	2.82311200	-0.10471700	2.20622600
Н	3.26942600	-0.36694200	3.16907100
Н	1.73895500	-0.19759500	2.30832900
Н	3.03209400	0.95345200	2.02208000
С	6.41932200	-3.21649600	0.59544700
Н	6.28998600	-3.92053900	1.42514400
Н	7.23743200	-2.54184200	0.87288400
Н	6.73811500	-3.78584800	-0.28169900
С	0.20210200	-1.04148100	-0.92796200
С	0.17926300	-2.48308300	-0.82150400
Н	0.91812000	-3.03265100	-0.25194800
С	-0.83652900	-3.07948600	-1.50105500
Н	-1.07278600	-4.13174600	-1.57334100
S	-1.82078000	-1.90663300	-2.32901100
С	-0.86294500	-0.59562400	-1.71310200
С	-1.27452600	0.79464400	-1.94467000
С	-1.31010900	1.36875500	-3.21927400
Н	-1.05741200	0.76626600	-4.08670600
С	-1.63055100	2.71741000	-3.36141300
Н	-1.65164300	3.16806500	-4.34886400
С	-1.89404600	3.49281000	-2.22971900
Н	-2.12047300	4.54935400	-2.33765700
С	-1.86207000	2.91293400	-0.96329000
Н	-2.06581800	3.52257500	-0.08738700
С	-1.58757700	1.54880200	-0.79754600
С	-2.66530800	-0.36981500	0.82321700
В	-1.68023500	0.83362700	0.60237400
С	-3.11667000	-2.63523700	1.61981400
Н	-2.77311700	-3.52391300	2.14429500
С	-2.26167500	-1.53020600	1.53568800
С	-4.39045900	-2.62975200	1.05940700

С	-4.80452800	-1.47156300	0.39669100
Н	-5.80398600	-1.43571900	-0.03117600
С	-3.97093200	-0.36329500	0.25686100
С	-4.52610900	0.82494100	-0.49981700
Н	-5.61059800	0.73275700	-0.60415300
Н	-4.09939600	0.89810600	-1.50447800
Н	-4.31754900	1.77338200	0.00059500
С	-5.29306800	-3.83394900	1.14758300
Н	-5.37342600	-4.33821500	0.17688300
Н	-6.30791300	-3.55085300	1.44592800
Н	-4.91731200	-4.56357600	1.86995900
С	-0.84312500	1.42321600	1.75890700
С	-1.25996300	1.42315800	3.13864000
Н	-2.16951900	0.93509800	3.46933100
С	-0.43639700	2.12135800	3.96928000
Н	-0.53463500	2.28944500	5.03264700
S	0.91429500	2.78823600	3.10146300
С	0.33957900	2.12979500	1.58449000
С	1.12072000	2.39311900	0.35855300
С	1.44522400	3.73570800	0.09239700
Н	1.10443200	4.49843700	0.78518500
С	2.14686000	4.10524100	-1.04811000
Н	2.36464400	5.15171200	-1.23736600
С	2.56383500	3.11893000	-1.93892900
Н	3.11928700	3.38200500	-2.83400800
С	2.28678800	1.78387400	-1.66054200
Н	2.66516000	1.02686400	-2.34093900
С	1.55156500	1.37696200	-0.52999800
С	2.78179000	-1.89191500	-2.59207500
Н	2.16316400	-1.03831700	-2.87425300
Н	3.58671100	-1.98240700	-3.32760700
Н	2.14589400	-2.77900000	-2.68659300
С	-0.92164900	-1.66256700	2.22555900
Н	-0.63585900	-2.71512700	2.30029500
Н	-0.12752800	-1.13951200	1.69736200

4.1.2 Mechanism for the tin-boron exchange reaction

Figure S39. Computed mechanism for the formation of diboracycle A5 from dibromo(phenyl)borane and 1,1-dimethylbenzothienostannole (A1).

5) Dibromo(phenyl)borane

Number of imaginary frequencies = 0

 $E_{total} = -5400.046575 \ a.u$

 $G_{correction} = 0.060780 a.u$

Br	1.46287200	1.63785200	0.00009900
В	0.46383400	-0.00012700	-0.00017500
Br	1.46301000	-1.63778300	0.00001800
С	-1.07450800	0.00003500	-0.00031600

С	-1.80291800	-1.20859200	-0.00019700
С	-1.80301900	1.20858400	-0.00053400
С	-3.19348000	-1.21005800	0.00018600
Н	-1.26290900	-2.14940900	-0.00017100
С	-3.19357900	1.20989600	-0.00002400
Н	-1.26308000	2.14943500	-0.00115800
С	-3.89110400	-0.00010700	0.00036800
Н	-3.73506600	-2.15076300	-0.00013000
Н	-3.73525800	2.15054900	0.00056700
Н	-4.97710800	-0.00013300	0.00078300

6) Benzothienostannole

Number of imaginary frequencies = 0

 $E_{total} = -866.124800 a.u$

 $G_{correction} = 0.155642 a.u$

S	-2.84910700	-1.58032800	-0.00004800
С	-0.01685900	1.41315100	0.00000800
С	-0.25412400	-1.44151000	0.00004500
С	-1.31720300	0.83813800	0.00004600
С	0.10899500	2.80065700	-0.00000800
Н	1.09528900	3.25884600	-0.00003300
С	-0.58803300	-2.82972500	-0.00001500
Н	0.14139500	-3.63231900	0.00000900
С	-2.44524500	1.66724200	0.00007000
Н	-3.44148600	1.23287800	0.00010500

С	-1.37971300	-0.63314200	0.00003400
С	-1.02268300	3.62588000	0.00000600
Н	-0.91018500	4.70610800	-0.00001100
С	-2.29473600	3.05456700	0.00004700
Н	-3.17591500	3.68944500	0.00006700
С	-1.93846500	-3.06159000	-0.00007700
Н	-2.45849500	-4.00968600	-0.00011100
Sn	1.44434900	-0.15805800	0.00000000
С	2.65126800	-0.25337300	-1.76308300
Н	3.34914400	0.58749400	-1.79719600
Н	3.22966500	-1.18067900	-1.78751200
Н	2.01656400	-0.21478700	-2.65126700
С	2.65128100	-0.25364500	1.76306000
Н	3.22908400	-1.18132000	1.78764700
Н	3.34969400	0.58677700	1.79703400
Н	2.01660200	-0.21452300	2.65124000

7) **TSA[1-2]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (28.0 \text{ cm}^{-1})$

 $E_{total} = -6265.550657 \ a.u$

 $G_{\text{correction}} = 0.242217 \text{ a.u}$

S	-1.18699100	3.27666900	0.14999100
С	0.22694000	-0.42457700	1.04843300

С	0.90159500	1.91038300	-0.58160300
С	-0.13530700	0.93240800	1.43146100
С	0.58769600	-1.28896600	2.12651400
Н	0.85808100	-2.31072000	1.88606200
С	0.77525200	2.97569700	-1.51968000
Н	1.44609900	3.14349400	-2.35386400
С	-0.31247200	1.28067600	2.77241200
Н	-0.62794800	2.28789000	3.02603100
С	-0.10691000	1.93187800	0.37239500
С	0.50980500	-0.89975900	3.45425100
Н	0.78831100	-1.58985600	4.24381400
С	0.00332700	0.36740900	3.77489500
Н	-0.10789000	0.65715300	4.81580900
С	-0.29519400	3.79001200	-1.24781700
Н	-0.62330800	4.66170000	-1.79774900
Sn	2.19977300	0.29938700	-0.11333300
Br	0.25061100	-1.07784400	-2.09895000
В	-0.70255500	-1.11671900	-0.22515800
С	3.49454000	-0.82488600	-1.37477500
Н	3.25721000	-1.88523100	-1.27250000
Н	3.33152200	-0.54333000	-2.41585500
Н	4.53318500	-0.64727500	-1.08343800
С	3.32853400	0.79719100	1.63991100
Н	3.75437600	-0.10562500	2.08531200
Н	4.14964000	1.47240500	1.37978000
Н	2.69110500	1.28615800	2.37847000
Br	-0.97603600	-3.11804900	0.16522600
С	-2.10976300	-0.36221100	-0.29153600
С	-2.58123600	0.34356000	-1.40570100
С	-2.91445400	-0.35154500	0.86437000
С	-3.79373500	1.03813200	-1.37089500
Н	-1.98480100	0.36396600	-2.31065900
С	-4.11865600	0.34433300	0.91200800

Н	-2.58594600	-0.90304100	1.74163900
С	-4.56447000	1.04845100	-0.21121800
Н	-4.12774700	1.57971100	-2.25180000
Н	-4.71528800	0.33390600	1.82032200
Н	-5.50372400	1.59337900	-0.17902600

8) Intermediate A2

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -6265.611446 a.u$

 $G_{correction} = 0.239707 a.u$

S	1.89799200	-1.66870400	2.56705200
С	0.31965400	1.61735900	1.13170600
С	0.29608400	-1.61693000	0.52706300
С	0.25984800	0.50424800	2.01420200
С	-0.19460800	2.84508900	1.59644500
Н	-0.19089100	3.69656700	0.92491200
С	1.00757700	-2.86793500	0.48192900
Н	0.84882000	-3.62638100	-0.27803800
С	-0.24912900	0.66775200	3.31111100
Н	-0.30833300	-0.19784700	3.96317200
С	0.68557800	-0.84530900	1.60059700
С	-0.69075300	2.99873100	2.88591100

Н	-1.06552200	3.96372700	3.21262700
С	-0.71334100	1.90369300	3.75014700
Н	-1.11078900	2.00531600	4.75551000
С	1.90023100	-3.03290400	1.50334900
Н	2.54972200	-3.87550600	1.69619000
Sn	-1.35837000	-1.36645200	-0.78491200
Br	-2.91508100	0.35455600	0.13712500
В	0.97020800	1.57164300	-0.27911700
Br	0.11340700	2.65201600	-1.66683600
С	2.26452200	0.82455200	-0.67137700
С	3.23012300	0.53871200	0.31394700
С	2.53679000	0.41617500	-1.99212200
С	4.40326300	-0.14255300	0.00174600
Н	3.05669700	0.86034300	1.33477600
С	3.69638100	-0.28636900	-2.30601300
Н	1.82247400	0.64923800	-2.77419000
С	4.63279600	-0.56781900	-1.30795900
Н	5.13328400	-0.34835400	0.77859600
Н	3.87725800	-0.60702400	-3.32774800
Н	5.54161400	-1.11035200	-1.55217600
С	-0.84663600	-0.84106600	-2.78419900
Н	-1.61525200	-1.21337100	-3.46542200
Н	-0.76782400	0.24068800	-2.88709400
Н	0.11429300	-1.29323200	-3.04286500
С	-2.42184800	-3.21299400	-0.73312300
Н	-3.34368300	-3.13897700	-1.31441100
Н	-1.80753400	-4.01516100	-1.15303800
Н	-2.67531500	-3.47061200	0.29726800

Number of imaginary frequencies = $1 (115.0 \text{ cm}^{-1})$

 $E_{total} = -6265.597940 \ a.u$

 $G_{correction} = 0.239991 a.u$

S	1.49354500	0.77949400	2.96348800
С	0.47123000	1.59013500	-0.70618800
С	0.37793700	-0.48400900	0.95415100
С	0.32095200	1.95305800	0.65551700
С	0.19790300	2.55482700	-1.68056000
Н	0.27412100	2.29058300	-2.73068400
С	1.03315800	-1.48045000	1.78847100
Н	1.03473600	-2.54133300	1.56252000
С	-0.02670400	3.25359600	1.04306100
Н	-0.13902400	3.50738200	2.09327200
С	0.56825600	0.80416000	1.50328900
С	-0.16026500	3.84744600	-1.30283900
Н	-0.35719900	4.59705200	-2.06362000
С	-0.26650600	4.19821000	0.05205800
Н	-0.55332000	5.20862500	0.32643700
С	1.63821600	-0.96339900	2.88961400
Н	2.17880700	-1.48387500	3.66874700
Sn	-1.68885800	-1.06250200	0.57557100
Br	-2.94554400	0.70496800	-0.63617600
В	1.03503700	0.12596900	-0.90132200

Br	0.16392100	-0.91550400	-2.39459500
С	2.57811500	-0.17544100	-0.71770500
С	3.44078900	0.80563200	-0.19632500
С	3.13388000	-1.43315500	-1.01007600
С	4.79223700	0.54210300	0.03004100
Н	3.05137900	1.79423400	0.02641500
С	4.48143000	-1.70506500	-0.78497800
Н	2.49492700	-2.20515500	-1.42803900
С	5.31762900	-0.71676200	-0.26090100
Н	5.43537700	1.32239900	0.42754200
Н	4.88223300	-2.68669600	-1.02268700
Н	6.36979300	-0.92456300	-0.08814100
С	-1.79371500	-2.96470500	-0.36617600
Н	-2.28637500	-3.67755400	0.29997800
Н	-2.35826500	-2.88169700	-1.29559100
Н	-0.78732400	-3.30909900	-0.60823700
С	-2.52445200	-1.04450900	2.53739500
Н	-3.57712300	-1.33559600	2.52075400
Н	-1.97085700	-1.73473900	3.17994500
Н	-2.44459000	-0.03791200	2.95354000

10) Intermediate A3

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -6265.601470 \ a.u$

S	0.54292700	0.63965300	3.23939800
С	0.64334500	1.58522500	-0.61287400
С	0.43721100	-0.44978400	0.84181100
С	0.24348100	1.95848800	0.69984800
С	0.60801000	2.56291700	-1.60783300
Н	0.88390300	2.30167200	-2.62480700
С	0.84170400	-1.49483300	1.78352100
Н	1.05694200	-2.51299800	1.47933400
С	-0.14397200	3.26694600	1.02706300
Н	-0.45093900	3.52375000	2.03708700
С	0.30430400	0.79239800	1.54232800
С	0.22047600	3.86486700	-1.29283500
Н	0.20437400	4.62449700	-2.06922500
С	-0.15072600	4.21837000	0.01664900
Н	-0.45420800	5.23768000	0.23342900
С	0.89072800	-1.07968100	3.07368900
Н	1.11926300	-1.65503000	3.96089000
Sn	-1.69698000	-1.05370800	0.37643000
Br	-2.81353200	0.77139900	-0.87944600
В	1.13334200	0.06033700	-0.64364600
Br	0.38908800	-0.92923300	-2.30722600
С	2.70992300	-0.18900400	-0.46388300
С	3.51564000	0.77196400	0.17104300
С	3.32254300	-1.39866500	-0.82954400
С	4.86624100	0.53753300	0.43283300
Н	3.08267200	1.72488900	0.46161200
С	4.67195300	-1.64171900	-0.57290400
Н	2.73169200	-2.15482500	-1.33805700
С	5.45123700	-0.67375300	0.06263700
Н	5.46340200	1.30467600	0.91880900
Н	5.11704500	-2.58646200	-0.87414700

Н	6.50328500	-0.85866800	0.26062100
С	-1.75443500	-2.96726900	-0.54340600
Н	-2.33028400	-3.65282000	0.08369400
Н	-2.21924100	-2.87703800	-1.52563700
Н	-0.73737900	-3.33520800	-0.68077800
С	-2.68307200	-1.04350600	2.26886700
Н	-3.71391800	-1.38302200	2.13970100
Н	-2.17336600	-1.71337600	2.96515000
Н	-2.69982500	-0.03721800	2.69016000

11) **TSA[3-4]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (47.3 \text{ cm}^{-1})$

 $E_{total} = -6265.594078 \ a.u$

 $G_{correction} = 0.241266 a.u$

S	0.38323200	2.01886200	2.94155600
С	1.11140500	1.43675700	-0.94562000
С	0.64498700	0.13790800	1.13397400
С	0.63114200	2.30362600	0.07195900
С	1.29133800	1.96244700	-2.22321600
Н	1.63955200	1.32139500	-3.02803500
С	0.74375300	-0.50353100	2.42983000
Н	0.91008400	-1.56558500	2.56485500
С	0.36388100	3.65632400	-0.16267200
Н	-0.00269000	4.30097400	0.63140200

С	0.48154000	1.53461400	1.29341600
С	1.02642100	3.31356300	-2.46957200
Н	1.17550300	3.71918400	-3.46598600
С	0.56920900	4.15564400	-1.44689300
Н	0.36645500	5.20073500	-1.65903100
С	0.58051900	0.35622800	3.47421300
Н	0.56541500	0.13636600	4.53313000
Sn	-1.67596700	-0.65571500	0.53657100
В	1.37323000	-0.01954500	-0.33325800
Br	0.11275400	-1.40396100	-1.49433500
С	2.83865600	-0.61868500	-0.28863100
С	3.94725100	0.15319300	-0.67076100
С	3.08908400	-1.91811300	0.18818800
С	5.24878200	-0.34605500	-0.58096400
Н	3.78837600	1.16071500	-1.04299100
С	4.38198900	-2.42640800	0.27856800
Н	2.25012500	-2.54914400	0.47185000
С	5.47026200	-1.63773600	-0.10598500
Н	6.08803400	0.27304500	-0.88591700
Н	4.54499600	-3.43685600	0.64346500
Н	6.48057200	-2.03104700	-0.03848700
С	-1.69939600	-2.67740800	1.20223700
Н	-2.29821200	-3.26754000	0.50575700
Н	-0.68273700	-3.07173400	1.21008600
Н	-2.13314700	-2.73711100	2.20337400
Br	-3.30664300	-0.22411400	-1.35124100
С	-2.65124400	0.68452600	1.88897700
Н	-2.21321500	0.64304700	2.88582100
Н	-2.61518100	1.70513400	1.50805100
Н	-3.69477000	0.36132800	1.92837800

Number of imaginary frequencies = 0

 $E_{total} = -1039.468174 \ a.u$

 $G_{correction} = 0.181135 a.u$

S	-3.02311400	-1.93769400	0.12459000
В	0.45084300	-0.01866100	-0.02737600
С	-0.51975600	1.23662900	-0.05778400
С	-0.51919500	-1.24165800	0.00016400
С	-1.86013000	0.74978900	-0.01748000
С	-0.31836100	2.60615600	-0.15622200
Н	0.68746100	3.00993900	-0.22588600
С	-0.53349400	-2.66936600	0.07185700
Н	0.35249900	-3.29385200	0.08334000
С	-2.94831900	1.60437400	-0.04383600
Н	-3.96456400	1.22215400	-0.01183700
С	-1.80729700	-0.72014000	0.02725500
С	-1.41722200	3.48715900	-0.18170700
Н	-1.25131700	4.55764800	-0.25294700
С	-2.71304600	2.98985600	-0.12102500
Н	-3.55633300	3.67371100	-0.14166700
С	-1.79803900	-3.19077000	0.13592100
Н	-2.10010000	-4.22697900	0.19318800
С	1.99357300	-0.03695200	-0.00442900
С	2.70589600	-1.14905600	-0.49910300
С	2.74454400	1.03879100	0.51221100

С	4.09763400	-1.17965900	-0.49844600
Н	2.15355800	-1.99004300	-0.90762800
С	4.13634400	1.00552800	0.53872700
С	4.81510600	-0.10191900	0.02573100
Н	4.62508100	-2.04103500	-0.89728900
Н	4.69384800	1.83992800	0.95370700
Н	5.90087900	-0.12647100	0.03707000
Н	2.22516200	1.89883300	0.92237900

13) Dimethyltin dibromide

Number of imaginary frequencies = 0

 $E_{total} = -5226.151289 \ a.u$

 $G_{correction} = 0.035979 a.u$

Sn	-0.00007300	0.59184300	-0.00010300
Br	2.01314000	-0.87128400	0.00062100
С	0.00154800	1.67909400	-1.82072600
Н	-0.88975100	2.30814400	-1.87641100
Н	0.89445600	2.30592300	-1.87561900
Н	0.00100600	0.98139100	-2.65969400
С	0.00010400	1.68316400	1.81803600
Н	0.89183500	2.31188200	1.87095000
Н	-0.89232000	2.31077400	1.87219800
Н	0.00114500	0.98799600	2.65910200
Br	-2.01350100	-0.87076800	0.00025800

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (297.6 \text{ cm}^{-1})$

 $E_{total} = -2078.952578 \ a.u$

 $G_{\text{correction}} = 0.386610 \text{ a.u}$

S	1.02567400	1.55208000	3.39132600
S	1.02554500	-1.55184200	-3.39123400
В	-0.31619000	0.94005700	-0.58308200
С	1.19930700	1.43540200	-0.75570800
С	-0.29832700	-0.48586100	-1.39564700
С	1.87726800	0.55296600	-1.62960100
С	1.92562800	2.48080900	-0.18571800
Н	1.45164500	3.15373900	0.52252100
С	-0.29809500	0.48582100	1.39584900
С	-1.20134700	-1.39175000	-2.06974300
Н	-2.20764900	-1.60252500	-1.73602200
С	-1.20130500	1.39139400	2.07004600
Н	-2.20759900	1.60217100	1.73619100
С	1.20027600	-1.43471100	0.75532000
С	3.22993500	0.70618000	-1.94438200
Н	3.73104900	0.00603100	-2.60635900
С	-0.63676700	2.05012700	3.11625400
Н	-1.07638400	2.80858300	3.74829300
С	0.94580900	0.47017900	2.05692200
С	1.92694100	-2.47975600	0.18510800
Н	1.45310700	-3.15282200	-0.52310000

С	3.27845900	-2.64842100	0.49820000
Н	3.83545600	-3.46949600	0.05653900
С	0.94546700	-0.46981800	-2.05695600
С	3.27701900	2.65001500	-0.49906300
Н	3.83373900	3.47137900	-0.05759400
С	1.87798600	-0.55213000	1.62925700
С	3.92587900	1.76780400	-1.37196200
Н	4.97854400	1.90829600	-1.59703900
С	3.23076900	-0.70481000	1.94379800
Н	3.73168500	-0.00455700	2.60581700
С	3.92708500	-1.76604200	1.37110100
Н	4.97984900	-1.90610700	1.59598300
С	-0.63671300	-2.05040900	-3.11591900
Н	-1.07618300	-2.80899100	-3.74790800
В	-0.31547800	-0.93999800	0.58301700
С	-1.55717900	1.89244500	-0.80321800
С	-2.85373200	1.40882600	-1.05216400
С	-1.39491300	3.28865600	-0.75722400
С	-3.93877000	2.26862000	-1.21606800
Н	-3.02398400	0.34103400	-1.11492500
С	-2.47129800	4.15758700	-0.92800100
Н	-0.40668900	3.70220700	-0.59150300
С	-3.75166500	3.64998000	-1.15099200
Н	-4.92829900	1.86087100	-1.40225600
Н	-2.31085700	5.23127100	-0.88842800
Н	-4.59341000	4.32364700	-1.28186300
С	-1.55588100	-1.89304500	0.80333900
С	-1.39276000	-3.28914200	0.75773700
С	-2.85270800	-1.41017000	1.05233600
С	-2.46859800	-4.15871400	0.92873200
Н	-0.40428300	-3.70208200	0.59220500
С	-3.93720900	-2.27059500	1.21647100
Н	-3.02358500	-0.34246600	1.11509900

С	-3.74927300	-3.65186000	1.15163000
Н	-2.30747600	-5.23230700	0.88943100
Н	-4.92696400	-1.86341400	1.40270400
Н	-4.59060000	-4.32601400	1.28267600

15) Diboracycle A5

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -2078.995618 \ a.u$

 $G_{correction} = 0.389402 \ a.u$

S	3.71431600	0.31409300	1.59118500
S	-3.71440000	0.31135400	-1.59131300
В	-0.38128400	-0.05230700	1.38305500
С	-1.02177200	1.35807900	1.12385100
С	-1.15039600	-0.15628300	-1.62085000
С	-1.91445200	1.63756900	0.06082100
С	-0.76659700	2.37938600	2.05313300
Н	-0.05535000	2.19268900	2.85249800
С	1.15056600	-0.15505700	1.62107500
С	-1.76670100	-1.04436300	-2.57550600
Н	-1.19755900	-1.73657100	-3.18356200
С	1.76759600	-1.04287700	2.57553500
Н	1.19897500	-1.73546600	3.18364500

С	1.02094000	1.35826800	-1.12379300
С	-2.56211800	2.88080800	-0.00577100
Н	-3.22496600	3.08957000	-0.84005800
С	3.11863300	-0.89809200	2.68391600
Н	3.80150000	-1.42323100	3.33687300
С	2.10608800	0.65426800	1.00771300
С	0.76503800	2.37895400	-2.05357000
Н	0.05395700	2.19135200	-2.85286900
С	1.41250600	3.61054000	-1.98667200
Н	1.20726200	4.37475200	-2.73023300
С	-2.10643400	0.65245800	-1.00754300
С	-1.41498600	3.61046400	1.98572400
Н	-1.21024600	4.37516400	2.72892100
С	1.91337500	1.63893300	-0.06089700
С	-2.32413700	3.85775600	0.95575700
Н	-2.82722300	4.81743400	0.88729500
С	2.56011100	2.88267700	0.00520800
Н	3.22278000	3.09227100	0.83943000
С	2.32140600	3.85901100	-0.95675500
Н	2.82370600	4.81913000	-0.88870000
С	-3.11781000	-0.90031500	-2.68411200
Н	-3.80024900	-1.42578600	-3.33725000
В	0.38137300	-0.05269400	-1.38233300
С	-1.30311700	-1.30084800	1.54923800
С	-0.80117700	-2.61484100	1.45490400
С	-2.68615500	-1.15416600	1.77734400
С	-1.63634200	-3.72407400	1.56708800
Н	0.25440600	-2.76593400	1.25972200
С	-3.52571100	-2.25704700	1.90507100
Н	-3.10369600	-0.15555300	1.85528400
С	-3.00200800	-3.54700900	1.79550000
Н	-1.22462000	-4.72505100	1.47523200
Н	-4.58731200	-2.11417200	2.08358700

Н	-3.65575400	-4.40970300	1.88678400
С	1.30395200	-1.30067400	-1.54857200
С	2.68690900	-1.15312500	-1.77662200
С	0.80278000	-2.61498300	-1.45458500
С	3.52713800	-2.25546900	-1.90446300
Н	3.10378600	-0.15422300	-1.85443600
С	1.63861800	-3.72369900	-1.56692100
Н	-0.25273000	-2.76674500	-1.25957300
С	3.00419300	-3.54577100	-1.79514900
Н	4.58866800	-2.11194900	-2.08287200
Н	1.22748000	-4.72494400	-1.47536000
Н	3.65848300	-4.40804500	-1.88651300

4.1.3 Mechanism for the azide addition

Figure S40. Computed mechanism for the formation of A10 from the reaction of benzothienoborole with phenyl azide.

<u>Note:</u> Details for the benzothienoborole are provided above in the mechanism computed for the borontin exchange reaction.

16) Phenyl azide

Number of imaginary frequencies = 0

 $E_{total} = -395.871892 a.u$

 $G_{correction} = 0.071897 a.u$

Ν	1.46877800	0.89171500	-0.00013900
Ν	2.41035600	0.09012100	0.00015600
Ν	3.36303600	-0.53837100	0.0008800
С	0.14812300	0.36792400	-0.00018900
С	-0.88549400	1.31014800	-0.00003200
С	-0.14542100	-1.00142700	-0.00012000

С	-2.20932400	0.88058200	0.00012200
Н	-0.63311800	2.36465400	0.00005600
С	-1.47470400	-1.41746200	0.00001300
Н	0.65705100	-1.73273100	-0.00011000
С	-2.51108400	-0.48271400	0.00002800
Н	-3.00843400	1.61518200	0.00027800
Н	-1.69902500	-2.47961100	0.00005700
Н	-3.54423800	-0.81405900	0.00005000

17) **TSA[4-6]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (124.0 \text{ cm}^{-1})$

 $E_{total} = -1435.348203 \ a.u$

 $G_{correction} = 0.275979 \ a.u$

S	4.23929800	0.33182500	-0.45024400
Ν	1.33635500	-0.82456500	-2.34794000
Ν	-0.62405600	-0.25420100	-1.29053000
Ν	0.20208700	-0.84652900	-2.10425000
С	1.67213000	0.81759200	-0.62093100
С	2.33370900	1.83986100	-1.38195600
Н	1.81853900	2.63685100	-1.90508700
С	0.62896200	-0.80706500	0.94706500
С	3.69172000	1.70939200	-1.39622400
Н	4.42223700	2.31951500	-1.90922700
С	2.60718700	-0.06139000	-0.04726300

С	-0.13066900	-1.67250600	1.72629500
Н	-1.20519900	-1.53338500	1.80696800
С	0.48269600	-2.72985900	2.41839400
Н	-0.11922100	-3.39285600	3.03332200
С	2.02711000	-1.04864400	0.85381700
С	2.64712200	-2.09465800	1.53562100
Н	3.71834200	-2.25705100	1.45413500
С	1.85971600	-2.93627900	2.32689200
Н	2.32229100	-3.75544100	2.86884800
В	0.22367000	0.44860700	-0.01180100
С	-0.66536600	1.64723400	0.54793100
С	-0.98603700	2.73987400	-0.27843300
С	-1.15745700	1.66744500	1.86040600
С	-1.77174900	3.79670600	0.17567300
Н	-0.62738600	2.74941000	-1.30521000
С	-1.94075700	2.72467400	2.32947900
Н	-0.92058600	0.84379300	2.52643800
С	-2.25481900	3.79029000	1.48731500
Н	-2.00754800	4.62506400	-0.48682300
Н	-2.30892500	2.71361200	3.35164700
Н	-2.86804900	4.61121600	1.84748000
С	-1.91098200	-0.86013900	-1.14651100
С	-3.01090700	-0.04498400	-0.86930300
С	-2.05698100	-2.24891300	-1.22284600
С	-4.25984600	-0.63179300	-0.67289800
Н	-2.88300700	1.02727500	-0.80631400
С	-3.31424200	-2.82075000	-1.04591800
Н	-1.18562900	-2.86946700	-1.40371300
С	-4.41858300	-2.01501100	-0.76461600
Н	-5.11411200	0.00137500	-0.45570300
Н	-3.42554500	-3.89845700	-1.11090900
Н	-5.39575900	-2.46309000	-0.61583500

18) A6

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -1435.381992 \ a.u$

 $G_{correction} = 0.277712 a.u$

S	-3.00999400	-1.34187100	1.83834100
Ν	-1.00349000	-2.14014500	-1.46554800
Ν	0.62926600	-0.60514500	-0.86334600
Ν	-0.03895500	-1.47997700	-1.85503800
С	-1.55391100	-2.04273000	-0.15823300
С	-1.65975600	-3.20227700	0.67266800
Н	-1.19688800	-4.15000000	0.42864800
С	-1.33826600	1.08954400	-0.81941200
С	-2.38954700	-2.96328600	1.80019100
Н	-2.60024600	-3.64326800	2.61304900
С	-2.24166700	-0.94731300	0.31682100
С	-1.59644100	2.32107800	-1.44379600
Н	-0.75684400	2.91943900	-1.78488000
С	-2.89168600	2.80365900	-1.61223900
Н	-3.05840300	3.75470300	-2.10867900
С	-2.44484500	0.34858500	-0.34209200
С	-3.74775700	0.85411000	-0.48161500
Н	-4.58426900	0.27311800	-0.10611600
С	-3.97170900	2.07058900	-1.11756000
Н	-4.98518300	2.44348600	-1.22915100

В	0.14896300	0.67660000	-0.52034500
С	1.91907600	-1.14407900	-0.58172900
С	2.78577100	-1.51914200	-1.61448000
С	2.30010000	-1.31331000	0.75211600
С	4.04029300	-2.04070500	-1.30336500
Н	2.47204100	-1.39469200	-2.64408200
С	3.56377900	-1.81623900	1.05278300
Н	1.60615700	-1.03219100	1.53594800
С	4.43674600	-2.18333500	0.02751600
Н	4.71382700	-2.32693600	-2.10528300
Н	3.86223700	-1.92969900	2.09029600
Н	5.41835600	-2.58173700	0.26373500
С	1.07940700	1.73017500	0.17810700
С	2.44149600	1.89240500	-0.13824000
С	0.53060900	2.59516400	1.14308000
С	3.21777700	2.86836500	0.48195400
Н	2.90036500	1.24953100	-0.88159600
С	1.30750200	3.55732900	1.78649800
Н	-0.52316700	2.50907500	1.39131500
С	2.65499200	3.69787200	1.45403900
Н	4.26362000	2.98002900	0.21110200
Н	0.86127700	4.20180500	2.53828200
Н	3.26270700	4.45237400	1.94512600

19) **TSA[6-7]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (23.7 \text{ cm}^{-1})$

$$E_{total} = -2474.875442 a.u$$

$G_{correction} = 0.481456 \ a.u$

S	-0.53585500	-0.74496300	-3.22004600
S	-2.17620700	-2.33086600	3.06627400
Ν	-0.23669500	1.07797200	0.25462400
В	-3.06444200	0.67599200	0.62392800
Ν	2.04771400	0.72676200	0.37061200
Ν	0.75314500	1.08178700	0.98594800
С	-3.47084100	-0.53955400	-0.31832200
С	-2.55876100	-0.02268100	1.92641000
С	-3.32291700	-1.74019100	0.43717300
С	-3.90658700	-0.63766400	-1.63207400
Н	-3.97458000	0.24947000	-2.25367200
С	-0.26005700	0.67936700	-1.10239100
С	-1.95816700	0.25351600	3.19208000
Н	-1.71876600	1.24578400	3.55557700
С	-0.82248000	1.55331100	-2.08744700
Н	-1.07846300	2.58473900	-1.88349900
С	1.38884900	-1.77362200	0.14312100
С	-3.67656500	-2.97505800	-0.07929000
Н	-3.57422700	-3.87946300	0.51308300
С	-0.99050000	0.92944100	-3.28840300
Н	-1.35290500	1.35481100	-4.21319400
С	-0.06201000	-0.61391200	-1.54288500
С	1.63073200	-2.92452600	0.91093500
Н	2.49076500	-2.93840400	1.57376800
С	0.81506100	-4.05008900	0.82729300
Н	1.01757100	-4.91718000	1.44840000
С	-2.74335100	-1.38657800	1.74040300
С	-4.24069100	-1.89204200	-2.17982800

Н	-4.57841600	-1.96020700	-3.20932600
С	0.28712000	-1.79292100	-0.74433100
С	-4.14521400	-3.04161800	-1.40413300
Н	-4.41936000	-4.00388900	-1.82661400
С	-0.50074000	-2.94867600	-0.86612300
Н	-1.34103100	-2.94637800	-1.54968500
С	-0.24551800	-4.06590100	-0.07935900
Н	-0.88038200	-4.94207100	-0.16838400
С	-1.68988500	-0.87801100	3.91549800
Н	-1.23496600	-0.96235300	4.89236400
В	2.44510300	-0.61151300	0.16393800
С	2.87880900	1.88511900	0.35777500
С	3.00979000	2.69113800	1.49445900
С	3.55030400	2.21960300	-0.82124100
С	3.83097300	3.81633900	1.44876800
Н	2.47409500	2.42703700	2.39837400
С	4.38445000	3.33473600	-0.85067200
Н	3.42242500	1.59119300	-1.69510900
С	4.52627300	4.13797800	0.28182200
Н	3.93527600	4.43785500	2.33287900
Н	4.91644800	3.58107100	-1.76430100
Н	5.17087500	5.01079300	0.25428100
С	3.95460100	-0.98295000	-0.05115100
С	5.00992600	-0.36833500	0.64873100
С	4.28602200	-2.01173800	-0.95234000
С	6.33253700	-0.75916200	0.45443800
Н	4.79443600	0.42435700	1.35709200
С	5.60966200	-2.39025100	-1.17145700
Н	3.49056000	-2.52102400	-1.48852900
С	6.63725900	-1.76517500	-0.46462600
Н	7.12719000	-0.27635100	1.01575200
Н	5.83871600	-3.17723000	-1.88411300
Н	7.66945100	-2.06333000	-0.62427900

С	-3.26416200	2.18307800	0.33541300
С	-4.22260900	2.63038000	-0.59473900
С	-2.48228400	3.16136600	0.98290000
С	-4.39004900	3.98576100	-0.87424500
Н	-4.85768600	1.90424600	-1.09126800
С	-2.62985600	4.51513900	0.69595900
Н	-1.72375000	2.84324600	1.68936500
С	-3.58611000	4.93054900	-0.23532900
Н	-5.14085600	4.30552500	-1.59095800
Н	-2.00418400	5.24891500	1.19568200
Н	-3.70579200	5.98703600	-0.45766900

20) A7

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -2474.891428 \ a.u$

 $G_{correction} = 0.484055 \ a.u$

S	-0.07896700	-1.42080700	3.55506200
S	2.83007300	-0.88217200	-3.89820200
Ν	0.57169100	0.54026700	0.21022300
В	2.14420100	0.68472500	-0.23693200
Ν	-1.64464300	0.62574500	-0.26264300
Ν	-0.29510500	0.78151900	-0.65514900
С	2.82178100	-0.74434700	0.15907400
С	2.19959200	0.59838600	-1.84523200
С	3.09854800	-1.46358300	-1.03616900
С	3.13754300	-1.33710500	1.37664000
---	-------------	-------------	-------------
Н	2.94122100	-0.81022300	2.30703000
С	0.27605900	0.12767600	1.55491000
С	1.88049500	1.36359800	-3.00482900
Н	1.46591000	2.36569900	-2.98012200
С	0.61633500	0.91678600	2.69559600
Н	0.96131800	1.93918300	2.63632900
С	-1.36867800	-1.95784300	-0.14277200
С	3.65254700	-2.74233500	-1.00288100
Н	3.85084500	-3.28536600	-1.92288000
С	0.45036800	0.20869700	3.85213300
Н	0.60062000	0.55208700	4.86535300
С	-0.10701700	-1.16059400	1.83502700
С	-1.60482100	-2.96292200	-1.09397400
Н	-2.37310000	-2.80762600	-1.84549500
С	-0.87897700	-4.15213400	-1.09030400
Н	-1.06478000	-4.90296300	-1.85195900
С	2.72361800	-0.63533900	-2.17924900
С	3.71168100	-2.61767400	1.41941200
Н	3.96697300	-3.06614600	2.37554600
С	-0.39526000	-2.20652500	0.84961600
С	3.95747100	-3.31543500	0.23632600
Н	4.39630700	-4.30853700	0.27513100
С	0.31039300	-3.41617300	0.87565500
Н	1.07631600	-3.56901800	1.62660500
С	0.07885500	-4.37919100	-0.10097900
Н	0.65190300	-5.30069000	-0.09356700
С	2.15687700	0.70787700	-4.17765400
Н	2.01792300	1.05505600	-5.19223900
В	-2.25618000	-0.66286200	-0.17177900
С	-2.31757900	1.88407400	-0.44194100
С	-2.17790200	2.60501300	-1.63155100
С	-3.09241700	2.37763700	0.60680800

С	-2.84534200	3.82046900	-1.77187900
Н	-1.55356900	2.21206800	-2.42572600
С	-3.77071900	3.58488400	0.44738700
Н	-3.16933900	1.80515600	1.52385500
С	-3.64820000	4.30887000	-0.73902300
Н	-2.74279100	4.38269600	-2.69456800
Н	-4.38762500	3.96289000	1.25630100
Н	-4.17108300	5.25247100	-0.85687800
С	-3.81177100	-0.82130900	-0.15821100
С	-4.70161100	-0.04057500	-0.92075200
С	-4.36185000	-1.84939500	0.63167900
С	-6.07458100	-0.27178600	-0.88857700
Н	-4.31932200	0.75078100	-1.55518400
С	-5.73698400	-2.06676400	0.69009000
Н	-3.69732200	-2.48599300	1.20819000
С	-6.59728000	-1.27797400	-0.07392100
Н	-6.73842500	0.33549400	-1.49659100
Н	-6.13558700	-2.85629000	1.32007600
Н	-7.66903100	-1.45052000	-0.04119000
С	2.64602400	2.03098100	0.48262500
С	3.80475700	2.06949900	1.27187700
С	1.92508400	3.22910200	0.33123000
С	4.23021800	3.25090000	1.88194100
Н	4.37987000	1.15889500	1.40685700
С	2.33621700	4.41240900	0.94420400
Н	1.01851600	3.23590600	-0.27085400
С	3.49372900	4.42560100	1.72571500
Н	5.13427000	3.25335000	2.48486100
Н	1.75702400	5.32252200	0.81329300
Н	3.81835500	5.34399800	2.20633400

21) **TSA[7-8]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (18.5 \text{ cm}^{-1})$

 $E_{total} = -2474.882960 \ a.u$

 $G_{correction} = 0.484731 \ a.u$

S	-0.15844300	-1.95153300	-3.15965000
S	-3.16196700	-2.27223700	2.53919800
Ν	-0.49747800	0.67894700	-0.25388200
В	-2.06380500	0.92709900	0.31176900
Ν	1.73869900	0.64642800	0.08649000
Ν	0.43899200	1.03032400	0.48865200
С	-3.09515000	0.17242800	-0.70180600
С	-2.11690100	-0.08826200	1.57276600
С	-3.59849600	-0.99655800	-0.06207000
С	-3.54640000	0.44375000	-1.98933700
Н	-3.19216300	1.32353500	-2.51892300
С	-0.29190000	-0.03048600	-1.48621600
С	-1.51613200	-0.28746300	2.85071300
Н	-0.77545700	0.36991400	3.29273100
С	-0.48820300	0.57907700	-2.75960100
Н	-0.66878000	1.63651300	-2.89937700
С	1.19987400	-1.87935200	0.53114100
С	-4.49398800	-1.85679400	-0.69388700
Н	-4.86353400	-2.74295800	-0.18467300
С	-0.42251100	-0.34349900	-3.76367900

Н	-0.52760200	-0.17581600	-4.82566600
С	-0.09636400	-1.38490300	-1.51314200
С	1.41869800	-2.70115900	1.64818000
Н	2.24009100	-2.46955300	2.31953900
С	0.61397600	-3.80805900	1.90733200
Н	0.79229300	-4.41348200	2.79042200
С	-3.00761900	-1.09675500	1.26738400
С	-4.44830200	-0.41475700	-2.63811900
Н	-4.78287800	-0.18619000	-3.64596100
С	0.15083000	-2.23567400	-0.34712300
С	-4.91499500	-1.55895700	-1.99447900
Н	-5.61240800	-2.22036900	-2.50053400
С	-0.63992700	-3.36431600	-0.10471200
Н	-1.45544400	-3.59558900	-0.78206600
С	-0.41436200	-4.14286300	1.02611200
Н	-1.04854500	-5.00020200	1.22556500
С	-1.97211400	-1.41256300	3.48963000
Н	-1.70127000	-1.78578000	4.46753600
В	2.20060600	-0.69718300	0.26151500
С	2.54617700	1.81945400	-0.10730000
С	2.51066000	2.87829500	0.80417900
С	3.34513200	1.88805100	-1.24912600
С	3.30769500	3.99873700	0.57669300
Н	1.86054000	2.82393600	1.66876600
С	4.15201800	3.00496400	-1.45561100
Н	3.33898700	1.06271900	-1.95145400
С	4.13586700	4.06221000	-0.54513300
Н	3.28214300	4.82264600	1.28261100
Н	4.78566600	3.05139000	-2.33547100
Н	4.75830200	4.93514800	-0.71301000
С	3.73219600	-1.01407500	0.25452700
С	4.70927800	-0.19242700	0.84803700
С	4.16175800	-2.22178300	-0.32746900

С	6.05298700	-0.55787900	0.85346400
Н	4.41702900	0.74066700	1.31705400
С	5.50879000	-2.57818200	-0.35218500
Н	3.42507400	-2.88841500	-0.76589400
С	6.45786400	-1.74629400	0.24228200
Н	6.78617400	0.08607800	1.32979400
Н	5.81622000	-3.50738800	-0.82248400
Н	7.50743800	-2.02528400	0.23639100
С	-2.22939500	2.50201200	0.57926500
С	-3.11268500	3.29292400	-0.17199400
С	-1.49805800	3.15201100	1.59101400
С	-3.24688000	4.66475600	0.05470900
Н	-3.72239400	2.82540500	-0.93724900
С	-1.62050600	4.52042200	1.82388200
Н	-0.82342800	2.57296300	2.21274900
С	-2.49534300	5.28604600	1.05023700
Н	-3.94181200	5.24604900	-0.54545500
Н	-1.04222400	4.98983600	2.61553700
Н	-2.59636200	6.35262500	1.23017400

22) **A8**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -2474.889768 \ a.u$

 $G_{correction} = 0.483249 a.u$

S	4.72795200	-1.98816600	1.03039400
Ν	0.54401000	0.34045300	-0.04961600
В	2.04688000	0.51078600	-0.69164800
Ν	-1.68900700	0.71346000	-0.05703900
Ν	-0.41062600	0.88565900	-0.64157700
С	2.76719900	1.50237800	0.38082900
С	2.85059600	-0.85662800	-0.38573500
С	3.76698500	0.78044000	1.09141700
С	2.51279800	2.82258200	0.73308700
Н	1.73338500	3.38160600	0.21970100
С	0.39405800	-0.41836900	1.16930300
С	2.90947000	-2.21587200	-0.81233000
Н	2.28349900	-2.64117800	-1.58788600
С	0.92269500	0.01584800	2.42215900
Н	1.34249000	0.99668000	2.59114600
С	-1.70024400	-1.81065700	-0.71227900
С	4.50854300	1.38516500	2.10496800
Н	5.26988700	0.82910200	2.64505400
С	0.83795800	-0.97110200	3.36183400
Н	1.14841400	-0.92741600	4.39553300
С	-0.07333500	-1.70829900	1.15483600
С	-2.21176700	-2.49768700	-1.82572600
Н	-3.04682600	-2.06787900	-2.37067000
С	-1.68636800	-3.72210200	-2.23224100
Н	-2.09136200	-4.22366100	-3.10558700
С	3.78471200	-0.59241500	0.59972400
С	3.25560000	3.43813500	1.75300600
Н	3.06200300	4.47321900	2.01897900
С	-0.64049200	-2.41374600	0.00295300
С	4.24487500	2.72098200	2.42889900
Н	4.81417800	3.20256100	3.21881300
С	-0.13823100	-3.66503400	-0.38194600
Н	0.68221500	-4.09958800	0.17883400

С	-0.65435900	-4.31285100	-1.50016200
Н	-0.24943400	-5.27351900	-1.80260100
С	3.85586600	-2.94996800	-0.14225200
Н	4.12011400	-3.98981600	-0.27749000
В	-2.42111800	-0.49760300	-0.23199300
С	-2.21415900	1.99776900	0.31530400
С	-2.14588300	3.08275500	-0.56327900
С	-2.77119700	2.14022900	1.58601500
С	-2.66802600	4.31228300	-0.16530200
Н	-1.68783500	2.95708500	-1.53740300
С	-3.30744700	3.36935000	1.96488700
Н	-2.79160500	1.28707500	2.25407100
С	-3.25680700	4.45710600	1.09241200
Н	-2.61988600	5.15715300	-0.84487800
Н	-3.75510000	3.47770100	2.94758400
Н	-3.66739300	5.41554900	1.39328000
С	-3.96574500	-0.54411000	0.00533500
С	-4.84760800	0.49153600	-0.35833800
С	-4.52408600	-1.70929200	0.56454500
С	-6.22149000	0.37009200	-0.16604300
Н	-4.45802800	1.40016900	-0.80378500
С	-5.89510700	-1.82498500	0.78573300
Н	-3.87016900	-2.53463600	0.83011400
С	-6.74786700	-0.78420600	0.41716600
Н	-6.88246500	1.17731300	-0.46710700
Н	-6.29861900	-2.72812900	1.23365900
Н	-7.81834100	-0.87396900	0.57684100
С	1.90928100	0.94582700	-2.22143900
С	2.49242600	2.11545800	-2.72609300
С	1.22607000	0.12081300	-3.13413500
С	2.39818700	2.45469400	-4.07849700
Н	3.03502100	2.76889700	-2.04948800
С	1.11983200	0.45164400	-4.48245900

Н	0.75869500	-0.79622400	-2.78020600
С	1.70845200	1.62534700	-4.96102800
Н	2.86314200	3.36753300	-4.44137000
Н	0.58346200	-0.20458300	-5.16287400
Н	1.63145500	1.88647000	-6.01276200

23) **TSA[8-9]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (76.2 \text{ cm}^{-1})$

 $E_{total} = -2474.890381 \ a.u$

 $G_{correction} = 0.486553 \ a.u$

S	-0.53722200	-3.20371400	-0.83345800
S	-3.79217300	-1.88750900	1.91644700
Ν	-0.31057700	0.66296400	-0.28859300
В	-1.88824900	1.03000100	-0.16868500
Ν	1.80580500	1.03194900	0.01602200
Ν	0.59293400	1.52290800	-0.01160700
С	-2.64362300	0.20452000	-1.36243900
С	-2.42449000	0.18720400	1.10963800
С	-3.31742700	-0.92115300	-0.81325200
С	-2.71059400	0.40472000	-2.73557800
Н	-2.24091400	1.28004900	-3.17891100
С	0.12080200	-0.68436600	-0.68375300
С	-2.34859500	0.18405100	2.53355000
Н	-1.80446800	0.91823700	3.11750500

С	-0.00607600	-1.00930700	-2.10248800
Н	0.12383700	-0.27136700	-2.88130400
С	1.39259400	-1.00392300	1.59713300
С	-3.97401500	-1.84643300	-1.62130400
Н	-4.47555200	-2.70831400	-1.18910900
С	-0.32232000	-2.29881900	-2.32735900
Н	-0.49324800	-2.79552700	-3.27089300
С	-0.20225200	-1.82709500	0.12573600
С	1.97647300	-0.82425000	2.85107800
Н	2.84516500	-0.18183700	2.96436300
С	1.45969600	-1.50150900	3.95883600
Н	1.92415900	-1.37446500	4.93217700
С	-3.16655000	-0.88272200	0.63919900
С	-3.37537400	-0.51572600	-3.56052500
Н	-3.41779900	-0.35295400	-4.63392400
С	0.25017600	-1.83074300	1.50003000
С	-3.98667600	-1.64074400	-3.00692300
Н	-4.49721200	-2.35156200	-3.65050400
С	-0.25752300	-2.53697400	2.59435700
Н	-1.13309200	-3.16684700	2.48931700
С	0.36040500	-2.36063600	3.82847700
Н	-0.02264700	-2.88051200	4.70072600
С	-3.03310300	-0.85519800	3.11051800
Н	-3.13789600	-1.09145300	4.16038600
В	1.85510500	-0.50533000	0.14777000
С	-2.06857400	2.62046600	-0.18375500
С	-1.49132400	3.41653300	-1.18990500
С	-2.86230000	3.27658900	0.76782300
С	-1.68726000	4.79512800	-1.24244000
Н	-0.86401100	2.94829500	-1.94550900
С	-3.07040000	4.65735200	0.72489000
Н	-3.32991800	2.69285800	1.55549700
С	-2.48111700	5.42326000	-0.27947300

Н	-1.22595300	5.38079200	-2.03353500
Н	-3.69150700	5.13470900	1.47824600
Н	-2.63786600	6.49764800	-0.31490200
С	2.86193900	1.95612100	0.21205600
С	4.11134700	1.48387800	0.63032000
С	2.66145500	3.32549600	-0.01177400
С	5.15606200	2.38490900	0.82685400
Н	4.26723000	0.42377800	0.78745300
С	3.71249400	4.21162500	0.20012000
Н	1.68886500	3.67781100	-0.33423400
С	4.96357200	3.74969500	0.61637600
Н	6.12347400	2.01271700	1.14874000
Н	3.55265700	5.27189000	0.03114600
Н	5.77987400	4.44750100	0.77173200
С	2.93069600	-1.30682400	-0.66673900
С	3.36347000	-2.57503700	-0.24616200
С	3.44956900	-0.80688600	-1.87493900
С	4.27374100	-3.31711800	-0.99945500
Н	2.98424200	-2.98148100	0.68692100
С	4.36320300	-1.53715400	-2.62901100
Н	3.13365400	0.17294800	-2.22341800
С	4.77698200	-2.79846900	-2.19207700
Н	4.59322200	-4.29591200	-0.65383900
Н	4.75442900	-1.12733100	-3.55560600
Н	5.48966700	-3.37096100	-2.77836500

24) **A9**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -2474.890425 \ a.u$

$G_{correction} = 0.485693 \ a.u$

S	-0.65049800	-3.17647700	-0.78373700
S	-3.76921700	-1.88144400	1.93683000
Ν	-0.30621000	0.67168600	-0.29855600
В	-1.88028800	1.03276800	-0.16861000
Ν	1.80753700	1.03592900	-0.00488900
Ν	0.59941500	1.53319800	-0.02998300
С	-2.64665200	0.20510000	-1.35420200
С	-2.40687600	0.19217000	1.11532400
С	-3.32100700	-0.91644400	-0.79752700
С	-2.71897000	0.39934000	-2.72752400
Н	-2.24766200	1.27053900	-3.17705600
С	0.14935800	-0.68343200	-0.66909600
С	-2.31803700	0.19054100	2.53826400
Н	-1.76768700	0.92475800	3.11620000
С	-0.01131100	-1.02772200	-2.08737700
Н	0.15254200	-0.30973200	-2.87870300
С	1.41167200	-1.00295100	1.57518100
С	-3.98415500	-1.84352700	-1.59798900
Н	-4.48648100	-2.70178700	-1.15956600
С	-0.39755900	-2.29832000	-2.29310400
Н	-0.60485200	-2.79813500	-3.22767800
С	-0.23100300	-1.81373300	0.15595400
С	2.03631500	-0.83411000	2.81043900
Н	2.91667400	-0.20373500	2.89741500
С	1.54569000	-1.50586800	3.93348600
Н	2.04272500	-1.38613100	4.89161500
С	-3.15617600	-0.87727000	0.65296600
С	-3.38998400	-0.52332800	-3.54553900

Н	-3.43576700	-0.36556400	-4.61954000
С	0.25601700	-1.81816000	1.51475500
С	-4.00221800	-1.64405100	-2.98489100
Н	-4.51778300	-2.35602600	-3.62309300
С	-0.22596500	-2.52030000	2.62506100
Н	-1.10931800	-3.14302700	2.54628000
С	0.43194600	-2.35189700	3.83867200
Н	0.07180700	-2.86844900	4.72255300
С	-2.99686100	-0.84830100	3.12249900
Н	-3.09118400	-1.08391700	4.17353300
В	1.82500000	-0.51160500	0.10235400
С	-2.07001200	2.62249000	-0.18322100
С	-1.50044900	3.42157400	-1.19122500
С	-2.86516300	3.27417400	0.77034400
С	-1.70507900	4.79892200	-1.24362200
Н	-0.87187500	2.95692400	-1.94787500
С	-3.08173400	4.65357900	0.72764300
Н	-3.32719700	2.68822800	1.55971200
С	-2.49999300	5.42264200	-0.27872300
Н	-1.24917800	5.38708600	-2.03596600
Н	-3.70348300	5.12740200	1.48270500
Н	-2.66324200	6.49606200	-0.31400900
С	2.87147700	1.94659500	0.20265100
С	4.12137700	1.45345400	0.59491100
С	2.68112300	3.32316200	0.01557000
С	5.17575900	2.34047500	0.80362500
Н	4.26935500	0.38831600	0.72125700
С	3.74215800	4.19453200	0.23775800
Н	1.70850700	3.69173000	-0.28797900
С	4.99340500	3.71168700	0.62945400
Н	6.14327800	1.95188000	1.10526100
Н	3.59004300	5.26006400	0.09690700
Н	5.81737700	4.39841100	0.79358200

С	2.91227200	-1.30996400	-0.71144400
С	3.36074900	-2.57107700	-0.28799600
С	3.42059200	-0.81107800	-1.92415800
С	4.27443400	-3.30798600	-1.04294500
Н	2.99154900	-2.97759500	0.64921300
С	4.33779400	-1.53541300	-2.68020200
Н	3.09474300	0.16489700	-2.27505200
С	4.76644300	-2.79071800	-2.24068900
Н	4.60541900	-4.28188900	-0.69402600
Н	4.72044400	-1.12500000	-3.61021800
Н	5.48167000	-3.35880200	-2.82818100

25) **TSA[9-10]**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = $1 (308.2 \text{ cm}^{-1})$

 $E_{total} = -2474.871926 \ a.u$

 $G_{\text{correction}} = 0.485809 \text{ a.u}$

S	-0.91556400	-3.09287600	0.09235700
S	-4.05427300	-1.21010800	2.12326900
Ν	-0.18879600	0.58547500	-0.74138700
В	-1.71196500	0.73639900	-0.45670400
Ν	1.85830300	1.09315200	-0.30283800
Ν	0.66378600	1.53279200	-0.54566100
С	-2.62765900	-0.17704200	-1.44508600

С	-1.94569300	-0.14775900	0.95552300
С	-3.45760600	-1.04696600	-0.68568400
С	-2.76460200	-0.19340000	-2.83043700
Н	-2.15707600	0.46516300	-3.44503100
С	0.34424200	-0.78379100	-0.59385500
С	-1.87961700	0.20572800	2.36403600
Н	-1.06893900	0.78116300	2.79300400
С	0.13580600	-1.62340900	-1.81008800
Н	0.48413800	-1.29119700	-2.77991900
С	1.76234500	-0.81808500	1.51509500
С	-4.39425900	-1.90386800	-1.28245900
Н	-5.01341300	-2.56018100	-0.67774100
С	-0.45569700	-2.79893900	-1.60081900
Н	-0.67000400	-3.57270900	-2.32604500
С	-0.34934700	-1.47429700	0.59091500
С	2.68344100	-0.70580100	2.56256100
Н	3.65520000	-0.25706200	2.38091200
С	2.37137200	-1.17933300	3.83728400
Н	3.09516400	-1.08721300	4.64194600
С	-3.14802500	-0.86696800	0.70594500
С	-3.68839800	-1.04944800	-3.43474600
Н	-3.79211500	-1.05321200	-4.51625800
С	0.51066500	-1.40462900	1.79663200
С	-4.49661800	-1.90431700	-2.66800800
Н	-5.20556100	-2.56195400	-3.16060700
С	0.20096700	-1.91535400	3.06279500
Н	-0.75826800	-2.38781100	3.24719800
С	1.13717300	-1.79496800	4.08402100
Н	0.91158300	-2.18027100	5.07363700
С	-2.89052600	-0.30179000	3.10740400
Н	-3.05892300	-0.22071900	4.17255000
В	1.90852500	-0.48110100	-0.05818500
С	-2.22327800	2.25429800	-0.39434500

С	-1.80881100	3.17977900	-1.36902700
С	-3.15444400	2.70132600	0.55380800
С	-2.28488000	4.48963500	-1.38545600
Н	-1.09157500	2.87255500	-2.12488100
С	-3.64133900	4.00978800	0.54503600
Н	-3.50795900	2.01713900	1.31954400
С	-3.20514700	4.91181400	-0.42420000
Н	-1.93957400	5.18163200	-2.14896800
Н	-4.35999900	4.32419000	1.29708300
Н	-3.57841300	5.93182500	-0.43302400
С	3.04196600	-1.23997900	-0.88427100
С	3.44020600	-0.78782600	-2.15489500
С	3.62427900	-2.42665600	-0.41349400
С	4.37479600	-1.48239600	-2.92012600
Н	3.01542800	0.13406500	-2.54667400
С	4.55820800	-3.13351000	-1.17335300
Н	3.34082500	-2.80249500	0.56557700
С	4.93778100	-2.66291100	-2.43000200
Н	4.66755800	-1.10414700	-3.89583500
Н	4.99184700	-4.05006400	-0.78265800
Н	5.66750800	-3.20773600	-3.02199900
С	2.85908600	2.06037100	-0.04356900
С	2.56918500	3.43329100	-0.05098800
С	4.15855400	1.62031400	0.23512100
С	3.57940200	4.34809500	0.22443600
Н	1.56053900	3.76455200	-0.26403800
С	5.15842300	2.55086100	0.51236400
Н	4.38474400	0.56262200	0.21283100
С	4.87761800	3.91596100	0.50926300
Н	3.34849900	5.40895800	0.21961200
Н	6.16331700	2.20008800	0.72567400
Н	5.65960800	4.63723400	0.72374800

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -2474.935108 \ a.u$

 $G_{correction} = 0.488512 a.u$

S	1.03574900	-3.03266800	1.43170200
S	2.74158700	-1.38617000	-2.84364500
Ν	0.55289200	0.57109900	0.20316900
В	1.94648900	0.99063100	0.32893800
Ν	-1.43019900	0.79276800	-0.60325600
Ν	-0.22287500	1.20664500	-0.66444900
С	3.03658300	-0.06389000	0.68223900
С	0.87755400	-1.83798700	-1.10640400
С	3.17792200	-1.23998600	-0.09100200
С	3.99850300	0.19946700	1.67319000
Н	3.91351300	1.11004400	2.25889700
С	-0.13535600	-0.54919900	0.90340800
С	0.27037000	-1.93986500	-2.40235300
Н	-0.77661600	-2.17098000	-2.54545900
С	0.29520100	-0.66319900	2.32670200
Н	0.10868100	0.15205300	3.01632000
С	-2.32021700	-1.59636300	0.17186500
С	4.27261600	-2.08909900	0.11848300
Н	4.37430700	-2.97695800	-0.49704500
С	0.83551000	-1.82914900	2.69479600

Н	1.16116700	-2.08405400	3.69647600
С	0.10388400	-1.95865300	0.19029900
С	-3.64198700	-2.01237600	-0.02679000
Н	-4.45907500	-1.31608900	0.14109200
С	-3.92234900	-3.31959500	-0.42378500
Н	-4.95090600	-3.63486100	-0.57450700
С	2.21932100	-1.52744000	-1.18138900
С	5.05349200	-0.67508600	1.91259700
Н	5.77382100	-0.45885300	2.69562400
С	-1.28984700	-2.52615200	-0.02379800
С	5.19669900	-1.81838100	1.12215200
Н	6.02892500	-2.49577200	1.28755500
С	-1.55791000	-3.83945600	-0.41578000
Н	-0.74720100	-4.54891500	-0.55348000
С	-2.87967700	-4.23177900	-0.61976700
Н	-3.10026400	-5.25127500	-0.92216000
С	1.14508200	-1.72485300	-3.42921700
Н	0.95012900	-1.76341400	-4.49145500
В	-1.72928200	-0.18977200	0.63187900
С	-2.47343600	0.62964000	1.79159100
С	-2.40764200	2.02873600	1.90422500
С	-3.15314800	-0.06225500	2.80846900
С	-2.98895300	2.70887200	2.97469400
Н	-1.90237700	2.60557900	1.13257000
С	-3.73503900	0.60649500	3.88556700
Н	-3.22060300	-1.14485000	2.75245200
С	-3.65602600	1.99722500	3.97229600
Н	-2.92284400	3.79211100	3.02977200
Н	-4.25356300	0.04283600	4.65638700
Н	-4.11107900	2.52131300	4.80773200
С	-2.32808600	1.26986400	-1.58812600
С	-1.85895300	1.67134600	-2.84489300
С	-3.69496100	1.29050100	-1.29366500

С	-2.76785900	2.11597400	-3.79945700
Н	-0.79874200	1.61317100	-3.05932200
С	-4.59222900	1.73501800	-2.26084700
Н	-4.03531000	0.98896200	-0.31196300
С	-4.13468100	2.14929700	-3.51264100
Н	-2.40857500	2.42467300	-4.77597800
Н	-5.65279200	1.75880700	-2.03248900
Н	-4.83966600	2.48947900	-4.26437200
С	2.31174800	2.47822900	0.09291600
С	1.39152000	3.52247700	0.31824100
С	3.60930600	2.82896600	-0.33104000
С	1.74751200	4.85346500	0.12284500
Н	0.39335900	3.28750800	0.67203800
С	3.96453900	4.15750300	-0.54915600
Н	4.33859700	2.04329500	-0.50037800
С	3.03319500	5.17213800	-0.32005900
Н	1.02679500	5.64263100	0.31434500
Н	4.96479500	4.40432100	-0.89197000
Н	3.31018200	6.21005900	-0.48035000

27) **1,2-Azaborinine**

(Hydrogens are omitted for clarity)

Number of imaginary frequencies = 0

 $E_{total} = -1325.977127 \ a.u$

 $G_{correction} = 0.272855 a.u$

S	3.75837400	-1.79050100	0.14760700
Ν	-0.02084200	-0.69807000	0.01104900
С	1.20066600	-1.37629600	0.06518000
С	1.37148400	-2.79448000	0.18607700
Н	0.55273100	-3.49883300	0.23389500
С	1.27828700	1.48135200	-0.09296300
С	2.68594100	-3.15462300	0.23669100
Н	3.09368500	-4.15140300	0.32476400
С	2.40420500	-0.68267800	0.03813700
С	1.35805300	2.88514700	-0.21248900
Н	0.43631900	3.45456300	-0.26993600
С	2.57595100	3.54512600	-0.26455400
Н	2.61066700	4.62628400	-0.35603500
С	2.49988700	0.74749000	-0.05132000
С	3.73472700	1.42701600	-0.10347600
Н	4.66291900	0.86385200	-0.06770000
С	3.76892600	2.80697700	-0.20449200
Н	4.72572600	3.31940200	-0.24475400
В	-0.07258600	0.73674700	-0.04526000
С	-1.21400900	-1.50048800	0.03155100
С	-2.04987300	-1.47597900	1.14745700
С	-1.54423000	-2.28465400	-1.07608000
С	-3.22433600	-2.22682700	1.14959200
Н	-1.78187000	-0.85435200	1.99419200
С	-2.71524500	-3.04106200	-1.06628000
Н	-0.88446500	-2.28831400	-1.93771600
С	-3.55919600	-3.01091800	0.04513800
Н	-3.87797100	-2.19777000	2.01560400
Н	-2.97200500	-3.64601700	-1.93029800
Н	-4.47425000	-3.59465300	0.04930000
С	-1.45746100	1.47628600	-0.04957300
С	-2.45648400	1.20594500	-1.00122800

С	-1.73887400	2.45113200	0.92446300
С	-3.67768200	1.87637200	-0.98405600
Н	-2.27883900	0.45328000	-1.76330600
С	-2.96477300	3.11651700	0.95780700
Н	-0.98738700	2.68635800	1.67345700
С	-3.93767800	2.83197300	-0.00005700
Н	-4.42954500	1.65048200	-1.73472700
Н	-3.15889800	3.85722100	1.72830100
Н	-4.89168200	3.35070300	0.01906200

28) **Dinitrogen**

9

Number of imaginary frequencies = 0

 $E_{total} = -109.524881 \ a.u$

 $G_{correction} = -0.012851 a.u$

Cartesian coordinates:

N 0.0000000 0.0000000 0.55274900

N 0.0000000 0.0000000 -0.55274900

4.1.4 Different boroles probed for antiaromaticity

29) Compound A

В	0.00019500	1.31782900	0.0008800
С	-1.25525300	0.35161200	-0.00027100
С	1.25539600	0.35136900	-0.00017300
С	-0.75916500	-0.90121400	0.00021300
С	0.75888100	-0.90131600	-0.00003400
Н	0.00005700	2.50976000	0.00112300
Н	-2.31590100	0.57623300	-0.00043000
Н	-1.33090200	-1.82659500	0.00039800
Н	1.33048600	-1.82680000	0.00023100
Н	2.31613000	0.57554700	-0.00016700

30) Compound **B**

В	0.0000000	1.93035600	0.0000000
С	1.23294300	0.97309600	0.00000000
С	0.74422700	-0.36398800	0.0000000
С	2.60976300	1.19559000	0.00000000
Н	2.99766200	2.21099900	0.0000000
С	1.61613200	-1.44406500	0.0000000
Н	1.24839300	-2.46643800	0.00000100
С	3.49740900	0.10734400	0.0000000
Н	4.57010400	0.27571100	0.0000000
С	3.00029800	-1.19675200	0.0000000
Н	3.69197800	-2.03456800	0.00000100
Н	0.0000000	3.12213100	0.0000000
С	-1.23294300	0.97309600	0.0000000
С	-2.60976300	1.19559000	0.0000100
С	-0.74422700	-0.36398800	0.0000000
С	-3.49740900	0.10734400	0.0000000
Н	-2.99766200	2.21099900	0.00000100
С	-1.61613200	-1.44406500	0.0000000
С	-3.00029800	-1.19675200	0.0000000
Н	-4.57010400	0.27571100	0.0000000
Н	-1.24839300	-2.46643800	-0.00000100
Н	-3.69197800	-2.03456800	0.0000000

31) Compound C

S	2.05070100	-1.32129200	0.00016400
В	-0.05156300	2.03645800	0.00008900
С	-1.25174600	1.01252500	0.00002200
С	1.21651300	1.14138000	0.00006000

С	-0.70311900	-0.30611000	-0.00008600
С	-2.63139500	1.16247600	-0.0000800
Н	-3.07341800	2.15543600	-0.00007700
С	2.64475300	1.20779900	-0.00002300
Н	3.21668800	2.12885800	-0.00005500
С	-1.51115400	-1.42909400	-0.00011900
Н	-1.08915500	-2.43005300	-0.00017300
С	0.76694000	-0.17872000	-0.00005500
С	-3.46737500	0.02472300	0.00001600
Н	-4.54646100	0.14387100	0.00007500
С	-2.91119900	-1.24960000	-0.00002100
Н	-3.55896500	-2.12126000	0.00005100
С	3.23647000	-0.02981000	-0.00022600
Н	4.28906700	-0.27713400	-0.00044700
Н	-0.12329200	3.22524300	0.00020000

32) Compound **D**

S	2.10467700	-1.58897800	0.00021100
В	-0.07634200	1.73303700	0.00048600
С	-1.25321800	0.66551800	0.00009600
С	1.21241000	0.85391000	0.00064600
С	-0.67157100	-0.63662400	-0.00041800
С	-2.63636400	0.77772700	0.00035400
Н	-3.10691200	1.75805400	0.00046900
С	2.63824100	0.95338200	0.00029200
Н	3.19010100	1.88688300	0.00041900
С	-1.45040100	-1.78211800	-0.00038600
Н	-1.00063100	-2.77097700	-0.00055500

С	0.79385100	-0.47381400	-0.00007300
С	-3.44232300	-0.38035700	0.00017800
Н	-4.52427400	-0.28936300	0.00037700
С	-2.85292900	-1.64083000	-0.00014100
Н	-3.47786200	-2.52903600	-0.00013700
С	3.25927100	-0.27042200	-0.00049700
Н	4.31762900	-0.49217000	-0.00097900
С	-0.22814400	3.28897400	-0.00028100
Н	-0.80423800	3.61246600	-0.87903900
Н	-0.81850700	3.61374300	0.86835300
Н	0.71861400	3.83678000	0.00666900

33) Compound E

S	-3.02038900	-1.94315800	0.12315300
В	0.45178500	-0.01577700	-0.02477300
С	-0.52422100	1.23784800	-0.05417600
С	-0.51648700	-1.24199600	-0.00045100
С	-1.86382300	0.74628600	-0.01770900
С	-0.32787800	2.61015400	-0.14956000
Н	0.67562400	3.02027900	-0.21424900
С	-0.52749800	-2.67067100	0.07160700
Н	0.35807300	-3.29573900	0.08292400
С	-2.95651200	1.59781500	-0.04635500
Н	-3.97161000	1.21192400	-0.01785300
С	-1.80784300	-0.72423100	0.02616900
С	-1.43100000	3.48814600	-0.17835200
Н	-1.26832400	4.55936500	-0.24797100
С	-2.72710600	2.98561800	-0.12211300

Н	-3.57284700	3.66648100	-0.14478500
С	-1.79423500	-3.19413100	0.13553000
Н	-2.09408800	-4.23143400	0.19302300
С	1.99667200	-0.03229500	-0.00305000
С	2.70974700	-1.14911300	-0.49028300
С	2.75029100	1.04817700	0.50368700
С	4.10346000	-1.17995700	-0.49229300
Н	2.15870300	-1.99517500	-0.88975600
С	4.14408800	1.01486200	0.52846200
Н	2.23461700	1.91394400	0.90625500
С	4.82348800	-0.09754100	0.02272500
Н	4.62928200	-2.04491300	-0.88587500
Н	4.70165600	1.85289200	0.93636100
Н	5.90936200	-0.12204800	0.03232000

34) Compound **F**

S	-3.49677000	-2.01219200	0.17721600
В	-0.03727100	-0.05635700	0.02476000
С	-1.02515100	1.17870700	-0.13947900
С	-1.00051300	-1.28531800	0.09641500
С	-2.36131100	0.67676900	-0.12956800
С	-0.83101900	2.53687900	-0.35593600
Н	0.17425000	2.94534700	-0.39611000
С	-0.99403600	-2.70399500	0.27292400
Н	-0.09786700	-3.30802800	0.35982100
С	-3.45574400	1.51103000	-0.29327700
Н	-4.46874500	1.11874200	-0.28394900
С	-2.29659800	-0.78510400	0.03565500

С	-1.93509600	3.39647000	-0.52696800
Н	-1.77525200	4.45798000	-0.68988200
С	-3.22996600	2.88783800	-0.48736200
Н	-4.07721100	3.55488000	-0.61650600
С	-2.25597600	-3.24062100	0.32783400
Н	-2.54601800	-4.27510500	0.45042300
С	1.50944100	-0.10994900	0.02750200
С	2.10089900	-1.13849800	-0.74352700
С	2.37637500	0.79238000	0.68924900
С	3.47670000	-1.24259500	-0.90963500
Н	1.45511000	-1.85767000	-1.23986600
С	3.76191700	0.65659300	0.53209300
С	4.33406900	-0.33501800	-0.27048400
Н	3.89225100	-2.03631400	-1.52538400
Н	4.41792400	1.34477800	1.06220300
С	5.82909500	-0.42838200	-0.44805400
Н	6.13082500	-0.03515900	-1.42667500
Н	6.35981100	0.14447700	0.31754300
Н	6.17148400	-1.46718600	-0.39671800
С	1.87091600	1.87002600	1.62357000
Н	2.08673900	2.87050800	1.23006000
Н	0.79668900	1.80125200	1.79434600
Н	2.37066400	1.79508000	2.59571500

35) Compound G

S

В

-3.60134300	-1.88680500	0.33035300
-0.09902200	-0.03575000	0.01529100

С	-1.05555200	1.21496500	-0.17845800
С	-1.09044900	-1.22839900	0.18640500
С	-2.40468500	0.75838500	-0.11577900
С	-0.81139900	2.55837300	-0.42363900
Н	0.21134500	2.92229500	-0.48630900
С	-1.11497200	-2.63688300	0.42587400
Н	-0.23085500	-3.25724100	0.52304900
С	-3.47180200	1.62638100	-0.27832500
Н	-4.49854400	1.27457900	-0.23174300
С	-2.37509900	-0.69757500	0.11713800
С	-1.88885700	3.45330600	-0.58981600
Н	-1.69751400	4.50549200	-0.77711400
С	-3.19899400	2.98949000	-0.51465600
Н	-4.02485400	3.68286300	-0.64358500
С	-2.38849100	-3.13825600	0.52335500
Н	-2.70273100	-4.15826400	0.69692800
С	1.45511800	-0.04747600	0.01789900
С	2.16398800	-0.67457400	-1.03404500
С	2.18440600	0.56985400	1.05924600
С	3.56122800	-0.66387900	-1.03418700
С	3.58317600	0.54899700	1.03561900
С	4.29132200	-0.06131400	-0.00351800
Н	4.09351300	-1.13473900	-1.85817400
Н	4.13235600	1.02047300	1.84785800
С	1.41942500	-1.31407900	-2.18537300
Н	0.69279800	-2.05413300	-1.83471300
Н	0.85924500	-0.56747800	-2.76143800
Н	2.10787400	-1.81403300	-2.87231800
С	1.46718200	1.20303400	2.23112900
Н	0.69361800	1.90419000	1.90377300
Н	0.96890500	0.44303600	2.84561400
Н	2.16488700	1.74387600	2.87657200
С	5.80038000	-0.09560300	-0.00311800

Н	6.21681900	0.69320300	0.63031000
Н	6.17157500	-1.05518500	0.37817200
Н	6.20261500	0.03021600	-1.01348700

36) Compound **H**

S	-1.95840500	-1.33106500	0.0000000
В	0.0000000	2.13410800	-0.00000200
С	-1.24072000	1.16943300	0.00000000
С	-2.66555300	1.16704800	0.0000200
Н	-3.28164500	2.05925300	0.0000200
С	-0.73387300	-0.12993500	0.00000000
С	-3.20187100	-0.10036200	0.00000000
Н	-4.24135300	-0.39680400	0.00000000
Н	0.0000000	3.32443200	0.00000000
С	1.24072000	1.16943300	-0.00000100
С	0.73387300	-0.12993500	-0.00000100
С	2.66555300	1.16704800	0.00000100
S	1.95840500	-1.33106500	0.00000000
С	3.20187100	-0.10036200	0.00000100
Н	4.24135300	-0.39680400	0.00000100
Н	3.28164500	2.05925300	0.00000100

5. References

- N. N. Pham, S. Parpart, S. Grigoryan, T. N. Ngo, T. T. Dang, T. V. Ghochikyan, A. S. Saghyan, P. Ehlers, P. Langer, *Eur. J. Inorg. Chem.*, 2017, 538-550.
- W. Zhang, D. Yu, Z. Wang, B. Zhang, L. Xu, G. Li, N. Yan, E. Rivard, G. He, *Org. Lett.*, 2019, 21, 109-113.
- 3 W. Haubold, J. Herdtle, W. Gollinger, W. Einholz, J. Organomet. Chem., 1986, 315, 1-8.
- 4 G. Sheldrick, *Acta Cryst.*, 2015, **A71**, 3–8.
- 5 G. Sheldrick, *Acta Cryst.*, 2008, **A64**, 112–122.
- 6 D. Kratzert, J. J. Holstein, I. Krossing, J. Appl. Cryst., 2015, 48, 933-938.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, N. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, M.; C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, Gaussian 16, Revision E.01; Gaussian, Inc., Wallingford CT, 2016.
- 8 (a) A. D. Becke, *Phys. Rev. A*, 1988, **38**, 3098-3100; (b) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652; (c) C. Lee, W. Yang, R. G. Parr, *Phys. Rev. B*, 1988, **37**, 785-789.
- 9 (a) S. Grimme, J. Antony, S. Ehrlich, H. J. Krieg, *Chem. Phys.*, 2010, 132, 154104; (b) S. Grimme,
 S. Ehrlich, L. Goerigk, *J. Comput. Chem.*, 2011, 32, 1456–1465.
- 10 J. Baker, J. Comput. Chem., 1986, 7, 385-395.
- (a) A. L. L. East, G. M. Berner, A. D. Morcom, L. Mihichuk, J. Chem. Theory Comput., 2008, 4, 1274-1282; (b) A. Jayaraman, G. M. Berner, L. M. Mihichuk, A. L. L. East, J. Mol. Catal. A: Chem., 2011, 351, 143-153; (c) A. Jayaraman, A. L. L. East, J. Org. Chem., 2012, 77, 351-356; (d) Y. P. Budiman, A. Jayaraman, A. Friedrich, F. Kerner, U. Radius, T. B. Marder, J. Am. Chem. Soc., 2020, 142, 6036-6050; (e) T. E. Stennett, A. Jayaraman, T. Brückner, L. Schneider, H. Braunschweig, Chem. Sci., 2020, 11, 1335-1341.
- 12 A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378-6396.
- (a) P. v. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N. J. R. van Eikema Hommes, *J. Am. Chem. Soc.*, 1996, **118**, 6317-6318; (b) Z. Chen, C. S. Wannere, C. Corminboeuf, R. Puchta, P. v. R. Schleyer, *Chem. Rev.*, 2005, **105**, 3842-3888; (c) A. Stanger, *J. Org. Chem.*, 2006, **71**, 883-893; (d) A. C. Tsipis, *Phys. Chem. Chem. Phys.*, 2009, **11**, 8244-8261.
- (a) R. Ditchfield, *Mol. Phys.*, 1974, 27, 789-807; (b) K. Wolinski, J. F. Hinton, P. Pulay, *J. Am. Chem. Soc.*, 1990, 112, 8251-8260; (c) J. R. Cheeseman, G. W. Trucks, T. A. Keith, M. J. Frisch, *J. Chem. Phys.*, 1996, 104, 5497-5509.